MANAGEMENT PROGRAMME

Term-End Examination

December, 2018

MS-008 : QUANTITATIVE ANALYSIS FOR MANAGERIAL APPLICATIONS

Time : $\mathbf{3}$ hours
Maximum Marks : 100
(Weightage : 70\%)
Note: (i) Section A has six questions, each carrying 15 marks. Attempt any four questions from this section.
(ii) Section B is compulsory and carries 40 marks. Attempt both questions.
(iii) Use of calculator is permitted.

SECTION - A

1. What is statistical decision theory ? Describe the four different states of decision environment in managerial applications. Which is the most prevalent state?
2. The Revenue function for a product is $R=600 q-0.5 q^{2}$ and the cost function is $C=1500+140 q-4 q^{2}+5 q^{3}$. Determine the profit function and the value of q for which profit is maximum.
3. A certain manufacturing process produces electrical fuses of which, in the long run, 15% are defective.
Find the probability that in a sample of 10 fuses selected at random there will be :
(a) no defective
(b) at least one defective
4. The following table gives the number of aircraft accidents that occurred during the various days of a week. Find whether the accidents are uniformly distributed over the week.

Days	Sun	Mon	Tue	Wed	Thurs	Fri	Sat
No. of Accidents	14	16	8	12	11	9	14

Given χ^{2} at 6 d. $\mathrm{f}=12.59$
5. What is the major difference between probability and non-probability sampling ? Briefly outline the sampling methods that are covered under probability and non-probability sampling.
6. Write short notes on any three of the following :
(a) Cofactor of an element of matrix
(b) Exhaustive events
(c) Standard deviation and standard error
(d) Criteria of optimism
(e) Disproportional stratified sampling

SECTION - B

7. A random sample of size 16 has 53 as mean. The sum of squares of the deviations from mean is 135 . Can this sample be regarded as taken from the population having 56 as mean ? Obtain 95% and 99% confidence limits of the mean of the population.
(Given for $\mathrm{n}=15, \mathrm{t}_{0.05}=2.13$ and for $\mathrm{n}=15$, $\mathrm{t}_{0.01}=2.95$)
8. ' A ' speaks truth in 75% cases and ' B ' in 80% of the cases. In what percent of cases are they very likely to contradict each other in narrating the same incident?
