BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

December, 2018

ELECTIVE COURSE : MATHEMATICS MTE-06 : ABSTRACT ALGEBRA

Time: 2 hours
Maximum Marks : 50
(Weightage : 70\%)
Note: Question no. 7 is compulsory. Answer any four questions from questions no. 1 to 6. Use of calculators is not allowed.

1. (a) Let
$\mathrm{G}=\{\mathrm{g}: \mathbf{R} \rightarrow \mathbf{R}: \mathrm{g}(\mathrm{x})=\mathrm{ax}+\mathrm{b}, \mathrm{a}, \mathrm{b} \in \mathbf{Q}, \mathrm{a} \neq 0\}$.
Check whether or not G is a group with respect to the composition of mappings. For $f(x)=2 x+3$, find all $g \in G$ such that fog $=$ gof.
(b) Let $\mathrm{I}=<24,36,42>$ be an ideal of Z . Find a such that $\mathrm{I}=\langle a\rangle$.
(c) What is the maximum order an element of S_{5} can have and why?
2. (a) Show that if a group is non-abelian, it must have at least six elements.
(b) Let I and J be ideals of a ring R. Define $f: R \rightarrow R / I \times R / J$ by $f(r)=(r+I, r+J)$. Prove that f is a ring homomorphism.
(c) If I is a non-trivial ideal in \mathbf{R}, prove that $\mathrm{I}=\mathbf{R}$.
3. (a) Show that $\mathrm{GL}_{2}(\mathbf{Q})$ is isomorphic to a subgroup of $\mathrm{GL}_{3}(\mathbf{Q})$.
(b) Give an example, with justification, of a ring homomorphism $f: R \rightarrow S$ that does not map the identity element of R to the identity element of S.
4. (a) Check whether or not $R=\mathbf{Q}[x] / I$ is a field, where $\left.I=<x^{3}+2 x+2\right\rangle$. If R is a field, find $(\overline{x+1})^{-1}$ in R. If R is not a field, obtain the quotient field of R.
(b) Show that every abelian group of order 21 is cyclic.
5. (a) Let R be a ring with identity and let $f: R \rightarrow R$, given by $f(r)=r^{2}$, be a ring homomorphism. Then show that R is a ring of characteristic 2, and it is commutative. Also find the kernel of this homomorphism.
(b) Check whether or not \sim, defined on $Z \backslash\{0\}$ by $\mathbf{n} \sim \mathbf{m}$ iff $\mathrm{nm}>0$, is an equivalence relation. If \sim is an equivalence relation, find [-5]. If \sim isn't an equivalence relation, define an equivalence relation on Z.
6. (a) Show that if G is a group and $\mathrm{H} \subseteq \mathrm{G}$ such that $|G: H|=2$, then for any $x \in G$ either $x \in H$ or $x^{2} \in H$.
(b) Give an example, with justification, of each of the following :
(i) A prime ideal of a ring, which is not a maximal ideal
(ii) A commutative subring of a non-commutative ring
(iii) Two distinct elements of $\mathbf{R}[\mathbf{x}] /\left\langle\mathbf{x}^{2}\right\rangle$
7. State whether the following statements are true or false. Give reasons to support your answers. 10
(i) Any two non-zero subgroups of \mathbf{Z} are isomorphic.
(ii) If R is an integral domain, then so is $R \times R$.
(iii) $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is a set only if all the $a_{i} s$ satisfy a rule.
(iv) If G is a group and $H \leq G$ such that $|G: H|=3$, then $H \Delta G$.
(v) Every ring has a multiplicative identity.

स्नातक उपाधि कार्यक्रम
(बी.डी.पी.)
सत्रांत परीक्षा
दिसम्बर, 2018

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-06 : अमूर्त बीजगणित

समय: 2 घण्टे
अधिकतम अंक: 50
(कुल का : 70\%)
नोट: प्रश्न सं. 7 करना अनिवार्य है। प्रश्न सं. 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए / कैल्कुलेटरों के प्रयोग करने की अनुमति नहीं है ।

1. (क) मान लीजिए
$\mathbf{G}=\{\mathbf{g}: \mathbf{R} \rightarrow \mathbf{R}: \mathbf{g}(\mathrm{x})=\mathrm{ax}+\mathrm{b}, \mathrm{a}, \mathrm{b} \in \mathbf{Q}, \mathrm{a} \neq 0\}$. जाँच कीजिए कि फलनों के संयोजन के सापेक्ष G समूह
है या नहीं । $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+3$ के लिए ऐसे सभी $\mathrm{g} \in \mathrm{G}$
ज्ञात कीजिए जिनके लिए fog = gof.
(ख) मान लीजिए $\mathrm{I}=\langle 24,36,42\rangle, \mathrm{Z}$ की गुणजावली है। ऐसा a ज्ञात कीजिए जिसके लिए $\mathrm{I}=\langle a\rangle$.
(ग) S_{5} के किसी भी अवयव की अधिक-से-अधिक कोटि क्या हो सकती है, और क्यों ?
2. (क) दिखाइए कि यदि कोई समूह अन्-आबेली है, तब इसके कम-से-कम छह अवयव ज़रूर होंगे ।
(ख) मान लीजिए I और J वलय R की गुणजावलियाँ हैं । $f(r)=(r+I, r+J)$ द्वारा परिभाषित फलन $f: R \rightarrow R / I \times R / J$ लीजिए । सिद्ध कीजिए कि f एक वलय समाकारिता है ।
(ग) यदि I, \mathbf{R} में एक अतुच्छ गुणजावली है, तब सिद्ध कीजिए कि $\mathrm{I}=\mathbf{R}$.
3. (क) दिखाइए कि $\mathrm{GL}_{2}(\boldsymbol{Q}), \mathrm{GL}_{3}(\boldsymbol{Q})$ के एक उपसमूह के तुल्याकारी है।
(ख) एक ऐसी वलय समाकारिता $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{S}$ का पुष्टि सहित उदाहरण दीजिए जो R के तत्समक अवयव को S के तत्समक अवयव में नहीं ले जाता ।
4. (क) जाँच कीजिए कि $R=\mathbf{Q}[x] / \mathrm{I}$ एक क्षेत्र है या नहीं, जहाँ $I=\left\langle x^{3}+2 x+2\right\rangle$. यदि R एक क्षेत्र है, तो R में $(\overline{x+1})^{-1}$ ज्ञात कीजिए। यदि R क्षेत्र नहीं है, तो R का विभाग क्षेत्र प्राप्त कीजिए।
(ख) दिखाइए कि कोटि 21 वाला प्रत्येक आबेली समूह चक्रीय होगा ।
5. (क) मान लीजिए R तत्समकी वलय है और मान लीजिए $f(r)=r^{2}$ द्वारा परिभाषित फलन $f: R \rightarrow R$ एक वलय समाकारिता है । तब दिखाइए कि R अभिलक्षणिक 2 वाला वलय है और क्रमविनिमेय भी है । इस समाकारिता की अष्टि भी ज्ञात कीजिए।
(ख) जाँच कीजिए कि $\mathrm{n} \sim \mathrm{m}$ यदि और केवल यदि $\mathrm{nm}>0$ द्वारा $\mathbf{Z} \backslash\{0\}$ पर परिभाषित \sim एक तुल्यता संबंध है या नहीं । यदि ~ तुल्यता संबंध है, तो [-5] ज्ञात कीजिए। यदि \sim तुल्यता संबंध नहीं है, तब \mathbf{Z} पर एक तुल्यता संबंध परिभाषित कीजिए।
6. (क) दिखाइए कि यदि G एक समूह है और H, G का ऐसा उपसमूह है जिसके लिए $|\mathrm{G}: \mathrm{H}|=2$, तब किसी भी $x \in G$ के लिए या $x \in H$ या $x^{2} \in H$ होगा।
(ख) निम्नलिखित प्रत्येक का एक पुष्टि सहित उदाहरण दीजिए :
(i) किसी वलय की एक अभाज्य गुणजावली, जो उच्चिष्ठ गुणजावली नहीं है
(ii) किसी अक्रमविनिमेय वलय का क्रमविनिमेय उपवलय
(iii) $\mathbf{R}[\mathbf{x}] /<\mathrm{x}^{2}>$ के दो अलग-अलग अवयव
7. बताइए निम्नलिखित कथन सत्य हैं या असत्य। अपने उत्तरों के पक्ष में कारण दीजिए।
(i) Z के कोई भी दो शून्येतर उपसमूह तुल्याकारी होंगे ।
(ii) यदि R पूर्णांकीय प्रांत है, तब $\mathrm{R} \times \mathrm{R}$ पूर्णांकीय प्रांत होगा।
(iii) $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ केवल तभी एक समुच्चय है यदि सभी a_{i} एक नियम को संतुष्ट करते हैं ।
(iv) यदि G एक समूह है और $\mathrm{H} \leq \mathrm{G}$ इस प्रकार का है कि

$$
|\mathrm{G}: \mathrm{H}|=3 \text {, तब } \mathrm{H} \Delta \mathrm{G} \text {. }
$$

(v) प्रत्येक वलय का गुणनात्मक तत्समक होता है ।

