
PG DIPLOMA IN COMPUTER APPLICTIONS

(PGDCA)

CSP-44

Application Development Using PHP

Block

3

Advance PHP

Unit -1

Object Oriented Concept in PHP

Unit -2

File management and Exception Handling

Unit -3

Database Connectivity in PHP

 EXPERT COMMITTEE

 Dr P.K.Behera (Chairman)
Reader in Computer Science
Utkal University
Bhubaneswar, Odisha

 Dr. J.R.Mohanty (Member)
 Professor and HOD
 KIIT University
 Bhubaneswar, Odisha

 Sh Pabitrananda Pattnaik (Member)
 Scientist –E,NIC
 Bhubaneswar, Odisha

 Sh Malaya Kumar Das (Member)
 Scientist –E,NIC
 Bhubaneswar, Odisha

 Dr. Bhagirathi Nayak (Member)
 Professor and Head(IT & System)
 Sri Sri University
 Bhubaneswar, Odisha

 Dr. Manoranjan Pradhan (Member)
 Professor and Head(IT & System)
 G.I.T.A
 Bhubaneswar, Odisha

Sri V.S.Sandilya (Convener)
Academic Consultant (I.T),
Odisha State Open University,
Sambalpur, Odisha

PG DIPLOMA IN COMPUTER APPLICATIONS

Course Writer

Mr. Aseem Kumar Patel
Academic Consultant

Odisha State Open University, Sambalpur, Odisha

Course Editor
Mr. Satya Sobhan Panigrahi

Asst. Prof, SIT, BBSR

UNIT-01

Object Oriented Concept in PHP

UNIT STRUCTURE

1.1 Introduction 01

1.2 Basics of OOP in PHP 01

1.2.1 Pillars of OOPS 01

1.3 Advantage of Object Oriented Programming 03

1.4 Understanding classes and objects 03

1.4.1 Class in PHP 04

1.4.2 Object in PHP 05

1.5 PHP Class Properties and Methods 07

1.5.1 Access Modifiers 07

1.5.2 PHP class Methods 07

1.5.3 PHP Static Class Properties and Methods 08

1.5.4 PHP Class Constants 09

1.6 Constructor and Destructor in PHP 10

1.6.1 Constructor in PHP 10

1.6.2 Destructor in PHP 12

1.7 Magic Methods in PHP 13

1.8 Inheritance in PHP 15

1.8.1 Multilevel and Multiple inheritance in PHP 17

1.9 Interface 19

21

22

23

24

24

1.10 Abstract class

1.11 Differences between abstract class and interface in PHP

1.12 Final class and method in PHP

1.13 Polymorphism

1.13.1 Method Overriding

1.14 Let us sum up

1.15 References

1.16 Model Questions

26

26

26

1

UNIT-01

Object Oriented Concept in PHP

1.1 Introduction
Object-oriented programming (OOP) was first introduced in php4. Area for

OOP in PHP version 4 was not very vast. There were only few features available

in php4. The major concept of the object oriented programming in PHP is

introduced from version 5(we commonly known as php5). Also, PHP

community has the plan to modify its object model structure in a better manner

in php6 (not released yet). But still, in the php5 object model is designed nicely.

If you have the good understanding of OOP then you can create a very good

architecture of your PHP application. You only need to know some of the basic

principles of object-oriented programming and how to implement that concept

of OOP in PHP. In whole series I will use abbreviation OOP for Object Oriented

Programming.

The object-oriented programming style in PHP is a great way to build modular,

reusable code, letting you create large applications that are relatively easy to

maintain.

1.2 Basics of OOP in PHP
Object oriented programming is a design concept. OOP is nothing but a

technique to design your application i.e. web based or windows based

application.

In object oriented programming, everything will be around the objects and

class. By using OOP in php we can create modular web application and perform

any activity in the object model structure.

1.2.1 Pillars of OOPs
There are six Pillars of Object Oriented Programming:

1. Object

2. Class

3. Abstraction

4. Encapsulation

5. Inheritance

6. Polymorphism

Let’s understand each of pillars

1. Object
Anything is the world is an object. Look around and you can find lots of object.

Your laptop, pc, car everything is an object. In this world every object has two

2

thing properties and behaviors. Your car has property (color, brand name) and

behavior (activity).

 If you have an object for interest calculator then it has property interest rate

and capital and behavior simple interest calculation and compound interest

calculation.

PHP object an individual instance of the data structure defined by a class.

Objects are also knows as instance.

2. Class
The class is something which defines your object. For example, your class is

Car. And your Honda car is object of car class.

Blueprint of the object is class. The class represents all properties and behaviors

of the object. For example, your car class will define that car should have color,

the number of doors and your car which is an object will have color green and

2 doors. Your car is an object of a class car. Or in terms of programming, we

can say your car object is an instance of the car class. So structural

representation (blueprint) of your object is class.

3. Abstraction
Abstraction means displaying only essential information and hiding the details.

Data abstraction refers to providing only essential information about the data to

the outside world, hiding the background details or implementation.

Consider a real life example of a man driving a car. The man only knows that

pressing the accelerators will increase the speed of car or applying brakes will

stop the car but he does not know about how on pressing accelerator the speed

is actually increasing, he does not know about the inner mechanism of the car

or the implementation of accelerator, brakes etc in the car. This is what

abstraction is.

4. Encapsulation
Encapsulation means putting together all the variables (instance variables) and

the methods into a single unit called Class. It also means hiding data and

methods within an Object. Encapsulation provides the security that keeps data

and methods safe from inadvertent changes.

5. Inheritance
Inheritance is the ability to create classes that share the attributes and methods

of existing classes, but with more specific features. Inheritance is mainly used

for code reusability.

When one class is derived from another class this is called an inheritance. The

new class (also called subclass, derived class, child class) can inherit members

3

from the old class (also called superclass, parent class). The new class can also

add additional properties and methods.

6. Polymorphism
Polymorphism definition is that Poly means many and morphos means forms.

It describes the feature of languages that allows the same word or symbol to be

interpreted correctly in different situations based on the context. Object-

oriented programs are written so that the methods having the same name works

differently in different context.

1.3 Advantage of Object Oriented Programming
There are various advantage of using OOP over the procedural or parallel

programming. Following are some of the basic advantages of using OOPS

techniques.

Re-Usability of your code: If you will use OOP technique for creating your

application then it will gives you a greater re-usability. For example, if you have

created calculator class at one place then you can use the same calculator class

in your application.

Easy to Maintain: Application develop using OOPS technique are easier to

maintain than normal programming. Again let us take an example of your

interest calculator class. Suppose your business need to change the calculation

logic. They want to add some charges if your capital is less than 200 USD. Just

think about your application is big and developed using normal programming

techniques. So first you have to analyze that at how many places we have

calculated interest, and then you will change. But just think of OOPS technique.

You just need to change in your method of interest calculation at one place.

Good Level of Abstraction: Abstraction means making something hidden. By

using OOPS technique you are abstracting your business logic from

implementation. It will provide you greater ease. Again let us take an example

of interest calculator. If you have created class for interest calculation and your

team is going to use that class. Now you are only concern about how interest

calculation will be performed because you have created that. Your team

member is always have understood that if they will set rate and capital property

and apply interest calculation method then it will return interest.

Molecularity: If are creating a separate class for your every problem then you

are making it modular. So if someone needs to change in the business logic part

then he will always go to your business logic code part.

1.4 Understanding Classes and Objects
Classes, objects, properties, and methods are the basic building blocks that you

can use to create object-oriented applications in PHP.

4

A PHP class is a unit of code that describes the characteristics and behaviors of

something, or of a group of things.

Class is like your house blueprint. Before your house is constructed, there is a

house blueprint. It is not an actual house, but a plan how this house will look

like, how many rooms it will have and so on. Then the house will be constructed

by following the blueprint exactly. In this analogy, the house blueprint is a class

and your actual house is an object. We can have unlimited objects of a class,

just like we can build unlimited exact houses by following the same house

blueprint.

1.4.1 Class in PHP
Concept of class introduced from php4. But complete coverage of class like

access modifier or interface is introduced from php5. Creating class is very easy

in PHP. You can create class with help of using class keyword in PHP.

The keyword class is used to define a user defined (abstract) data type. It is then

followed by the user defined class name (/identifier) and a pair of curly braces

{ }

e.g. class className { }

Syntax:

class className

{

//variables of the class

var $var1;

var $var2;

//Function of class

function addVar ()

{

return $this->var1 . $this->var2;

}

}

Points to be Remember:

1. Class className is created by using keyword “class”. Your name of the

class will be general string without space.

2. Complete block of the class in enclosed within { }.

3. All variables of this class is defined in the beginning of the class.

Variables are starting with “var” keyword which is followed by a

conventional $ variable name.

4. The variable $this is a special variable and it refers to the same object

i.e. itself.

5

If you want to declare $var1 to be accessible from anywhere then you can use

public $var1 instead of var $var1. If you will use var $var1 in php5, the variable

will be treated as public by default.

Example:

<? php

 class Car{

 public $weight = "100kg";

 public $price = "$1000";

 function show(){

 echo "
". $this->weight;

 echo "
". $this->price;

 }

 }

?>

1.4.2 Object in PHP
Classes are useless without objects. Object is an instance of your class. If you

have class then you can create as many objects as you like of that class type.

You can create object of your class by using “new” keyword.

Syntax to create object using new operator

An object is created using the keyword new to assign the class to the user

defined object name.

e.g. $myObject = new className;

Now in above code we have created object named “myObject” of class

myClass. We can create multiple object of your same class. Every object is

different from other.

$objClass1 = new myClass();

$objClass2 = new myClass();

Example:

<? PHP

 class Car{

 public $weight = "100kg";

 public $price = "$1000";

 function show(){

 echo "
". $this->weight;

 echo "
". $this->price;

 }

 }

6

$object = new Car (); // create a class object

echo ("
".$object->price); // access class public property

echo ("
".$object-> weight); // access class public property

$object->show (); ?>

The “->” symbol access operator is used to get or set an object’s attributes.

 Example:-01

<? PHP

//Creating class interestCalculator

class interestCalculator

{

public $rate;

public $duration;

public $capital;

public function calculateInterest()

{

return ($this->rate*$this->duration*$this->capital)/100;

}

}

$calculator1 = new InterestCalculator();

$calculator2 = new InterestCalculator();

$calculator1->rate = 3;

$calculator1->duration =2;

$calculator1->capital = 300;

$calculator2->rate = 3.2;

$calculator2->duration =3;

$calculator2->capital = 400;

$interest1 = $calculator1->calculateInterest();

$interest2 = $calculator2->calculateInterest();

echo "Your interest for calculator1 object is…$interest1
 ";

echo "Your interest for calculator2 object is…$interest2
 ";

?>

OUTPUT:

We have created two object of “interestCalculator” class in variable

$calculator1 and $calculator2.

7

Now property value of both objects are different. for example $calculator1

capital is 300 and $calculator2 capital is 400. Whenever we will call

“calculateInterest” function of the both object then they will calculate interest

on their own properties.

1.5 PHP Class Properties and Methods

1.5.1 Access modifiers:
Each method and property has its visibility. We can set the visibility of methods

and member fields.

PHP5 has three access modifiers. public, private, protected.

 The public members can be accessed everywhere, both within the class

and externally.

 The private members is accessible only from within the class that

defines it.

 The protected members can only be accessed within the class itself or

in descendant classes.

PHP Class Properties

Properties are used to add data to a class, it’s a class-specific variables.

Example:

<?php

 class Car{

 public $color = "red";

 private $price = "$2000"; // class properties

 protected $power = "200hp";

 }

 $obj = new Car();

 echo ($obj->color); // you can access only public properties

 echo ($obj->price); /*this statement generate an error because

private properties can't access outside the class*/

?>

1.5.2 PHP Class Methods
Methods are class-specific function. Method declare using the function keyword

precedes a method name, followed by an optional list of argument variables in

parentheses. The method body is enclosed by braces.

Points to be remember about the class methods:

 Methods must be declared in the body of class

 Methods can be declared public, protected, or private.

8

 If you omit the visibility keyword in your method declaration, the method

will be declared public implicitly.

Example: ex1.php //filename

<?php

 class Audi{

 public $colors ="red";

 private $prices="$2000"; // class properties

 protected $powers = "200hp";

public function show() { // access modifier must followed by function keyword

 echo "audi colors = ". $this->colors;

 echo "
 audi prices = ". $this->prices;

 echo "
 audi powers = ". $this->powers;

 }

 }

$obj = new Audi();

$obj->show(); // calling instance show() method

?>

OUTPUT:

1.5.3 PHP Static Class Properties and Methods
The static keyword is used to define static methods and properties.

 static methods are callable without an instance of the object.

 $this pseudo-variable is not available inside the method declared as static.

The static properties and methods accessed using the scope resolution operator (::).

Syntax:

classname :: method_name()

 classname :: static_property_name

9

Example:

<?php

 class Car{

 static public $color ="red"; // static property

 static private $price="$2000"; // static property

protected $power="200hp"; // instance property

 static public function show(){

 echo "car color = ". Car::$color;

 echo "
 car price = ". Car::$price; echo "
";

 // you cannot use the instance property within static method

 }

 static private function msg(){

 echo "this is private static function";

 } } // end of class Car

 $obj= new Car();

 Car :: show(); // calling the static show() method

 Car::msg(); // private static msg() method cannot accessed

outside the class

 ?>

OUTPUT:

1.5.4 PHP Class Constants
Class constants define with the const keyword. A constant variable cannot start

with $ symbol.

Syntax:

 const PRICE = "$40000"

Class constants variable access like static properties.

 classname::constant_variable_name

The value for constant variable must be a constant expression, not a variable, a

property, a result of a mathematical operation, or a function call.

Note: class constants cannot be made private or protected. They always

publicly visible. For good practice to use all-uppercase letters for class constant

names (e.g. PRICE, COUNTRY).

10

Example:

<?php

class Car{

const PRICE = "$40000";

const COUNTRY = "usa" ;

public $quantity = 300 ;

public function show(){

 $this->quantity = 500;

echo "quantity = ".$this->quantity;

echo "
 constant price value = ".Car::PRICE;

echo "
 constant country value = ".Car::COUNTRY;

}

 }

$obj = new Car();

$obj->show();

echo "
price value outside the class = ".Car::PRICE;

?>

OUTPUT:

1.6 Constructor and Destructor in PHP

1.6.1 Constructor in PHP
A PHP constructor is a 'special' member function whose task is to initialize the

objects of its class.

Constructor is nothing but a function defined in your php class. Constructor

function automatically called when you will create object of the class.

In php4 we can create constructor by creating function with same name of your

class. But from php5 you can also create constructor by defining magic

function __construct.

Syntax:

 public function __construct()

{

... code goes here... }

11

Example:

Constructor in PHP4 (will work in PHP5 too)

class interestCalculator

{

var $rate;

var $duration;

var $capital;

//Constructor of the class

function interestCalculator()

{

$this->rate = 3;

$this->duration = 4;

}

}

constructor in PHP5

class interestCalculator

{

public $rate;

public $duration;

public $capital;

//Constructor of the class

public function __construct() // __ is (double Underscore)

{

$this->rate = 3;

$this->duration = 4;

}

}

Example:

<?php

class interestCalculator

{

public $rate;

public $duration;

public $capital;

//Constructor of the class

public function __construct() // __ is (double Underscore)

{

$this->rate = 3;

$this->duration = 4;

echo "
 interestCalculator class object is created ";

}

}

12

$obj = new interestCalculator ();

?>

OUTPUT:

interestCalculator class object is created

1.6.2 Destructor in PHP
The PHP destructor is used to destroy the objects. Like Java, PHP has automatic

garbage collection. A destructor function cleans up any resources allocated to

an object once the object is destroyed.

Unless otherwise explicitly carried out, objects are automatically destroyed at

the end of the script they were created in.

In some cases, it might sometimes be useful to specifically carry out a task when

an object is destroyed, say to close a database connection.

Accordingly, the destructor is a magic method that is automatically called when

an object is destroyed, e.g. at the end of the script.

Syntax:

public function __destruct()

{

… code written here…

 }

Example:

<?php

class interestCalculator

{

public $rate;

public $duration;

public $capital;

//Constructor of the class

public function __construct() // __ is (double Underscore)

{

$this->rate = 3;

$this->duration = 4;

echo "
 interestCalculator class object is created ";

}

public function __destruct() { // destroy the safari object

 echo "
 destroy the object";

}

}

$obj = new interestCalculator ();

?>

13

OUTPUT:

interestCalculator class object is created

destroy the object

A destructor is called automatically when a scripts ends. However, to explicitly

trigger the destructor, you can destroy the object using the PHP unset()

function, as follow:

Example:

<?php

class interestCalculator

{

public $rate;

public $duration;

public $capital;

//Constructor of the class

public function __construct() // __ is (double Underscore)

{

$this->rate = 3;

$this->duration = 4;

echo "
 interestCalculator class object is created ";

}

public function __destruct() { // destroy the safari object

 echo "
 destroy the object";

}

}

$obj = new interestCalculator ();

unset($obj);

?>

OUTPUT:

interestCalculator class object is created

destroy the object

To delete an object before the end of a script the keyword unset() is used with

the object's variable name within its parentheses

Syntax:

unset($myObject);

1.7 Magic Methods in PHP

Magic methods in php are some predefined function by php compiler which

executes on some event.

14

Magic methods starts with prefix __, for example __call, __get, __set. There

are verous magic methods in php.

Here we will discuss some of the most comman magic methods of php which

will be used in object oriented programming.

List of Magic methods in PHP

__construct

This magic methods is called when someone create object

of your class. Usually this is used for creating constructor

in php5.

__destruct
This magic method is called when object of your class is

unset. This is just opposite of __construct.

__get

This method called when your object attempt to read

property or variable of the class which is inaccessible or

unavailable.

__set

This method called when object of your class attempts to

set value of the property which is really inaccessible or

unavailable in your class.

__isset

This magic methods trigger when isset() function is

applied on any property of the class which is inaccessible

or unavailable.

__unset

__unset is something opposite of is set method. This

method triggers when unset() function called on

inaccessible or unavailable property of the class.

__call

__call magic method trigger when you are attempting to

call method or function of the class which is either

inaccessible or unavailable.

__callstatic
__callstatic execute when inaccessible or unavailable

method is in static context.

__sleep
__sleep methods trigger when you are going to serialize

your class object.

__wakeup
__wakeup executes when you are un serializing any class

object.

__toString
__toString executes when you are using echo on your

object.

__invoke
__invoke called when you are using object of your class

as function

15

1.8 Inheritance in PHP
PHP inheritance is one of the fundamental mechanisms for code reuse in OOPs.

By implementing inheritance you can inherit (or get) all properties and methods

of one class to another class. The class who inherit feature of another class

known as child class. The class which is being inherited is known as parent

class. With the help of inheritance we can increase re-usability of code.

Real world example, child inherits characteristics of their parent. Same is here

in oop. One class is inheriting characteristics of another class.

When one class is derived from another class this is called an inheritance. The

new class (also called subclass, derived class, child class) can inherit members

from the old class (also called superclass, parent class). The new class can also

add additional properties and methods.

Classes can inherit the methods and properties of another class using the

extends keyword.

To implementing inheritance in php we need at least 2 classes. One will be

parent class and other will be child class. In child class you can inherit all

properties and methods (protected and public only) from parent class.

Syntax:

class Demo

{

$model = null ;

}

class Demo1 extends Demo{

$price = "$4000"; // $model property inherit from Cars class

}

Example:

<?php

class Super1 {

 private $value;

 function Super1(){

$this->value=100;

 }

public function getvalue()

 {

 echo "I am in Super class with value..". $this -> value;

 }

}

16

class Child extends Super1{

private $value1 = 200;

 public function getChild()

 {

 $this -> getValue();

 echo "
 Inside Child class with value ". $this -> value1;

 }

}

 $obj = new Child();

$obj -> getChild();

?>

OUTPUT:

Example:

<?php

class Person {

 public $name ;

 public function speak() {

 echo "Hi, my name is $this->name, and I'm a Male";

 }

}

class Teacher extends Person {

 public $age ;

 public function speak() {

 echo "Hello, my name is $this->name, and
I'm a Teacher!";

 echo "
My age is $this->age !!";

 }

}

$obj = new Teacher;

$obj ->name = "aseem";

$obj -> age = "33";

$obj ->speak();

?>

OUTPUT:

Hello, my name is aseem, and

I'm a Teacher!

My age is 33 !!

The new Teacher class has extended the Person class, and in this case has also

overridden the speak() method of the parent.

17

1.8.1 Multilevel and Multiple inheritance in PHP
In PHP multilevel inheritance is possible but multiple inheritance is not

possible. In simplified terms in PHP child class cannot inherit more than one

parent class. But hierarchical inheritance is possible in PHP.

 Hierarchical means Parent inherit property of grandparent class. Grandchild

inherit property of parent class. So in multilevel inheritance child can get some

property of from grandparent class also.

1.8.1.1 Multilevel inheritance

In multilevel, multiple classes are involved in inheritance, but one class extends

only one. The lowermost subclass can make use of all its super classes’

members. Multilevel inheritance is an indirect way of implementing multiple

inheritance.

Example:

<?php

class a

{

public function function_a(){

echo "class A
";

}

}

class b extends a

{

public function function_b(){

 $this->function_a();

 echo "class B
";

 }

}

class c extends b

{

public function function_c(){

 $this->function_b();

 echo "class C
";

 }

}

$c =new c();

$c->function_c(); ?>

18

OUTPUT:

1.8.1.2 Multiple inheritance
When one child class acquires the property from one than one class is called

multiple inheritance. In simplified terms in PHP child class cannot inherit more

than one parent class.

class A

{

//Your class body

}

class B

{

//Your class body

}

class C extends A B

{

//your class body

}

Above program code will not work in php because php does not supports

multiple inheritance.

To allow this feature, we can use “interfaces” or use "Traits" in PHP.

1.8.1.3 Traits in PHP (replacement of multiple Inheritance)

PHP 5.4.0 was coming with one amazing feature called trait. It provide a

mechanism which will allow us to implement multiple inheritance in PHP.

The Trait behaves like an abstract class. It cannot be instantiated on its own.

Traits can be initialized with the keyword trait.

Syntax:

trait traitName

{

 public function functionName($args)

 {

 // statement Code

 }

}

19

Example:

<?php

trait hello

{

 function sayHello() { echo "Hello"; } // method1

}

trait world

{

 function sayWorld() { echo "World!!!"; } // method2

}

class HelloWorld

{

 // now using more than one trait

 use hello, world;

}

$obj= new HelloWorld();

$obj->sayHello(); // Print : sayHello

$obj->sayWorld(); // Print : sayWorld

?>

OUTPUT:

Hello World!!!

1.9 Interface

Interfaces provide a way of implementing multiple inheritance (not directly

available in PHP) through the use of the keywords interface and implements.

By implementing interface we are forcing any class to must declaring some

specific set of methods in oop.

We can create an interface in PHP using interface keyword. Rest of the things

are typically identical to classes. Following is a very small example of an

interface in PHP.

interface abc

{

public function xyz($b);

}

So in above code, we are creating an interface with name abc. Interface abc has

function xyz. Whenever we will implement the abc interface in our class then

we have to create a method with the name xyz. If we will not create function

xyz then it will throw an error.

You can implement your interface in your class using implements keyword. Let

us implement our interface abc in our class

class test implements abc

{

public function xyz($b)

{//your function body

} }

20

Example:

<?php

 interface person {

 function setName($myName);

 function getName();

 function setAge($myAge);

 function getAge();

 }

 interface scientist{

 function measure();

 function writePaper();

 }

 class Geek implements person, scientist {

 public $name;

 public $age;

 public function setName($myName){

 $this->name = $myName;

 }

 public function getName(){

 return $this->name ;

 }

 public function setAge($myAge){

 $this->age = $myAge;

 }

 public function getAge(){

 return $this->age ;

 }

 public function measure(){

 echo "$this->name has just made a measurement!
";

 }

 public function writePaper(){

 echo "$this->name has written a paper!
";

 }

 }

 $steve = new Geek();

 $steve->setName("Stephen Hawking");

 $steve->setAge(71);

echo "The guy who invented big bangs: ". $steve->getName() . " is now

" . $steve->getAge() . " years old!
";

 $steve->measure();

 $steve->writePaper();

?>

21

1.10 Abstract class
Abstract classes are those classes which cannot be directly initialized. Or in

other word we can say that you cannot create object of abstract classes. Abstract

classes always created for inheritance purpose.

Usually, an abstract class is also known as base class. We call it base class

because the abstract class is not the class which is available directly for creating

an object. It can only act as the parent class of any normal class. You can use

an abstract class in the class hierarchy. Mean one abstract class can inherit

another abstract class also.

You can create abstract classes and methods in PHP using abstract keyword.

Syntax:

 abstract class Cars{

public abstract function funName($c);

 }

Abstract method: - If a method has no definition then it is called abstract

method.

Points to be Remember:

 We cannot create object of abstract class

 Abstract class and method cannot be final

 Abstract method cannot be private, because private method are never

inheritance.

 If a class extends an abstract class then it must define all the abstract

methods if any of the abstract method remain undefined in the subclass

then the subclass must we declared abstract otherwise throw an error.

 If the abstract method is declared as protected, the function

implementation must be defined as either protected or public, but not

private (always less or same restricted).

Example:

<?php

abstract class Cars{

public abstract function set_color($c);

abstract function set_price($p);

public abstract function show();

function display(){

echo "
i am not a abstract method";

}

}

class Audi extends Cars{

private $color = null;

22

private $price = null;

public function set_color($c)

{

 $this->color = $c;

}

public function set_price($p)

{

 $this->price = $p;

}

public function show()

{

 echo "
 car color = ".$this->color;

 echo "
 car price = ".$this->price;

 }

}

$audi = new Audi();

$audi->set_color("Red");

$audi->set_price("$55999");

$audi->show();

$audi->display();

?>

OUTPUT:

1.11 Differences between abstract class and interface in PHP

Following are some main difference between abstract classes and interface in

PHP

1. In abstract classes, this is not necessary that every method should be

abstract. But in interface every method is abstract.

2. Multiple and multilevel both type of inheritance is possible in the

interface. But single and multilevel inheritance is possible in abstract

classes.

3. The method of PHP interface must be public only. A method in an

abstract class in PHP could be public or protected both.

4. In an abstract class, you can define as well as declare methods. But in

the interface, you can only define your methods.

23

1.12 Final class and method in PHP
A php class can declared final to indicate that it cannot be extended; that is, one

cannot declare subclasses of a final class. A final class behavior cannot be

changed by extending the class. A final class must be complete.

The class properties cannot be declared final, only non-abstract classes and

methods may be declared as final.

Syntax:

 final class className{ }

 final public function fuctionName(){}

Important Point:

 used to declare that a method or class cannot be overridden by a subclass

 cannot be applied to properties

 If the class itself is being defined final then it cannot be extended

 Means of stopping other programmers using the code in unplanned ways

Example:

<?php

 final class Person {

 public $name;

 public function speak() {

 echo $this->name;

 }

 }

 class Teacher extends Person {

 public function speak() {

 echo "$this->name is a Teacher who works with OSOU!!";

 }

 }

 $geek = new Teacher;

 $geek->name = "OSOU";

 echo $geek->speak() ;?>

OUTPUT:

Fatal error: Class Teacher may not inherit from final class (Person)

in C:\AppServ\www\ex1.php on line 12

Example:

<?php

 class Person {

 public $name;

 final public function speak() {

 echo $this->name;

24

}

}

class Teacher extends Person {

public function speak() {

echo "$this->name is a Teacher who works with OSOU!!";

}

}

$geek = new Teacher;

$geek->name = "OSOU";

echo $geek->speak() ;

?>

OUTPUT:

Fatal error: Cannot override final method Person::speak() in

C:\AppServ\www\ex1.php on line 12

1.13 Polymorphism
Polymorphism definition is that Poly means many and morphos means forms.

It describes the feature of languages that allows the same word or symbol to be

interpreted correctly in different situations based on the context. Object-

oriented programs are written so that the methods having the same name works

differently in different context.

Polymorphism can be achieved using method overloading and method

overriding.

Overloading: Same method name with different signature, since PHP doesn’t

support method overloading concept

Overriding: When same methods defined in parents and child class with same

signature i.e. known as method overriding. A super class and sub class both

have methods with same name this is called method overriding.

1.13.1 Method Overriding

Overriding in php is very easy. As we know that overriding is process of

modifying the inherited method. So in case of inheritance you only need to

create method with same name in your child class which you want to override.

Following is example of overriding of method in php.

Eample:

<?php

class ParentClass {

public function display() {

echo "Hello i am inside ParentClass display method...";

}

}

class ChildClass extends ParentClass {

public function display() {

echo "Display method of parentClass has been overridden
";

25

echo "Hello i am inside ChildClass display method...";

} }

$myChild = new ChildClass;

echo $myChild->display();

?>

OUTPUT:

Display method of parentClass has been overridden

Hello i am inside ChildClass display method...

Another Example:

<?php

class testParent

{

public function f1()

{

echo “f1 method of testParent class: Odisha”;

}

public function f2()

{

echo “f2 method of testParent class: Sambalpur”;

}

}

class testChild extends testParent

{

function f2($a) //overriding function f2

{

echo "
f2 method of testChild class: $a";

}

}

$a = new testChild();

$a->f1();

$a->f2("OSOU");

?>

OUTPUT:

f1 method of testParent class: Odisha

f2 method of testChild class: OSOU

Explanation:

In the above example we have overloaded the function f2() of class testParent

with the same function name in testChild class. So when we call f2() method

using object of textChild class it will execute the f2() method of testChild class,

whereas when we call f1() method using the same object it will execute f1()

method of testParent class.

26

1.15 References:
https://www.techflirt.com/tutorials/oop-in-php/index.html

https://intphp.tech-academy.co.uk/

http://www.w3webtutorial.com/php/php-oops-classes.php

1.14 Let us sum up
The object-oriented programming style in PHP is a great way to build modular,

reusable code, letting you create large applications that are relatively easy to

maintain.

The major concept of the object oriented programming in PHP is introduced
from version 5.
In this unit we learnt about OOPS features,how to implements class and object
cconecpt in PHP programming, Access Modifiers, constructor, destructor and
many more.
We also learnt Magic Methods in PHP, inheritance, replacement of Multiple
Inheritance i.e. interface, Abstract class and how it is difference from
interface.we got idea about how to restrict classes from inheritance using fanal
keyword and polymorphism.
In whole series I will use abbreviation OOP for Object Oriented Programming.

1.16 Model Questions
Q.No. 01: What is OOPS Concepts? what are the pillars of OOPS?
Q.No. 02: Write a program in PHP using class and object.
Q.No. 03: What are the advantages of OOPS Concept?
Q.No. 04: What is Access modifiers? What are its types?
Q.No. 05: What is constructor? Hopw to implement constructor in PHP
Q.No. 06: What is static keyword in PHP? How to access static class and
________member in PHP?
Q.No. 07: Differenciate between interface and Abstract class.
Q.No. 08: What is Traits in PHP?
Q.No. 09: What is multilevel inheritance? Write a PHP program to
_________impleaments multilevel inheritance.
Q.No. 10: What is Polymorphism? What is function overloading and
overriding in PHP?

https://www.techflirt.com/tutorials/oop-in-php/index.html
https://intphp.tech-academy.co.uk/
http://www.w3webtutorial.com/php/php-oops-classes.php

UNIT-02

File management and Exception handling

UNIT STRUCTURE

2.1Introduction 01

2.2 What is a file 01

2.3 File Formats support by PHP 01

2.4 File Operations 01

2.4.1 Opening a File 01

2.4.2 Closing a File 02

2.4.3 Read and Write Files 03

2.4.3.1 Reading a File Character by Character 04

2.4.3.2 Reading a File Line by Line 04

2.4.3.3 Writing a File 05

2.4.3.4 Append content to the file in PHP 06

2.4.3.5 Copy a file in PHP 08

2.4.3.6 Rename a file in PHP 08

2.4.3.7 Delete a file in PHP 09

2.5 Permission in PHP 10

2.5.1 Check File permission 10

2.5.2 Changing File permission 11

2.6 Error handling in PHP 12

2.7 Exception Handling 16

2.8 Let Us Sum Up 20

2.9 References 20

2.10 Model Questions 20

1

UNIT-02

File management and Exception handling

2.1 introduction
Working with files is an important part of any programming language, and PHP

is no different. Whatever your reasons are for wanting to manipulate files, PHP

will happily accommodate them through the use of a handful of functions. We

will explore different ways of interacting with data files. You'll learn different

methods and use cases for reading and writing files in a directory.

2.2 What is a File?
A file is simply a resource for storing information on a computer. Files are

stored in directories on a hard drive, and because they retain their data after the

computer is shut down, they are a persistent storage mechanism, instead of

temporary storage such as RAM. A file can contain any kind of data.

Files are normally used to store data and information like;

 Configuration settings of a program

 Simple data such as contact names against the phone numbers.

 Images, Pictures, Photos, etc.

2.3 File Formats Support by PHP
PHP supports a variety of file formats that include;

text file (.txt file)

log file (.log)

custom_extension file (.abc file)

comma-separated values file (.csv file)

image files (.gif, .jpg, .bmp, .png, .swf, .tiff etc.)

2.4 File Operations
PHP handles file using a set of in-built functions. Some of the functions are,

fopen() and fclose(),feof(),fgetc and many more.

Some of the basic operations for file handling are given below.

 Opening file

 Working with file read, write and append

 Closing file

2.4.1 Opening a File
The fopen() function is used to opens a file and returns a file handle associated

with the file.

2

If the fopen() function is unable to open the specified file, it returns FALSE(0).

Syntax:

fopen(filename, mode)

filename: Specifies the name of the file you want to open.

mode: Specifies the mode, how the file is to be used.

Example:

<html>

<head> <title>opening files </title></head>

<body>

<?php

$open = fopen("http://localhost:80/data.html", "r");

$xx = fopen("data.txt", "r");

?>

</body>

</html>

The file may be opened in one of the following modes:

Mode Description

r
Open for reading only. the file pointer at the beginning of the

file

r+ Read/Write. the file pointer at the beginning of the file

w
file Open for writing only. w mode use to creates a new file if it

doesn't exist

w+ Read/Write. w+ mode use to creates a new file if it doesn't exist

a Append. Opens and writes to the end of the file

a+
Read/Append. Preserves file content by writing to the end of

the file

x
Write only. Creates a new file. Returns FALSE and an error if

file already exists

x+
Write/Read. Creates a new file. Returns FALSE and an error if

file already exists

2.4.2 Closing a File
After performing all file operations of PHP, we need to close it by using the

fclose() function. The fclose() function return true on success or false on failure.

Syntax:

fclose($filePointer);

Example:

 <?php

$file = fopen("fileName.txt", 'w+')

fclose($file); ?>

3

2.4.3 Read and Write Files
Once a file is opened using fopen() function it can be read using fread()

function. This function must have two arguments. They are file pointer and the

length of the file in bytes.

Steps to read a file with PHP.

 Open a file using fopen() function.

 Get the file's length using filesize() function.

 Read the file's content using fread() function.

 Close the file with fclose() function.

Syntax:

$char = fread($filePointer, fileSize);

Example:

<html>

 <head><title>File Reading using PHP</title> </head>

 <body>

 <?php

 $file = fopen(“filename.txt”, "r");

 if($file == false) {

 echo ("Error in opening file");

 exit();

 }

 $filesize = filesize(“filename.txt”);

 $filetext = fread($file, $filesize);

 fclose($file);

 echo ("File size : $filesize bytes");

 echo ("<pre>$filetext</pre>");

 ?>

 </body>

</html>

Check End-of-file

The php feof() method checks if the 'end-of-file' (EOF) has been reached.

The feof() function return true when the file pointer has reached the end of the file and returns

false otherwise.

Note: feof() is useful with fread() or fgetc() in a while loop when you don't know how long the

file is: if(feof($file)) echo "pointer reach end of file";

4

2.4.3.1 Reading a File Character by Character

The php getc() function read a single character from a file. This method returns

just one character from the file it points to, it returns false when file pointer

reached the end of the file.

Syntax:

 $char = fgetc($file);

Note: fgetc() function is slow when working with large files.

Note: after a call to this method the file pointer moves to the next character.

Example:

<html>

 <head><title>File Reading using PHP</title> </head>

 <body>

<?php

 $file = fopen("/data.html", "r");

 while(!feof($file))

{

$char = fgetc($file);

 echo "$char
";

}

fclose($file);

 ?>

</body>

</html>

2.4.3.2 Reading a File Line by Line

The php fgets() function read a single line from a file.

If there is no more data to read in the file pointer, then FALSE is returned.

Example:

<?php

$handle = fopen("data.text", "r");

if($handle){

while(($buffer = fgets($handle, 4090)) !== false){

echo $buffer;

}

if(!feof($handle)){

 echo "error: unexpected fgets() fail \n";

}

fclose($handle);

}?>

5

2.4.3.3 Writing a File
The fwrite() function used to write binary data to a file.

This function returns the number of bytes written, or FALSE on failure.

Syntax:

 fwrite(file, text, length)

file: Required. Specifies the open file to write to

text: Required. Specifies the string to write to the open file

length: Optional. Specifies the maximum number of bytes to write.

To perform the write operation, we have two choices to select the mode of the

file to be opened. These are,

Mode of

Operation
File Mode File Pointer Position

W write-only Start of the file content

W+ read-write Start of the file content

By using these modes, the entire file content will be cleared and the pointer will

focus the start position of the file content. This method is used to change the

existing file content, completely.

Example:

<?php

 $filename = "newfile.txt";

 $file = fopen($filename, "w");

 if($file == false) {

 echo ("Error in opening new file");

 exit();

 }

 fwrite($file, "This is a simple test\n");

 fclose($file);

?>

<html>

 <head><title>Writing a file using PHP</title></head>

 <body>

 <?php

 $filename = "newfile.txt";

 $file = fopen($filename, "r");

6

 if($file == false) {

 echo ("Error in opening file");

 exit();

 }

 $filesize = filesize($filename);

 $filetext = fread($file, $filesize);

 fclose($file);

echo ("File size : $filesize bytes
");

echo ("$filetext
");

echo("file name: $filename
");

 ?>

 </body>

</html>

OUTPUT:

File size: 23 bytes

This is a simple test

file name: newfile.txt

2.4.3.4 Append content to the file in PHP

In append operation, the content of the existing file will not be erased. we can

add/append new content with the existing content of the file.

Here, file pointer will point end of the file. To append the content in a existing

file we need to change the mode to append i.e. a.

Mode of

Operation
File Mode File Pointer Position

a write-only End of the file content

A+ read-write End of the file content

Syntax:

$filePointer = fopen("hello.txt","a");

Note: In both, write and append mode file will open if exists. Otherwise, a

new file will be created for the execution of file write and append.

7

Example:

<?php

 $filename = "newfile.txt";

 $file = fopen($filename, "a");

 if($file == false) {

 echo ("Error in opening new file");

 exit();

 }

 fwrite($file, "This is a simple test\n");

 fclose($file);

?>

<html>

 <head><title>Writing a file using PHP</title></head>

 <body>

 <?php

 $filename = "newfile.txt";

 $file = fopen($filename, "r");

 if($file == false) {

 echo ("Error in opening file");

 exit();

 }

 $filesize = filesize($filename);

 $filetext = fread($file, $filesize);

 fclose($file);

echo ("File size : $filesize bytes
");

echo ("$filetext
");

echo("file name: $filename
");

 ?>

 </body>

</html>

OUTPUT:

File size: 51 bytes

This is a simple test

This is a simple test

file name: newfile.txt

8

2.4.3.5 Copy a file in PHP
To copy a file, we need to use copy() function. First, we need to make sure

which file to copy by passing as first parameter of the copy() function. Second,

you need to specify the file name to copy the file to.

The copy() function returns true if the file was copied successfully, otherwise

it returns false.

Syntax:

copy(source, dest);

Suppose we have to file. One text.html and second is demo.html which locates

in the same directory as the script.

Example:

<?php

 $oldf = 'newfile.html';

 $newf = 'demo.html';

 if(copy($oldf,$newf))

 echo 'The file was copied successfully';

 else

 echo 'An error occurred during copying the file';

?>

2.4.3.6 Rename a file in PHP
To rename a file, we use the rename() function in PHP. The rename() function

renames a file or directory.

Syntax:

 rename(oldname, newname)

Example:

<?php

$fname = 'osou.txt';

$newfname = 'osou1.bak';

if(rename($fname,$newfname)){

 echo sprintf("%s was renamed to %s",$fname,$newfname);

}else{

 echo 'An error occurred during renaming the file';

} ?>

9

This function is also used to move a file to a different directory.

Example:

<?php

$fname = 'osou.txt';

$newfname = 'C:\Users\osou-18\Desktop\osou1.bak';

if(rename($fname,$newfname)){

 echo sprintf("%s was renamed to %s",$fname,$newfname);

}else{

 echo 'An error occurred during renaming the file';

} ?>

2.4.3.7 Delete a file in PHP
To delete a file, we can use unlink() function in PHP. The function returns true

on successful deletion of file or returns false on failure.

Syntax:

 unlink(filename);

Example:

<?php

$fname = 'C:\Users\osou-18\Desktop\aseem.bak';

if(unlink($fname)){

 echo sprintf("The file %s deleted successfully",$fname);

}

else{

 echo sprintf("An error occurred deleting the file %s",$fname);

}

?>

Note:

copy(), rename() and unlink() functions shows warning-level errors if the file

cannot be found therefore it is good practice to check the file exists using the

file_exists() function before copying, renaming or deleting it.

10

2.5 File Permission in PHP
File permissions indicate what we can do with a specific file in the computer

i.e., reading, writing or executing the file.

When admin upload files to the webserver by FTP, those files are saved on the

server with some specific access permissions. Typically, everyone will be able

to "read" the files and subdirectories, that is: view them through the webserver,

but only admin will be able to "write" and modify to these files/subdirectories.

This type of access control to a file is called File Permission.

2.5.1 Check File permission
PHP has pre-defined functions for checking and changing the file permissions.

i.e. is_readable(),is_writable() and is_executable().

 is_readable() returns true if programmer has the permission to read the

file, otherwise returns false.

 is_writable() returns true if programmer has the permission to write the

file, otherwise returns false.

 is_executable() returns true if programmer has the permission to

execute the file, otherwise returns false.

Example: (How to check Permission of a file)

<?php

$fname = 'newfile.html';

if(is_readable($fn)){

echo 'File is readable
';

}

else{

echo 'File is not readable
';

}

 if(is_writable($fn)){

echo 'File is writable
';}

else{

echo 'File is not writable
';

}

if(is_executable($fn)){

echo 'File is executable
';

}

else{

echo 'File is not executable
';

} ?>

OUTPUT:

File is readable

File is writable

File is not executable

11

 2.5.2 Changing File permission
In PHP, file permissions, or mode can be changed by using chmod() function.

Syntax:

chmod($fname, mode);

 1st, we need to pass the name of the file that we want to set permission. 2nd, we

pass the preferred permission.

The chmod() function returns true if the permission was successfully assigned

otherwise it returns false.

A file permission is represented by an octal number that contains three digits:

 The first digit specifies the owner file permission.

 The second digit specifies the owner group file permission.

 The third digit specifies for everyone’s file permission.

Value Permission

0 cannot read, write or execute

1 can only execute

2 can only write

3 can write and execute

4 can only read

5 can read and execute

6 can read and write

7 can read, write and execute

Example:

<?php

if(chmod("newfile.html", 0600))

 echo "Read and write for owner, nothing for everybody else
";

if(chmod("newfile.html", 0644))

 echo "Read and write for owner, read for everybody else
";

if(chmod("newfile.html", 0755))

 echo "Everything for owner, read and execute for others
";

if(chmod("newfile.html", 0750))

 echo "Everything for owner, read and execute for others
";

?>

NOTE: 0 before mode value (664) to request PHP to interpret it as an octal number.

12

2.6 Error handling in PHP
Errors are the most common event a developer or programmer faces when

programming. Errors can be categorized as syntactical, run-time, or logical.

 syntax error: missing the semicolon at the end of a statement.

 run-time error: trying to connect to a database when the server is down

 logic error: providing incorrect data to a variable

Error handling in PHP is a mechanism to improve application's security,

appearance, and debugging capabilities.

Some error handling methods are:

 die() statement

 Custom error handler

 Error reporting

2.6.1 Error Handling Using the die() function
When we open a file using 'fopen' function to read and write operation, we use

the code:

 <?php $rw = fopen("fileName.txt", "r+"); ?>

If the file does not exist 'fopen' function throw a run-time error look like:

Warning: fopen(fileName.txt) [function.fopen]:failed to open stream:

No such file or directory in C:\AppServ\www\data.php on line 1

So to solve this problem we can use die() method.

Example:

<?php

if(!file_exists("fileName.txt")){

die("User.Txt File Not Found);

}

else{

$rw = fopen("fileName.txt", "r+");

}

?>

If the file does not exist the die function display a simple message: "User.Txt

File Not Found"

2.6.2 Custom Error Handling
It is possible to override PHP's default mechanism for handling errors. This

option gives the programmer/ developer full control over what actions to take

when an error is raised.

13

In this process we create a special function that can be called when an error

occurs in PHP.

This function must be able to handle a minimum of two parameters (error_level,

error_message) but can accept up to five parameters.

Syntax:

error_function(error_level, error_message, error_file, error_line, error_context)

Parameter Description

error_level
Required. Specifies the error reporting level for the

error. Must be a value number.

error_message Required. Specifies the error message.

error_file
Optional. Specifies the name of the file in which the

error occurred.

error_line
Optional. Specifies the line number at which the error

occurred

error_context
Optional. Specifies an array containing every variable,

their values, in use when the error occurred

Example:

<?php

function error_Handler($error_level, $error_message, $error_line)

{

 echo "Error : [" . $error_level . "] Error Message :". $error_message;

 echo "
 Line Number At Which Error Occured :". $error_line;

}

 ?>

Example:

<?php

function error_Handler($error_level, $error_message, $error_line)

{

 echo "
Error : ". $error_level.

"
Error Message :". $error_message.

"
Error line:".$error_line;

}

 set_error_handler("error_Handler");

 $data= 30/0; // at this point run-time error will trigger

 echo($data);

?>

14

OUTPUT:

Error : 2

Error Message :Division by zero

Error line:C:\AppServ\www\ex1.php

2.6.3 Trigger Errors
Programmer can trigger an error of a specific level using trigger_error()

function.

Syntax:

trigger_error(error_msg, error_level)

error_msg: The designated error message. It's limited to 1024bytes in length.

error_type: Possible error types:-

E_USER_ERROR - Fatal user-generated run-time error. Execution of the

script is halted. Value is 256

E_USER_WARNING - Non-fatal user-generated run time error. Script is not

halted. Value is 512

E_USER_NOTICE - Default. User-generated run time notice. Value is 1024

This function is useful when you need to generate a particular response to an

exception at runtime.

Example:

<?php

function error_Handler($error_level, $error_message, $error_line)

{

echo "
Error : [". $error_level ."] Error Message:". $error_message;

}

set_error_handler("error_Handler");

$test = 2;

if($test>1){

trigger_error("value must be less than one", E_USER_ERROR);

}

?>

OUTPUT: Error: [256] Error Message: value must be less than one

Example:

If we replace the above highlighted line with below line

trigger_error("value must be less than one", E_USER_WARNING);

Then Output will be: Error: [512] Error Message: value must be less than one

15

Example:

Similarly If we replace the above highlighted line with below line

trigger_error("value must be less than one", E_USER_NOTICE);

Then Output will be

Error: [1024] Error Message: value must be less than one

2.6.4 Error Logging
The error_log() function sends an error to a specified file or a remote

destination.

By default, PHP sends an error log to the server logging system or a file,

depending on how the error_log configuration is set in the php.ini file.

Syntax:

 error_log(msg, type, destination, headers);

Example:

<?php

function error_Handler($error_level, $error_message, $error_line)

{

 echo "
Error: [". $error_level ."] Error Message:".$error_message;

error_log("Error :[$error_level] Error Message :

{$error_message}",1,"demo@osou.ac.in", "From:

ak.patel@osou.ac.in");

}

set_error_handler("error_Handler");

$test = 2;

if($test>1){

 trigger_error("value must be less than one", E_USER_WARNING);

}

?>

OUTPUT:

The output of the code above should be like this:

 Error: [256] Error Message: value must be less than one

The mail received from the code above looks like:

 Error: [256] Error Message: value must be less than one

16

2.7 Exception Handling
Exception handling mechanism can change the normal flow of the code

execution, if the specified error occurs.

PHP exception handling mechanism to improve your application's security,

appearance, debugging capabilities, and make more robust.

2.7.1 Exception Class in PHP
Exception is the base class for all exceptions.

The exception class offers six different methods to access information about

what caused the problem look methods:

Method Description

getMessage() Returns the exception message

getCode() Returns the exception error code

getLine() Returns the line number in which the exception occurred

getFile() Returns the file in which the exception occurred

getTrace() Gets the stack trace

getTraceAsString() Gets the stack trace as a string

2.7.2 Try . . . Catch and throw
Exception handling is carried out by the use of the keywords throw, try, catch.

Try: - The code that may throw an exception is placed within the try block.

Each try must have at least one corresponding catch or finally block (or one of

both).

Catch: - The code to handle the exception is placed within the catch block.

Multiple catch blocks can be used to catch different classes of exceptions.

Throw: - Trigger an exception. Thrown object must be an instance of the

Exception class or a subclass of Exception.

There are three forms of the 'try' statement

try{

 //throw__ statement

}

catch(Exception e){

 // catch___statement

}

catch{ }

try

 {

//throw__ statement

}

catch(Exception e){

// catch___statement

}

try

 {

//try __ statements

}

 finally {

 //finally___statement

}

17

Example:

<?php

function exc($value){

if($value<=0){

 throw new Exception("the value is less than zero");

 }

}

try{

 exc(-23);

 echo "statement execute only when the exc method not throw the exception";

}

catch(Exception $e){

 echo "exception handler correct exception";

 echo "
error message:- ". $e->getMessage();

 }

?>

OUTPUT:

exception handler correct exception

error message :- the value is less than zero

Explanation:

The exc() method is called in a 'try' block, first the exc() method check the

value, if value is less than zero then exception is thrown. The catch block

retrieves the exception and creates an object ($e) containing the exception

information. The error message access from the exception object by calling $e-

>getMessage().

2.7.3 Top Level Exception Handler

The set_exception_handler() function is used to sets the default exception

handler if an exception is not caught within a try/catch block.

Syntax:

set_exception_handler("handler")

handler is the name of the function to called when an uncaught exception

occurs.

Note: - If an exception is not caught, a PHP Fatal Error will be issued

with an "Uncaught Exception" message. The finally block only work in

PHP 5.5 and later versions.

18

Note: This function must be defined before calling set_exception_handler().

Example:

<?php

function handler($exception){

echo "i am exception handler";

echo "
error message :- ". $exception->getMessage();

}

set_exception_handler('handler');

throw new Exception("FileNotFoundException");

 ?>

OUTPUT:

i am exception handler

error message :- FileNotFoundException

2.7.4 User Defined Exception Handler
User or programmer can create their own custom exceptions. This allows

programmer to add their own methods and properties to the exception objects,

which can help to make error reporting even more rich and useful to users and

developers.

Example:

<?php

class DivisionByZero extends Exception{

 public function displayMessage(){

 $value ="error message:- " . $this->getMessage();

 return $value;

 }

 public function file(){

 $v="file path:- " . $this->getFile();

 return $v;

 }

}

$var = -2 ;

$msg = "division by zero exception";

try{

 if($var<0){

 throw new DivisionByZero($msg);

 }

}

Catch (DivisionByZero $e)

{

echo $e->displayMessage();

echo "
". $e->file();

}

?>

19

OUTPUT:

error message:- division by zero exception

file path:- C:\AppServ\www\ex1.php

Example:

<?php

 //create function with an exception

 function checkNum($number) {

 if($number>1) {

 throw new Exception("Value must be 1 or below");

 }

 return true;

 }

 //trigger exception in a "try" block

 try {

 checkNum(2);

 //If the exception is thrown, this text will not be shown

 echo 'If you see this, the number is 1 or below';

 }

 //catch exception

 catch(Exception $e){

 echo 'Message: ' .$e->getMessage();

 }

?>

OUTPUT:

Message: Value must be 1 or below

20

2.8 Let Us Sum Up
Files are stored in directories on a hard drive, and because they retain their data

after the computer is shut down, they are a persistent storage mechanism,

instead of temporary storage such as RAM. A file can contain any kind of data.

In this unit we learnt about file, its need in storing data and different operation

that can possible with File. This unit also gives idea about the process of read a

file character by character and line by line, it also explain about file [permission

and checking of file permission.

Also we learnt about error handling and exception handling concept in PHP.

2.9 References:
http://www.w3webtutorial.com/php/php-read-write-file.php

http://www.zentut.com/php-tutorial/php-file-operations/

https://phppot.com/php/php-file-handling/

https://websistent.com/php-include-vs-require/

2.10 Model Questions

Q. No. 01. What is File? What are the File Formats Support by PHP?

Q. No. 02. What are the different operation that can be possible in File?

Q. No. 03. Write a program to read a file line by line.

Q. No. 04. What is file permission in PHP? How to Check File permission?

Q. No. 05. What is error handling in PHP? What are the methods to handle error

in PHP?

Q. No. 06. What is Exception Handling in PHP? How to handle Exception using

try, catch block?

Q. No. 07. How to create user defined exception? Explain with an example.

http://www.w3webtutorial.com/php/php-read-write-file.php
http://www.zentut.com/php-tutorial/php-file-operations/
https://phppot.com/php/php-file-handling/
https://websistent.com/php-include-vs-require/

UNIT-03

Database connectivity in PHP

UNIT STRUCTURE

3.1 Introduction 01

3.2 Introduction to MySQL 01

3.2.1 What Can MySQL Do? 02

3.2.2 Why MySQL use with PHP 02

3.2.3 Features of MySQL 02

3.3 Communication between PHP and MySql server 03

3.3.1 Create a connect to the MySql server 03

3.3.1.1 Using mysql extension 04

3.3.1.2 Using mysqli extension (MySQL improved) 07

3.3.1.3 Using PDO extension (PHP Data Object) 07

3.3.2 Create Database and Tables in MySql 08

3.3.2.1 Create Table, Primary Keys and Auto Increment Fields 09

3.3.3 Insert Data into MySql Server 10

3.3.4 Mysql SELECT Statement 11

3.3.5 Update MySql Records 13

3.3.6 Delete MySql Records 14

3.4 Example database access from Webpage 15

3.5 Let us Sum Up 17

3.6 References 17

3.7 Model Questions 17

1

UNIT-03

Database connectivity in PHP

Learning Objective
By the end of this unit we will learn how to:

• Get a connection to a MySQL database from within PHP.

• Use a particular database.

• Send a query to the database.

• Parse the query results.

• Check for data errors.

• Build HTML output from data results.
sd

3.1 Introduction
One of the most common applications of PHP is to provide a Web interface for

accessing a database. The database may hold information about user postings

for a forum, account and order information for a vendor, or raw data for a

statistics site.

Because databases are so common, there are a special category of programs

written specifically for managing databases, called database management

systems. Some of the more popular commercial DBMS packages are Oracle

and Microsoft SQL Server, but there are also two prominent open-source

DBMS packages, MySQL and PostgreSQL.

PHP is well known for its smooth database integration, especially with MySQL.

It’s actually quite easy to connect to a MySQL database from within PHP. Once

you’ve established the connection, you can send SQL commands to the

database and receive the results as data you can use in your PHP program. So,

we’ll use MySQL here, since it is easily available and used quite frequently for

Web pages in conjunction with PHP.

3.2 Introduction to MySQL

MySQL is the most popular database system used with PHP. The kinds of

database that can be accessed using PHP are known as relational databases. In

a relational database information is stored in a number of two-dimensional

structures called tables.

MySQL is a freely available open source Relational Database Management

System (RDBMS) that uses Structured Query Language (SQL).

A database is a collection of tables (made up of columns and rows) that stores

information. Most databases are created, updated, and read using SQL

(Structured Query Language). There are few commands in SQL, which are used

to perform above operation.

2

SQL was designed to be written a lot like the English language, which makes it

very user friendly. But SQL is still extremely capable, even if it takes some

thought to create more elaborate SQL statements with only the handful of

available terms.

Command Purpose

ALTER Modifies an existing table

CREATE Creates a database or table

DELETE Deletes records from a table

DROP Deletes a database or table

INSERT Adds records to a table

SELECT Retrieves records from a table

UPDATE Updates records in a table

3.2.1 What Can MySQL Do?
• MySQL can create new databases

• MySQL can create new tables in a database

• MySQL can create stored procedures in a database

• MySQL can retrieve data from a database

• MySQL can insert records in a database

• MySQL can update records in a database

• MySQL can delete records from a database

• MySQL can execute queries against a database

• MySQL can set permissions on tables, procedures, and views.

3.2.2 Why MySQL use with PHP
• MySQL is an open source database system that runs on a server.

• MySQL is very fast performance, reliable, and easy to use

• MySQL supports Structured Query Language (SQL)

• MySQL manage easily

• MySQL compiles on a number of platforms.

• MySQL database can able store any kind of data types (text, images,

media, audio files).

3.2.3 Features of MySQL
MySQL is a freely available open source Relational Database Management

System (RDBMS) that uses Structured Query Language (SQL).

• Uses a very fast thread-based memory allocation system.

• Supports server secure layer (SSL)

• Cross-Platform support

• Full-Text indexing and searching using MyISAM engine

• Embedded database library

3

Security

• Privilege and password system that is very flexible and secure and

that enables host-based verification.

Scalability and Limits

• MySQL support for large database that contain 50 million records.

3.3 Communication between PHP and MySql server
When we worked with text files in previous unit, “File Management,” we saw

that some functions, such as fwrite() and fgets(), require that we first create a

file pointer using fopen(). This pointer then acts as a reference to that open file.

We use a similar process when working with databases.

Basically there are three steps for communication with database server from

PHP.

1. Create a connect to the MySql server

2. Perform the operation (select, insert, update, modify, delete etc.)

3. Close the database connection

3.3.1 Create a connect to the MySql server
PHP provides us with three main ways to connect to MySQL databases:

• mysql

• mysqli (MySQL improved)

• pdo (PHP Data Object)

mysql: The mysql extension for PHP is incredibly old. Not only did

development stop long ago on mysql, but it was deprecated as of PHP 5.5.0,

and has been officially removed in PHP 7.0.

mysqli (MySQL improved): is a relational database driver used in the PHP to

provide an interface with MySQL databases. MySQLi is an improved version

of the older PHP MySQL driver, offering various benefits. It features both

procedural (function-oriented) and object-oriented interfaces. However, if you

know you're only ever going to work with MySQL, and you want to squeeze

the most out of MySQL's power from your PHP scripts, then mysqli is a good

choice.

PDO (PHP Data Object): This is an object-oriented extension that sits

between the MySQL server and the PHP engine. We can use the same extension

to talk to lots of other database systems like (MySQL, PostgreSQL, Oracle).

Here in this unit we will mainly emphasis on mysqli (MySQL improved).

4

3.3.1.1 Using mysql extension

First, we have to establish a connection to the MySQL database server. This

connection is then used as the access point for any future commands.

The syntax for connecting to a database is

$dbc = mysql_connect (hostname, username, password, dbname, port,

socket)

This method returns an object which represents the connection to a MySQL

server.

The database connection is established using at least three arguments:

The hostname, which is almost always “localhost”. The username; and the

password for that username. If you’re using a database through a hosting

company, the company will most likely provide you with the host name,

username, and password to use.

Parameter Description

hostname Specifies a host name or an IP address.

username Specifies the MySQL user name.

password Specifies the MySQL password.

dbname
Specifies the default MySQL database name to be

used. It is optional. (Optional)

Closing a Database Connection

Once we are done working with a database, we can close the connection, just

the same way as we close an open file:

Syntax:

mysql_close($dbc);

This method return true on success or false on failure

The PHP script will automatically close the database connection when the script

terminates, but it’s considered good form to formally close the connection once

it’s no longer needed.

Example:

Step-01

Open a new PHP document in your text editor (Notepad++) or IDE, to be named

mysql_connect.php:

5

<html>

<head>

<title>Connect to MySQL DB for First Time</title>

<h1>Odisha State Open University<h1>

</head>

<body>

Step-02

Start the section of PHP code

<?php

Step03

Initialize the parameters i.e. hostname, username, password, dbname.

$host = "localhost";

 $username = "root";

$password = "osou123";

$dbname = "dbName";

Step-04

Connect to MySQL, and report on the results:

$dbc = mysql_connect($host, $username, $password, $dbname);

if($dbc){

print '<p>Successfully connected to MySQL!</p>';

mysql_close($dbc);

}

else {

print '<p style="color: red;">Could not connect to MySQL.</p>';

}

By placing the connection attempt as the condition in an if-else statement, you

make it easy to report on whether the connection worked.

If a connection was established, a positive message is printed and then the

connection is closed. Otherwise, a message stating the opposite is printed, and

there is no need to close the database connection (because it wasn’t opened).

Step-05

 Complete the PHP code and the HTML page:

?>

</body>

</html>

6

Step-06

Save the file as “mysql_connect.php”, place it in the proper directory of your

PHP-enabled computer, and test it in your Web browser.

If PHP has support for MySQL and the username/password/host combination

you used was correct, you should see this simple message:

“Successfully connected to MySQL!”

If you see results, like below:

Double check the username and password values. They should match up with

those provided to you by your Web host or those you used to create the user.

If you see call to undefined function mysql_connect…, your version of PHP

doesn’t support MySQL.

Example:

<html>

<head>

<title>Connect to MySQL DB for First Time</title>

<h1>Odisha State Open University<h1>

</head>

<body>

<?php

$host = "localhost";

$username = "root";

$password = "osou123";

$dbname = "dbName";

 $dbc = mysql_connect($host, $username, $password, $dbname);

if($dbc){

print '<p>Successfully connected to MySQL!</p>';

mysql_close($dbc);

}

else {

Warning: mysql_connect() [function.mysql-connect]: Access denied for

user 'root'@'localhost' (using password: YES) in

C:\AppServ\www\ex1.php on line 7

unable to connect to database what error: Access denied for user

'root'@'localhost' (using password: YES)

http://localhost/function.mysql-connect

7

print '<p style="color: red;">Could not connect to MySQL.</p>';

}

?>

</body>

</html>

3.3.1.2 Using mysqli extension (MySQL improved)
The PHP mysqli_connect() function is used to open a new connection to MySQL

server.

This method returns an object which represents the connection to a MySQL

server.

Syntax:

mysqli_connect(host, username, password, databasename, port, socket);

The mysqli_close() function can be used to close a connection to a database.

This method return true on success or false on failure.

Syntax:

 mysqli_close($object);

Example:

<?php

$host = "localhost";

$username = "root";

$password = "osou123";

$dbname = "dbName";

$object = mysqli_connect($host, $username, $password, $dbname);

 if($object){

echo "able to connect to database";

mysqli_close($object);

 }

else {

 echo "unable to connect to database what error: ". mysqli_connect_error();

 }

 ?>

3.3.1.3 Using PDO extension (PHP Data Object)
PDO is a database connection abstraction library which is built into PHP since

5.1.0, which provides a common interface to talk with many different databases.

8

For example, you can use basically identical code to interface with MySQL or

SQLite:

To establish a connection to a database program, create a new PDO object. You

pass the PDO constructor a string that describes the database you are connecting

to, and it returns an object that you use in the rest of your program to exchange

information with the database program.

Syntax:

$pdo = new PDO('mysql:host=example.com;dbname=database', 'user', 'password');

The string passed as the first argument to the PDO constructor is called a data

source name (DSN). It begins with a prefix indicating what kind of database

program to connect to, then has a :, then some semicolon-separated key=value

pairs providing information about how to connect.

Example:

<?php

$pdo=new PDO('mysql:host = example.com;dbname=database', 'user', 'password');

if($pdo){

print '<p>Successfully connected to MySQL!</p>';

}

else {

print '<p style="color: red;">Could not connect to MySQL.</p>';

}

?>

Here in this unit we will mainly emphasis on mysqli (MySQL improved).

3.3.2 Create Database and Tables in MySql

The PHP mysqli_query() function with the CREATE DATABASE query is

used to create a new database in MySQL. This method return true on success

false on failure.

Syntax:

 mysqli_query(connection, query);

connection: Required. Specifies the MySQL connection to use.

query: Required. Specifies the query string.

In the example below, create a database named "dbName":

9

Example:

<?php

$_host = "localhost";

$_username = "root";

$_password = "osou123";

$object = mysqli_connect($_host, $user_name, $pass_word);

 if($object){

 echo "connect to database success";

}

else {

echo "connection to database error -- : ". mysqli_connect_error();

 }

//create a database

 $query = "CREATE DATABASE dbName";

if (mysqli_query($object, $query)){

 echo " the dbName database created successfully";

}

else{

echo "Error :- ". mysqli_error($object);

 }

 ?>

3.3.2.1 Create Table, Primary Keys and Auto Increment Fields

The PHP mysqli_query() function with the CREATE TABLE mysql query is

used to create a new table in MySQL.

This method return true on success false on failure.

Example:

<?php

$host = "localhost";

$username = "root";

$password = "osou123";

$dbname = "dbName";

$object = mysqli_connect($host, $username, $password, $dbname);

 if($object){

echo "able to connect to database";

 }

10

else {

 echo "unable to connect to database what error: ". mysqli_connect_error();

 }

//create a table

$query = "CREATE TABLE Users(

UserID INT NOT NULL AUTO_INCREMENT,

FirstName VARCHAR(255) NOT NULL,

 LastName VARCHAR(255),

 Salary FLOAT,

 PRIMARY KEY(UserID))";

if (mysqli_query($object, $query)){

echo " Create users table Successfully done…";

mysqli_close($object);

}

else{

echo "Error :- ". mysqli_error($object);

}

?>

3.3.3 Insert Data into MySql Server
The MySQL INSERT INTO statement is used to insert new record in a table.

The PHP use mysqli_query() function to execute the INSERT INTO statement

and send query to a MySQL server.

Example:

<?php

$host = "localhost";

$username = "root";

$password = "osou123";

$dbname = "dbName";

$object = mysqli_connect($host, $username, $password, $dbname);

if($object){

echo "able to connect to database";

}

else {

 echo "unable to connect to database what error: ". mysqli_connect_error();

}

//Inserting data into a table

$query = "INSERT INTO Users (FirstName, LastName, Salary) VALUES

('aseem', 'patel', 50000)");

11

$query1 = "INSERT INTO Users (FirstName,LastName)

 VALUES ('ABCD', 'PQRS')");

if (mysqli_query($object, $query)){

echo " Data Inserted into users table Successfully done…";

mysqli_close($object);

}

else{

echo "Error :- ". mysqli_error($object);

}

?>

3.3.4 Mysql SELECT Statement

The MySQL SELECT statement allows you to retrieve zero or more rows from

tables or views.

The SELECT statement returns a result that is a combination of columns and

rows, which is also known as a result-set.

The data can be fetched from Users tables by executing SELECT statement

through PHP function mysqli_query().

The mysqli_fetch_array() function fetches a result row as an associative array.

Note: Field names returned by this function are case-sensitive.

The mysqli_fetch_array() returns an array of strings that corresponds to the

fetched row or NULL.

Example:

<?php

$host = "localhost";

$username = "root";

$password = "osou123";

$dbname = "dbName";

$object = mysqli_connect($host, $username, $password, $dbname);

if($object){

echo "able to connect to database";

}

else {

 echo "unable to connect to database what error: ". mysqli_connect_error();

}

//Select data from the users Table

$query = "SELECT * FROM Users";

12

$array = mysqli_query($object, $query);

if(! $array){

echo "Could not get data from Table : ".mysqli_error($object);

}

while($rows = mysql_fetch_array($array)){

echo ($rows['FirstName']);

echo "\br". $rows['LastName'];

echo "\br". $rows['Salary];

}

mysqli_close($object);

?>

3.3.4.1 Mysql SELECT Statement using Where Clause
The MySQL WHERE clause is used to filter records

The WHERE clause allows you to specify exact rows to select based on given

conditions.

In the example below, selects all rows from the "Users" table where "LastName

='patel' ":

Example:

<?php

$host = "localhost";

$username = "root";

$password = "osou123";

$dbname = "dbName";

$object = mysqli_connect($host, $username, $password, $dbname);

if($object){

echo "able to connect to database";

}

else {

 echo "unable to connect to database what error: ". mysqli_connect_error();

}

//Select data from the users Table using Where Clause

$query = "SELECT * FROM Users WHERE LastName='patel'";

$array = mysqli_query($object, $query);

if(! $array){

echo "Could not get data from Table : ".mysqli_error($object);

}

while($rows = mysql_fetch_array($array)){

echo ($rows['FirstName']);

echo "\br". $rows['LastName'];

echo "\br". $rows['Salary];

}

mysqli_close($object);

?>

13

3.3.5 Update MySql Records
The MySQL UPDATE statement is used to update existing data in tables. It can

be used to change column values of a single row, group of rows or all rows in

a tables.

Syntax:

UPDATE table_name1, table_name2, ...

SET column_name1 = expression_value,

column_name2 = expression_value, ...

WHERE condition ;

Note: The PHP use mysqli_query() function to execute the UPDATE statement

and send query to a MySQL server.

The following example update data in 'Users' table that we have created earlier:

Example:

<?php

$host = "localhost";

$username = "root";

$password = "osou123";

$dbname = "dbName";

$object = mysqli_connect($host, $username, $password, $dbname);

if($object){

echo "able to connect to database";

}

else {

 echo "unable to connect to database what error: ". mysqli_connect_error();

}

//Update existing data from the users Table using Where Clause

$query = "UPDATE Users SET FirstName='Sibananda' Salary=70000

WHERE Salary =50000";

$array = mysqli_query($object, $query);

if(! $array){

echo "Could not get Updated data in Table : ".mysqli_error($object);

}

else{

 echo "Data Successfully Updated in Users table…”;

}

mysqli_close($object);

?>

14

3.3.6 Delete MySql Records
The MySQL DELETE statement allows you to remove records from not only

one table but also multiple tables using a single DELETE statement.

Syntax:

 DELETE FROM table_name WHERE condition;

Note: The mysql WHERE keyword specifies which record should be deleted.

If you omit the WHERE statement, in this situation all table records will be

deleted.

The following example Delete data in 'Users' table that we have created earlier:

Example:

<?php

$host = "localhost";

$username = "root";

$password = "osou123";

$dbname = "dbName";

$object = mysqli_connect($host, $username, $password, $dbname);

if($object){

echo "able to connect to database";

}

else {

 echo "unable to connect to database what error: ". mysqli_connect_error();

}

//Update existing data from the users Table using Where Clause

$query = "DELETE From Users WHERE Salary =70000";

$array = mysqli_query($object, $query);

if(! $array){

echo "Could not get Deleted data in Table : ".mysqli_error($object);

}

else{

 echo "Data Successfully Deleted from Users table…”;

}

mysqli_close($object);

?>

15

3.4 Example database access from Webpage

Suppose we want to write a script that allows a user of our Web site to view the

information about a particular participant. The Web site user would see a form

such as the following.

This form can be generated by the following HTML code.

File: index.html

<html>

 <head>

 <title>Connect to MySQL DB for First Time</title>

 <h1> Odisha State Open University</h1>

 </head>

<body bgcolor="#88FFAA">

<form method="post" action="user.php">

<p>User ID: <input type="text" name="userid" /></p>

<p><input type="submit" value="Search" /></p>

</form>

</body>

</html>

 The file user.php would be the following

File: user.php

<?php

$host = "localhost";

$username = "root";

$password = "osou123";

$dbname = "dbName";

$object = mysqli_connect($host, $username, $password, $dbname);

if($object){

echo "able to connect to database";

}

16

else {

 echo "unable to connect to database what error: ". mysqli_connect_error();

}

$query = "SELECT * FROM Users WHERE userid = '$form_userid' ";

$rows = mysqli_query($object, $query);

if(!$rows){

echo "Could not get data from Table : ".mysqli_error($object);

}

elseif (mysql_num_rows($rows) == 0) {

 $error = "No such user name found";

 }

else{

$error = FALSE;

$First_name = mysql_result($rows, 0, 1);

$Last_name = mysql_result($rows, 0, 2);

$Salary = mysql_result($rows, 0, 3);

}

?>

<html>

<head><title>User information</title>

</head>

<body>

<?php

if($error) {

 echo "<h1>Error accessing user information</h1>\n";

 echo "<p>$error</p>\n";

 }

else{

 echo "<h1>Information about $form_userid</h1>\n";

 echo "<p>User ID: <tt>$form_userid</tt></p>\n";

 echo "<p>First_name: $First_name</p>\n";

 echo "<p>Last_name: $First_name</p>\n";

 echo "<p>Salary: <tt>$Salary</tt></p>\n";

 }

?>

</body>

</html>

17

3.5 Let us Sum Up
PHP is well known for its smooth database integration, especially with MySQL.

It’s actually quite easy to connect to a MySQL database from within PHP. Once

you’ve established the connection, you can send SQL commands to the

database and receive the results as data you can use in your PHP program. So,

we’ll use MySQL here, since it is easily available and used quite frequently for

Web pages in conjunction with PHP.

In this Unit we learnt about the MySql database if features and why we need to

use MySQL in PHp. Also understand how data is organized in a database,

Establish a database connection, creating a table, insert data, select data, update

and delete data in the database

3.6 References:

1. http://www.toves.org/books/php/ch07-db/index.html

2. https://www.phptherightway.com/#databases

3. http://www.w3webtutorial.com/php/php-mysql-connection.php

4. http://www.allitebooks.com/?s=php

3.7 Model Questions

Q.N. 01: Why MySQL use in PHP? What are the features MySQL?

Q.N. 02: What are the different way to connect MySQL Database?

Q.N. 03: Write a program to connect MySQL Database in PHP.

Q.N. 04: Write a PHP program to create a table “users” using MySQL.

Q.N. 05: Write a PHP program to insert data in table “users” using MySQL.

Q.N. 06: Write a PHP program to select data from a table “users” using MySQL.

Q.N. 07: Write a PHP program to update data in a table “users” using MySQL.

Q.N. 08: Write a PHP program to delete a table “users” using MySQL.

Q.N. 09: Write a PHP program to access database from Webpage.

Q.N. 10: Write a PHP program to search details of an employee using it’s a

employee code in MySQL.

http://www.toves.org/books/php/ch07-db/index.html
https://www.phptherightway.com/#databases
http://www.w3webtutorial.com/php/php-mysql-connection.php
http://www.allitebooks.com/?s=php

