## PHYSICS

1. If $\mathrm{A}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}$ and $\mathrm{B}=7 \hat{\mathrm{i}}+24 \hat{\mathrm{j}}$, the vector having the same magnitude of $B$ and parallel to $A$ is
(1) $5 \hat{i}+20 \hat{j}$
(2) $15 \hat{i}+10 \hat{j}$
(3) $20 \hat{i}+15 \hat{j}$
(4) $15 \hat{\mathrm{i}}+20 \hat{\mathrm{j}}$
2. Given vector $\overrightarrow{\mathrm{A}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}$, the angle between $\overrightarrow{\mathrm{A}}$ and $y$-axis is
(1) $\tan ^{-1} 3 / 2$
(2) $\tan ^{-1} 2 / 3$
(3) $\sin ^{-1} 2 / 3$
(4) $\cos ^{-1} 2 / 3$
3. Maximum and minimum magnitudes of the resultant of two vectors of magnitudes P and Q are in the ratio $3: 1$. Which of the following relations is true
(1) $P=2 Q$
(2) $P=Q$
(3) $\mathrm{PQ}=1$
(4) None of these
4. Which pair of the following forces will never give resultant force of 2 N
(1) 2 N and 2 N
(2) 1 N and 1 N
(3) 1 N and 3 N
(4) 1 N and 4 N
5. If two vectors $2 \hat{i}+3 \hat{j}-\hat{k}$ and $-4 \hat{i}-6 \hat{j}+\lambda \hat{k}$ are parallel to each other then value of $\lambda$ be
(1) 0
(2) 2
(3) 3
(4) 4
6. A person moves 30 metres North, then 20 metres East, then $30 \sqrt{2}$ metres South West. His displacement from the original position is
(1) 14 metres South West
(2) 28 metres South
(3) 10 metres West
(4) 15 metres East
7. If the resultant of the two vectors having magnitude of 7 and 4 is 11 , the dot product of the two vectors could be
(1) 28
(2) 3
(3) Zero
(4) $\frac{7}{4}$
8. Consider a vector $\vec{F}=(4 \vec{i}-3 \vec{j})$. Another vector is perpendicular of $\vec{F}$ is
(1) $7 \hat{k}$
(2) $6 \hat{i}$
(3) $(4 \hat{i}+3 \hat{j})$
(4) $(3 \hat{i}-4 \hat{j})$
9. Two vectors $\vec{A}$ and $\vec{B}$ are such that $\vec{A}+\vec{B}=\vec{C}$ and $A^{2}+B^{2}=C^{2}$. If $\theta$ is the angle between positive directions of $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ then mark the correct alternative
(1) $\theta=0^{\circ}$
(2) $\theta=\frac{\pi}{2}$
(3) $\theta=\frac{2 \pi}{3}$
(4) $\theta=\pi$
10. The magnitudes of the X and Y components of $\overrightarrow{\mathrm{P}}$ are 7 and 6. Also the magnitudes of X and Y components of $\vec{P}+\vec{Q}$ are 11 and 9 respectively. What is the magnitude of Q ?
(1) 5
(2) 6
(3) 8
(4) 9
11. Given : $\overrightarrow{\mathrm{A}}=2 \hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{B}}=-\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}}$. The unit vector of $\vec{A}-\vec{B}$ is
(1) $\frac{3 \hat{\mathrm{i}}+\hat{\mathrm{k}}}{\sqrt{10}}$
(2) $\frac{3 \hat{\mathrm{i}}}{\sqrt{10}}$
(3) $\frac{\hat{\mathrm{k}}}{\sqrt{10}}$
(4) $\frac{-3 \hat{\mathrm{i}}-\hat{\mathrm{k}}}{\sqrt{10}}$
12. Two vectors $\vec{a}$ and $\vec{b}$ are at an angle of $60^{\circ}$ with each other. Their resultant makes an angle of $45^{\circ}$ with $\vec{a}$. If $|\vec{b}|=2$ units, then $|\vec{a}|$ is
(1) $\sqrt{3}$
(2) $\sqrt{3}-1$
(3) $\sqrt{3}+1$
(4) $\frac{\sqrt{3}}{2}$
13. Figure shows three vectors $\vec{a}, \vec{b}$ and $\vec{c}$, where $R$ is the midpoint of PQ. Then which of the following relations is correct?
(1) $\vec{a}+\vec{b}=2 \vec{c}$
(2) $\vec{a}+\vec{b}=\vec{c}$
(3) $\vec{a}-\vec{b}=2 \vec{c}$

(4) $\vec{a}-\vec{b}=\vec{c}$
14. Consider the following statements about three vectors $\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{b}}$ and $\overrightarrow{\mathrm{c}}$ that have been non-zero magnitudes
I. If $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}$, it following that $\vec{b}=\vec{c}$
II. $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{c}}=0$, b must be perpendicular to $\overrightarrow{\mathrm{c}}$ Which of these statements is /are correct ?
(1) I only
(2) II only
(3) I and II both
(4) Neither I nor II
15. A particle has position vector $(3 \hat{i}-\hat{j}+2 \hat{k})$ metre at time $t=0$. It moves with constant velocity $(-\hat{i}-\hat{j}+3 \hat{k}) \mathrm{m} \mathrm{s}^{-1}$. The position vector (in m) of the particle after 3 second is
(1) $-4 \hat{\mathrm{j}}+11 \hat{\mathrm{k}}$
(2) $2 \hat{\mathrm{i}}-\hat{\mathrm{k}}$
(3) $\hat{\mathrm{j}}$
(4) $3 \hat{\mathrm{k}}$
16. The component of vector $\vec{A}=2 \hat{i}+3 \hat{j}$ along the vector $\hat{i}+\hat{j}$ is
(1) $\frac{5}{\sqrt{2}}$
(2) $10 \sqrt{2}$
(3) $5 \sqrt{2}$
(4) 5
17. The resultant of the three vectors $\overrightarrow{\mathrm{OA}}, \overrightarrow{\mathrm{OB}}$ and $\overrightarrow{\mathrm{OC}}$ shown in figure.

(1) r
(2) $2 r$
(3) $r(1+\sqrt{2})$
(4) $r(\sqrt{2}-1)$
18. Vector $\overrightarrow{\mathrm{A}}$ is 2 cm long and is $60^{\circ}$ above the x -axis in the first quadrant. Vector $\vec{B}$ is 2 cm long and is $60^{\circ}$ below the x -axis in the fourth quadrant. The sum $\vec{A}+\vec{B}$ is a vector of magnitude
(1) 2 along $+y$-axis
(2) 2 along $+x$-axis
(3) 1 along $-x$-axis
(4) 2 along $-x$-axis
19. Two forces P and Q acting at a point are such that if $P$ is reversed, the direction of the resultant is turned through $90^{\circ}$. Then
(1) $P=Q$
(2) $P=2 Q$
(3) $P=\frac{Q}{2}$
(4) No relation between P and Q
20. The resultant of two forces, one double the other in
magnitude, is perpendicular to the smaller of the two forces. The angle between the two forces is
(1) $120^{\circ}$
(2) $60^{\circ}$
(3) $90^{\circ}$
(4) $150^{\circ}$
21. If $\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}},|\overrightarrow{\mathrm{a}}|=3$ unit, $|\vec{b}|=4$ unit and angle between $\vec{a}$ and $\vec{b}$ is $90^{\circ}$, then, $|\vec{c}|$ is
(1) 7 unit
(2) 5 unit
(3) 10 unit
(4) Zero
22. Figure represents two vectors $\vec{a}$ and $\vec{b}$, such that $\vec{c}=\vec{a}+\vec{b}$. If $|\vec{a}|=|\vec{b}|=5$ unit then, $|\vec{c}|$ is

(1) 5 unit
(2) 10 unit
(3) $5 \sqrt{3}$ unit
(4) None of these
23. If $\vec{a}$ is rotated through an angle $60^{\circ}$ keeping its tail fixed such that in new position we get $\overrightarrow{\mathrm{b}}$. Then which of the following is correct?
(1) $\vec{b}=\vec{a}$
(2) $|\vec{b}|=|\vec{a}|$ but $\vec{b} \neq \vec{c}$
(3) $\vec{b} \neq \vec{c}$ but directions of two are same
(4) None of these
24. For figure shown $\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}$ and angle that $\overrightarrow{\mathrm{c}}$ makes with $\vec{b}$ is $\alpha$ then which of the following is correct?

(1) $\tan \alpha=\frac{b \sin \theta}{a+b \cos \theta}$
(2) $\tan \alpha=\frac{b \cos \theta}{a-b \sin \theta}$
(3) $\tan \alpha=\frac{a \sin \theta}{a+b \cos \theta}$
(4) $\tan \alpha=\frac{a \sin \theta}{b+a \cos \theta}$
25. If $\vec{c}=\vec{a}+\vec{b}, a=10$ unit, $b=5$ unit, then which of the following may be magnitude of $\vec{c}$ ?
(1) 10 unit
(2) 20 unit
(3) 3 unit
(4) 25 unit
26. If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|, a \neq 0, b \neq 0$, then angle between $\vec{a}$ and $\vec{b}$ is
(1) $45^{\circ}$
(2) $60^{\circ}$
(3) $90^{\circ}$
(4) $120^{\circ}$
27. A ball was moving towards east with velocity $5 \mathrm{~m} / \mathrm{s}$. The ball collided with a wall then its velocity become $5 \mathrm{~m} / \mathrm{s}$ towards north, then magnitude of change in velocity of ball is
(1) $5 \mathrm{~m} / \mathrm{s}$
(2) $5 \sqrt{2} \mathrm{~m} / \mathrm{s}$
(3) Zero
(4) $10 \mathrm{~m} / \mathrm{s}$
28. If $\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}},|\overrightarrow{\mathrm{a}}|=|\overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{c}}|$, then angle between $\overrightarrow{\mathrm{c}}$ and $\overrightarrow{\mathrm{a}}$ is
(1) $120^{\circ}$
(2) $60^{\circ}$
(3) $90^{\circ}$
(4) $45^{\circ}$
29. If $\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{b}},|\overrightarrow{\mathrm{a}}|=|\overrightarrow{\mathrm{b}}|=10$ unit and angle between $\overrightarrow{\mathrm{a}}$ and $\vec{b}$ is $60^{\circ}$, then $|\vec{c}|$ is
(1) 10 unit
(2) $10 \sqrt{2}$ unit
(3) $10 \sqrt{3}$ unit
(4) Zero
30. If $\vec{c}=\vec{a}+\vec{b}$, then which of the following is correct?
(1) $|\overrightarrow{\mathrm{c}}|>|\overrightarrow{\mathrm{a}}|+|\overrightarrow{\mathrm{b}}|$
(2) $|\overrightarrow{\mathrm{c}}|<|\overrightarrow{\mathrm{a}}|-|\overrightarrow{\mathrm{b}}|$
(3) $|\overrightarrow{\mathrm{a}}|+|\overrightarrow{\mathrm{b}}| \geq|\overrightarrow{\mathrm{c}}| \geq|\overrightarrow{\mathrm{a}}|-|\overrightarrow{\mathrm{b}}| \mid$
(4) $|\overrightarrow{\mathrm{c}}|=|\vec{a}|+|\overrightarrow{\mathrm{b}}|$ always
31. For figure shown $\vec{a}=a_{x} \hat{i}+a_{y} \hat{j},|\vec{a}|=10$ unit, then

(1) $\mathrm{a}_{\mathrm{x}}=5, \mathrm{a}_{\mathrm{y}}=5 \sqrt{3}$
(2) $\mathrm{a}_{\mathrm{x}}=-5, \mathrm{a}_{\mathrm{y}}=-5 \sqrt{3}$
(3) $a_{x}=-5, a_{y}=5 \sqrt{3}$
(4) $a_{x}=-10, a_{y}=10$
32. If $\overrightarrow{\mathrm{a}}=-5 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}$ and $\theta$ is angle that $\overrightarrow{\mathrm{a}}$ makes anticlockwise with positive direction of $x$-axis, then $\theta$ is
(1) $45^{\circ}$
(2) $135^{\circ}$
(3) $315^{\circ}$
(4) $225^{\circ}$
33. If $\overrightarrow{\mathrm{c}}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$, then $|\overrightarrow{\mathrm{c}}|$ is
(1) 50 unit
(2) 25 unit
(3) $5 \sqrt{2}$ unit
(4) None of these
34. If $\overrightarrow{\mathrm{c}}$ makes angle $\alpha, \beta$ and $\gamma$ with $\mathrm{x}, \mathrm{y} \& \mathrm{z}$ axes respectively, then which of the following is correct?
(1) $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
(2) $\cos ^{2} \alpha \times \cos ^{2} \beta \times \cos ^{2} \gamma=1$
(3) $\cos \alpha+\cos \beta+\cos \gamma=1$
(4) $\left(1+\cos ^{2} \alpha\right)+\left(1+\cos ^{2} \beta\right)+\left(1+\cos ^{2} \gamma\right)=0$
35. If $\overrightarrow{\mathrm{c}}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{c}}=|\overrightarrow{\mathrm{c}}| \hat{\mathrm{n}}$, then $\hat{\mathrm{n}}$ is
(1) $\frac{3}{5} \hat{\mathrm{i}}+\frac{4}{5} \hat{\mathrm{j}}+\hat{\mathrm{k}}$
(2) $\frac{3}{5 \sqrt{2}} \hat{\mathrm{i}}+\frac{4}{5 \sqrt{2}} \hat{\mathrm{j}}+\frac{1}{\sqrt{2}} \hat{\mathrm{k}}$
(3) $\frac{3}{10} \hat{\mathrm{i}}+\frac{4}{10} \hat{\mathrm{j}}+\frac{1}{10} \hat{\mathrm{k}}$
(4) $\frac{1}{5} \hat{\mathrm{i}}+\frac{4}{15} \hat{\mathrm{j}}+\frac{1}{3} \hat{\mathrm{k}}$
36. If $\overrightarrow{\mathrm{c}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and angle that $\overrightarrow{\mathrm{c}}$ makes with $\mathrm{x}, \mathrm{y}$ \& $\mathrm{z}-$ axes are $\alpha, \beta$ and $\gamma$ respectively then which of the following is correct?
(1) $\cos \alpha=\cos \beta=\cos \gamma=\frac{1}{\sqrt{3}}$
(2) $\cos \alpha=\cos \beta=\cos \gamma=\frac{1}{3}$
(3) $\cos \alpha=\cos \beta=\cos \gamma=-\frac{1}{3}$
(4) $\sin \alpha=\sin \beta=\sin \gamma=\frac{1}{\sqrt{3}}$
37. If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|,|\vec{a}|=|\vec{b}|$, then angle between $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ is
(1) $120^{\circ}$
(2) $90^{\circ}$
(3) $45^{\circ}$
(4) $60^{\circ}$
38. If $\overrightarrow{\mathbf{c}}=|\overrightarrow{\mathbf{c}}| \hat{\mathrm{n}}$ then $\hat{\mathrm{n}}$, has
(1) Units of $\overrightarrow{\mathrm{c}}$
(2) Dimension of $\overrightarrow{\mathrm{c}}$
(3) Units and dimension both of $\overrightarrow{\mathrm{c}}$
(4) Neither unit nor dimension
39. If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0},|\vec{a}|=|\vec{b}|=|\vec{c}|$, then which of the following is correct figure
(1)

(2)

(3)

(4) None of these
40. A room has dimension $5 \mathrm{~m} \times 3 \mathrm{~m} \times 4 \mathrm{~m}$. A mosquito files from one corner of the room to its diagonally opposite corner, then magnitude of displacement of mosquito is
(1) 5 m
(2) $5 \sqrt{2} \mathrm{~m}$
(3) 4 m
(4) 3 m
41. If $\vec{a}=2 \hat{i}+3 \hat{j}-4 \hat{k}$ and $\vec{b}=3 \hat{i}+2 \hat{j}+z \hat{k}$. The value of $z$ for which $\vec{a}$ is perpendicular to $\vec{b}$ is
(1) 3
(2) -3
(3) 1
(4) -1
42. Under the action of force $\vec{F}=3 \hat{i}+2 \hat{j}+3 \hat{k} N$ displacement of a particle is $\overrightarrow{\mathrm{S}}=2 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}-2 \hat{\mathrm{k}} \mathrm{m}$, then work done by force is
(1) 8 J
(2) 10 J
(3) 20 J
(4) 5 J
43. Figure represents $\vec{a}$ and $\vec{b}$ such that $|\vec{a}|=|\vec{b}|$, then $\vec{a} \cdot \vec{b}$ is

(1) $a^{2}$
(2) $a^{2}+2 a$
(3) Zero
(4) 2 a
44. If $\vec{a}$ and $\vec{b}$ are two vectors then $\frac{(\vec{a} \cdot \vec{b}) \vec{a}}{a^{2}}$ represents (1) Vector component of $\vec{b}$ in the direction of $\vec{a}$
(2) Vector component of $\vec{a}$ in the direction of $\vec{b}$
(3) Vector component of $\vec{b}$ perpendicular to $\vec{a}$
(4) None of these
45. If $\vec{c}=\vec{a}+\vec{b},|\vec{a}|=|\vec{b}|=10$ unit, \& $\vec{a}$ is perpendicular to $\vec{b}$, then $\vec{c} \cdot \vec{a}$ is
(1) 10 units
(2) 100 units
(3) 20 units
(4) 200 units
46. If $\vec{a}, \vec{b} \& \vec{c}$ are mutually perpendicular vectors such that $\vec{c}=\vec{a} \times \vec{b}$. If direction of $\vec{a}$ is vertically upward and direction of $\vec{c}$ is towards west then direction of $\vec{b}$ is towards
(1) South
(2) East
(3) West
(4) North
47. If $\vec{a}$ and $\vec{b}$ are two vectors in $x-y$ plane then which of the following will always be along z -axis ?
(1) $\vec{a}+\vec{b}$
(2) $\vec{a}-\vec{b}$
(3) $\vec{b}-\vec{a}$
(4) $\vec{a} \times \vec{b}$
48. A force $\vec{F}=2 \hat{i}+3 \hat{j} N$ acts at a point $P(4 m, 2 m)$ in $x-$ $y$ plane then magnitude moment of force about origin of co-odinate system is
(1) 14 Nm
(2) 8 Nm
(3) 12 Nm
(4) Zero
49. If $\vec{a}$ and $\vec{b}$ two vectors such that $\vec{c}=\vec{a}+\vec{b}$ and $\overrightarrow{\mathrm{p}}=\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$, then $\overrightarrow{\mathrm{c}} . \overrightarrow{\mathrm{p}}$ is
(1) 1
(2) Zero
(3) $\frac{a b}{2}$
(4) $a^{2}+b^{2}$
50. Figure represents a paralleogram determined by $\vec{a} \& \vec{b}$, then area of parallelogram is given by

(1) $\vec{a} \cdot \vec{b}$
(2) $|\vec{a}+\vec{b}|$
(3) $|\vec{a} \times \vec{b}|$
(4) $|\vec{a}-\vec{b}|$

## CHEMISTRY

51. The number of electrons lost or gained during reaction $3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}$ is
(1) 2
(2) 4
(3) 6
(4) 8
52. The oxidation number of carbon is $\mathrm{CH}_{3} \mathrm{COOH}$ is
(1) +4
(2) $+3,-3$
(3) +3
(4) +1
53. Which of the following reactions involves neither oxidation nor reduction
(1) $\mathrm{CrO}_{4}^{2-} \longrightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
(2) $\mathrm{Cr} \longrightarrow \mathrm{CrCl}_{3}$
(3) $\mathrm{VO}^{2+} \longrightarrow \mathrm{V}_{2} \mathrm{O}_{2}$
(4) $2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \longrightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}$
54. A, B and C are three element forming a part of compound in oxidation states of $+2,+5$ and -2 respectively. What could be the compound
(1) $\mathrm{A}_{2}(\mathrm{BC})_{2}$
(2) $\mathrm{A}_{2}\left(\mathrm{BC}_{4}\right)_{3}$
(3) $\mathrm{A}_{3}\left(\mathrm{BC}_{4}\right)_{2}$
(4) $A B C$
55. In which of the following reactions there is no change in the oxidation number?
(1) $\mathrm{HNO}_{3}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{NO}_{2}^{+}+\mathrm{H}_{3} \mathrm{O}^{+}+2 \mathrm{HSO}_{4}^{-}$
(2) $2 \mathrm{KNH}_{2}+\mathrm{N}_{2} \mathrm{O} \rightarrow \mathrm{KN}_{3}+\mathrm{KOH}+\mathrm{NH}_{3}$
(3) $2 \mathrm{~N}_{2} \mathrm{O}_{4}+2 \mathrm{KI} \rightarrow 2 \mathrm{KNO}_{3}+2 \mathrm{NO}+\mathrm{I}_{2}$
(4) $6 \mathrm{~K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+\mathrm{Cr}_{2} \mathrm{O}_{3}+10 \mathrm{KOH} \rightarrow$ $6 \mathrm{~K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+2 \mathrm{~K}_{2} \mathrm{CrO}_{4}+5 \mathrm{H}_{2} \mathrm{O}$
56. The equivalent weight of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ in the reaction
$2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$
(1) $\frac{M}{2}$
(2) $\frac{M}{4}$
(3) M
(4) $\frac{M}{5}$
57. $\mathrm{x} \mathrm{Cl}_{2}+\mathrm{yOH}^{-} \rightarrow \mathrm{ClO}_{3}^{-}+\mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}$
(1) $x=3, y=6$
(2) $x=2, y=4$
(3) $x=1, y=4$
(4) None of these
58. Which one of the following statements is not correct?
(1) Oxidation number of S in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ is +6
(2) Oxidation number of Os in $\mathrm{OsO}_{4}$ is +8
(3) Oxidation number of S in $\mathrm{H}_{2} \mathrm{SO}_{4}$ is +8
(4) Oxidation number of O in $\mathrm{BaO}_{2}$ is -1
59. In the balanced chemical reaction,

$$
\mathrm{IO}_{3}^{-}+\mathrm{aI}^{-}+\mathrm{bH}^{+} \rightarrow \mathrm{cH}_{2} \mathrm{O}+\mathrm{dI}_{2}
$$

a, b, c and d respectively correspond to
(1) $5,6,3,3$
(2) $5,3,6,3$
(3) $3,5,3,6$
(4) $5,6,5,5$
60. One mole of $\mathrm{N}_{2} \mathrm{H}_{4}$ loses 10 mol of electrons to form a new compound Y . Assuming that all nitrogen appear in the new compound, what is the oxidation state of $\mathrm{N}_{2}$ in Y ? (There is no change in the oxidation state of hydrogen)
(1) +3
(2) -3
(3) -1
(4) +5
61. The compound which could not act both as oxidising as well as reducing agent is
(1) $\mathrm{SO}_{2}$
(2) $\mathrm{MnO}_{2}$
(3) $\mathrm{Al}_{2} \mathrm{O}_{3}$
(4) CrO
62. How many moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in acidic medium can be reduced by 1 mole of $\mathrm{Sn}^{2+}$ ?
(1) $1 / 3$
(2) $1 / 6$
(3) $2 / 3$
(4) 1
63. What is the oxidation state of sulphur in $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$ ?
(1) +6
(2) +5
(3) +4
(4) +2.5
64. Which of the following is an example of disproportionation reaction?
(1) $\mathrm{Cl}_{2} \longrightarrow \mathrm{Cl}^{-}+\mathrm{ClO}_{3}^{-}$
(2) $\mathrm{KClO}_{3} \longrightarrow \mathrm{KCl}+\mathrm{KClO}_{4}$
(3) $\mathrm{IO}_{3}^{-}+\mathrm{I}^{-} \longrightarrow \mathrm{I}_{2}$
(4) All of these
65. Oxidation state of Cr in $\mathrm{CrO}_{5}$ will be
(1) +6
(2) +10
(3) +5
(4) +3
66. The equivalent massof $\mathrm{FeS}_{2}$ whose molecular mass is M is $\qquad$ in following reaction
$\mathrm{FeS}_{2} \rightarrow \mathrm{Fe}^{3+}+\mathrm{SO}_{3}$
(1) $\frac{\mathrm{M}}{11}$
(2) $\frac{M}{7}$
(3) $\frac{M}{1}$
(4) $\frac{\mathrm{M}}{15}$
67. Equivalent weight of ferous oxalate, $(\mathrm{M}=$ molarmass $)$ when it reacts with $\mathrm{KMnO}_{4}$ in acidic medium will be
(1) $\frac{M}{2}$
(2) M
(3) $\frac{M}{3}$
(4) $\frac{M}{5}$
68. Oxidation no. of each Nitrogen in $\mathrm{NH}_{4} \mathrm{NO}_{3}$ will be
(1) +3
(2) +5
(3) -3
(4) Both (2) and (3)
69. What are the values of $x, y$ and $z$ (respectively) in the following redox reaction
$\mathrm{xFeSO}_{4}+\mathrm{yKMnO}_{4}+\mathrm{zH}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{aMnSO}_{4}+$ $5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{dH}_{2} \mathrm{O}$
(1) 5,2 and 8
(2) 10,2 and 8
(3) 10,1 and 4
(4) 10,1 and 8
70. $\mathrm{KMnO}_{4}$ oxidises oxalic acid in acidic medium. the number of $\mathrm{CO}_{2}$ molecules produced as per the balanced equation is
(1) 10
(2) 8
(3) 6
(4) 3
71. The number of mole of $\mathrm{KMnO}_{4}$ that will be needed to react with one mole of sulphite ion in acidic solution is
(1) $2 / 5$
(2) $3 / 5$
(3) $4 / 5$
(4) 1
72. $\mathrm{HNO}_{3}$ oxidises $\mathrm{NH}_{4}^{+}$ions to nitrogen and itself gets reduced to $\mathrm{NO}_{2}$. The moles of $\mathrm{HNO}_{3}$ required by 1 mole of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ is -
(1) 4
(2) 5
(3) 6
(4) 2
73. In nitric oxide (NO), the oxidation state of nitrogen is:
(1) -2
(2) +1
(3) -1
(4) +2
74. The number of moles of $\mathrm{KMnO}_{4}$ reduced by one mole of KI in alkaline medium is -
(1) One fifth
(2) Five
(3) One
(4) Two
75. For decolourization of 1 mole of $\mathrm{KMnO}_{4}$, the moles of $\mathrm{H}_{2} \mathrm{O}_{2}$ required is -
(1) $1 / 2$
(2) $3 / 2$
(3) $5 / 2$
(4) $7 / 2$
76. Which of the following can behave as only oxidising agent ?
(1) $\mathrm{HNO}_{3}$
(2) $\mathrm{H}_{2} \mathrm{SO}_{3}$
(3) $\mathrm{CrO}_{2}$
(4) $\mathrm{SO}_{2}$
77. What mass of $\mathrm{N}_{2} \mathrm{H}_{4}$ can be oxidized to $\mathrm{N}_{2}$ by 24.0 gm of $\mathrm{K}_{2} \mathrm{CrO}_{4}$. Which is reduced to $\mathrm{Cr}(\mathrm{OH})_{4}^{-}$? (At. mass of $\mathrm{Cr}=52$ )
(1) 2.969 gm
(2) 5.25 gm
(3) 9.08 gm
(4) 29.69 gm
78. A compound of Xe and F is found to have $53.3 \% \mathrm{Xe}$. Oxidation number of Xe in this compound is :
(1) -4
(2) zero
(3) +4
(4) +6
79. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+\mathrm{he}^{-} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2}$; The value of n in the above equation is
(1) 2
(2) 3
(3) 4
(4) 6
80. The number of moles of $\mathrm{KMnO}_{4} / \mathrm{H}^{+}$required to oxidise 2 mole of $\mathrm{FeC}_{2} \mathrm{O}_{4}$ is
(1) 1.2
(2) 2
(3) 5
(4) 3
81. In alkaline medium $\mathrm{KMnO}_{4}$ acts as oxidising agent, its equivalent mass will be (molecular mass of $\mathrm{KMnO}_{4}$ = 158)
(1) 158
(2) 31.6
(3) 52.6
(4) 15.8
82. The equivalent mass of $\mathrm{MnSO}_{4}$ is half its molecular mass when it is converted to
(1) $\mathrm{Mn}_{2} \mathrm{O}_{3}$
(2) $\mathrm{MnO}_{2}$
(3) $\mathrm{MnO}_{4}^{-}$
(4) $\mathrm{MnO}_{4}^{2-}$
83. The oxidation number is different in two similar elements is
(1) $\mathrm{Ca}(\mathrm{O} \stackrel{*}{\mathrm{C}}) \stackrel{*}{\mathrm{Cl}}$
(2) $\mathrm{H}_{2} \stackrel{* *}{*}_{2} \mathrm{O}_{8}$
(3) $\mathrm{H}_{2}{\stackrel{* *}{*} \mathrm{~S}_{2} \mathrm{O}_{7}, ~}_{\text {an }}$
(4) $\stackrel{* *}{S}_{2} \mathrm{O}_{6}^{2-}$
84. A solution of $10 \mathrm{ml} \frac{\mathrm{M}}{10} \mathrm{FeSO}_{4}$ was treated with $\mathrm{KMnO}_{4}$ solution in acidic medium; the amount of $\mathrm{KMnO}_{4}$ used will be
(1) 10 ml 0.5 M
(2) 10 ml 0.1 M
(3) 10 ml 0.02 M
(4) 5 ml 0.1 M
85. According to the following equation,
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+4 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{H}_{2} \mathrm{O}+3[\mathrm{O}]$ the equivalent mass of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is
(1) mol. mass / 3
(2) mol. mass / 6
(3) mol. mass
(4) mol. mass / 12
86. When $\mathrm{KMnO}_{4}$ is reduced with oxalic acid in acidic medium, the oxidation number of Mn changes from :
(1) 7 to 4
(2) 6 to 4
(3) 7 to 2
(4) 4 to 2
87. For the half cell reaction,
$2 \mathrm{BrO}_{3}^{-}+12 \mathrm{H}^{+}+10 \mathrm{e} \longrightarrow \mathrm{Br}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
the equivalent mass of sodium bromate is:
(1) Equal to its mol. mass
(2) $1 / 3$ of its mol. mass
(3) $1 / 6$ of its mol. mass
(4) $1 / 5$ of its mol. mass
88. In alkaline conditions, $\mathrm{KMnO}_{4}$ reacts as follows
$2 \mathrm{KMnO}_{4}+2 \mathrm{KOH} \longrightarrow 2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{H}_{2} \mathrm{O}+[\mathrm{O}]$
Therefore, its equivalent mass will be :
(1) 31.6
(2) 52.7
(3) 72.0
(4) 158.0
89. The equivalent mass of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ will be $\qquad$ in following reaction
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \rightarrow \mathrm{~N}_{2}+\mathrm{Cr}^{3+}+\mathrm{H}_{2} \mathrm{O}$
(1) $\frac{M}{3}$
(2) $\frac{M}{6}$
(3) $\frac{M}{2}$
(4) $\frac{M}{5}$
90. Weight of iodine required to oxidise $500 \mathrm{~mL} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, is :
(1) 6.35 g
(2) 63.5 g
(3) 127 g
(4) 254 g
91. Which of the following acids is added in the titration of oxalic acid and potassium permanganate ?
(1) $\mathrm{HNO}_{3}$
(2) HCl
(3) $\mathrm{CH}_{3} \mathrm{COOH}$
(4) $\mathrm{H}_{2} \mathrm{SO}_{4}$
92. 1.0 g of a metal carbonate neutralises 200 mL of 0.1 N HCl . The equivalent mass of the metal will be:
(1) 50
(2) 40
(3) 20
(4) 100
93. 1g of a metal required 50 mL of 0.5 N HCl to dissolve it. The equivalent mass of the metal is :
(1) 25
(2) 50
(3) 20
(4) 40
94. The equivalent mass of phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$ is 49. It behaves as $\qquad$ acid
(1) Monobasic
(2) Dibasic
(3) Tribasic
(4) Reducing agent
95. In the reaction, $\mathrm{CH}_{3} \mathrm{OH} \longrightarrow \mathrm{HCOOH}$, the number of electrons that must be added to the right is :
(1) 4
(2) 3
(3) 2
(4) 1
96. The oxidation state of iron in sodium nitroprusside is :
(1) +2
(2) +1
(3) zero
(4) +3
97. For the redox reaction

$$
\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

the correct coefficients of the reactants for the balanced reaction are :

|  | $\mathrm{MnO}_{4}^{-}$ | $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ |
| :--- | :--- | :--- |
| (1) 2 | 5 | $\mathrm{H}^{+}$ |
| (2) 16 | 5 | 16 |
| (3) 5 | 16 | 2 |
| (4) 2 | 16 | 2 |

98. How many moles of $\mathrm{e}^{-}$are gained in conversion of 2 mole of nitrobenzene into aniline
(1) 6
(2) 12
(3) 3
(4) 5
99. $28 \mathrm{NO}_{3}^{-}+3 \mathrm{As}_{2} \mathrm{~S}_{3}+4 \mathrm{H}_{2} \mathrm{O} \rightarrow$

$$
6 \mathrm{AsO}_{4}^{3-}+28 \mathrm{NO}+9 \mathrm{SO}_{4}^{2-}+8 \mathrm{H}^{+}
$$

What will be the equivalent mass of $\mathrm{As}_{2} \mathrm{~S}_{3}$ in above reaction?
(1) $\frac{\text { M.wt. }}{2}$
(2) $\frac{\text { M.wt. }}{4}$
(3) $\frac{\text { M.wt. }}{24}$
(4) $\frac{\text { M.wt. }}{28}$
100. The equivalent weight of $\mathrm{KIO}_{3}$ in the reaction,

$$
2 \mathrm{Cr}(\mathrm{OH})_{3}+\mathrm{OH}^{-}+\mathrm{KIO}_{3} \longrightarrow
$$

$2 \mathrm{CrO}_{4}^{2-}+5 \mathrm{H}_{2} \mathrm{O}+\mathrm{KI}$ is :
(1) Molecular weight (2) $\frac{\text { Molecular weight }}{3}$
(3) $\frac{\text { Molecular weight }}{6}$
(4) $\frac{\text { Molecular weight }}{2}$

