PHYSICS

9.

- 1. If $A = 3\hat{i} + 4\hat{j}$ and $B = 7\hat{i} + 24\hat{j}$, the vector having the same magnitude of B and parallel to A is
 - (1) $5\hat{i} + 20\hat{j}$ (2) $15\hat{i} + 10\hat{j}$ (3) $20\hat{i} + 15\hat{j}$ (4) $15\hat{i} + 20\hat{j}$
- 2. Given vector $\vec{A} = 2\hat{i} + 3\hat{j}$, the angle between \vec{A} and y-axis is
 - (1) $\tan^{-1} 3/2$ (2) $\tan^{-1} 2/3$
 - (3) $\sin^{-1} 2/3$ (4) $\cos^{-1} 2/3$
- Maximum and minimum magnitudes of the resultant of two vectors of magnitudes P and Q are in the ratio 3 : 1. Which of the following relations is true
 - (1) P = 2Q (2) P = Q
 - (3) PQ = 1 (4) None of these
- 4. Which pair of the following forces will never give resultant force of 2N
 - (1) 2 N and 2 N (2) 1 N and 1 N
 - (3) 1 N and 3 N (4) 1 N and 4 N
- 5. If two vectors $2\hat{i}+3\hat{j}-\hat{k}$ and $-4\hat{i}-6\hat{j}+\lambda\hat{k}$ are parallel to each other then value of λ be (1) 0 (2) 2 (3) 3 (4) 4
- 6. A person moves 30 metres North, then 20 metres East, then $30\sqrt{2}$ metres South West. His displacement from the original position is
 - (1) 14 metres South West
 - (2) 28 metres South
 - (3) 10 metres West
 - (4) 15 metres East
- 7. If the resultant of the two vectors having magnitude of 7 and 4 is 11, the dot product of the two vectors could be
 - (1) 28 (2) 3
 - (3) Zero
- 8. Consider a vector $\vec{F} = (4\vec{i} 3\vec{j})$. Another vector is perpendicular of \vec{F} is

(4) $\frac{7}{4}$

- (1) $7\hat{k}$ (2) $6\hat{i}$
- (3) $(4\hat{i}+3\hat{j})$ (4) $(3\hat{i}-4\hat{j})$

Two vectors \vec{A} and \vec{B} are such that $\vec{A}+\vec{B}=\vec{C}$ and $A^2+B^2=C^2$. If θ is the angle between positive directions of \vec{A} and \vec{B} then mark the correct alternative

$$\theta = 0^{\circ}$$
 (2) $\theta = \frac{\pi}{2}$

(3) $\theta = \frac{2\pi}{3}$

(1)

10. The magnitudes of the X and Y components of \vec{p} are 7 and 6. Also the magnitudes of X and Y components of $\vec{P} + \vec{Q}$ are 11 and 9 respectively. What is the magnitude of Q ?

(4) $\theta = \pi$

- (1) 5
 (2) 6

 (3) 8
 (4) 9
- 11. Given : $\vec{A} = 2\hat{i} \hat{j} + 2\hat{k}$ and $\vec{B} = -\hat{i} \hat{j} + \hat{k}$. The

12. Two vectors \vec{a} and \vec{b} are at an angle of 60° with each other. Their resultant makes an angle of 45° with \vec{a} . If $|\vec{b}|=2$ units, then $|\vec{a}|$ is

13. Figure shows three vectors \vec{a} , \vec{b} and \vec{c} , where R is the midpoint of PQ. Then which of the following relations is correct?

(1) $\vec{a} + \vec{b} = 2\vec{c}$ (2) $\vec{a} + \vec{b} = \vec{c}$ (3) $\vec{a} - \vec{b} = 2\vec{c}$ (4) $\vec{c} = \vec{c}$

- 14. Consider the following statements about three vectors magnitude, is perpendicular to the smaller of the two forces. The angle between the two forces is \vec{a} , \vec{b} and \vec{c} that have been non-zero magnitudes (1) 120° (2) 60° I. If $\vec{a} \cdot \vec{b} = \vec{a} \cdot \vec{c}$, it following that $\vec{b} = \vec{c}$ (3) 90° (4) 150° II. $\vec{a} \times \vec{b} = \vec{a} \times \vec{c} = 0$, b must be perpendicular to \vec{c} 21. If $\vec{c} = \vec{a} + \vec{b}$, $|\vec{a}| = 3$ unit, $|\vec{b}| = 4$ unit and angle Which of these statements is /are correct ? between \vec{a} and \vec{b} is 90°, then, $|\vec{c}|$ is (1) I only (2) II only (3) I and II both (4) Neither I nor II (1) 7 unit (2) 5 unit 15. A particle has position vector $(3\hat{i} - \hat{j} + 2\hat{k})$ metre (3) 10 unit (4) Zero at time t=0. It moves with constant velocity 22. Figure represents two vectors \vec{a} and \vec{b} , such that $(-\hat{i} - \hat{j} + 3\hat{k})$ m s⁻¹. The position vector (in m) of $\vec{c} = \vec{a} + \vec{b}$. If $|\vec{a}| = |\vec{b}| = 5$ unit then, $|\vec{c}|$ is the particle after 3 second is (1) $-4\hat{i}+11\hat{k}$ (2) $2\hat{i} - \hat{k}$ (4) $3\hat{k}$ 16. The component of vector $\vec{A} = 2\hat{i} + 3\hat{j}$ along the vector $\hat{i} + \hat{j}$ is (1) $\frac{5}{\sqrt{2}}$ (1) 5 unit (2) 10 unit (2) $10\sqrt{2}$ (3) $5\sqrt{3}$ unit (4) None of these (4) 5 (3) $5\sqrt{2}$ 23. If \vec{a} is rotated through an angle 60° keeping its tail 17. The resultant of the three vectors \vec{OA} , \vec{OB} and \vec{OC} fixed such that in new position we get \vec{b} . Then which shown in figure. of the following is correct ? (2) $|\vec{b}| = |\vec{a}|$ but $\vec{b} \neq \vec{c}$ (1) $\vec{h} = \vec{a}$ (3) $\vec{b} \neq \vec{c}$ but directions of two are same (4) None of these (1) r (2) 2r 24. For figure shown $\vec{c} = \vec{a} + \vec{b}$ and angle that \vec{c} makes (3) r $(1+\sqrt{2})$ (4) r $(\sqrt{2} - 1)$ with \vec{b} is α then which of the following is correct? 18. Vector \vec{A} is 2 cm long and is 60° above the x-axis in the first quadrant. Vector \vec{B} is 2 cm long and is 60° below the x-axis in the fourth quadrant. The sum $\vec{A} + \vec{B}$ is a vector of magnitude ۱Ð (1) $2 \operatorname{along} + y \operatorname{-axis}$ (2) $2 \operatorname{along} + x \operatorname{-axis}$ (4) $2 \operatorname{along} - x \operatorname{-axis}$ (3) 1 along -x-axis 19. Two forces P and Q acting at a point are such that if (1) $\tan \alpha =$ (2) $\tan \alpha =$ P is reversed, the direction of the resultant is turned $a + b \cos \theta$ through 90°. Then (3) $\tan \alpha = \frac{a \sin \theta}{a \sin \theta}$ (1) P = O(2) P = 2Qtan α = (3) $P = \frac{Q}{2}$ 25. If $\vec{c} = \vec{a} + \vec{b}$, a = 10 unit, b = 5 unit, then which of the (4) No relation between P and Q following may be magnitude of \vec{c} ?
 - 20. The resultant of two forces, one double the other in

(2) 20 unit

(1) 10 unit

	(3) 3 unit	(4) 25 unit	(1) 45°	(2) 135°	
26.	If $\left \vec{a} + \vec{b} \right = \left \vec{a} - \vec{b} \right , a \neq 0, b$	$\neq 0$, then angle between \vec{a}	(3) 315°	(4) 225°	
	and \vec{b} is 33.		If $\vec{c} = 3\hat{i} + 4\hat{j} + 5\hat{k}$, then	$ \vec{c} $ is	
	(1) 45° (2) 00°	(2) 60°	(1) 50 unit	(2) 25 unit	
27	A ball was moving towards east with velocity 5m/s. The ball collided with a wall then its velocity become 5 m/s towards north, then magnitude of change in velocity of ball is		(3) $5\sqrt{2}$ unit	(4) None of these	
27.			If \vec{c} makes angle α ,	If \vec{c} makes angle α , β and γ with x, y & z axes respectively, then which of the following is correct ?	
			respectively, then which		
	(1) 5 m/s	(2) $5\sqrt{2}$ m/s	(1) $\cos^2 \alpha + \cos^2 \beta + \cos^2 \beta$	$\rho s^2 \gamma = 1$	
	(3) Zero	(4) 10 m/s	(2) $\cos^2 \alpha \times \cos^2 \beta \times \cos^2 \beta$	$s^2 \gamma = 1$	
28.	If $\vec{c} = \vec{a} + \vec{b}$, $ \vec{a} = \vec{b} = \vec{c} $, then angle between \vec{c} and \vec{a}		(3) $\cos \alpha + \cos \beta + \cos \gamma = 1$ (4) $(1 + \cos^2 \alpha) + (1 + \cos^2 \alpha) + (1 + \cos^2 \alpha) = 0$		
	is of a state of the state of t		(4) $(1 + \cos^2 \alpha) + (1 + \cos^2 \alpha)$	$\cos^2 \beta + (1 + \cos^2 \gamma) = 0$	
	(1) 120°	(2) 60°	$if \vec{c} = 3i + 4j + 5k \text{ and}$	c = c n, then n is	
	(3) 90°	(4) 45°	(1) $\frac{3}{5}\hat{i} + \frac{4}{5}\hat{j} + \hat{k}$		
29.	If $\vec{c} = \vec{a} - b$, $ \vec{a} = b = 10$) unit and angle between \vec{a}	$3 \div 4 \div 1$	î	
	and b is 60°, then $ \vec{c} $ is		(2) $\overline{5\sqrt{2}}^{1+}\overline{5\sqrt{2}}^{1+}\overline{\sqrt{2}}^{1+}\overline{\sqrt{2}}^{1+}$	= k 2	
	(1) 10 unit	(2) $10\sqrt{2}$ unit	(3) $\frac{3}{\hat{i}} + \frac{4}{\hat{j}} + \frac{1}{\hat{k}} \hat{k}$	(4) $\frac{1}{i} + \frac{4}{i} + \frac{1}{i} + \frac{1}{k}$	
	(3) $10\sqrt{3}$ unit	(4) Zero	$10 10^{\circ} 10$	(¹) 5 15 ³ 3	
30.	If $\vec{c} = \vec{a} + \vec{b}$, then which of the following is correct ? ^{30.}		axes are α - β and γ r	If $c = 1 + j + k$ and angle that c makes with x, y & z- axes are $\alpha - \beta$ and γ respectively then which of the	
	(1) $\left \vec{c} \right > \left \vec{a} \right + \left \vec{b} \right $	REIT	following is correct?		
	(2) $ \vec{c} < \vec{a} - \vec{b} $		(1) $\cos \alpha = \cos \beta = \cos \beta$	$\gamma = \frac{1}{\sqrt{2}}$	
	(3) $\left \vec{a} \right + \left \vec{b} \right \ge \left \vec{c} \right \ge \left\ \vec{a} \right - \left \vec{b} \right\ $		$\sqrt{3}$		
			(2) $\cos \alpha = \cos \beta = \cos \gamma = \frac{1}{3}$		
	(4) $ \vec{c} = \vec{a} + \vec{b} $ always For figure shown $\vec{a} = a_x \hat{i} + a_y \hat{j}, \vec{a} = 10$ unit, then		(3) $\cos \alpha = \cos \beta = \cos \gamma = -\frac{1}{3}$		
31.					
	Gentand y 37.		(4) $\sin \alpha = \sin \beta = \sin \gamma$	$r = \frac{1}{\sqrt{3}}$	
			a + b = a - b , a =	b, then angle between	
	-X	x REIM	$(\vec{a} + \vec{b})$ and $(\vec{a} - \vec{b})$ is	1	
			(1) 120° (2) 45°	(2) 90° (4) 60°	
	↓- y	20	(3) + 3	(4) ou traine	
	(1) $a_x = 5, a_y = 5\sqrt{3}$ (2) $a_x = -5, a_y = -5\sqrt{3}$ (3) $a_x = -5, a_y = 5\sqrt{3}$ (4) $a_x = -10, a_y = 10$ (5) $a_x = -5, a_y = 5\sqrt{3}$ (5) $a_x = -10, a_y = 10$		5. If $c = c n$ then n, has	1×	
			(1) Units of c		
32.	If $\vec{a} = -5\hat{i} - 5\hat{j}$ and θ is angle that \vec{a} makes anticlockwise with positive direction of x-axis, then		(2) Dimension of c	n both of \vec{a}	
			(4) Neither unit nor dimension		
	θ 1S				

39. If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, $|\vec{a}| = |\vec{b}| = |\vec{c}|$, then which of the following is correct figure

- 40. A room has dimension $5m \times 3m \times 4m$. A mosquito files from one corner of the room to its diagonally opposite corner, then magnitude of displacement of mosquito is
 - (1) 5 m (2) $5\sqrt{2}$ m
 - (3) 4 m (4) 3 m
- 41. If $\vec{a} = 2\hat{i} + 3\hat{j} 4\hat{k}$ and $\vec{b} = 3\hat{i} + 2\hat{j} + z\hat{k}$. The value

(2) -3

(4) -1

- of z for which $\vec{a}\,$ is perpendicular to $\vec{b}\,$ is
- (1) 3
- (3) 1

42. Under the action of force $\vec{F} = 3\hat{i} + 2\hat{j} + 3\hat{k} N$ displacement of a particle is $\vec{S} = 2\hat{i} + 4\hat{j} - 2\hat{k} m$, then work done by force is

- (1) 8J (2) 10J
- (3) 20J (4) 5J
- 43. Figure represents \vec{a} and \vec{b} such that $|\vec{a}| = |\vec{b}|$, then

- (1) a^2 (2) $a^2 + 2a$ (3) Zero (4) 2a
- 44. If \vec{a} and \vec{b} are two vectors then $\frac{(\vec{a}.\vec{b})\vec{a}}{a^2}$ represents (1) Vector component of \vec{b} in the direction of \vec{a}

- (2) Vector component of \vec{a} in the direction of b
- (3) Vector component of \vec{b} perpendicular to \vec{a}
- (4) None of these

(3) 20 units

- 45. If $\vec{c} = \vec{a} + \vec{b}$, $|\vec{a}| = |\vec{b}| = 10$ unit, & \vec{a} is perpendicular
 - to \vec{b} , then $\vec{c}.\vec{a}$ is
 - (1) 10 units (2) 100 units
 - (4) 200 units
- 46. If $\vec{a}, \vec{b} \& \vec{c}$ are mutually perpendicular vectors such that $\vec{c} = \vec{a} \times \vec{b}$. If direction of \vec{a} is vertically upward and direction of \vec{c} is towards west then direction of
 - \vec{b} is towards
 - (1) South (2) East (3) West (4) North
- 47. If \vec{a} and \vec{b} are two vectors in x-y plane then which of the following will always be along z-axis ?
 - (1) $\vec{a} + \vec{b}$ (2) $\vec{a} \vec{b}$ (3) $\vec{b} - \vec{a}$ (4) $\vec{a} \times \vec{b}$
- 48. A force $\vec{F} = 2\hat{i} + 3\hat{j}$ N acts at a point P (4m, 2m) in xy plane then magnitude moment of force about origin of co-odinate system is
 - (1) 14 Nm
 - (2) 8 Nm
 - (3) 12 Nm (4) Zero
- 49. If \vec{a} and \vec{b} two vectors such that $\vec{c} = \vec{a} + \vec{b}$ and $\vec{p} = \vec{a} \times \vec{b}$, then $\vec{c}.\vec{p}$ is
 - (1) 1

(3)

(2) Zero

(4) $a^2 + b^2$

50. Figure represents a paralleogram determined by $\vec{a} \& \vec{b}$, then area of parallelogram is given by

CHEMISTRY

51. The number of electrons lost or gained during reaction 59. In the balanced chemical reaction, $3Fe + 4H_2O \longrightarrow Fe_3O_4 + 4H_2$ is $IO_{2}^{-} + aI^{-} + bH^{+} \rightarrow cH_{2}O + dI_{2}$ (1) 2(2) 4 (3) 61tranc a, b, c and d respectively correspond to (4) 8 (1) 5, 6, 3, 3 (2) 5, 3, 6, 3 52. The oxidation number of carbon is CH_3COOH is (4) 5, 6, 5, 5 (3) 3, 5, 3, 6 (2) + 3, -3(1) + 460. One mole of N_2H_4 loses 10 mol of electrons to form (3) +3(4) +1a new compound Y. Assuming that all nitrogen appear 53. Which of the following reactions involves neither in the new compound, what is the oxidation state of oxidation nor reduction N_2 in Y? (There is no change in the oxidation state of hydrogen) (1) $\operatorname{CrO}_{4}^{2-} \longrightarrow \operatorname{Cr}_{2}\operatorname{O}_{7}^{2-}$ (2) -3 (1) +3Entrance (2) $Cr \longrightarrow CrCl_2$ (4) + 5(3) -1(3) $VO^{2+} \longrightarrow V_2O_2$ 61. The compound which could not act both as oxidising (4) $2S_2O_3^{2-} \longrightarrow S_4O_6^{2-}$ as well as reducing agent is (1) SO₂ (2) MnO₂ 54. A, B and C are three element forming a part of (4) CrO (3) $Al_{2}O_{3}$ compound in oxidation states of +2, +5 and -2respectively. What could be the compound 62. How many moles of $K_2Cr_2O_7$ in acidic medium can be reduced by 1 mole of Sn^{2+} ? (1) $A_{2}(BC)_{2}$ (2) $A_{2}(BC_{4})_{3}$ (1) 1/3 (2) 1/6 (4) ABC (3) $A_{2}(BC_{4})_{2}$ (3) 2/3(4) 1 55. In which of the following reactions there is no change in the oxidation number? 63. What is the oxidation state of sulphur in $Na_2S_4O_6$? (2) +5(1) + 6(1) $\text{HNO}_3 + 2\text{H}_2\text{SO}_4 \rightarrow \text{NO}_2^+ + \text{H}_3\text{O}^+ + 2\text{HSO}_4^-$ (3) + 4(4) + 2.5(2) $2KNH_2 + N_2O \rightarrow KN_3 + KOH + NH_3$ 64. Which of the following is an example of (3) $2N_2O_4 + 2KI \rightarrow 2KNO_3 + 2NO + I_2$ disproportionation reaction? (4) $6K_{2}[Fe(CN)_{6}] + Cr_{2}O_{2} + 10KOH \rightarrow$ (1) $Cl_2 \longrightarrow Cl^- + ClO_3^ 6K_4[Fe(CN)_6] + 2K_2CrO_4 + 5H_2O_6$ 56. The equivalent weight of $Na_2S_2O_3$ in the reaction (2) $KClO_3 \longrightarrow KCl + KClO_4$ $2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$ (3) $IO_3^- + I^- \longrightarrow I_2$ (4) All of these Entrance (2) $\frac{M}{4}$ (1) **Oxidation** state of Cr in CrO_5 will be (1) +6 (4) $\frac{M}{5}$ (3) M 57. $x \operatorname{Cl}_2 + y\operatorname{OH}^- \rightarrow \operatorname{ClO}_3^- + \operatorname{Cl}^- + \operatorname{H}_2\operatorname{O}$ (3) + 5(4) +366. The equivalent mass of FeS_2 whose molecular mass (1) x = 3, y = 6(2) x = 2, y = 4is M is _____ in following reaction (3) x = 1, y = 4(4) None of these $\text{FeS}_2 \rightarrow \text{Fe}^{3+} + \text{SO}_3$ 58. Which one of the following statements is not correct? (1) Oxidation number of S in $(NH_4)_2S_2O_8$ is +6 (1) $\frac{M}{11}$ (2) Oxidation number of Os in OsO_4 is +8 (3) Oxidation number of S in H_2SO_4 is +8 (4) Oxidation number of O in BaO₂ is -115

67. Equivalent weight of ferous oxalate, (M = molarmass) 76. Which of the following can behave as only oxidising when it reacts with KMnO₄ in acidic medium will be agent ? (1) HNO₂ (2) $H_{2}SO_{3}$ (1) $\frac{1}{2}$ (2) M (3) CrO₂ $(4) SO_{2}$ 77. What mass of N_2H_4 can be oxidized to N_2 by 24.0 (4) $\frac{M}{5}$ (3) $\frac{M}{3}$ gm of K_2CrO_4 . Which is reduced to $Cr(OH)_4^-$? 68. Oxidation no. of each Nitrogen in NH_4NO_3 will be (At. mass of Cr = 52) (1) +3(2) +5(1) 2.969 gm (2) 5.25 gm (3) - 3(4) Both (2) and (3) (3) 9.08 gm (4) 29.69 gm 69. What are the values of x, y and z (respectively) in the 78. A compound of Xe and F is found to have 53.3% Xe. following redox reaction Oxidation number of Xe in this compound is : (2) zero (1) - 4 $xFeSO_4 + yKMnO_4 + zH_2SO_4 \longrightarrow aMnSO_4 +$ (4) + 6(3) + 4 $5Fe_2(SO_4)_3 + K_2SO_4 + dH_2O_4$ (2) 10, 2 and 8 (1) 5, 2 and 8 79. $Cr_2O_7^{2-} + 14H^+ + he^- \longrightarrow 2Cr^{3+} + 7H_2$; The value (4) 10, 1 and 8 (3) 10, 1 and 4 of n in the above equation is 70. $KMnO_4$ oxidises oxalic acid in acidic medium. the (1) 2(2) 3 number of CO₂ molecules produced as per the (3) 4 (4) 6balanced equation is 80. The number of moles of $KMnO_{4}/H^{+}$ required to (1) 10(2) 8oxidise 2 mole of FeC_2O_4 is (3) 6(4) 3(1) 1.2(2) 271. The number of mole of $KMnO_4$ that will be needed (3) 5(4) 3 to react with one mole of sulphite ion in acidic solu-In alkaline medium KMnO₄ acts as oxidising agent, 81. tion is its equivalent mass will be (molecular mass of KMnO₄ (1) 2/5(2) 3/5= 158) (3) 4/5(4) 1 (1) 158 (2) 31.6 72. HNO₃ oxidises NH_4^+ ions to nitrogen and (3) 52.6 (4) 15.8 82. The equivalent mass of $MnSO_4$ is half its molecular itself gets reduced to NO2. The moles of HNO3 required by 1 mole of $(NH_A)_2SO_A$ is mass when it is converted to (1)4(2)5(1) Mn_2O_3 (2) MnO₂ (3) 6(4) 2(3) MnO_4^- (4) MnO_{4}^{2} 73. In nitric oxide (NO), the oxidation state of nitrogen is: 83. The oxidation number is different in two similar (1) -2(2) +1elements is (3) -1(4) + 2(2) $H_2 \overset{**}{S_2} O_8$ (1) Ca(OCI)CI74. The number of moles of $KMnO_4$ reduced by one mole $\sqrt{2}$ of KI in alkaline medium is -(4) $\overset{**}{S}_{2} O_{6}^{2-}$ (3) $H_2 \overset{**}{S}_2 O_7$ (1) One fifth (2) Five (3) One (4) Two 84. A solution of 10 ml $\frac{M}{10}$ FeSO₄ was treated with 75. For decolourization of 1 mole of $KMnO_4$, the moles of H₂O₂ required is -KMnO₄ solution in acidic medium; the amount of (1) 1/2(2) 3/2Entrance $KMnO_4$ used will be (4) 7/2(3) 5/2(1) 10 ml 0.5 M (2) 10 ml 0.1 M (3) 10 ml 0.02 M (4) 5 ml 0.1 M

85. According to the following equation, 94. The equivalent mass of phosphoric acid (H_3PO_4) is 49. It behaves as acid $K_2Cr_2O_7 + 4H_2SO_4 \rightarrow K2SO_4 + Cr_2(SO_4)_3 + 4H_2O + 3[O]$ (1) Monobasic (2) Dibasic the equivalent mass of K₂Cr₂O₇ is (3) Tribasic (4) Reducing agent (1) mol. mass /3(2) mol. mass / 6 (3) mol. mass (4) mol. mass / 12 95. In the reaction, $CH_3OH \longrightarrow HCOOH$, the number 86. When $KMnO_4$ is reduced with oxalic acid in acidic of electrons that must be added to the right is : medium, the oxidation number of Mn changes from : (1) 4(2) 3 (1) 7 to 4 (2) 6 to 4 (3) 2(4) 1 (3) 7 to 2 (4) 4 to 2 96. The oxidation state of iron in sodium nitroprusside is : 87. For the half cell reaction, (1) + 2(2) +1 $2BrO_3^- + 12H^+ + 10e \longrightarrow Br_2 + 6H_2O$ (3) zero (4) +3the equivalent mass of sodium bromate is: 97. For the redox reaction (1) Equal to its mol. mass $MnO_4^- + C_2O_4^{2-} + H^+ \longrightarrow Mn^{2+} + CO_2 + H_2O$ (2) 1/3 of its mol. mass the correct coefficients of the reactants for the (3) 1/6 of its mol. mass balanced reaction are : (4) 1/5 of its mol. mass $C_2 O_4^{2-}$ H^+ 88. In alkaline conditions, $KMnO_4$ reacts as follows MnO_{4}^{-} (1) 25 16 $2KMnO_4 + 2KOH \longrightarrow 2K_2MnO_4 + H_2O + [O]$ 5 2 (2) 16 Therefore, its equivalent mass will be : 16 2 (3) 5(1) 31.6 (2) 52.7 (4) 216 5 (4) 158.0 (3) 72.0 98. How many moles of e⁻ are gained in conversion of 2 89. The equivalent mass of $(NH_4)_2Cr_2O_7$ will be mole of nitrobenzene into aniline in following reaction $(\mathrm{NH}_4)_2\mathrm{Cr}_2\mathrm{O}_7 \rightarrow \mathrm{N}_2 + \mathrm{Cr}^{3+} + \mathrm{H}_2\mathrm{O}$ (2) 12 (1) 6(3) 3 (4) 5 (1) $\frac{M}{3}$ (2) $\frac{M}{6}$ 99. $28NO_3^- + 3As_2S_3 + 4H_2O \rightarrow$ (3) $\frac{M}{2}$ (4) $\frac{M}{5}$ $6AsO_4^{3-} + 28NO + 9SO_4^{2-} + 8H^+$ What will be the equivalent mass of As_2S_3 in above 90. Weight of iodine required to oxidise 500 mL $Na_2S_2O_3$ reaction ? solution, is : (2) M.wt. (1) $\frac{\text{M.wt.}}{2}$ (1) 6.35g (2) 63.5g (4) 254g (3) 127g (4) $\frac{M.wt.}{28}$ (3) $\frac{\text{M.wt.}}{24}$ 91. Which of the following acids is added in the titration of oxalic acid and potassium permanganate ? 100. The equivalent weight of KIO₂ in the reaction, (1) HNO₃ (2) HCl $(3) CH_2COOH$ (4) H_2SO_4 $2Cr(OH)_{3} + OH^{-} + KIO_{3} \longrightarrow$ 92. 1.0g of a metal carbonate neutralises 200 mL of 0.1 N HCl. The equivalent mass of the metal will be: $2CrO_4^{2-} + 5H_2O + KI$ is : (1) 50(2) 40 (2) $\frac{\text{Molecular weight}}{3}$ (3) 20(4) 100 (1) Molecular weight 93. 1g of a metal required 50 mL of 0.5 N HCl to dissolve (3) Molecular weight it. The equivalent mass of the metal is : (4) $\frac{\text{Molecular weight}}{2}$ (1) 25 (2) 50 (3) 20(4) 40