NATIONAL INSTITUTE OF TECHNOLOGY DURGAPUR DEPARTMENT OF PHYSICS SYLLABI FOR THE CURRICULAM OF UG COURSE

(updated on August 10, 2019) (BACHELOR OF TECHNOLOGY)

Curriculum & Syllabi for B. Tech/Integrated M.Sc. (Chem.) Courses

Sl. No	Sub. Code	Subject	L-T-P	Credits
1	PHC01	Engineering Physics	2-1-0	3
2	PHS51	Physics Laboratory	0-0-2	1
3	PHC331	Physics of Semiconductor Devices	3-0-0	3
4	PHS381	Semiconductor Devices Laboratory	0-0-3	2
5	PHC332	Electromagnetic Field Theory	3-0-0	3
6	PHS382	Advanced Physics Laboratory	0-0-3	2
7	PHC333	Physics of Engineering Materials	3-0-0	3
8	PHS383	Physics of Engineering Materials Laboratory	0-0-3	2
9	PHC334	Physics II	3-0-0	3
10	PHS384	Physics II Laboratory	0-0-3	2
		Open Elective Basket		
11	PHO441	Quantitative Biology	3-0-0	3

List of Courses to be offered by the Dept of Physics

11	PHO441	Quantitative Biology	3-0-0	3
12	PHO541	Thin Film Technology	3-0-0	3
13	PHO641	Nuclear Reactor Technology	3-0-0	3
14	PHO841	Quantum Physics	3-0-0	3
15	PHO851	Fiber-Optics Communication	3-0-0	3
16	PHO852	Optical Instrumentation	3-0-0	3

Course	Title of the	Program Core	Total Nu	mber of co	ntact hours	5	Credit				
Code	course	(PCR) / Electives	Lectur	Tutorial	Practica	Total					
		(PEL)	e (L)	(T)	I (P)	Hour					
PHC01	ENGINEERING PHYSICS	PCR	2	1	0	3	3				
Pre-requi	sites:	Course Assessme Assessment (EA)	ent methods	s: (Continuo	us (CT), MID	term and	I End Term				
NIL		CT+EA	/								
Course Outcomes	 CO1: To realize ar simple harmonic m CO2: Learn about practical field. CO3: Gain an interinterference, diffra CO4: Acquire basic through optical fibe 	d apply the fundan notion to real world the quantum pher grative overview ar ction and polarizati knowledge related ers.	nental conc problems. nomenon of nd application. to the work	epts of phys subatomic ons of funda king mechan	sics such as a particles and imental option ism of lasers	superposit d its applic cal phenor and signa	ion principle, cations to the mena such as Il propagation				
Topics Covered	Harmonic Oscilla oscillations having vibrations, Equations sharpness of reson	Harmonic Oscillations - Linear superposition principle, Superposition of two perpendicularoscillations having same and different frequencies and phases, Free, Damped and forcedvibrations, Equation of motion, Amplitude resonance, Velocity resonance, Quality factor,sharpness of resonance, etc.[8]									
	 Wave Motion - W Introductory Qua Planck's quantum applications, Schro dimensional box, S Interference & D Conditions of sust wavefront, Interfer and some problem Polarisation - Poolight, Malus law, B rays, Optic axis et Laser and Optic inversion, Einstein 	rse waves, E cal mechanic senberg's un o simple prob ct. xperiment, S sources, Inte ples, The Mi ples, The Mi	lectro-ma s, Blackbo certainty lems: Par Superposit erference ichelson ir plving pow nd elliptic hary and e sis of pola f radiatio methods,	gnetic waves. [3] ody radiation, principle and ticle in a one- [8] tion of waves, by division of nterferometer ver of grating. [13] ally polarized extra-ordinary rized lights. [5] n, Population He-Ne laser.							
Text	Optical Fibre– Cor acceptance angle, TEXT BOOKS :	e and cladding, Tot Applications.	al internal r	eflection, Ca	alculation of	numerical	aperture and [5]				
Books,	1. The Physics o	f Vibrations and Wa	aves, H. Joh	n Pain, Willy	y and Sons						
and/or reference material	 Vibrations and Engineering P 	d Waves in Physics, hysics, H. K. Malik	Iain G. Ma and A. K. S	ain, Cambrid ingh, McGra	lge Universit w-Hill.	y Press					
	REFERENCE BOO 1. Quantum Phy2. Fundamental3. Optics, A. K. O4. Waves and Os5. Lasers and No	DKS : sics, R. Eisberg and of Optics, Jankins a Ghatak, Tata McGra scillations, N. K. Ba on-linear Optics, B.									

Course	COs	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	P010	P011	P012
PHC01	CO1	3	2	1	1	1	-	-	1	-	-	-	1
	CO2	3	2	-	2	-	-	-	-	-	-	-	1
	CO3	3	2	2	2	1	1	1	1	1	-	1	1
	CO4	3	2	2	2	1	1	1	-	1	-	1	1

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:1: Slight (Low)2: Moderate (Medium)3: Substantial (High)

Course	Title of the	Program	Total Nu	mber of co	ntact hours	5	Credit				
Code	course	Core	Lecture	Tutorial	Practical	Total					
		(PCR) / Flectives	(L)	(1)	(P)"	Hours					
		(PEL)									
PHS51	PHYSICS	PCR	0	0	2	2	1				
	LABORATORY										
Pre-requ	uisites	Course Asse	essment me	thods: (Cor	ntinuous eval	uation (C	E) and				
NITI		end assessment (EA))									
NIL	C01. 7	CE+EA									
Course	• CUI:	o realize and	appiy differ	rent techniq	ues for meas	suring rem	active				
Outcom	• CO2: 1	o realize diffe	erent types	of waveform	ns in electric	al signals	usina				
	CRO.					ar ergriale					
	• CO3: 1	To understand	charging a	nd discharg	ing mechanis	sm of a ca	pacitor.				
	• CO4:	o understand	o understand interference, diffraction and polarization rel								
	optical	phenomena.		6 10 1 1							
Tanica	• CO5:	o acquire bas	ic knowled	ge of light p	ropagation ti	nrough fib	ers.				
Covered	1. Find the r	enactive index of a inquire by a travelling microscope.									
Covereu	2. Determin	e the retractive index of the material of prism using spectrom									
	oscillosco	pe.	ipiitude ar	ia irequen	cy of elect	lincal sig	nais by				
	4. To study	the characteri	stics of RC	circuits.							
	5. To study	Brewster's lav	v/Malus' lav	v using lase	r light.						
	6. To study	the diffraction	of light by	a grating.	-						
	7. To study	the interferen	ce of light b	y Newton's	ring apparat	us.					
	8. To detern	nine numerica	l aperture d	of optical fib	er.						
	9. Determin	ation of Plancl	k constant.								
Text	SUGGESTED	BOOKS <u>:</u>									
Books,	1) A Text Bo	ook on Practica	al Physics –	K. G. Majur	mdar.						
and/or	2) Practical	Physics – Worsnop and Flint									
reference											
materia	1) Instruction	n sheets									
		1 3116613									

Course	COs	P01	P02	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	P012
	CO1	3	2	1	-	-	-	-	-	2	1	-	1
PHS51	CO2	3	2	1	-	-	1	-	-	2	1	-	1
	CO3	3	1	-	-	-	-	-	-	2	1	-	1
	CO4	3	2	-	1	-	1	1	-	2	1	-	1
	CO5	3	2	1	-	1	1	1	-	2	1	-	1

Correlation levels 1, 2 or 3 as defined below:

Courses		Program Core	То	rs						
Code	Title of the course	(PCR) / Electives	Lecture	Tutorial	Practical	Total	Credit			
		(PCR)	(L)	(T)	(P)	Hours				
РНС331	Physics of Semiconductor Devices	PCR	3	0	0	3	3			
]	Pre-requisites	Course Assessm	ent methods as	: (Continuou sessment (EA	s (CT) and Mi A)):	dterm (MT) end			
PHO	C 01 in 1st year.		CT, M	IT, EA Exan	nination					
Course Objectives	To introduce studentTo understand the co	s with the different pro	operties of se g principal o	miconductor f electronic c	materials. levises.					
Course Outcomes	 At the end of the course, a student will be able to: CO # 1. Describe the different electronic properties of semiconductor materials. CO # 2. Understand the working principal of electronic devises (PN Diode, Photodetector, Solar cell, Ligh Emitting Diodes, Laser Diodes, JFET, MOSFET, Tunnel Diode, Gunn Diode, IMPATT Diode TRAPATT Diode and semiconductor memory). CO # 3. Apply the knowledge of memory expansion to design required expanded memory for specific application. 									
Covered	Module – I: $(L - 14)$ Fundamentals of Semic Intrinsic and extrinsic ser Energy bands of semicor composition, III-V and D masses of carriers in a concentrations at equilib Effects of temperature of lithography and Electron Module – II: $(L -3)$ Junction-Diode & Opto semiconductors, Photode etc., Semiconductor Lase [CO# 2]; [T1, T2, R1] Module – III: $(L - 10)$ Negative Conductance I and related devices, The TRAPATT Diode, Tunne Module – IV: $(L - 9)$ JFET and MOSFET: Justructure, Different MOS strong inversion regions, Capacitor, MOSFET as a Module – V: $(L - 6)$	onductor & Semicon niconductors, Fermi le nductors, Direct and ir II-VI alloy semicondu semiconductor, Fermi rium, Calculation of n on carrier concentratio beam lithography[C pelectronic Devices: P tector, Solar cell, Ligh ers, Population inversion Microwave Devices: N transferred electron r 1 Diode [CO# 2];[T unction Field Effect Transfeructures, Operation of Metal-Oxide Semicor a resistor and related ci	ductor Devia vel, Conduct direct semic ctor, Homo i-Dirac distr umber densit ons, High fi O# 1]; [T1, 7] -N junction t-Emitting D on at a junct Materials for nechanism, 7 3, R2] ransistors (JH of MOS at high ductor Field rcuits [CO#	ces Fabricat ivity, Mobili conductor, V and hetero-s ibution func- ty of carriers eld effects, [2, R1] , Contact po iodes, Intern ion, Emissio negative con Fansit time FET), Operat gh and low fr Effect Tran \$2]; [T1, R3]	ion: Introducti ity and its temp ariation of ene- structure semi- ction, Density and their temp Hall effect, L tential, Band of al and externa n spectra for 1 iductance devi devices, The 1 ion, I-V Chara equency, Accu- sistors (MOSI]	ion to cryst perature de ergy band conductor, of states perature de ithography diagram, D l quantum P-N junction ces, The G IMPATT I acteristics of umulation, FET), MOS	al growth, pendence, with alloy Effective s, Carrier pendence, y, Optical Degenerate efficiency on Lasers. unn effect Diode, the etc., MOS Inversion, SFET as a			
	Semiconductor Memory static and dynamic), CMO	Device: Semiconduct DS memory circuits, C	tor memory of harge Couple	organization, ed Devices ((, Random Acc CCD).[CO# 3]	ess Memo ;[T1, R3]	ry (RAM)			

Text	
Books,	Text Books
and/or	[T1]. Physics of Semiconductor Devices, S M SZE.
reference	[T2]. Solid State Electronic Devices, Ben G Streetman & Banerjee
material	[T3]. Microwave Solid-State Devices, S Y Liao
	References:
	[R1].Semiconductor Physics and Devices, Donald A. Neamen.
	[R2].Microwave Engineering, David M.Pozar.
	[R3]. Integrated Electronics, Millman-Halkias.

Mapping of CO (Course outcome) and PO (Programme Outcome)

PO CO	PO #1	PO #2	PO #3	PO #4	PO #5	PO #6	PO #7	PO #8	PO #9	PO #10	PO #11	PO #12	PSO #1	PSO #2	PSO #3
CO#1	3	1	2	1		1	1	1				2	-	-	1
CO#2	3	2	1	1	1	1	1	1	1	1		2	1	1	1
CO#3	3	3	2	1	1	1	1	1	1	1	1	1	2	2	1

G		Program Core	Тс	tal Number of	of contact hour	rs					
Course	Title of the course	(PCR) / Electives	Lecture	Tutorial	Practical	Total	Credit				
	Semiconductor	(FCK)	(L)	(1)	(P)	Hours					
PHS381	Devices Laboratory	PCR	0	0	3	3	2				
	Pre-requisites	Course Assessmen	nt methods: (Continuous	(CT) and end	assessment	(EA)):				
PH	S 01 in 1st year.	CT, EA Examination									
Course Objectives	• To measure different	t characteristic parame	ter of semico	onductor mate	erials and devi	ces.					
Course Outcomes	At the end of the course, a student will be able to: CO # 1. Calculate different characteristic parameter of semiconductor materials. CO # 2. Measure and understand different characteristic of semiconductor devices. CO # 3. Draw the current-voltage characteristics of solar cell for calculation of conversion efficiency.										
Topics Covered	List of Experiments: 1. To determine the end 2. Measurement of res 3. Determination of H 4. To determine the var 5. Determination of S 6. Study of p-n junction 7. Study of Zener dioon 8. Determination of plantic statements of plantic statements of the statement of the s	hergy bandgap of a sen sistivity of semiconduc fall coefficient of a giv alue of e/m of an electrite tefan's constant. On diode characteristics de characteristics and we hoto conversion efficie	niconductor. etors by four- en semicond ron by using s. voltage regula ency of a Sola	probe metho uctor and its a cathode ray ator. ar cell.	d at different t temperature d tube and a pa	emperatur ependence air of bar m	es. lagnet.				
Text Books, and/or reference material	Text Books [T1]. An advanced course in practical physics, Chattapadhyay and Rakshit. [T2]. Advanced practical Physics, K. G. Mazumdar										

PO CO	PO #1	PO #2	PO #3	PO #4	PO #5	PO #6	PO #7	PO #8	PO #9	PO #10	PO #11	PO #12	PSO #1	PSO #2	PSO #3
CO#1	3	2	1					1	1	1		2	1		1
CO#2	3	2	1					1	1	1		2	1		1
CO#3	3	2	1		1	1	1	1	1	1		2	2		1

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:1: Slight (Low)2: Moderate (Medium)3: Substantial (High)

Course	Title o	of the	Program Core	Total Nu	mber of con	ntact hours		Credit			
Code	course	e	(PCR) / Electives	Lecture	Tutorial	Practical	Total				
			(PEL)	(L)	(T)	(P)	Hours				
PHC332	Electr	omagnetic	PCR	3	0	0	3	3			
	Field 7	Theory									
Pre-requis	ites		Course Assessment	methods (C	Continuous (CT), mid-ter	m				
NU			assessment(MTA)	and end ass	essment (EA	A))					
NIL			CT+MTA+EA								
Course	C	CO1: Able to	apply fundamental kn	nowledge of	different co	-ordinate syst	ems to des	scribe the			
Outcomes	sp	patial variati	ons of the physical qu	antities dea	It in electron	nagnetic field	d theory.	11			
	C	O2: Able to	explain fundamental laws governing electromagnetic fields and evaluate the								
		nysical quan	titles of electromagnetic fields (Field intensity, Flux density etc.).								
	m n	edia and dif	represent the propagation in different representation in different related to electromagnetic wave propagation								
	C	O4: Acquire	basic knowledge related to wave guides and transmission line.								
Topics	C	Concept of F	ield and Maxwell's	Equations	0						
Covered	V	ector field,	Divergence of vec	tor field, I	Divergence	of electrosta	atic field,	Gauss's			
	d	ivergence th	eorem, Gauss's Law o	of electrosta	tics and its a	pplications, 1	Laplace's	equation,			
	Р	oisson's equ	ation, Continuity equ	lation.			[7L]				
		Curl of a vec	tor field, Stoke's theo	orem, Curl o	f magnetic f	ield, Ampere	's Circuita	l law and			
	11	s application	is, Curl of electric fie	and diver	rgence of ma	agnetic field,	Concepts	of scalar			
	F	'aradav's la	w of electromagnetic	c induction	Self-Induc	tance Mutua	al-Inductar	ice L-C-			
	R	Circuit, Co	oncept of displacement	nt current.	Maxwell's e	quation in fr	ee space.	Poynting			
	th	neorem. Son	ne examples.			1		[9L]			
	Ε	lectromagn	etic Waves								
	D	erivation of	f the electromagneti	c wave eq	uation. Plan	ne waves in	vacuum.	Energy,			
	M	Iomentum a	nd intensity of electr	omagnetic	waves. Elec	tromagnetic	waves in i	isotropic,			
	A	inisotropic n	nedium, Conducting	g medium.	Skin effect.	Propagation	of electro	magnetic			
	E W	respel's equi	ations Some example		and Disper	ision of elect	romagneti	[121]			
	V	Vave Guide	ations. Some example								
	Ŵ	Vave guides.	TE, TM and TEM	waves, Tra	nsmission 1	ine and Tele	grapher's	equation.			
		U		,		[7L]	0 1	1			
Text Book	<u>σ.</u> Τ	EXT BOOI	KS:								
and/or	1	. Introducti	on to Electrodynamic	s, David J.	Griffiths, Pro	entice-Hall Ir	ternationa	al, Inc.,			
reference	E	nglewood C	liffs.		,			, ,			
material	2.	. Foundation	ns of Electromagnetic	Theory, J.	R. Reitz, F.	J. Milford an	d R. W. C	hristy,			
	A	ddison-Wes	ley Publishing Comp	any, Inc.							
	3.	. Introducti	on to Electromagnetic	c Theory – A	A Modern P	erspective, T.	L. Chow,	, Jones			
	a	nd Bartlett P	ublishers, Inc.								
		Classical E	E BUUKS: lectricity and Magnet	ism W V	H Panofela	and M Dhill	ine Addi	son-			
	N N	. Ciassicai E Veslev	accuracity and wraghet	15111, W.K.	11. I anoisky		ups, Auuis	5011-			
	2	. Classical E	lectrodynamics. W. C	Greiner. Spri	nger Interna	tional Editio	n				
	3	3. Classical Electrodynamics, J. D. Jackson, John Wiley									

Course	COs	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	P011	P012
PHC332	CO1	3	2	-	1	1	-	-	-	2	1	-	1
	CO2	3	2	1	1	-	1	-	-	1	1	-	1
	CO3	3	2	1	1	1	-	-	-	1	1	-	1
	CO4	3	2	1	-	-	1	1	-	2	1	-	1

Mapping of CO (Course outcome) and PO (Programme Outcome)

Correlation levels 1, 2 or 3 as defined below:1: Slight (Low)2: Moderate (Medium)3: Substantial (High)

Course	Title of the course	Program Core	Total Nu	mber of cor	ntact hours		Credit						
Code		(PCR) /	Lecture	Tutorial	Practical	Total							
		Electives (PEL)	(L)	(T)	(P) [#]	Hours							
PHS382	Advanced Physics	PCR	0	0	3	3	2						
	Laboratory												
Pre-requis	sites	Course Assessme	ent methods:	: (Continuou	is evaluation	(CE) and e	end						
		assessment (EA)))										
PHC51		CE+EA											
		1 1 1 1 00	1	•	0	<u> </u>	· •						
Course	COI: To realize and	apply different tec	apply different techniques for measuring resonance, Q-factor of serie										
Outcomes	C-R circuit.	the Salf Industance Mutual Industance and varification of Foreday,'s law											
	CO2: To determine	CO2: To determine the Self-Inductance, Mutual Inductance and verification of Faraday's 1											
	CO3: To determine $CO4:$ To apply the	the memoelectric	power of a sthe horizon	given mernie	occupie.	rth'a maan	otio						
	field using a vibrati	ield using a vibrational and deflection magnetometer											
	CO5 To calculate t	The result of the loss of a magnetic specimen by $B-H$ loop measurement											
Topics	1 Study of se	eries L-C-R Reson	ant Circuit	· (i) To dra	w the reson	ance curve	e (ii) To						
Covered	determine t	he O- Factor of the	e circuit (iii) To study t	he variation	of impeda	nce with						
	frequency (iv) verification of r	naximum po	ower transfe	r theorem.	I							
	2. Verification	of Faraday's law.	1										
	3. To determin	ne the mutual induc	tance (M) o	of two coils.									
	4. Determinat	ion of Self-Inductar	nce of a coil										
	5. To verify F	resnel's equation for	or reflection	of electrom	agnetic wave	s.							
	6. Draw the (Thermo EMF) – Te	emperature c	curve of give	en thermocou	ple and he	ence find						
	thermoelect	ric power at a give	n temperatu	re.									
	7. Determinat	ion of horizontal co	mponent of	the earth's n	hagnetic field	using a vi	brational						
	and deflect	on magnetometer.											
	8. To draw the	e B-H loop of a give	en specimer	1.									
Text	Suggested Books:												
Books.	3) A Text Book of	on Practical Physics	– K. G. Ma	ujumdar.									
and/or	4) Practical Physi	cs – Worsnop and	Flint	J									
reference		*											
material													

Course	COs	P01	P02	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	P012
	CO1	3	2	1	-	2	1	1	2	3	2	1	1
	CO2	3	2	1	-	2	1	1	2	3	2	1	1
PHS382	CO3	3	2	1	1	2	1	1	2	3	2	1	1
	CO4	3	2	1	-	2	1	1	2	3	2	1	1
	CO5	3	2	1	1	1	1	1	1	2	1	1	1

Correlation levels 1, 2 or 3 as defined below:

Course	Title of the course	Program Core	Total Num	ber of conta	ct hours		Credit			
Code		(PCR) /	Lecture	Tutorial	Practical	Total				
		Electives	(L)	(T)	(P)	Hours				
		(PEL)								
PHC333	Physics of	PCR	3	0	0	3	3			
	Engineering									
	Materials									
Course	• CO1: T	o understand fund	lamental theo	ory of metal						
Outcomes	• CO2: 7	To comprehend the	eory and dev	ice applicati	ons of semico	onductor ma	terials			
	• CO3: 7	Fo be familiar with	n fundamenta	al of laser an	d its applicati	ons.				
	• CO4: 1	o know about the	super conduc	ctivity, diele	ctric and mec	hanical pro	perties of			
Taniaa	materia] 								
Topics	Electron The Fermi-Dirac S	bry of Metals	ni energy De	ensity of sta	tes Concept	of density o	of states in			
Covered	nanomaterials	Electrical conduc	tion in meta	ls and alloy	s, Current de	ensity, Drift	velocity,			
	Mobility etc	c., Classical elect	ron theory	of metal (I	Drude-Lorentz	z Theory),	Quantum			
	mechanical co	nsideration (Somn	nerfeld Mode	el). Origin of	band gap (K	ronig-Penn	y Model),			
	Thermal condu	e, Resistivity of petals	Factors affect	and alloys, . cting electric	electronic spe	ty Resistivi	of metals,			
	metals and allo	bys, Solders, Soft	and hard and the use of fluxes and their classifications.							
	Semiconducto	ors	· .	1 1 0 1	1	1 · ·	с ·			
	and their	xtrinsic semicondu	ictors, Fermi	level, Calcu	lation of num	ber density	of carriers			
	temperature de	ependence. Conduc	ctivity. Mobi	litv and its te	emperature de	pendence. H	Iall effect.			
	Compound set	miconductors, Dir	ect and indi	rect bandga	o semiconduc	tors. Appli	cations of			
	semiconductor	material; Semicor	nductor devic	ces, p-n diod	e, Zener diode	e, Tunnel di	ode, Solar			
	cell. Semicon	ductor device fab	rication (Me	ntion only t	echniques). [Double hetr	ostructure			
	LED (ILED). Materials for	Ontical Applicat	[10L]							
	Optical materi	als for Light Emit	ting Diode.	Laser- Solid	l-state lasers.	Liquid & C	as lasers.			
	Semiconducto	r Laser, Band d	liagram, Pui	mping mecl	hanism, Oper	ration. Exa	mples of			
	nonlinear opti	cal materials					[4L]			
	Superconduct	t ors vity: Electrical &	magnetic r	roparties of	superconduc	oting motor	ials Zero			
	resistance pror	vity, Electrical & berty. Meissner eff	ect. A.C. resi	istance. BCS	Theory (Oua	litative). Jo	sephson's			
	junction, Engi	neering application	ns of superco	onducting ma	aterials.	- / 1	[5L]			
	Dielectrics	1 1 1 1 1 1 7			1	C 1	• 1 • 1 • .			
	Definitions, T	ne local field, zability Debye	equation and	-NIOSSOII re d study of	ation, Sourc	es of pola	rizability, Flectronic			
	polarizability.	Ionic polarizabi	lity (Brief),	Measuremer	nt of dielectri	c constant,	Electrets,			
	Piezoelectricit	y, Ferroelectricity	and comp	arison with	piezoelectric	ity, Applic	cations of			
	ferroelectric m	aterials.					[5L]			
	Niechanical B Bonding of sol	seneviour of Mate	erials ure Crystal i	mnerfection	e Fetimation	of theoretic	al strength			
	Introduction of	f stress and strair	n. Hooke's l	aw. elasticit	v. plasticity	Fracture of	materials.			
	(Fracture, Fati	gue, Creep), Stren	gthening me	chanism, Co	mposites.		[6L]			
		-			-		-			

Text Books,	TEXT BOOKS:
and/or	1. Introduction to Modern Physics, H. S. Mani & G. K. Mehta
reference	2. Solid State Electronic Devices, B. G. Streetman
material	3. Solid State Physics, S. O. Pillai
	REFERENCE BOOKS:
	1. Introduction to Solid State Physics, C. Kittel
	2. Introduction to Materials Science for Engineers, J. F. Shackelford & M. K. Muralidhara
	3. Electronic Properties of Metals, E. Hamuel

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	P01	PO2	PO3	PO4	P05	P06	P07	P08	PO9	PO10	P011	P012
	CO1	3	1	2	3	1	1	2	1	-	1	1	2
DUC222	CO2	3	3	2	3	-	1	2	1	-	-	-	1
PHC333	CO3	3	3	2	3	-	1	2	1	1	1	1	2
	CO4	3	2	2	3	1	1	2	2	1	1	1	1

	Department of Physics													
Course	Title of the course	Program Core	Total Nu	mber of cor	ntact hours		Credit							
Code		(PCR) /	Lecture	Tutorial	Practical	Total								
		Electives (PEL)	(L)	(T)	(P) [#]	Hours								
PHS383	Physics of	PCR	0	0	3	3	2							
	Engineering													
	Materials													
	Laboratory													
Pre-requi	sites	Course Assessment methods: (Continuous evaluation (CE) and end												
		assessment (EA))											
PHC51		CE+EA												
Course	CO1: To realize a	and apply different	techniques f	for measurin	g characteris	tics of p-n	junction							
Outcomes	and applica	tion of Zener diode	e as voltage	regulator.										
	CO2: To determi	ne the properties (c	arrier conce	ntration and	type) of sem	iconducto	r by							
	Hall-effect	experiments.												
	CO3: To apply th	CO3: To apply the knowledge to determine the properties (bandgap and resistivity) of												
	semicondu	ctor materials by fo	ur-probe me	ethod at diffe	erent tempera	atures.								
	CO4: To determi	ne the characteristic	cs of solar c	ell.	1	1 Stafan'a	o o mato mt							
T!	1 Determin	ne the physical para	imeter such	as e/m of an	electron and	i Stefan s	constant.							
Topics	1. Determin	lation of Stefan S C	onstant.	nt of a given	motorial									
Covered	2. Study of 2. Mongura	mail voltage and Ha	all coefficie	of a comicor	duator									
	5. Weasurer	ning the georgy has	dgan of a s	or a serificor	ruuctor.									
	5 To study	the variation of t	hermo emf	of a therm	n. o-couple wit	h tempera	ture and							
	determin	its thermo-electric	nower	or a therm	o-coupie wit	in tempere	aute and							
	6 Determin	ation of power con	version effi	ciency of a s	olar cell									
	7 To study	the quantization of	energy (Fra	onk Hertz Ex	periment)									
	8. To detern	nine the value of e/	m of an ele	ctron by using	ng a cathode	rav tube a	nd a pair							
	of bar ma	ignet.			-8		F							
Text Book	s, Suggested Book	<u>s:</u>												
and/or	5) A Text Bool	on Practical Physi	cs – K. G. N	Majumdar.										
reference	6) Practical Ph	ysics – Worsnop an	d Flint	-										
material		_												

Mapping of CO (Course outcome) and PO (Programme Outcom	ne)

Course	COs	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	P010	P011	P012
	CO1	3	2	2	3	2	2	3	2	2	1	3	2
DI1C202	CO2	3	2	2	2	-	1	2	2	2	1	3	2
PH5363	CO3	3	1	1	2	-	1	2	2	2	1	3	2
	CO4	3	1	3	3	-	3	3	2	2	1	3	2

Course	Title of the	Program Core	Total Nu		Credit				
Code	course	(PCR) / Electives	Lecture	Tutorial	Practical	Total			
		(PEL)	(L)	(T)	(P)	Hours			
РНС334	Physics II	PCR	3	0	0	3	3		
Pre-requisi	tes	Course Assessment assessment(MTA)	methods (C	Continuous (essment (E4	CT), mid-ter	m			
NIL		CT+MTA+EA			-//				
Course	CO1: Able to	o understand the prin	ciples of c	lassical mec	hanics apply	to solve	classical		
Outcomes	problems rela CO2: Able to spatial variati CO3: Able to physical quar CO4: Gain an	ted to solving Lagran apply fundamental kr ons of the physical qu explain fundamental tities of electromagnen integrative overview	ge's and Ha nowledge of nantities dea laws gover etic fields (F v of electron	milton's equ different co- lt in electron ning electron Field intensit magnetic wa	uations of mo -ordinate syst nagnetic fiel magnetic fiel y, Flux densi ves, its prop	otion. tems to des d theory. ds and eva ty etc.). agation in	scribe the sluate the different		
	media and dif	ferent phenomena rel	ated to elect	tromagnetic	wave propag	ation			
Covered	D'Alembert's equation of r equation of m Vector Analy Vector field, divergence th	bert's principle, Lagrange's equation of motion, Some applications of Lagrange of motion, Hamilton's equation of motion, Some applications of Hamilton of motion and its physical significance. Analysis: Yield, Divergence and curl of a vector field and their physical significance, Gaus once theorem Stoke's theorem Green's theorem Different coordinate system							
	(Cartesian, sp Electrostatic	herical and cylindrica s:	ul)				[8L]		
	Laplace's equ Magnetostat	of electrostatic field, ation, Poisson's equa ics:	Gauss's 1 tion, Contir	Law of electruity equation	etrostatics an on, Capacitor.	d its app	lications, [6L]		
	Curl of magn and divergend	etic field, Ampere's ce of magnetic field, (Circuital lav Concepts of	w and its ap scalar and v	plications, C ector potentia	url of elec als.	tric field [7L]		
	Faraday's law equation in fr	v of electromagnetic : ee space, Poynting Th	induction, C neorem. Some	Concept of d me examples	isplacement s.	current, N	laxwell's [7L]		
	L-R, C-R, L transfer theor	-C-R series and para em, Voltage magnific	allel circuits ation factor	s, Q- factor , Band width	, Resonance, n of circuit.	, Maximu	m power [8L]		
Text Book and/or reference material	s, TEXT BOO 1. Vector Ana 2. Introductio 3. Introductio REFERENC 1.Classical M 2.Classical M 3. Electricity	K: alysis: Murray Spiege n to Electrodynamics n to Classical Mechar E BOOKS: fechanics: N. C. Rana fechanics: H. Goldstei and Magnetism: D. C	l (Author), S : David J. G nics: R. G. T & P. S. Joa n hattopadhya	Seymour Lip Friffith Fakwale & P g ay & P. C. R	oschutz, Den P. S. Puranik akshit	nis Spellm	an		

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	COs	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	P012
	CO1	3	2	1	2	-	1	1	-	1	1	-	1
	CO2	3	2	-	1	1	-	-	-	2	1	-	1
PHC334	CO3	3	2	1	1	-	1	-	-	1	1	-	1
	CO4	3	2	1	1	-	1	1	-	2	1	-	1

Course	Title of the course	Program Core	Total Nu	mber of cor	ntact hours		Credit						
Code		(PCR) /	Lecture	Tutorial	Practical	Total							
		Electives (PEL)	(L)	(T)	(P) [#]	Hours							
PHS384	Physics II	PCR	0	0	3	3	2						
	Laboratory												
Pre-requi	sites	Course Assessme	Course Assessment methods: (Continuous evaluation (CE) and end										
		assessment (EA))										
PHC51		CE+EA											
Course	CO1: To realize and	apply different techniques for measuring resonance, Q-factor of series											
Outcomes	C-R circuit.												
	CO2: To determine	CO2: To determine the Self-Inductance, Mutual Inductance and verification of Faraday's law.											
	CO3: To determine	CO3: To determine the thermoelectric power of a given thermocouple.											
	CO4: To apply the	CO4: To apply the concepts to measure the horizontal component of the earth's magnetic											
	field using a vibrati	field using a vibrational and deflection magnetometer											
Torriga	1 Study of carico	ne loss of a magnet	tic specimer	1 DY B-H 100	p measureme	ent.							
Topics	1. Study of series	L-C-K Kesonant Ci	otudu the u	draw the re	sonance curv	e (11) 10 a	etermine						
Covereu	verification of max	ine circuit (iii) 10	Study the v		impedance v	viui neque	incy (IV)						
	2 Verification of	Faraday's law	er meoreni.										
	3 To determine th	e Mutual-Inductan	ce (M-I) of i	two coils									
	4 Determination	of Self-Inductance of	of a coil	two cons.									
	5. To verify Fresh	el's equation for re	flection of e	lectromagne	tic waves.								
	6. Draw the (The	rmo EMF) – Tem	perature cui	ve of given	thermocour	ole and he	nce find						
	thermoelectric pow	ver at a given tempe	erature.	U	1								
	7. Determination of	of horizontal compo	onent of the e	earth's magn	etic field usin	ng a vibrati	ional and						
	deflection magneto	ometer.		-		-							
	8. To draw the B-	H loop of a given s	pecimen.										
Text	SUGGESTED BC	OOKS <u>:</u>											
Books,	1) A Text Book of	on Practical Physics	– K. G. Ma	jumdar.									
and/or	2) Practical Physic	cs – Worsnop and	Flint										
reference	REFERENCE :	REFERENCE :											
material	1) Instruction sheet	8											

Course	COs	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	PO10	P011	P012
	CO1	3	2	1	-	2	1	1	2	3	2	1	1
	CO2	3	2	1	-	2	1	1	2	3	2	1	1
PHS382	CO3	3	2	1	1	2	1	1	2	3	2	1	1
	CO4	3	2	1	-	2	1	1	2	3	2	1	1
	CO5	3	2	1	1	1	1	1	1	2	1	1	1

Correlation levels 1, 2 or 3 as defined below:1: Slight (Low)2: Moderate (Medium)3: 5 3: Substantial (High)

Course	Title of the course	Program Core	Total Nu	mber of con	tact hours		Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
PHO441	Quantitative Biology	PEL	3	0	0	3	3
Course Outcomes	CO1: mathem CO2: T CO3: biologic CO4: T Introduction to	To see living sys atics and computer to understand system To use web-based cal processes. o choose an appropr	tems from science. ns based app resources iate modelin	the perspe proaches in that will he ng technique	ctive of eng biological sci lp them in for a comple	gineering, iences. modeling x biologic:	physics, complex al system
Covered	 One-dimensional plane analysis, I techniques, Hop Biological Networks, Hop Biological Networks, Hop Basic concepts in Menten kinetics to synthetic biol networks, Feed- Stochastic Mode Concept of protection consequences of Stochastic mode algorithm, Survit formation. Population Dyn Interspecies interesting the Ecosystem stability disease spread: and optimal generation. 	al systems and elem imit cycles, Nonline of bifurcations, chaos orks and Motifs n networks and cher , and cooperativity, ogy and stability an forward loop netwo leling of Biological ability, Introduction f stochastic gene exp eling—The master e tival in fluctuating er mamics & evolution practions, the Lotka- lity, critical transition SIR and other mode e circuit design, Fitt	nentary bifu ear Oscillato s, strange at mical reacti Autoregular alysis in the rk motif. Systems n to stochast pression, Ma quation, Fol nvironments Notrerra mo ons, and the ls, Introduct ness landsca [9]	ircations, Ty ors, qualitati tractors and ons. Input fut tion, feedbace toggle swite [9] ic gene expri- arkov process kker-Planck s, Robustnes [1] odel, and pre- maintenance tion to micro- upes, Evoluti	wo-dimension ive and appro- fractals. [12] inction of a g ck and bistab ch, Oscillator ression, Caus- sses and Marl Equation, an s in developr 2] edator-prey os e of biodiver obial evolution	nal system oximate as gene, Mich ility, Intro ry genetic es and kov Model do the Gille nent and p scillations, sity, Infect on experim	ns; phase ymptotic aelis- duction ls, espie attern
Text Books and/or reference material	s, Text books: • Alon, U <i>Circuits</i> • Strogatz <i>Biology</i> 978081 Reference bool • Nowak, Press, 2 • Alberts, 978081	ri. An Introduction a c. Chapman & Hall / c, Steven H. Nonline , Chemistry, and En 3349107. M. A. Evolutionary 006. ISBN: 9780674 Bruce. Essentia 5341291	to Systems I CRC, 2006 ear Dynamic gineering. N Dynamics: 4023383. I Cell Bi	Biology: Des 5. ISBN: 978 cs and Chao Westview Pr Exploring to Cology. Gau	sign Principle 31584886426 s: With Apple ress, 2014. IS the Equations cland Science	es of Biolo ications to BN: s of Life. B ce, 2009.	gical Physics, Selknap . ISBN:

(course outcome) una r o (r ogramme o utcome)

Course	COs	P01	PO2	P03	PO4	P05	P06	P07	P08	P09	PO10	P011	P012
	CO1	3	2	2	1	-	-	2	-	-	-	-	1
DU0441	CO2	3	2	2	2	-	-	2	-	-	-	-	1
PH0441	CO3	3	2	2	3	3	2	1	-	1	1	1	1
	CO4	3	2	2	3	2	2	1	1	1	-	-	1

Correlation levels 1, 2 or 3 as defined below:1: Slight (Low)2: Moderate (Medium)3:

3: Substantial (High)

Course	Title of the course	Program Core	Total Nu	mber of cor	tact hours		Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
PHO541	Thin Film	PEL	3	0	0	3	3
	Technology						
Course	• CO1: To	understand growth	mechanism	of thin film			
Outcomes	• CO2: T	o comprehend applic	ation of thi	n film in mo	odern devices	5	
	• CO3: T	o be familiar with ch	aracterizatio	on techniqu	e of thin film	l	
	• CO4: To	know about the indu	ustrial appli	cations of the	hin film		
Topics	Introduction:			.1			
Covered	Basic of Thin fil	ms and Nanostructur	es, Role of	thin films in	n Devices.[2]		
	Nucleation, film	growth and struct	ure:	ru Comillori	ty Model one	Statistics	Model
	Comparison of t	vo models Film grov	wth: Volmer	y. Capillall -Waber gro	with Frank-V	/ander_M	erwe and
	Comparison of two models, Film growth: Volmer-Waber growth, Frank-Vander-Merwe a Stranski-Krastonav growth, Dissociations, Doping and diffusion effects, Film thickness.	mess					
	[9]		lions, Dopi	ig und anna	sion chicets,		iness.
	Deposition Tecl	nique:					
	Thermal Evapo	ration: Resistive he	eating, Flas	sh evapora	tion, Arc e	vaporation	n, Laser
	evaporation, rf	heating, Electron I	bombardme	nt heating,	Sputtering:	Glow d	lischarge
	sputtering, Low	pressure sputtering,	Reactive sp	uttering, rf	sputtering, C	Chemical N	Methods:
	Electro-deposition	on, Electrolytic dep	osition, Ch	emical Var	our depositi	ion, Liqui	id phase
	epitaxy, Moleci	ilar beam epitaxy,	Spin coat	ing, Sol g	gel, Langmu	ir Blodge	ett (LB)
	Techniques.	actorization.		[12]			
	X-ray diffractio	n and G-XRD met	hod Atom	ic force m	icroscope (4	(FM) me	thod for
	determination o	f surface roughness.	Scanning	tunneling 1	nicroscopy ((STM). T	hickness
	measurement te	chniques (ellipsome	ter), Field	emission a	scanning ele	ctron mi	croscopy
	(FESEM), Trans	smission electron mi	icroscopy (TEM), Hal	l effect, UV	-vis spect	roscopy,
	photo luminan	ce process, Schot	tky contac	et, Ohmic	contact, l	Photocurre	ent and
	photocapacitance	e measurement.		[12	2]		
	Thin film Devi	ces:		· · ·			
	Applications of o	lifferent thin films in	modern tec	hnology, Pl	hoto diode, L	ED and S	olar cell.
Tarré D 1		_					
rext Books	5, IEAI BOOKS	Dhanamana K I	Chopro				
reference	$\begin{array}{c} 1. 1 \\ 2 \\ 2 \\ \end{array} $	duction to Physics	and Tachn	ology of T	Thin Filme	Dort I	& Π Λ
material	2. All line Wagend	ristel & V Wang	and rechn	lology of I	11111 1/111115, 1		х II, А.
materia	3 Nanosos	lister & L. Wallg.	hnology D	obert W/ V	Colcoll Ion V	W Hamla	w Mark
	J. Naliosca Geoghe	an	iniology, R		cisaii, iaii	w. manne	y, war
	REFERENCE	BOOKS:					
	4. Thin Fil	m Fundamentals. A	Goswami				
	5. Handbo	ok of Thin Film Tech	nology. Ma	ussel and G	lange		
	6. Thin Fil	m Solar Cells, S. R. I	Das and S. I	P. Singh	0		

Course	COs	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012
	CO1	3	1	2	3	1	-	-	1	-	-	-	1
	CO2	3	3	2	2	-	-	2	1	-	-	-	1
PH0541	CO3	3	2	2	2	1	1	1	1	1	1	1	1
	CO4	3	2	2	2	1	1	1	2	1	1	1	1

Correlation levels 1, 2 or 3 as defined below:

Course	Titl	e of the	course	Program Core	Total Num	nber of con	tact hours		Credit
Code				(PCR) / Electives	Lecture	Tutorial	Practical	Total	
				(PEL)	(L)	(T)	(P)	Hours	
PHO641	Nu	clear	Reactor	PEL	3	0	0	3	3
	Тес	hnology	y						
Course		•	CO1: Το ι	understand basic pro	operties of a	a nucleus ar	nd nuclear re	action.	
Outcomes		•	CO2: To	procure knowledge	of the actio	n of nuclea	r reactor.		
		•	CO3: To	understand neutron	physics and	d diffusion	theory.		
		•	CO4: To	learn the utility, pro	tection and	control of	nuclear react	or.	
Topics		Gener	al Nuclear	Properties:					
Covered		Nuclea	ar mass, N	lass defects, Bindin	ig energy,	Liquid drop	o model, Ser	mi-empiri	cal mass
		formu	la, Energy l	osses by charged pa	rticles and ${ m g}$	gamma rays	S.	[6]	J
		Nuclea	ar Reaction	:					
		Types	of nuclear	reaction, Cross-sect	ion of a nuc	clear reaction	on, Neutron	induced r	eactions,
		Nuclea	ar fission, S	eparation energy an	d fissionabi	ility, Fission	cross section	n for slow	and fast
		neutro	ons, Energy	release in fission,	Fission fra	gments an	d energy dis	tribution,	Nuclear
		fusion	and therm	o-nuclear reaction.				[6	5]
		Neutro	on Physics	and Diffusion Theor	y:				
		Proper	rties of neu	utron, Neutron sour	rces, S lowir	ng down of	neutrons, N	eutron so	attering,
		Moder	rating ratio	, Diffusion of therma	l neutrons,	Diffusion e	quation, Slov	ving down	ı without
		absorp	otion, Slowi	ng down and diffusio	on, Critical s	ize of react	ors slabs, Cuk	pical, Sphe	rical and
		cylindr	rical reacto	rs. Variation of neut	tron cross-s	ection with	neutron ene	ergy.	[10]
		Chain	Reaction &	Fuel Cycle:					
		Critica	lity factor,	Moderating ratio, Fo	our-factor f	ormula, Re	actor kinetics	s, Reactor	poisons,
		Nuclea	ar fuel cycle	e, Enrichment of ura	nium, Back	end of fuel	cycle.		[6]
		Gener	al Features	of a Nuclear Reacto	or:				
		Classif	ication of r	eactors, Basic compo	onents. Out	lines of BW	R, PWR, GCR	and FBR v	vith their
		basic f	eatures and	d characteristics.					[6]
		Nuclea	ar Reactor	Materials:					
		Fuel f	abrication,	Moderators, Heav	vy water p	roduction,	Control ele	ments, S	tructural
		materi	ials. Reacto	or protection and co	ntrol.				[8]
Text Books	,	TEXT E	BOOKS:						
and/or		•	Nuclear F	Reactor Engineering,	Glasstone	& Sesonske	•		
reference		•	Atomic &	Nuclear Physics, S.	N. Ghoshal.				
material		•	Nuclear &	& Particle Physics, S.	L. Kakani, S	. Kakani.			
		REFER	ENCE BOO	KS:					
		•	Nuclear F	Reactor Theory, Lam	arsh.				
		•	Nuclear F	Physics, I. Kaplan.					
		•	Nuclear E	nergy, David Bodan	sky.				
		•	Nuclear F	Physics, D. C. Tayal.					

Course	COs	P01	PO2	PO3	P04	P05	P06	P07	P08	PO9	P010	P011	P012
	CO1	3	1	1	2	1	1	2	1	-	1	-	2
DIIO(41	CO2	3	3	1	2	-	1	2	2	-	1	-	3
PHU041	CO3	3	3	2	2	-	2	2	1	-	1	-	2
	CO4	3	3	3	3	1	3	3	3	-	1	1	3

Mapping of CO (Course outcome) and PO (Programme Outcome)

Course	Title of the course	Program Core	Total Nu	mber of cor	ntact hours		Credit
Code		(PCR) /	Lecture	Tutorial	Practical	Total	
		Electives (PEL)	(L)	(T)	(P)	Hours	
PHO841	Quantum Physics	PEL	3	0	0	3	3
~							
Course	• CO1: To	be proficient in the	e fundamen	tal mathem	atical langua	iges used,	, such as
Outcomes	matrix al	gebra, in quantum in	formation t	heory	1 .4 .61		1 T
	• CO2: 10	understand and impl	ement basic	e quantum a	Igorithms (SI	hor, Deuts	ch-Jozsa
		understand limitati	one to quer	tum comp	station intro	hugad by	quantum
	• CO3. TO	nce	ons to quai	num comp		uccu by	quantum
	• CO4 [.] To	be knowledgeable	about adva	anced topic	s such as te	leportatio	n Bell's
	inequalit	ies and EPR paradox		uneeu topie	s such us to	iepoi uno	ii, Don s
Topics	1. Introduction	and Overview					
Covered	Qubits and piece	s, Bloch sphere, qua	ntum mecha	anical proba	abilities, quar	ntum beha	viors we
	will investigate			•			[3]
	2. Quantum Me	chanics					
	History of quan	ta, base states and su	perposition,	structural r	andomness,	measurem	ent: how
	long is a qubit?,	Heisenberg's Uncerta	ainty Princip	ple, wavefo	rm collapse i	in the mac	roscopic
	limit	[7] 					
	5. Matrix Algeb	ra od orthogonality inn	er product	and Hilber	t snaces ma	trices and	tensors
	unitary operators	and projectors. Dira	c notation		t spaces, ma	unces and	[7]
	4. Fundamental	s of Quantumness	•				[,]
	Abramsky-Coec	ke semantics, no-clo	ning theore	m, quantun	n entangleme	nt ('spool	cy action
	at a distance'), B	ell states and Bell ine	equalities	-	-		[7]
	5. Quantum Cir	cuits					
	Pauli, Hadamaro	l, phase, CNOT, Tof	foli gates, c	juantum tel	eportation, u	niversality	y of two-
	qubit gates, rever	sible computing					[6]
	0. Quantum Aig	oriunns Igorithm Simon's n	rohlem au	antum Fou	rier transfor	m Shor's	neriod
	finding algorithm	n quantum kev distri	bution (BB)	84 E91)		III, 51101 S	[6]
	7. Ouantum Err	or Correction		51, 251)			[0]
	Error correction	codes					[3]
	8. Quantum Cor	nputers					
	Physical qubits, 1	noise and decoherence	e				[3]
Text Book	s, TEXT BOOKS :						_
and/or	1. Phillip K	aye, Raymond Lafla	mme, and I	Michele Mo	osca (2007).	An Introd	uction to
reference	Quantum	Computing. Oxford	University	Press.	Quantum	Computer	tion and
material	2. Michael	A. Mersen and Isa	iac L. Unive idge Unive	ang (2000)). Quantum	Computa	tion and
	REFERENCE	SOOKS:		15ity 1 1035.			
	1. Yanofsk	v. Noson S. and M	lirco A. Ma	annucci (20	008). Ouantu	im Compi	uting for
	Compute	r Scientists. Cambrid	lge Univers	ity Press.	- /	p	0
	2. McMaho	on, David (2008). Qua	antum Com	puting Expl	lained. John V	Wiley & S	ons, Inc.
	Mermin, N. Dav	vid (2007). Quantur	n Compute	er Science:	An Introdu	ction. Ca	mbridge
	University Pres	S.					

Mapping of CO (Course outcome) and PO (Programme Outcome)

PO CO	PO #1	PO #2	PO #3	PO #4	PO #5	PO #6	PO #7	PO #8	PO #9	PO #10	PO #11	PO #12
CO#1	3	3	3	3	2	1	1	1	1	1	1	1
CO#2	3	3	3	3	3	1	1	1	1	1	1	1
CO#3	3	3	3	2	2	1	1	1	1	1	1	1
CO#4	3	3	2	2	2	2	1	1	1	1	1	2

Course	Title of the course	Program Core	Total Nun	nber of conta	act hours		Credit
Code		(PCR) / Electives (PEL)	Lecture (L)	Tutorial (T)	Practical (P)	Total Hours	
PHO 851	Fiber-Optics Communication	PEL	3	0	0	3	3
Pre-requisit	es	Course Assessment end assessment (EA	methods (Co	ontinuous (C	T), midterm a	ssessment (MT) and
NIL		CT+MT+EA					
Course Outcomes	After completion of the CO1: Distinguish and ic optical communication a CO2: Explain different CO3: Understand and c CO4: Acquire basic know	course, the student is a lentify different types of and sensing. characteristics of option lassify the working pri owledge of short haul, 1	ble to of fibers and cal fiber alon nciple of diff long haul and	there potent og with dispe ferent optica d advanced o	ial application ersion and attent l sources and opptical transmi	in differen nuation. letectors. ssion syste	t fields of ms.
Topics Covered	Introduction to Optica Transmission speed, Ev Optical Fibers: Structu Ray propagation throug Maxwell's Equations, T waveguides, Propagatio field diameter. Fiber fab Signal Degradation in Signal attenuation, Abso Group Velocity Dispers	I Fiber Communication olution of Fiber Optic Irres, Waveguide and h SI and GI fiber, Pulse E and TM mode wave en modes, Power Flow rication; overview of contraction; Optical Fibers: Optical Fibers:	ons: Systems, Ele Fabrication e broadening equations. W in rectangul lifferent meth es, Bending	ements of an - multipath ave propaga ar slab wave hods of fabri Losses, Core ide Dispersi	a Optical Fiber [3] dispersion and tion in rectang eguide, Single cation.	r Transmiss I material d ular slab an -mode fibe [1- losses, coup on-Mode d	sion Link. ispersion, id circular rs; Mode- 4] pling loss. ispersion
	Intermodal Distortion. Optical Sources and Structure, Materials, Q Threshold conditions, R patterns, Single-mode la APD, Phototransistor, P Power launching and improvement, Fiber spli	Detectors: Review of Quantum Efficiency ar ate equations, Quantur asers, Modulation, Effe MT detectors. [12] I coupling: Source-to cing, Optical fiber con	E semiconduc nd LED Por m efficiency, ects of tempo p-Fiber pow nectors and c	[7] ctor Physics wer, Modula , Resonant fi erature. Opti er launchin optical devic	. Light Emitt ation of an I requencies, Str ical detectors- g lensing scl es, etc. [6]	ing Diodes LED. Laser ructure and p-n junction hemes for	s (LEDs); r Diodes; radiation on, P-I-N, coupling
Text Books, and/or reference material	 Text Books: 1. Fiber Optics and 2. Optical Fiber Com 3. Optoelectronics Pl Reference Books: 1. Introduction to File 2. Fiber-Optic Comm 3. Optical Communication 	Optoelectronics, R. P. amunications (3 rd Ed.), notonics , S.O. Kasap per Optics, Ajoy Ghata nunications Technolog cation Components & S	Khare, Oxfo Gerd Keiser k & K. Thya y, D. K. Myr Systems, J. F	rd Universit - McGraw-H garajan, Can Ibaev & L. L I. Franz & V	y Press lill nbridge Unive Scheiner, Pe '. K. Jain.	rsity Press earson Educ	eation

Mapping of CO (Course outcome) and PO (Programme Outcom

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
PHO851	CO1	3	1	1	1		2	2	1	1	1	1	1
	CO2	2	2	2	1	1	1	1	1	1	1	1	2
	CO3	2	2	3	2	2	1	1	1	2	1	1	1
	CO4	2	2	2	1	1	1	1	1	1	1	1	2

Correlation levels 1, 2 or 3 as defined below:1: Slight (Low)2: Moderate (Medium)3: 3

3: Substantial (High)

Course	Title of the course	Program		Credit							
Code		Core (PCR) /	Practical	Total							
		Electives	(L)	(T)	(P)	Hours					
		(PEL)									
PHO852	OPTICAL	PCR	3	0	0	3	3				
	INSTRUMENTATION										
Pre-requisi	tes	Course Assessment methods (Continuous (CT) and end assessment									
		(EA))									
NIL		СТ+ЕА									
Course	CO1: To reali	ize fundamental concepts of optics such as reflection, refraction and									
Outcomes	diffraction in	designing optical elements.									
	• CO2: To lear	rn basics and working principle of some optoelectronic devices.									
	CO3: To gain	an integrative overview and applications of different optical									
	microscopes,	telescopes and spectroscopes.									
	CO4: To acqu	aire fundamental knowledge of interferometry and apply it in optical									
	metrology.										
Topics	Optical elements: Reflective and Refractive optical elements, Diffractive op										
Covered	Holographic Optical Elements, Computer generated hologram, Grating, Prism										
	Optoelectronic devices : Photomultiplier Tubes, Photodiodes, CCD, ac										
	modulator, electro optic modulator										
	Microscope & Telescope: Bright field, Dark field, Interference microscopy, Fluc										
	and Contocal microsc	ope, Telescope.		0 1 10			[8]				
	Spectroscopy: Atomic Absorption Spectroscopy, Optical Spectroscopy.										
	Optical Interferometry: Interferometer principles, Common path, lateral shear, Radia Detetional Devenal Shear Multiple Deep Multiple Waysley ethe										
	Optical Matroleony: Maira fringa projection Helegrenby and Speakle techniques										
	Optical Instruments: Optical Coherence Tomography Particle Image Velocimetry[6]										
Text Book	Text Books										
and/or	1 Ontical Shop Testing: D Malakara Wiley & Sons Inc. 2007										
reference	2. Optics and Optical	Instrumentations; B.K. Johnson, Dover, 1960.									
material	Reference Books	. , ,									
	1. Optics, E. Hecht, A	1. Optics, E. Hecht, Addison-Wesley, 2001.									
	2. Optics, A. Ghatak, Tata McGrawHill, 2005.										

Mapping of CO (Course outcome) and PO (Programme Outcom

Course	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
РНО852	CO1	3	2	2	2	1	1	1	1	1	-	1	1
	CO2	3	1	-	1	1	-	-	-	-	-	-	1
	CO3	3	2	2	2	1	1	1	1	1	-	1	1
	CO4	3	2	2	2	2	1	1	1	1	-	1	1

Correlation levels 1, 2 or 3 as defined below:1: Slight (Low)2: Moderate (Medium)3: 3

3: Substantial (High)