BHARATHIDASAN UNIVERSITY, TIRUCHIRAPPALLI -24

(For B.Sc. Biochemistry, Botany, Mathematics, Physics, & Zoology - Allied Courses)

(For the candidates admitted from the academic year 2016 – 2017 onwards)

Allied Course I

Chemistry I

Hours/Week: 4 Credits: 4

OBJECTIVES

- 1. To understand the various theories of coordination chemistry.
- 2. To study the various concepts of resonance and halogen compounds.
- 3. To study the properties of aromatic compounds and organic reactions.
- 4. To learn the concepts of solid state chemistry.

UNIT I COORDINATION CHEMISTRY AND INDUSTRIAL CHEMISTRY

- 1.1 Coordination Chemistry: Nomenclature Werner's, sidgwick and Pauling's theories. Chelation industrial importance of EDTA, Biological role of heamoglobin and Chrophyll.
- 1.2 Industrial Chemistry: Fuel gases Water gas, producer gas, LPG gas, Gobar gas and natural gas. Fertilizers NPK and mixed Fertilizers- soaps and detergents.

UNIT- II ELECTRON DISPLACEMENT EFFECTS AND HALOGEN COMPOUNDS

- 2.1 Polar effects: Inductive effect Relative Strength of Aliphatic monocarbocylic acid and aliphatic amines. Resonance Condition for resonance. Consequences of resonance resonance of energy. Basic property of aniline and acidic property of phenol. Hyperconjugation Heat of hydrogenation Bond length and dipole moment. Steric effect.
- 2.2 Halogen containing compounds: Important chlorohydrocarbons used as solvents. Pesticides Dichloromethane, chloroform, carbon tetrachloride, DDT and BHC Types of solvents: Polar, Non polar.

Unit III AROMATIC COMPOUNDS AND ORGANIC REACTIONS

3.1 Aromatic compounds: Structure, stability resonance and aromaticity of benzene. Substitution reaction: Nitration, Halogenations, Alkylation. Naphthalene – Isolation, properties and uses.

- 3.2 Organic reaction: Biuret, Decarboxylation, Benzoin, Perkin, Cannizaro, Claisen and Haloform reactions
- 3.3 Chemotherapy: Explanation with two examples each for analgesics, antibacterial, anti-inflammatory, antibiotics, antiseptic and disinfectant, anesthetics local and general (Structures not necessary)

UNIT IV SOLID STATE, ENERGETICS AND PHASE RULE

- 4.1 Solid state: Typical crystal lattices unit cell, elements of symmetry, Bragg's equation, Weiss Indices, Miller indices, simple body centered and face centered lattices
- 4.2 Energetics: First law of thermodynamics state and path function need for the second law carnots cycle and thermo- dynamic scale of temperature, spontaneous and Non spontaneous processes entropy Gibbs free energy.
- 4.3 Phase rule: Phase, component, degree of Freedom, phase rule definitions one component system– water system.

UNIT V: CHEMICAL EQUILIBRIUM AND CHEMICAL KINETICS

- 5.1 Chemical equilibrium: Criteria of homogeneous and heterogeneous equilibria, -decomposition of HI, N₂O₄, CaCO₃ + Pd₅.
- 5.2 Chemical Kinetics: Order of reaction and their determinations activation energy, effects of temperature on reaction rate.

REFERENCES

- 1. Gopalan R, Text Book of Inorganic Chemistry, 2nd Edition, Hyderabad, Universities Press, (India), 2012.
- 2. Morrison R.T. and Boyd R.N., Bhattacharjee S. K. Organic Chemistry (7th edition), Pearson India, (2011)
- 3. Puri B.R., Sharma L.R. and Pathania M.S. (2013), Principles of Physical Chemistry, (35th edition), New Delhi: Shoban Lal Nagin Chand and Co.

ALLIED COURSE II

PRACTICAL

Hours/Week: 3

Credits: 3

VOLUMETRIC AND ORGANIC QUANTITATIVE ANALYSIS

I Volumetric Analysis

1. Acidimetry and alkalimetry

(a) Strong acid VS strong base (b) Weak acid VS strong base (c) Determination of hardness of water.

2. Permanganometry

(a) Estimation of ferrous sulphate (b) Estimation of oxalic acid

3. Iodometry

(a) Estimation of potassium dichromate (b) Estimation of potassium permanganate

II. Organic Analysis

Analyse the following organic Compounds.

1. Carbohydrate, 2. Amide, 3. Aldehyde, 4. Ketone, 5. Acid & 6. Amine The students may be trained to perform the specific reactions like tests for elements (nitrogen only), aliphatic or aromatic, saturated or unsaturated and functional group present and record their observations.

REFERENCES

- 1. R. Gopalan, Elements of analytical chemistry, S. Chand, New Delhi, 2000.
- 2. N. S. Gnanapragasam and G. Ramamurthy, Organic Chemistry lab manual,
- S. Viswanathan and Co. Pvt. Ltd. Chennai-1998

Note: Scheme for Practical Evaluation.

Organic Qualitative Analysis - 20

Volumetric Estimation -35

Record - 5

Internal Assessment - 40

Total: 100

Volumetric Analysis:35

Procedure 5 marks Results < 2 % - 30 marks 2-3 % -20 marks 3-4 % - 10 marks > 4 % - 5 marks

Organic Qualitative Analysis:20

Identification of Nitrogen - 4 marks Saturated and unsaturated - 3 marks Aliphatic or Aromatic - 3 marks Preliminary reactions with Procedure - 5 marks Functional group identified Correctly - 5 marks

Total: 20

Allied Course III

General Chemistry II

Hours/Week: 4

Credits: 4

OBJECTIVES

- To learn the basics of nuclear chemistry and metallic bond.
- To understand the properties and applications of carbohydrates, amino acids and proteins.
- To study the basic concepts of polymers, heterocyclic compounds and stereoisomerism.

UNIT I: NUCLEAR CHEMISTRY AND METALLIC BOND

- 1.1 Nuclear Chemistry: Fundamental particles of nucleus- isotopes, isobars, isotones and isomers differences between chemical reactions and nuclear reactions, nuclear fusion and fission- radioactive series.
- 1.2 Metallic bond : Electron gas, Pauling and band theories, semiconductiors intrinsic, extrinsic n-type and p-type semi conductors.
- 1.3 Compounds of sulphur and sodium thiosulphate

UNIT II: CARBOHYDRATES, AMINOACIDS AND PROTEINS

- 2.1 Carbohydrates: classification glucose and fructose preparation and properties –structure of glucose Fischer and Haworth cyclic structures.
- 2.2 Amino acids and proteins: Amino acids Classification based on structure. Essential and non essentials amino acids preparation, properties and uses peptides (elementary treatment only) proteins Classification based on physical properties and biological functions. Structure of proteins primary and secondary (elementary treatment).

UNIT III: POLYMERS, HETEROCYCLIC COMPOUND AND STEREOISOMERISM

- 3.1. Synthetic polymers: preparation, properties and uses of teflon, epoxy resins, polyester resin.
- 3.2 Heterocyclic compounds: Furan, pyrrole and pyridine preparation, properties and uses basic properties of pyridine and pyrrole.
- 3.3 Stereoisomerism: Optical isomerism Lactic and tartaric acid racemic mixture and resolution. Geometrical isomerism maleic and fumaric acids.

UNIT IV: SURFACE AND PHOTO CHEMISTRY

- 4.1 Surface Chemistry: Emulsions, gels preparation, properties Electrophoresis and applications, chromatography Column, paper and thin layer Chromatography.
- 4.2 Photochemistry: Laws of photochemistry and applications.

UNIT V: ELECTROCHEMISTRY, pH AND BUFFER

- 5.1 Electrochemistry: Specific and equivalent conductivity their determination effect of dilution on conductivity. Ostwald's Dilution law, Kohlrausch law, conductivity measurements, and conductometric titrations.
- 5.2 pH and buffer: Importance of pH and buffers pH determination by colorimetric and electrometric methods.

REFERENCES

- 1. B.R. Puri, L.R. Sharma, K.C. Kalia, 'Principles of Inorganic Chemistry', 21st edition, Vallabh Publications, 2004-2005.
- 2. Bahl, B.S. and Bahl, A., Organic Chemistry, (12th edition), New Delhi, Sultan Chand & Co., (2010)
- 3. Puri B.R., Sharma L.R. and Pathania M.S. (2013), Principles of Physical Chemistry, (35th edition), New Delhi: Shoban Lal Nagin Chand and Co.
