Himachal Pradesh University

Summer Hill, Shimla-171005

Syllabus and Scheme of Examination

For

B. Sc. with Mathematics

&

B.A. with Mathematics

&

B. Sc. Physical Sciences

(Physics, Chemistry & Mathematics)

&

B.Sc. Physical Sciences

(Physics, Chemistry & Computer Science)

Courses

under the

Choice Based Credit System

w.e.f.

Session 2016 - 17 onwards

HIMACHAL PRADESH UNIVERSITY SYLLABUS AND SCHEME OF EXAMINATION FOR B. Sc. WITH MATHEMATICS

				Credits
Sem	Course Code	Course Type	Title of Paper	(TH+T)*
I	MATH101TH	CORE COURSE	DIFFERENTIAL CALCULUS	`````
I		CORE COURSE	(C2A)	<u>5+1=0</u> 6
I		CORE COURSE	(C2A) (C3A)	6
I		A.E.C. COURSE	AECC1	4
1		A.E.C. COURSE	AECCI	7
			DIFFERENTIAL	
II	MATH201TH	CORE COURSE	EQUATIONS	5+1=6
II		CORE COURSE	(C2B)	6
II		CORE COURSE	(C3B)	6
II		A.E.C. COURSE	AECC 2	4
III	MATH301TH	CORE COURSE	REAL ANALYSIS	5+1=6
III		CORE COURSE	(C2C)	6
III		CORE COURSE	(C3C)	6
		SKILL ENHANCEMENT	SEC 1: CHOOSE ONE OUT	
		COURSE	OF THE FOLLOWING	4
III	MATH302TH	SEC 1	LOGIC AND SETS	
III	MATH303TH	SEC 1	ANALYTICAL GEOMETRY	
III	MATH304TH	SEC 1	INTEGRAL CALCULUS	
			÷	
IV	MATH401TH	CORE COURSE	ALGEBRA	5+1=6
IV		CORE COURSE	(C2D)	6
IV		CORE COURSE	(C3D)	6
		SKILL ENHANCEMENT	SEC 2: CHOOSE ONE OUT	
		COURSE	OF THE FOLLOWING	4
IV	MATH402TH	SEC 2	VECTOR CALCULUS	
IV	MATH403TH	SEC 2	THEORY OF EQUATIONS	
IV	MATH404TH	SEC 2	NUMBER THEORY	
			DSE 1A (MATH): CHOOSE	
		DISCIPLINE SPECIFIC	ONE OUT OF THE	
		ELECTIVE	FOLLOWING	5+1=6
V	MATH501TH	DSE 1A	MATRICES	
V	MATH502TH	DSE 1A	MECHANICS	
V	MATH503TH	DSE 1A	LINEAR ALGEBRA	
				6
		DISCIPLINE SPECIFIC		
V		ELECTIVE	DSE2A	
V		DISCIPLINE SPECIFIC	DSE3A	6

		ELECTIVE		
		SKILL ENHANCEMENT COURSE	SEC 3: CHOOSE ONE OUT OF THE FOLLOWING	4
v	MATH504TH	SEC 3	PROBABILITY AND STATISTICS	
V	MATH505TH	SEC 3	MATHEMATICAL FINANCE	
V	MATH506TH	SEC 3	MATHEMATICAL MODELING	
		DISCIPLINE SPECIFIC ELECTIVE	DSE 1B (MATH): CHOOSE ONE OUT OF THE FOLLOWING	5+1=6
VI	MATH601TH	DSE 1B	NUMERICAL METHODS	
VI	MATH602TH	DSE 1B	COMPLEX ANALYSIS	
VI	MATH603TH	DSE 1B	LINEAR PROGRAMMING	
		DISCIPLINE SPECIFIC ELECTIVE	DSE 2B	6
		DISCIPLINE SPECIFIC ELECTIVE	DSE3B	6
		SKILL ENHANCEMENT COURSE	SEC 4: CHOOSE ONE OUT OF THE FOLLOWING	4
VI	MATH604TH	SEC 4	BOOLEAN ALGEBRA	
VI	MATH605TH	SEC 4	TRANSPORTATION ANDGAME THEORY	
VI	MATH606TH	SEC 4	GRAPH THEORY	
			TOTAL CREDITS	132

(*) TH: THEORY, T: TUTORIAL

HIMACHAL PRADESH UNIVERSITY SYLLABUS AND SCHEME OF EXAMINATION FOR B.A. WITH MATHEMATICS w.e.f. session 2016-17

Credits Sem Course Code **Course Type** Title of Paper $(TH+T)^*$ MATH101TH **CORE COURSE DIFFERENTIAL CALCULUS** 5+1=6 Ι Ι **CORE COURSE** (C2A) 6 **ENGLISH/MIL-1** Ι (C3A)6 Ι A.E.C. COURSE AECC 1 4 DIFFERENTIAL MATH201TH Π **CORE COURSE EQUATIONS** 5+1=6 Π **CORE COURSE** (C2B) 6 Π **MIL/ENGLISH-1** (C3B) 6 Π A.E.C. COURSE AECC 2 4 **MATH301TH CORE COURSE** REAL ANALYSIS 5+1=6 III III **CORE COURSE** (C2C)6 Ш **ENGLISH/MIL-1I** (C3C)6 SKILL ENHANCEMENT SEC 1: CHOOSE ONE OUT COURSE **OF THE FOLLOWING** 4 MATH302TH SEC 1 LOGIC AND SETS Ш SEC 1 Ш **MATH303TH** ANALYTICAL GEOMETRY MATH304TH SEC 1 INTEGRAL CALCULUS Ш IV MATH401TH **CORE COURSE ALGEBRA** 5+1=6 IV **CORE COURSE** (C2D)6 IV MIL/ENGLISH-11 (C3D)6 SKILL ENHANCEMENT SEC 2: CHOOSE ONE OUT COURSE **OF THE FOLLOWING** 4 SEC 2 **VECTOR CALCULUS** IV MATH402TH MATH403TH SEC 2 THEORY OF EQUATIONS IV IV MATH404TH SEC 2 NUMBER THEORY DSE 1A (MATH): CHOOSE **DISCIPLINE SPECIFIC** ONE CHOOSE ONE OUT OF ELECTIVE THE FOLLOWING 5+1=6 V MATH501TH DSE 1A MATRICES V **MATH502TH** DSE 1A MECHANICS V **MATH503TH** DSE 1A LINEAR ALGEBRA **DISCIPLINE SPECIFIC** 6 V ELECTIVE DSE2A SKILL ENHANCEMENT COURSE SEC 3: CHOOSE ONE OUT V **OF THE FOLLOWING** 4 V **MATH504TH** SEC 3 PROBABILITY AND

I	I		STATISTICS	I
V	MATH505TH	SEC 3	MATHEMATICAL FINANCE	
v		SEC 3	MATHEMATICAL FINANCE	
v	MATH506TH	SEC 3	MODELING	
•		SEC 3	GE 1: CHOOSE ONE OUT OF	
		GENERIC ELECTIVE	THE FOLLOWING	5+1=6
		GENERIC ELECTIVE	PORTFOLIO	3+1-0
v	MATH507TH	GE 1	OPTIMIZATION	
v			OUEUING AND	
v	MATH508TH	GE 1	RELIABILITY THEORY	
•	WIA 111300111	GE 1	KELIADILITT THEORI	
			DSE 1B (MATH): CHOOSE	
		DISCIPLINE SPECIFIC	ONE OUT OF THE	
		ELECTIVE	FOLLOWING	5+1=6
VI	MATH601TH	DSE 1B	NUMERICAL METHODS	
VI	MATH602TH	DSE 1B	COMPLEX ANALYSIS	
VI	MATH603TH	DSE 1B	LINEAR PROGRAMMING	
		DISCIPLINE SPECIFIC		
		ELECTIVE	DSE 2B	6
		SKILL ENHANCEMENT		
		COURSE	SEC 4: CHOOSE ONE OUT	
			OF THE FOLLOWING	4
VI	MATH604TH	SEC 4	BOOLEAN ALGEBRA	
			TRANSPORTATION AND	
VI	MATH605TH	SEC 4	GAME THEORY	
VI	MATH606TH	SEC 4	GRAPH THEORY	
			GE 2: CHOOSE ONE OUT	
		GENERIC ELECTIVE	OF THE FOLLOWING	5+1=6
			DESCRIPTIVE STATISTICS	
			AND PROBABILITY	
VI	MATH607TH	GE 2	THEORY	
			SAMPLE SURVEYS AND	
VI	MATH608TH	GE 2	DESIGN OF EXPERIMENTS	
			TOTAL CREDITS	132

(*) TH: THEORY, T: TUTORIAL

HIMACHAL PRADESH UNIVERSITY SYLLABUS AND SCHEME OF EXAMINATION B.Sc. Physical Sciences (Physics, Chemistry & Mathematics) & B.Sc. Physical Sciences (Physics, Mathematics & Computer Science) w.e.f. session 2016-17

				Credits
Sem	Course Code	Course Type	Title of Paper	(TH+T)*
I	MATH101TH	CORE COURSE	DIFFERENTIAL CALCULUS	· · · ·
I		CORE COURSE	DSC-2A (Physics)	6
I		ENGLISH/MIL-1	DSC-3A Chem/Comp. Sc.)	6
I		A.E.C. COURSE	AECC 1	4
			DIFFERENTIAL	
II	MATH201TH	CORE COURSE	EQUATIONS	5+1=6
II		CORE COURSE	DSC-2B (Physics)	6
Π		MIL/ENGLISH-1	DSC-3B Chem/Comp. Sc.)	6
II		A.E.C. COURSE	AECC 2	4
III	MATH301TH	CORE COURSE	REAL ANALYSIS	5+1=6
III		CORE COURSE	DSC-2C (Physics)	6
III		ENGLISH/MIL-1I	DSC-3C Chem/Comp. Sc.)	6
		SKILL ENHANCEMENT		
		COURSE	SEC 1: One course	4
			Choose one course out of the	
			list of SEC courses of Physics	
			discipline	
TX 7		CODE COURCE		F .1.7
IV	MATH401TH	CORE COURSE	ALGEBRA	5+1=6
IV		CORE COURSE	DSC-2D (Physics)	6
IV		MIL/ENGLISH-11	DSC-3D Chem/Comp. Sc.)	6
		SKILL ENHANCEMENT COURSE	SEC 2: One course	4
		COURSE	Choose one course out of the	4
			list of SEC courses of	
			Chemistry/Computer science	
			discipline	
	1			
			DSE 1A (MATH): CHOOSE	
		DISCIPLINE SPECIFIC	ONE OUT OF THE	
		ELECTIVE	FOLLOWING	5+1=6
V	MATH501TH	DSE 1A	MATRICES	
V	MATH502TH	DSE 1A	MECHANICS	
V	MATH503TH	DSE 1A	LINEAR ALGEBRA	
		DISCIPLINE SPECIFIC		6
V		ELECTIVE	DSE2A (Physics)	
		DISCIPLINE SPECIFIC	DSE2A(Chaminton)(Chaminton)	
		ELECTIVE	DSE3A(Chemistry/Computer science)	6
			science)	U

			TOTAL CREDITS	132
VI			and SEC3.	
			not chosen earlier in SEC1,SEC2	
			Sc.)/Mathematics Disciplines, but	
			Physics/Chemistry(or Comp.	
			of SEC courses of	
* 1			Choose one course out of the lists	
VI			SEC4: One course	7
		SKILL ENHANCEMENT COURSE	SEC 4: CHOOSE ONE OUT OF THE FOLLOWING	4
		ELECTIVE	DSE 3B (CHEM/COMP. SC.)	6
		DISCIPLINE SPECIFIC		
		ELECTIVE	DSE 2B (PHYSICS)	6
		DISCIPLINE SPECIFIC		
VI	MATH603TH	DSE 1B	LINEAR PROGRAMMING	
VI	MATH602TH	DSE 1B	COMPLEX ANALYSIS	
VI	MATH601TH	DSE 1B	NUMERICAL METHODS	J [1-0
		ELECTIVE	FOLLOWING	5+1=6
		DISCIPLINE SPECIFIC	DSE 1B (MATH): CHOOSE ONE OUT OF THE	
	1			
	MATH606TH		GRAPH THEORY	
	MATH605TH		GAME THEORY	
			TRANSPORTATION AND	
	MATH604TH		BOOLEAN ALGEBRA	
	MATH506TH		MODELING	
			MATHEMATICAL	
	MATH505TH		MATHEMATICAL FINANCE	
	MATH504TH		STATISTICS	
			PROBABILITY AND	
	MATH404TH		NUMBER THEORY	
	MATH403TH		THEORY OF EQUATIONS	
	MATH402TH		VECTOR CALCULUS	
	MATH304TH		INTEGRAL CALCULUS	
	MATH303TH		ANALYTICAL GEOMETRY	
	MATH302TH		LOGIC AND SETS	
V			discipline	
			of SEC courses of Mathematics	
			Choose one course out of the list	
V		SKILL ENHANCEMENT COURSE		4

(*) TH: THEORY, T: TUTORIAL

Note: Students have to select at least one Skill Enhancement Course (out of SEC1,SEC2 and SEC3 and SEC4) from each core discipline (Physics, Chemistry/Computer Science, Mathematics) for B.Sc. (Physical Sciences).

Details of Courses under B.Sc. with Mathematics

Course		*Credit:
	Theory + Practical	Theory + Tutorials
I. Core Course	$12 \times 4 = 48$	$12 \times 5 = 60$
 (12 Papers) 04 Courses from each of the 03 disciplines of choice Core Course Practical / Tutorial* 	12×2 = 24	12×1 = 12
(12 Practical/ Tutorials*)		
04 Courses from each of the 03 Disciplines of choice		
 II. Elective Course (6 Papers) Two papers from each discipline of including paper of interdisciplinary Elective Course Practical / Tutori 	nature.	$6 \times 5 = 30$ $6 \times 1 = 6$
(6 Practical / Tutorials*) Two Papers from each discipline of including paper of interdisciplinary		
• Optional Dissertation or project in 6th Semester	work in place of one Discipl	ine elective paper (6 credits)
III. Ability Enhancement Courses 1.Ability Enhancement Compulso (2 Papers of 4 credits each) Environmental Science English/MIL Communication		2×4 = 8
2. Skill Enhancement Course (Skill Based) (4 Papers of 4 credits	4×4 = 16 s each)	4×4 = 16
_ Total	credit = 132	Total credit = 132

*wherever there is practical there will be no tutorials and vice -versa

Details of Courses under B.A. with Mathematics

Course

*Credits

	Theory + Practical	Theory + Tutorials
I. Core Course	$12 \times 4 = 48$	$12 \times 5 = 60$
(12 Papers)		
Two Papers- English		
Two Papers- MIL		
Four Papers- Discipline 1 spec		
Four Papers- Discipline 2 spec	ific	
Core Course Practical / Tutorial [*] (12 Practical/Tutorials [*])	▶ 12×2 = 24	$12 \times 1 = 12$
II. Elective Course	6×4 = 24	6×5 = 30
(6 Papers)		
Two papers –Discipline 1 specific	2	
Two papers –Discipline 2 specific	2	
Two papers – Generic Elective (I	nterdisciplinary)	
Two Papers from each discipline	of choice and	
Two Papers of Interdisciplinary r	nature.(GE)	
Elective Course Practical / Tuto	rials* 6×2 =12	6x1=6
(6 Practical / Tutorials*)		
Two papers –Discipline 1 specifie	c	
Two papers –Discipline 2 specific	e	
Two papers – Generic Elective (Interdisciplinary)	
Two Papers from each discipline	of choice	
including paper of interdisciplind	ury nature	
III. Ability Enhancement	Courses npulsory Courses(AECC) 2×4 = 8	2×4 = 8
(2 Papers of 4 credits each)	$\frac{1}{2} = 0$	2~4 = 0
Environmental Science		
English/MIL Communication		
2. Skill Enhancement Cours	$e(SEC) \ 4 \times 4 = 16$	4×4 = 16
(4 Papers of 4 credits each		
Tot	al credit = 132	Total credit = 132

*wherever there is practical there will be no tutorials and vice -versa

Details of Courses under B.Sc. Physical Sciences (Physics, Chemistry/Computer Science, Mathematics)

Course		*Credits
	Theory + Practical	Theory + Tutorials
I. Core Course	$12 \times 4 = 48$	$12 \times 5 = 60$
(12 Papers)		
04 Courses from each of the 03 disciplines of choice (Physics, Chemistry/Computer Science, Mathematics) Core Course Practical / Tu	torial* 12×2 = 24	12×1 = 12
(12 Practical/ Tutorials*)		
04 Courses from each of the 03 Disciplines of choice		
 II. Discipline Specific Election (6 Papers) Two papers from each discipnic including paper of interdiscipned the Elective Course Practical / 	pline of choice plinary nature.	$6 \times 5 = 30$ $6 \times 1 = 6$
(6 Practical / Tutorials*) Two Papers from each discip including paper of interdisci		
 III. Ability Enhancement Control 1. Ability Enhancement Control (2 Papers of 4 credits each) Environmental Science English/MIL Communication 	mpulsory $2 \times 4 = 8$	2×4 = 8
2. Skill Enhancement Cours (Skill Based) (4 Papers of	se $4 \times 4 = 16$ 4 credits each, selecting atleast one	4×4 = 16 e from each discipline)
	Total credit = 132	Total credit = 132
*	1 there will be no testerials d	

*wherever there is practical there will be no tutorials and vice -versa

End-Semester Examination (ESE) and Comprehensive Continuance Assessment (CCA) Scheme of Three years Degree of B.Sc.Physical Sciences /B.A./B. Sc. With Mathematics

Scheme for Examination for each course

- ***** The medium of instructions and Examinations shall be English only.
- ***** ESE & Practical Examinations shall be conducted at the end of each semester as per the Academic Calendar notified by H.P. University, Shimla-5, time to time.
- Each course of 4/6 credits (theory + Practicals) will carry 100 marks and will have following components:

(FOR COURSES WITHOUT PRACTICALS)

I.	Theory	marks
	End-Semester Examination (ESE)	70 marks
II.	Comprehensive Continuous Assessment (CCA)	30 marks
	a) Assignment/Class Test/Quiz/Seminar/Model	10 marks
	a) Mid-Term Examination (One Test)	15 marks
	b) Attendance	05

- Minimum Pass Percentage in each component (ESE, CCA & Practical) shall be 40%, separately
- Criterion for Class-room attendance (05 marks)

75% Attendance is minimum eligibility condition.

- i) Attendance \geq 75% but < 80% 1 mark
- ii) Attendance $\geq 80\%$ but < 85% 2 marks
- iii) Attendance $\geq 85\%$ but < 90% 3 marks
- iv) Attendance \geq 90% but < 95% 4 marks
- v) Attendance $\ge 95\%$ 5 marks

NOTE: For correspondence mode (ICDEOL) students enrolled for B.A. with Mathematics Degree/Course, the total marks for each theory paper shall be 100 and there shall be no CCA component. Further , the tutorial in any course shall be counted in theory credits for correspondence mode students.

First Semester			
Course Code	MATH101TH		
Credits= 6	L-5,T-1,P-0		
Name of the Course	Differential Calculus		
Type of the Course	Core Course		
Number of teaching hours required for this course	75 hrs.		
Continuous Comprehensive Assessment: Based on Minor Test(1), Class tests, Assignments, Quiz, Seminar and Attendance (Marks Attendance: 5 marks to be given as per the regulations)	Max. Marks:30		
Tutorials : Solving Problems and exercises	15 hours		
End Semester Examination	Max Marks: 70 Maximum Times: 3 hrs.		
Total Lectures to be Delivered (One Hour Each)	75		
Instructions			

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

Core 1.1: Differential Calculus

Unit-I (19 hrs.)

Limit and Continuity (epsilon and delta definition), Types of discontinuities, Differentiability of functions, Successive differentiation, Leibnitz's theorem.

Unit-II (19hrs.)

Indeterminate forms, Rolle's theorem, Lagrange's & Cauchy Mean Value theorems, Taylor's theorem with Lagrange's and Cauchy's forms of remainder, Taylor's series. Maclaurin's series of sin x, $\cos x$, e^x , $\log(l+x)$, $(l+x)^m$.

Unit-III (19 hrs.)

Concavity, Convexity & Points of Inflexion, Curvature, Asymptotes, Singular points, Parametric representation of curves and tracing of curves in parametric form, Polar coordinates and tracing of curves in polar coordinates.

Unit-IV (18 hrs.)

Functions of several variables (upto three variables): Limit and Continuity of these functions Partial differentiation, Euler's theorem on homogeneous functions, Maxima and Minima with Lagrange Multipliers Method, Jacobian.

Books Recommended:

- 1. H. Anton, I. Birens and S. Davis, *Calculus*, John Wiley and Sons, Inc., 2002.
- 2. G.B. Thomas and R.L. Finney, *Calculus*, Pearson Education, 2007.

Second Semester			
Course Code	MATH201TH		
Credits= 6	L-5,T-1,P-0		
Name of the Course	Differential Equations		
Type of the Course	Core Course		
Number of teaching hours required for this course	75 hrs.		
Continuous Comprehensive Assessment: Based on Minor Test(1), Class tests, Assignments, Quiz, Seminar and Attendance (Marks Attendance: 5 marks to be given as per the regulations)	Max. Marks:30		
Tutorials : Solving Problems and exercises	15 hours		
End Semester Examination	Max Marks: 70 Maximum Times: 3 hrs.		
Total Lectures to be Delivered (One Hour Each)	75		
Instructions			

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

1 0

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

Core 2.1: Differential Equations Unit-I (19 hrs.)

First order exact differential equations. Integrating factors, rules to find an integrating factor. First order higher degree equations solvable for x, y, p. Methods for solving higher-order differential equations.

Unit-II (19 hrs.)

Basic theory of linear differential equations, Wronskian, and its properties. Solving a differential equation by reducing its order. Linear homogenous equations with constant coefficients, Linear non-homogenous equations, The method of variation of parameters,

Unit-III (19 hrs.)

The Cauchy-Euler equation, Simultaneous differential equations, Total differential equations. Order and degree of partial differential equations, Concept of linear and non-linear partial differential equations, Formation of first order partial differential equations(PDE).

Unit-IV(18 hrs.)

Linear partial differential equation of first order, Lagrange's method. Charpit's method for solving PDE, Classification of second order partial differential equations into elliptic, parabolic and hyperbolic through illustrations only.

Books Recommended

1. Shepley L. Ross, *Differential Equations*, 3rd Ed., John Wiley and Sons, 1984.

2. I. Sneddon, *Elements of Partial Differential Equations*, McGraw-Hill, International Edition, 1967.

Third Semester		
Course Code	MATH301TH	
Credits= 6	L-5,T-1,P-0	
Name of the Course	Real Analysis	
Type of the Course	Core Course	
Number of teaching hours required for this course	75hrs.	
Continuous Comprehensive Assessment: Based on Minor Test(1), Class tests, Assignments, Quiz, Seminar and Attendance (Marks Attendance: 5 marks to be given as per the regulations)	Max. Marks:30	
Tutorials : Solving Problems and exercises	15 hours	
End Semester Examination	Max Marks: 70 Maximum Time: 3 hrs.	
Total Lectures to be Delivered (One Hour Each)	75	
Instructions		

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

Core 3.1: Real Analysis

Unit-I(19 hrs.)

Finite and infinite sets, examples of countable and uncountable sets. Real line, bounded sets, suprema and infima, completeness property of R, Archimedean property of R, intervals. Concept of cluster points and statement of Bolzano-Weierstrass theorem.

Unit-II (19 hrs.)

Real Sequence, Bounded sequence, Cauchy convergence criterion for sequences. Cauchy's theorem on limits, order preservation and squeeze theorem, monotone sequences and their convergence (monotone convergence theorem without proof).

Unit-III(19 hrs.)

Infinite series. Cauchy convergence criterion for series, positive term series, geometric series, comparison test, convergence of p-series, Root test, Ratio test, alternating series, Leibnitz's test (Tests of Convergence without proof). Definition and examples of absolute and conditional convergence.

Unit-IV (18 hrs.)

Sequences and series of functions, Pointwise and uniform convergence. M_n -test, M-test, Results about uniform convergence, integrability and differentiability of functions (Statements only), Power series and radius of convergence.

Books Recommended

1. T. M. Apostol, *Calculus* (Vol. I), John Wiley and Sons (Asia) P. Ltd., 2002.

2. R.G. Bartle and D. R Sherbert, *Introduction to Real Analysis*, John Wiley and Sons (Asia) P. Ltd., 2000.

3. E. Fischer, Intermediate Real Analysis, Springer Verlag, 1983.

4. K.A. Ross, *Elementary Analysis- The Theory of Calculus Series-* Undergraduate Texts in Mathematics, Springer Verlag, 2003.

Fourth Semester		
Course Code	MATH401TH	
Credits= 6	L-5,T-1,P-0	
Name of the Course	Algebra	
Type of the Course	Core Course	
Number of teaching hours required for this course	75 hrs.	
Continuous Comprehensive Assessment: Based on		
Minor	Max. Marks:30	
Test(1), Class tests, Assignments, Quiz, Seminar and		
Attendance		
(Marks Attendance: 5 marks to be given as per the		
regulations)		
Tutorials : Solving Problems and exercises	15 hours	
End Semester Examination	Max Marks: 70 Maximum Time: 3 hrs.	
Total Lectures to be Delivered (One Hour Each)	75	
Instructions		

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

Core 4.1: Algebra

Unit-I (19 hrs.)

Definition and examples of groups, examples of abelian and non-abelian groups, the group Z_n of integers under addition modulo n and the group U(n) of units under multiplication modulo n. Cyclic groups from number systems, complex roots of unity, the general linear group GL_n (n,R), groups of symmetries of (i) an isosceles triangle, (ii) an equilateral triangle,

(iii) a rectangle, and (iv) a square, the permutation group $Sym\left(n\right),$

Unit-II (19 hrs.)

Subgroups, cyclic subgroups, the concept of a subgroup generated by a subset and the commutator subgroup of group, examples of subgroups including the center of a group. Cosets, Index of subgroup, Lagrange's theorem, order of an element,

Unit-III (19 hrs.)

Normal subgroups: their definition, examples, and characterizations, Quotient groups Fundamental theorem of Homomorphism. Definition and examples of rings, examples of commutative and non-commutative rings: rings from number systems, Z_n the ring of integers modulo n.

Unit-IV (18 hrs.)

Rings of matrices, polynomial rings, Subrings and ideals, Integral domains and fields, examples of fields: Z_p, Q, R, and C.

Books Recommended

1. John B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson, 2002.

- 2. M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011.

Joseph A Gallian, *Contemporary Abstract Algebra*, 4th Ed., Narosa, 1999.
 George E Andrews, *Number Theory*, Hindustan Publishing Corporation, 1984.

Third Semester		
Course Code	MATH302TH	
Credits= 4	L-4,T-0,P-0	
Name of the Course	Logic and Sets	
Type of the Course	Skill Enhancement Course	
Number of teaching hours required for this course	60 hrs.	
Continuous Comprehensive Assessment: Based on Minor Test(1), Class tests, Assignments, Quiz, Seminar and Attendance (Marks Attendance: 5 marks to be given as per the regulations)	Max. Marks:30	
Tutorials : Solving Problems and exercises	Nil	
End Semester Examination	Max Marks: 70 Maximum Times: 3 hrs.	
Total Lectures to be Delivered (One Hour Each)	60	
Instructions		

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

SEC 1.1: Logic and Sets

Unit-I (15 hrs.)

Introduction, propositions, truth table, negation, conjunction and disjunction. Implications, biconditional propositions, converse, contra positive and inverse propositions and precedence of logical operators.

Unit-II (15hrs.)

Propositional equivalence: Logical equivalences. Predicates and quantifiers: Introduction, Quantifiers, Binding variables and Negations.

Unit-III(15 hrs.)

Sets, subsets, Set operations, the laws of set theory and Venn diagrams. Examples of finite and infinite sets. Finite sets and counting principle. Empty set, properties of empty set. Standard set operations. Classes of sets. Power set of a set.

Unit-IV (15 hrs.)

Difference and Symmetric difference of two sets. Set identities, Generalized union and intersections. Relation: Product set, Composition of relations, Types of relations, Partitions, Equivalence Relations with example of congruence modulo relation.

Book Recommended

1. R.P. Grimaldi, *Discrete Mathematics and Combinatorial Mathematics*, Pearson Education, 1998.

- 2. P.R. Halmos, Naive Set Theory, Springer, 1974.
- 3. E. Kamke, *Theory of Sets*, Dover Publishers, 1950.

Third Semester		
Course Code	MATH303TH	
Credits= 4	L-4,T-0,P-0	
Name of the Course	Analytical Geometry	
Type of the Course	Skill Enhancement Course	
Number of teaching hours required for this course	60 hrs.	
Continuous Comprehensive Assessment: Based on Minor Test(1), Class tests, Assignments, Quiz, Seminar and Attendance (Marks Attendance: 5 marks to be given as per the regulations)	Max. Marks:30	
Tutorials : Solving Problems and exercises	Nil	
End Semester Examination	Max Marks: 70 Maximum Time: 3 hrs.	
Total Lectures to be Delivered (One Hour Each)	60	
Instructions		

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

SEC 1.2: Analytical Geometry

Unit-I (15 hrs.)

Techniques for sketching parabola, ellipse and hyperbola, Reflection properties of parabola, ellipse and hyperbola.

Unit-II (15hrs.)

Classification of quadratic equations representing lines, parabola, ellipse and hyperbola, Unit-III (15 hrs.)

Sphere. Plane section of a sphere. Sphere through a given circle. Intersection of two spheres. Radical plane. Radical line and Radical point in spheres. Co-axial system of spheres. Unit-IV (15 hrs.)

Cylindrical surfaces, Illustrations of graphing standard quadric surfaces like cone, ellipsoid.

Books Recommended

- 1. G.B. Thomas and R.L. Finney, *Calculus*, 9th Ed., Pearson Education, Delhi, 2005.
- 2. H. Anton, I. Bivens and S. Davis, Calculus, John Wiley and Sons (Asia) Pvt. Ltd., 2002.
- 3. S.L. Loney, *The Elements of Coordinate Geometry*, McMillan and Company, London.

4. R.J.T. Bill, *Elementary Treatise on Coordinate Geometry of Three Dimensions*, McMillan India Ltd., 1994.

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

Third Semester		
Course Code	MATH304TH	
Credits= 4	L-4,T-0,P-0	
Name of the Course	Integral Calculus	
Type of the Course	Skill Enhancement Course	
Number of teaching hours required for this course	60 hrs.	
Continuous Comprehensive Assessment: Based on Minor Test(1), Class tests, Assignments, Quiz, Seminar and Attendance (Marks Attendance: 5 marks to be given as per the regulations)	Max. Marks:30	
Tutorials : Solving Problems and exercises	Nil	
End Semester Examination	Max Marks: 70 Maximum Time: 3 hrs.	
Total Lectures to be Delivered (One Hour Each)	60	
Instructions		

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

SEC 1.3: Integral Calculus

Unit-I (15 hrs.)

Integration by Partial fractions, integration of rational and irrational functions. Properties of definite integrals.

```
Unit-II (15 hrs.)
```

Reduction Formulae, $\int Sin^n x \, dx$, $\int Cos^n x \, dx$, $\int e^{ax} x^n dx$, $\int x^n (logx)^m dx$, $\int x^n Sinx dx$, $\int x^n cosx dx$, $\int Sin^n x Cox^n x dx$, $\int_0^{\pi/2} Sin^n x dx$, $\int_0^{\pi/2} Cos^n x dx$, $\int_0^{\pi/2} Sin^n x Cox^n x dx$. Reduction by connecting two integrals (Smaller Index + 1 Method).

Unit-III (15 hrs.)

Areas and lengths of curves in the plane, volumes and surfaces of solids of revolution. Unit-IV (15 hrs.)

Double and Triple integrals.

T1 ' 1 C

Books Recommended:

1. G.B. Thomas and R.L. Finney, *Calculus*, 9th Ed., Pearson Education, Delhi, 2005.

2. H. Anton, I. Bivens and S. Davis, *Calculus*, John Wiley and Sons (Asia) P. Ltd., 2002.

Fourth Semester Course Code MATH402TH Credits = 4L-4,T-0,P-0 Name of the Course Vector Calculus Type of the Course **Skill Enhancement Course** Number of teaching hours required for this course 60 hrs Continuous Comprehensive Assessment: Based on Minor Max. Marks:30 Test(1), Class tests, Assignments, Quiz, Seminar and Attendance (Marks Attendance: 5 marks to be given as per the regulations) Tutorials : Solving Problems and exercises Nil Max Marks: 70 Maximum Time: 3 hrs. End Semester Examination Total Lectures to be Delivered (One Hour Each) 60

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

SEC 2.1: Vector Calculus

Unit -I(15 hrs.)

Scalar and vector product of three vectors. Product of four vectors. Reciprocal vectors. Vector differentiation, Scalar valued point functions, vector valued point functions. Derivative along a curve, directional derivatives.

Unit –II(15 hrs.)

Gradient of a scalar point function. Geometrical interpretation of gradient of a scalar point function $(\text{grad}\phi)$. Divergence and curl of a vector point function. Character of divergence and curl of a vector point function. Gradient, Divergence and Curl of sums and products and their related vector identities. Laplacian operator.

Unit -III(15 hrs.)

Orthogonal curvilinear coordinates. Conditions for orthogonality. Fundamental triads of mutually orthogonal unit vectors. Gradient, Divergence, Curl and Laplacian operators in terms of orthogonal curvilinear coordinators. Cylindrical and Spherical coordinates: relation between Cartesian and cylindrical or spherical coordinates.

Unit - IV(15 hrs.)

Vector integration: line integral, surface integral, Volume integral Theorems of Gauss, Green and Stokes (without proof) and the problems based on these theorems.

Books Recommended

1. G.B. Thomas and R.L. Finney, Calculus, 9th Ed., Pearson Education, Delhi, 2005.

2. H. Anton, I. Bivens and S. Davis, *Calculus*, John Wiley and Sons (Asia) P. Ltd. 2002.

3. P.C. Matthew's, Vector Calculus, Springer Verlag London Limited, 1998.

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

Fourth Semester	
Course Code	MATH403TH
Credits= 4	L-4,T-0,P-0
Name of the Course	Theory of Equations
Type of the Course	Skill Enhancement Course
Number of teaching hours required for this course	60 hrs.
Continuous Comprehensive Assessment: Based on Minor Test(1), Class tests, Assignments, Quiz, Seminar and Attendance (Marks Attendance: 5 marks to be given as per the regulations)	Max. Marks:30
Tutorials : Solving Problems and exercises	Nil
End Semester Examination	Max Marks: 70 Maximum Time: 3 hrs.
Total Lectures to be Delivered (One Hour Each)	60

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

SEC 2.2: Theory of Equations

Unit-I (15 hrs.)

General properties of polynomials, Graphical representation of a polynomials, maximum and minimum values of a polynomials, General properties of equations,

Unit-II (15 hrs.)

Descarte's rule of signs for positive and negative roots, Relation between the roots and the coefficients of equations.

Unit-III (15 hrs.)

Symmetric functions, Applications symmetric function of the roots, Transformation of equations. Solutions of reciprocal and binomial equations.

Unit-IV (15 hrs.)

Algebraic solutions of the cubic and biquadratic. Properties of the derived functions.

Books Recommended

1. W.S. Burnside and A.W. Panton, *The Theory of Equations*, Dublin University Press, 1954.

2. C. C. MacDuffee, Theory of Equations, John Wiley & Sons Inc., 1954.

Fourth Semester Course Code MATH404TH Credits = 4L-4,T-0,P-0 Name of the Course Number Theory Type of the Course **Skill Enhancement Course** Number of teaching hours required for this course 60 hrs. Continuous Comprehensive Assessment: Based on Minor Max. Marks:30 Test(1), Class tests, Assignments, Quiz, Seminar and Attendance (Marks Attendance: 5 marks to be given as per the regulations) Tutorials : Solving Problems and exercises Nil Max Marks: 70 Maximum Times: 3 hrs. End Semester Examination Total Lectures to be Delivered (One Hour Each) 60 Instructions

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

SEC 2.3: Number Theory

Unit-I (15 hrs.)

Division algorithm, Lame's theorem, linear Diophantine equation, fundamental theorem of arithmetic, prime counting function, statement of prime number theorem, Goldbach conjecture. Unit-II (15 hrs.)

Binary and decimal representation of integers, linear congruences, complete set of residues. Unit-III (15 hrs.)

Number theoretic functions, sum and number of divisors, totally multiplicative functions. Unit-IV (15 hrs.)

Definition and properties of the Dirichlet product, the Möbius inversion formula, the greatest integer function, Euler's phi-function.

Books Recommended:

1. David M. Burton, *Elementary Number Theory* 6th Ed., Tata McGraw-Hill Edition, Indian reprint, 2007.

2. Richard E. Klima, Neil Sigmon, Ernest Stitzinger, *Applications of Abstract Algebra with Maple*, CRC Press, Boca Raton, 2000.

3. Neville Robinns, *Beginning Number Theory*, 2nd Ed., Narosa Publishing House Pvt. Limited, Delhi, 2007.

Fifth Semester Course Code MATH504TH Credits = 4L-4,T-0,P-0 Name of the Course **Probability and Statistics** Type of the Course **Skill Enhancement Course** Number of hours required for this course 60 hrs. Continuous Comprehensive Assessment: Based on Minor Max. Marks:30 Test(2), Class tests, Assignments, Quiz, Seminar and Attendance (Marks Attendance: 5 marks to be given as per the regulations) Tutorials : Solving Problems and exercises Nil Semester Term End Examination Max Marks: 70 Maximum Times: 3 hrs. Lectures to be Delivered (One Hour Each) 60

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

SEC 3.1: Probability and Statistics

Unit-I (15 hrs.)

Sample space, probability axioms, real random variables (discrete and continuous), cumulative distribution function, probability mass/density functions.

Unit-II (15 hrs.)

Mathematical expectation, moments, moment generating function, characteristic function, discrete distributions: uniform.

Unit-III (15 hrs.)

Binomial, Poisson, continuous distributions: uniform, normal, exponential. Unit-IV (15 hrs.)

Joint cumulative distribution function and its properties, joint probability density functions, marginal and conditional distributions, expectation of function of two random variables, conditional expectations, independent random variables.

Books Recommended:

1. Robert V. Hogg, Joseph W. McKean and Allen T. Craig, *Introduction to Mathematical Statistics*, Pearson Education, Asia, 2007.

2. Irwin Miller and Marylees Miller, John E. Freund, *Mathematical Statistics with Application*, 7th Ed., Pearson Education, Asia, 2006.

3. Sheldon Ross, *Introduction to Probability Model*, 9th Ed., Academic Press, Indian Reprint, 2007.

Fifth Semester Course Code MATH505TH Credits = 4L-4,T-0,P-0 Name of the Course Mathematical Finance Type of the Course **Skill Enhancement Course** Number of hours required for this course 60 hrs. Continuous Comprehensive Assessment: Based on Minor Max. Marks:30 Test(2), Class tests, Assignments, Quiz, Seminar and Attendance (Marks Attendance: 5 marks to be given as per the regulations) Tutorials : Solving Problems and exercises Nil Semester Term End Examination Max Marks: 70 Maximum Times: 3 hrs. Lectures to be Delivered (One Hour Each) 60

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

SEC 3.2: Mathematical Finance

Unit-I (15 hrs.)

Basic principles: Comparison, arbitrage and risk aversion, Interest (simple and compound, discrete and continuous), time value of money.

Unit-II (15 hrs.)

Inflation, net present value, internal rate of return (calculation by bisection and Newton-Raphson methods), comparison of NPV and IRR.

Unit-III (15 hrs.)

Bonds, bond prices and yields. Floating-rate bonds, immunization. Asset return, short selling, portfolio return, (brief introduction to expectation, variance, covariance and correlation).

Unit-IV (15 hrs.)

Random returns, portfolio mean return and variance, diversification, portfolio diagram, feasible set, Markowitz model (review of Lagrange multipliers for 1 and 2 constraints).

Books Recommended:

1. David G. Luenberger, Investment Science, Oxford University Press, Delhi, 1998.

2. John C. Hull, Options, *Futures and Other Derivatives*, 6th Ed., Prentice-Hall India, Indian reprint, 2006.

3. Sheldon Ross, *An Elementary Introduction to Mathematical Finance*, 2nd Ed., Cambridge University Press, USA, 2003.

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

Fifth Semester	
Course Code	MATH506TH
Credits= 4	L-4,T-0,P-0
Name of the Course	Mathematical Modeling
Type of the Course	Skill Enhancement Course
Number of hours required for this course	60 hrs.
Continuous Comprehensive Assessment: Based on Minor Test(1), Class tests, Assignments, Quiz, Seminar and Attendance (Marks Attendance: 5 marks to be given as per the regulations)	Max. Marks:30
Tutorials : Solving Problems and exercises	Nil
Semester Term End Examination	Max Marks: 70 Maximum Times: 3 hrs.
Lectures to be Delivered (One Hour Each)	60

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

SEC 3.3: Mathematical Modeling

Unit-I (15 hrs.)

Applications of differential equations: the vibrations of a mass on a spring, mixture problem, free damped motion, forced motion.

Unit-II (15 hrs.)

Resonance phenomena, electric circuit problem, mechanics of simultaneous differential equations.

Unit-III (15 hrs.)

Applications to Traffic Flow. Vibrating string, vibrating membrane. Unit-IV (15 hrs.)

Conduction of heat in solids, gravitational potential, conservation laws.

Books Recommended:

Shepley L. Ross, *Differential Equations*, 3rd Ed., John Wiley and Sons, 1984.
 I. Sneddon, *Elements of Partial Differential Equations*, McGraw-Hill, International Edition, 1967.

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

Sixth Semester	
Course Code	MATH604TH
Credits= 4	L-4,T-0,P-0
Name of the Course	Boolean Algebra
Type of the Course	Skill Enhancement Course
Number of hours required for this course	60 hrs.
Continuous Comprehensive Assessment: Based on Minor Test(1), Class tests, Assignments, Quiz, Seminar and Attendance (Marks Attendance: 5 marks to be given as per the regulations)	Max. Marks:30
Tutorials : Solving Problems and exercises	Nil
Semester Term End Examination	Max Marks: 70 Maximum Times: 3 hrs.
Lectures to be Delivered (One Hour Each)	60

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

SEC4.1:Boolean Algebra

Unit-I (15 hrs.)

Definition, examples and basic properties of ordered sets, maps between ordered sets, duality principle, maximal and minimal elements.

Unit-II (15 hrs.)

Lattices as ordered sets, complete lattices, lattices as algebraic structures, sub lattices, products and homomorphisms.

Unit-III (15 hrs.)

Definition, examples and properties of modular and distributive lattices, Boolean algebras, Boolean polynomials, minimal forms of Boolean polynomials.

Unit-IV (15 hrs.)

Quinn-McCluskey method, Karnaugh diagrams, switching circuits and applications of switching circuits.

Books Recommended:

- 1. BA.Davey and H.A.Priestley, *IntroductiontoLatticesandOrder*, CambridgeUniversityPress, Cambridge, 1990.
- 2. Rudolf Lidl and Günter Pilz, *AppliedAbstractAlgebra*, 2ndEd., UndergraduateTextsinMathematics, Springer(SIE), Indianreprint, 2004.

Sixth Semester Course Code MATH605TH Credits = 4L-4,T-0,P-0 Name of the Course Transportation and Game Theory Type of the Course **Skill Enhancement Course** Number of hours required for this course 60 hrs. Continuous Comprehensive Assessment: Based on Minor Max. Marks:30 Test(1), Class tests, Assignments, Quiz, Seminar and Attendance (Marks Attendance: 5 marks to be given as per the regulations) Tutorials : Solving Problems and exercises Nil Semester Term End Examination Max Marks: 70 Maximum Time: 3 hrs. Lectures to be Delivered (One Hour Each) 60

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

SEC 4.2: Transportation and Game Theory Unit-I (15 hrs.)

Transportation problem and its mathematical formulation. northwest-corner method, least cost method.

Unit-II (15 hrs.)

Vogel approximation method for determination of starting basic solution, algorithm for solving transportation problem.

Unit-III (15 hrs.)

Assignment problem and its mathematical formulation, Hungarian method for solving assignment problem.

Unit-IV (15 hrs.)

Game theory: formulation of two person zero sum games, solving two person zero sum games, games with mixed strategies, graphical solution procedure.

Books Recommended:

1. Mokhtar S. Bazaraa, John J. Jarvis and Hanif D. Sherali, *Linear Programming and Network Flows*, 2nd Ed., John Wiley and Sons, India, 2004.

2. F. S. Hillier and G. J. Lieberman, *Introduction to Operations Research*, 9th Ed., Tata McGraw Hill, Singapore, 2009.

3. Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006.

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

a. 1 a

Sixth Semester	
Course Code	MATH606TH
Credits= 4	L-4,T-0,P-0
Name of the Course	Graph Theory
Type of the Course	Skill Enhancement Course
Number of hours required for this course	60 hrs.
Continuous Comprehensive Assessment: Based on	
Minor	Max. Marks:30
Test(1), Class tests, Assignments, Quiz, Seminar and	
Attendance	
(Marks Attendance: 5 marks to be given as per the	
regulations)	
Tutorials : Solving Problems and exercises	Nil
Semester Term End Examination	Max Marks: 70 Maximum Time: 3 hrs.
Lectures to be Delivered (One Hour Each)	60

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

SEC4.3: Graph Theory

Unit-I (15 hrs.)

Definition, examples and basic properties of graphs, pseudographs, complete graphs, bi-partite graphs.

Unit-II (15 hrs.)

Isomorphism of graphs, paths and circuits, Eulerian circuits.

Unit-III (15 hrs.)

Hamiltonian cycles, the adjacency matrix, weighted graph, travelling salesman's problem.

Unit-IV (15 hrs.)

Shortest path, Dijkstra's algorithm, Floyd-Warshall algorithm.

Books Recommended:

1. Edgar G. Goodaire and Michael M. Parmenter, *Discrete Mathematics with Graph Theory* 2nd Ed., Pearson Education (Singapore) P. Ltd., Indian Reprint, 2003.

2. Rudolf Lidl and Günter Pilz, *Applied Abstract Algebra*, 2nd Ed., Undergraduate Texts in Mathematics, Springer (SIE), Indian reprint, 2004.

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

Fifth Semester	
Course Code	MATH501TH
Credits= 6	L-5,T-1,P-0
Name of the Course	Matrices
Type of the Course	Discipline Specific Elective
Number of teaching hours required for this course	75 hrs.
Continuous Comprehensive Assessment: Based on Minor Test(1), Class tests, Assignments, Quiz, Seminar and Attendance (Marks Attendance: 5 marks to be given as per the regulations)	Max. Marks:30
Tutorials : Solving Problems and exercises	15 hours
End Semester Examination	Max Marks: 70 Maximum Times: 3 hrs.
Total Lectures to be Delivered (One Hour Each)	75

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

DSE 1A.1: Matrices

Unit-I (19 hrs.)

Types of matrices. Rank of a matrix. Invariance of rank under elementary transformations. Reduction to normal form, Solutions of linear homogeneous and non-homogeneous equations with number of equations and unknowns upto three.

Unit-II(19 hrs.)

Matrices in diagonal form. Reduction to diagonal form upto matrices of order 3. Computation of matrix inverses using elementary row operations. Rank of matrix. Solutions of a system of linear equations using matrices. Illustrative examples of above concepts from Geometry, Physics, Chemistry, Combinatorics and Statistics.

Unit-III(19 hrs.)

Definition of Vector space, R, R2, R3 as vector spaces over R, Concept of Linear dependence/Independence, Standard basis for R, R2, R3, Examples of different bases. Subspaces of R2, R3.

Unit-IV (18 hrs.)

Translation, Dilation, Rotation, Reflection in a point, line and plane. Matrix form of basic geometric transformations. Interpretation of eigenvalues and eigen vectors for such transformations and eigen spaces as invariant subspaces.

Books Recommended

1. A.I. Kostrikin, Introduction to Algebra, Springer Verlag, 1984.

2. S. H. Friedberg, A. L. Insel and L. E. Spence, *Linear Algebra*, Prentice Hall of India Pvt. Ltd., New Delhi, 2004.

3. Richard Bronson, Theory and Problems of Matrix Operations, Tata McGraw Hill, 1989.

Fifth Semester	
Course Code	MATH502TH
Credits= 6	L-5,T-1,P-0
Name of the Course	Mechanics
Type of the Course	Discipline Specific Elective
Number of teaching hours required for this course	75 hrs.
Continuous Comprehensive Assessment: Based on Minor Test(1), Class tests, Assignments, Quiz, Seminar and Attendance (Marks Attendance: 5 marks to be given as per the regulations)	Max. Marks:30
Tutorials : Solving Problems and exercises	15 hours
End Semester Examination	Max Marks: 70 Maximum Time: 3 hrs.
Total Lectures to be Delivered (One Hour Each)	75
Instruction	~

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

DSE 1A.2: Mechanics

Unit-I (19 hrs.)

Conditions of equilibrium of a particle and of coplanar forces acting on a rigid Body.

Unit-II(19 hrs.)

Laws of friction, Problems of equilibrium under forces including friction, Centre of gravity. Unit-III(19 hrs.)

Work and potential energy. Velocity and acceleration of a particle along a curve, Radial and transverse components (plane curve), tangential and normal components (space curve). Unit-IV(18 hrs.)

Newton's Laws of motion, Simple harmonic motion, Simple Pendulum, Projectile Motion.

Books Recommended

 A.S. Ramsay, *Statics*, CBS Publishers and Distributors (Indian Reprint), 1998.
 A.P. Roberts, *Statics and Dynamics with Background in Mathematics*, Cambridge University Press, 2003.

Fifth Semester	
Course Code	MATH503TH
Credits= 6	L-5,T-1,P-0
Name of the Course	Linear Algebra
Type of the Course	Discipline Specific Elective
Number of teaching hours required for this course	75 hrs.
Continuous Comprehensive Assessment: Based on Minor Test(1), Class tests, Assignments, Quiz, Seminar and Attendance (Marks Attendance: 5 marks to be given as per the regulations)	Max. Marks:30
Tutorials : Solving Problems and exercises	15 hours
End Semester Examination	Max Marks: 70 Maximum Times: 3 hrs.
Total Lectures to be Delivered (One Hour Each)	75
Instruction	a

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

DSE 1A.3: Linear Algebra

Unit-I (19 hrs.)

Vector spaces, subspaces, algebra of subspaces, quotient spaces. Unit-II (19hrs.)

Linear combination of vectors, linear span, linear independence, basis and dimension, dimension of subspaces.

Unit-III (19 hrs.)

Linear transformations, null space, range, rank and nullity of a linear transformation, matrix representation of a linear transformation, algebra of linear transformations.

Unit-IV (18 hrs.)

Dual Space, Dual Basis, Double Dual, Eigen values and Eigen vectors, Characteristic Polynomial. Isomorphisms, Isomorphism theorems, invertibility and isomorphisms, change of coordinate matrix.

Books Recommended

1. Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, *Linear Algebra*, 4th Ed., Prentice-Hall of India Pvt. Ltd., New Delhi, 2004.

2. David C. Lay, *Linear Algebra and its Applications*, 3rd Ed., Pearson Education Asia, Indian Reprint, 2007.

3. S. Lang, Introduction to Linear Algebra, 2nd Ed., Springer, 2005.

4. Gilbert Strang, Linear Algebra and its Applications, Thomson, 2007.

Sixth Semester	
Course Code	MATH601TH
Credits= 6	L-5,T-1,P-0
Name of the Course	Numerical Methods
Type of the Course	Discipline Specific Elective
Number of teaching hours required for this course	75 hrs.
Continuous Comprehensive Assessment: Based on Minor Test(1), Class tests, Assignments, Quiz, Seminar and Attendance (Marks Attendance: 5 marks to be given as per the regulations)	Max. Marks:30
Tutorials : Solving Problems and exercises	15 hours
End Semester Examination	Max Marks: 70 Maximum Time: 3 hrs.
Total Lectures to be Delivered (One Hour Each)	75
Instruction	~

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

DSE 1B.1: Numerical Methods

Unit-I (19 hrs.)

Algorithms, Convergence, Bisection method, False position method, Fixed point iteration method, Newton's method, Secant method, LU decomposition. Unit-II (19 hrs.)

Unit-11 (19 **nrs.**)

Gauss-Jacobi, Gauss-Siedel and SOR iterative methods, Lagrange and Newton interpolation: linear and higher order.

Unit-III (19 hrs.)

Finite difference operators, Numerical differentiation: Newton's forward difference and backward difference method, Sterling's Central difference method. Unit-IV (18 hrs.)

Integration: Trapezoidal rule, Simpson's rule, Euler's method.

Recommended Books

 B. Bradie, A Friendly Introduction to Numerical Analysis, Pearson Education, India, 2007.
 M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, 5th Ed., New age International Publisher, India, 2007.

Sixth Semester	
Course Code	MATH602TH
Credits= 6	L-5,T-1,P-0
Name of the Course	Complex Analysis
Type of the Course	Discipline Specific Elective
Number of teaching hours required for this course	75 hrs.
Continuous Comprehensive Assessment: Based on Minor Test(1), Class tests, Assignments, Quiz, Seminar and Attendance (Marks Attendance: 5 marks to be given as per the regulations)	Max. Marks:30
Tutorials : Solving Problems and exercises	15 hours
End Semester Examination	Max Marks: 70 Maximum Time: 3 hrs.
Total Lectures to be Delivered (One Hour Each)	75
Instruction	a

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

DSE 1B.2: Complex Analysis Unit-I (19 hrs.)

Limits, Limits involving the point at infinity, continuity. Properties of complex numbers, regions in the complex plane, functions of complex variable, mappings. Derivatives, differentiation formulas, Cauchy-Riemann equations, sufficient conditions for differentiability. Unit-II (19 hrs.)

Analytic functions, examples of analytic functions, exponential function, Logarithmic function, trigonometric function, derivatives of functions, definite integrals of functions. Unit-III (19 hrs.)

Contours, Contour integrals and its examples, upper bounds for moduli of contour integrals. Cauchy- Goursat theorem, Cauchy integral formula.

Unit-IV (18 hrs.)

Liouville's theorem and the fundamental theorem of algebra. Convergence of sequences and series, Taylor series and its examples, Laurent series and its examples.

Books Recommended

1. James Ward Brown and Ruel V. Churchill, *Complex Variables and Applications*, 8th Ed., McGraw – Hill International Edition, 2009.

2. Joseph Bak and Donald J. Newman, *Complex analysis*, 2nd Ed., Undergraduate Texts in Mathematics, Springer-Verlag New York, Inc., New York, 1997.

Sixth Semester	
Course Code	MATH603TH
Credits= 6	L-5,T-1,P-0
Name of the Course	Linear Programming
Type of the Course	Discipline Specific Elective
Number of teaching hours required for this course	75 hrs.
Continuous Comprehensive Assessment: Based on Minor Test(1), Class tests, Assignments, Quiz, Seminar and Attendance (Marks Attendance: 5 marks to be given as per the regulations)	Max. Marks:30
Tutorials : Solving Problems and exercises	15 hours
End Semester Examination	Max Marks: 70 Maximum Time: 3 hrs.
Total Lectures to be Delivered (One Hour Each)	75
Instruction	~

B.A./B.Sc. with Mathematics Syllabus and Examination Scheme

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

DSE 1B.3: Linear Programming

Unit-I (19 hrs.)

Linear Programming Problems, Graphical Approach for Solving some Linear Programs. Convex Sets, Supporting and Separating Hyperplanes.

Unit-II (19 hrs.)

Theory of simplex method, optimality and unboundedness, the simplex algorithm, simplex method in tableau format.

Unit-III (19 hrs.)

Introduction to artificial variables, two-phase method, Big-M method and their comparison. Unit-IV (18 hrs.)

Duality, formulation of the dual problem, primal- dual relationships, economic interpretation of the dual, sensitivity analysis.

Recommended Books

1. Mokhtar S. Bazaraa, John J. Jarvis and Hanif D. Sherali, *Linear programming and Network Flows*, 2nd Ed., John Wiley and Sons, India, 2004.

2. F.S. Hillier and G.J. Lieberman, *Introduction to Operations Research*, 8th Ed., Tata McGraw Hill, Singapore, 2004.

Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Prentice-Hall India, 2006.

Fifth Semester	
Course Code	MATH507TH
Credits= 6	L-5,T-1,P-0
Name of the Course	Portfolio Optimization
Type of the Course	Generic Elective
Number of teaching hours required for this course	75 hrs.
Continuous Comprehensive Assessment: Based on Minor Test(1), Class tests, Assignments, Quiz, Seminar and Attendance (Marks Attendance: 5 marks to be given as per the regulations)	Max. Marks:30
Tutorials : Solving Problems and exercises	15hours
End Semester Examination	Max Marks: 70 Maximum Times: 3 hrs.
Total Lectures to be Delivered (One Hour Each)	75
Instruction	

*B.A. /B.Sc. with Mathematics Syllabus and Examination Scheme

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

GE1.1: Portfolio Optimization

Unit-I (19 hrs.)

Financial markets. Investment objectives. Measures of return and risk. Types of risks. Unit-II (19 hrs.)

Portfolio of assets. Expected risk and return of portfolio. Diversification. Unit-III (19 hrs.)

Mean-variance portfolio optimization- the Markowitz model and the two-fund theorem, Unit-IV (18 hrs.)

Risk-free assets and one fund theorem, efficient frontier. Portfolio performance evaluation measures.

Books Recommended

- 1. F.K. Reilly, Keith C. Brown, *Investment Analysis and Portfolio Management*, 10th Ed., South-Western Publishers, 2011.
- 2. H.M. Markowitz, *Mean-Variance Analysis in Portfolio Choice and Capital Markets*, Blackwell, New York, 1987.
- 3. D.G. Luenberger, *Investment Science*, 2nd Ed., Oxford University Press, 2013.

Fifth Semester	
Course Code	MATH508TH
Credits= 6	L-5,T-1,P-0
Name of the Course	Queuing and Reliability Theory
Type of the Course	Generic Elective
Number of teaching hours required for this course	75 hrs.
Continuous Comprehensive Assessment: Based on	
Minor	Max. Marks:30
Test(1), Class tests, Assignments, Quiz, Seminar and	
Attendance	
(Marks Attendance: 5 marks to be given as per the	
regulations)	
Tutorials : Solving Problems and exercises	15 hours
End Semester Examination	Max Marks: 70 Maximum Time: 3 hrs.
Total Lectures to be Delivered (One Hour Each)	75
Instruction	c

*B.A. with Mathematics Syllabus and Examination Scheme

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

GE 1.2: Queuing and Reliability Theory

Unit-I (19 hrs.)

General concepts of queueing system, Measures of performance, Arrival and Service Processes, Single server and multi server models, channels in parallel with limited and unlimited queues-M/M/1/K, M/M/C.

Unit-II (19 hrs.)

Queues with unlimited service. Finite source queues. Application of simple queueing decision model's, Design and control models.

Unit-III (19 hrs.)

Basics of reliability. Classes of life distributions. Series, parallel, configurations. Reliability models,

Unit-IV (18 hrs.)

Reliability, Mean Time before failure and Hazard rate of Exponential and Weibull distributions. Concepts and definitions of preventive maintenance, corrective maintenance and age replacement.

Books Recommended

1. R.B. Cooper, Introduction to Queueing Theory, 2nd Ed., North Holland, 1981.

2. D. Gross, C. M. Harris, *Fundamentals of Queueing Theory*, 3rd Ed., John Wiley and Sons Inc. P. Ltd., 2002.

3. U.N. Bhat, An Introduction to Queueing Theory: Modelling and Analysis in Applications (Statistics for Industry and Technology), Birkhauser Boston, 2008.

4. U.N. Prabhu, *Foundations of Queueing Theory*, International Series in Operations Research & Management Science, Kluwer Academic Publishers, 2nd Ed., 2002.

John G. Rau, *Optimization and Probability in Systems Engineering*, V.N. Reinhold Co., 1970.
 Riccardo Manzini, Alberto Regattieri, Hoang Pham, Emilio Ferrai, *Maintenance for Industrial Systems*, Springer-Verlag, London Limited, 2010.

7. P.K. Kapur, R.B. Garg, S. Kumar, *Contributions to Hardware and Software Reliability*, World Scientific, Singapore, 1999.

Sixth Semester	
Course Code	MATH607TH
Credits= 6	L-5,T-1,P-0
	Descriptive Statistics and Probability
Name of the Course	Theory
Type of the Course	Generic Elective
Number of teaching hours required for this course	75 hrs.
Continuous Comprehensive Assessment: Based on	
Minor	Max. Marks:30
Test(1), Class tests, Assignments, Quiz, Seminar and	
Attendance	
(Marks Attendance: 5 marks to be given as per the	
regulations)	
Tutorials : Solving Problems and exercises	15 hours
End Semester Examination	Max Marks: 70 Maximum Time: 3 hrs.
Total Lectures to be Delivered (One Hour Each)	75
Instruction	IS

^{*}B.A. with Mathematics Syllabus and Examination Scheme

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

GE 2.1: Descriptive Statistics and Probability Theory Unit-I (19hrs.)

Concepts of a statistical population and sample from a population, quantitative and qualitative data, nominal, ordinal and time-series data, discrete and continuous data. Presentation of data by tables and by diagrams, frequency distributions for discrete and continuous data, graphical representation of a frequency distribution by histogram and frequency polygon, cumulative frequency distributions (inclusive and exclusive methods).

Unit-II (19 hrs.)

Measures of location (or central tendency) and dispersion, moments, measures of skewness and kurtosis, cumulants. Bivariate data: Scatter diagram, principle of least-square and fitting of polynomials and exponential curves.

Unit-III(19 hrs.)

Correlation and regression. Karl Pearson coefficient of correlation, Lines of regression, Spearman's rank correlation coefficient, multiple and partial correlations (for 3 variates only). Unit-IV(18 hrs.)

Random experiment, sample point and sample space, event, algebra of events, Definition of Probability - classical, relative frequency and axiomatic approaches to probability, merits and demerits of these approaches (only general ideas to be given). Theorem on probability, conditional probability, independent events. Baye's theorem and its applications.

Books Recommended

1. J.E. Freund, Mathematical Statistics with Applications, 7th Ed., Pearson Education, 2009.

2. A.M. Goon, M.K. Gupta and B. Dasgupta, *Fundamentals of Statistics*, Vol. I, 8th Ed., World Press, Kolkatta, 2005.

3. S.C. Gupta and V.K. Kapoor, *Fundamentals of Mathematical Statistics*, 11th Ed., Sultan Chand and Sons, 2007.

4. R.V. Hogg, A.T. Craig and J.W. Mckean, *Introduction to Mathematical Statistics*, 6th Ed., Pearson Education, 2005.

5. A.M. Mood, F.A. Graybill and D.C. Boes, *Introduction to the Theory of Statistics*, 3rd Ed., Tata McGraw Hill Publication, 2007.

Sixth Semester	
Course Code	MATH608TH
Credits= 6	L-5,T-1,P-0
	Sample Surveys and Design of
Name of the Course	Experiments
Type of the Course	Generic Elective
Number of teaching hours required for this course	75 hrs.
Continuous Comprehensive Assessment: Based on	
Minor	Max. Marks:30
Test(1), Class tests, Assignments, Quiz, Seminar and	
Attendance	
(Marks Attendance: 5 marks to be given as per the	
regulations)	
Tutorials : Solving Problems and exercises	15 hours
End Semester Examination	Max Marks: 70 Maximum Time: 3 hrs.
Total Lectures to be Delivered (One Hour Each)	75
Instructions	

*B.A. with Mathematics Syllabus and Examination Scheme

Instructions

Instructions for paper setter: The question paper will consist of **two Sections A & B** of 70 marks. **Section A** will be **Compulsory** and will contain 8 questions of 16 marks (each of 2 marks) of short answer type having two questions from each Unit of the syllabus. **Section B** of the question paper shall have four Units I, II, III, and IV. Two questions will be set from each unit of the syllabus and the candidates are required to attempt one question from each of these units. Each question in Units I, II, III and IV shall be of 13.5 marks each.

Instructions for Candidates: Candidates are required to attempt five questions in all. Section A is Compulsory and from Section B they are required to attempt one question from each of the Units I, II, III and IV of the question paper.

GE 2.2: Sample Surveys and Design of Experiments Unit-I (19 hrs.)

Sample Surveys: Concepts of population and sample. Complete enumeration vs. sampling. Need for sampling. Principal and organizational aspects in the conduct of a sample survey. Properties of a good estimator, Sampling and non-sampling errors.

SRSWR & SRSWOR, determination of sample size. Stratified random sampling and different allocations. Systematic sampling, comparison of known sampling strategies under linear trend. Ratio and Regression estimators and their comparison with SRSWOR estimator.

Unit-II (19 hrs.)

Indian Official Statistics: Present Official Statistical System in India relating to census of population, agriculture, industrial production, and prices; methods of collection of official statistics, their reliability and limitation and the principal publications containing such statistics. Also the various agencies responsible for the data collection- C.S.O., N.S.S.O., Office of Registrar General, their historical development, main functions and important publications.

Analysis of variance and covariance: Analysis of variance and covariance (with one concomitant variable) in one-way and two-way classified data with equal number of observations per cell.

Unit-III (19 hrs.)

Design of experiments: Principles of experimentation, uniformity trails, completely randomized, Randomized block and Latin square designs. Missing plot technique, 2^2 and 2^3 Factorial experiments: construction and analysis.

Unit-IV (18 hrs.)

Regression Analysis: Two variable linear model – estimation, testing and problems of predication. Predication of the estimated regression equation, interval estimation, variance estimation.

Books Recommended

- 1. W.G. Cochran, *Sampling Techniques*, John Wiley and Sons, New York, 1997.
- A.M. Goon, M.K. Gupta, and B. Dasgupta, *Fundamentals of Statistics* (Vol. II), 8th Ed., World Press, Kolkata, 2005.
- 3. A.M. Goon, M.K. Gupta and B. Dasgupta, *An Outline of Statistical Theory* (Vol. II), 3rd Ed., World Press, Kolkata, 2005.
- 4. S.C. Gupta and V.K. Kapoor, *Fundamentals of Applied Statistics*, 4th Ed., Sultan Chand and Sons, 2008.
- 5. A.M. Kshirsagar, A Course in Linear Models, Marcel Dekker, Inc., N.Y., 1983.
- 6. D.C. Montgomery, *Designs and Analysis of Experiments*, John Wiley and Sons, New York, 2001.
- 7. D.C. Montgomery, E.A. Peak and G.G. Vinning, *Introduction to Linear Regression Analysis*, 3rd Ed., John Wiley and Sons, 2006.
- 8. P. Mukhopadhyay, *Theory and Methods of Surveys Sampling*, Prentice Hall of India, 1998.
- 9. D. Singh and F.S. Chaudhary, *Theory and Analysis of Sample Survey Designs*, New Age International (P) Ltd., 1995.
- 10. P.V. Sukhatme, B.V. Sukhatme, S. Sukhatme and C. Ashok, *Sampling Theory of Surveys with Applications*, Lowa State University Press, Lowa, USA, 1984.

.....