BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination
December, 2018

$\square 3542$

ELECTIVE COURSE : MATHEMATICS MTE-02 : LINEAR ALGEBRA

Time: 2 hours
Maximum Marks : 50
(Weightage : 70\%)
Note: Question no. 7 is compulsory. Attempt any four questions from questions no. 1 to 6. Use of calculators is not allowed.

1. (a) Let

$$
\mathrm{W}=\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \in \mathbf{R}^{3}: \mathrm{x}_{2}+\mathrm{x}_{3}=0\right\} .
$$

Show that W is a subspace of \mathbf{R}^{3}. Find two subspaces W_{1} and W_{2} of \mathbf{R}^{3} such that $\mathbf{R}^{3}=\mathrm{W} \oplus \mathrm{W}_{1}$ and $\mathbf{R}^{3}=\mathrm{W} \oplus \mathrm{W}_{2}$ but $\mathrm{W}_{1} \neq \mathrm{W}_{2} . \quad 7$
(b) Find a unit vector in \mathbf{R}^{3} that is orthogonal to $(1,2,1)$ and ($1,-1,2$).
2. (a) Let \mathbf{P}_{4} be the vector space over \mathbf{R} of the set of all polynomials of degree at most four. Show that $1+x+x^{4}$ and $1+x^{3}$ are linearly independent. Find a basis of \mathbf{P}_{4} consisting of vectors $1+x+x^{4}$ and $1+x^{3}$. 4
MTE-02 1 P.T.O.
(b) Let

$$
\begin{aligned}
& \mathrm{T}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2} \text { given by } \\
& \mathrm{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\left(\mathrm{x}_{2}+\mathrm{x}_{3}, \mathrm{x}_{2}-\mathrm{x}_{3}\right) .
\end{aligned}
$$

Prove that T is a linear transformation. Find the rank of T. Can we find a such that $(3,2, a)$ is in the kernel of T ? Give reasons for your answer.
(c) Find the values of $\mathbf{a}, \mathrm{b} \in \mathbf{C}$ for which the matrix

$$
\left[\begin{array}{ccc}
1 & i & 1+i \\
a & b+i & 2-i \\
1-i & 2+i & 1
\end{array}\right] \text { is Hermitian. }
$$

3. (a) Let V be a finite-dimensional vector space over a field K and let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear transformation. Prove that T is one-one if and only if T is onto.
(b) Find the eigenvalues and the eigenspaces of the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right] . \text { Is A diagonalisable? }
$$

Give reasons for your answer.
4. (a) Reduce the

$$
\left[\begin{array}{ccc}
0 & 2 & -4 \\
-1 & -4 & 5 \\
3 & 1 & 7 \\
0 & 5 & -10
\end{array}\right] \text { to the row-reduced }
$$

echelon form. At each stage, state the row operation you are using. Also give the rank of this matrix.
(b) Use Cayley-Hamilton theorem to evaluate A^{8}, where

$$
A=\left[\begin{array}{ccc}
1 & 24 & \frac{1}{5} \\
0 & 0 & 7 \\
0 & 0 & -1
\end{array}\right]
$$

(c) Give two distinct elements, with justification, of $\mathbf{R}^{5} / \mathbf{R}^{3}$.
5. (a) Use the Fundamental Theorem of Homomorphism to prove that $C^{5} / C^{4} \simeq C$.
(b) Find an orthonormal basis for a subspace

$$
\begin{aligned}
W=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbf{C}^{4} \mid x_{1}+i x_{2}=0\right. \\
\left.x_{2}+x_{3}-x_{4}=0\right\} \text { of } \mathbf{C}^{4}
\end{aligned}
$$

6. (a) Find the real quadratic form represented by the matrix

$$
A=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]
$$

Also, obtain a set of principal axes for it, and hence reduce it to its normal canonical form.
(b) Find the vector equation of the plane determined by the points $(0,2,1),(2,1,0)$, ($1,-1,0$). Further, check whether the line $\mathbf{r}=(1+2 \alpha) \mathbf{i}+(2-3 \alpha) \mathbf{j}-(1+5 \alpha) \mathbf{k}$ intersects this plane. If it intersects, find the point of intersection. If the line and plane do not intersect, find the equation of another line that intersects this plane.
7. Which of the following statements are True and which are False ? Justify your answers either with a short proof or a counter-example. $5 \times 2=10$
(a) If $\mathrm{T}: \mathbf{R}^{5} \rightarrow \mathbf{R}^{3}$ is a linear transformation, then there is $u \neq 0$ in \mathbf{R}^{5} such that $T(u)=0$.
(b) A 3×3 matrix of rank one has an eigenvalue zero.
(c) An orthonormal set of vectors is a linearly independent set.
(d) If U and V are subspaces of a finite-dimensional vector space W, then $\operatorname{dim}(U \cap V) \geq 1$.
(e) The relation ' \sim ' on \mathbf{Z}^{2}, given by $(a, b) \sim(c, d) \Leftrightarrow(a-b) \mid(c-d)$ is an equivalence relation.

स्नातक उपाधि कार्यक्रम (बी.डी.पी.)

सत्रांत परीक्षा

दिसम्बर, 2018

ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-02 : रैखिक बीजगणित

समय : 2 घण्टे अधिंकतम अंक : 50 (कुल का : 70\%)
नोट : प्रश्न सं. 7 अनिवार्य है। प्रश्न सं. 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए । कैल्कुलेटरों के प्रयोग करने की अनुमति नहीं है ।

1. (क) मान लीजिए

$$
W=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{R}^{3}: x_{2}+x_{3}=0\right\} .
$$

दिखाइए कि $\mathrm{W}, \mathbf{R}^{3}$ की उपसमष्टि है। \mathbf{R}^{3} की ऐसी दो उपसमष्टियाँ W_{1} और W_{2} ज्ञात कीजिए जिनके लिए $\mathbf{R}^{3}=\mathrm{W} \oplus \mathrm{W}_{1}$ और $\mathbf{R}^{3}=\mathrm{W} \oplus \mathrm{W}_{2}$ लेकिन $\mathrm{W}_{1} \neq \mathrm{W}_{2}$.
(ख) \mathbf{R}^{3} का एक ऐसा मात्रक सदिश ज्ञात कीजिए, जो $(1,2,1)$ और $(1,-1,2)$ के सापेक्ष लांबिक है ।
2. (क) मान लीजिए $\mathbf{P}_{4}, \mathbf{R}$ पर अधिक-से-अधिक 4 घात वाले सभी बहुपदों के समुच्चय की सदिश समष्टि है। दिखाइए कि $1+x+x^{4}$ और $1+x^{3}$ रेखिकत: स्वतंत्र हैं। P_{4} का वह आधार ज्ञात कीजिए जिसमें सदिश $1+\mathrm{x}+\mathrm{x}^{4}$ और $1+x^{3}$ शामिल हैं ।
(ख) मान लीजिए

$$
\begin{aligned}
& \mathbf{T}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2} \\
& \mathbf{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathbf{x}_{3}\right)=\left(\mathrm{x}_{2}+\mathrm{x}_{3}, \mathrm{x}_{2}-\mathrm{x}_{3}\right)
\end{aligned}
$$

द्वारा परिभाषित है।
सिद्ध कीजिए कि T एक रैखिक रूपांतरण है । T की जाति ज्ञात कीजिए। क्या हम ऐसा a ज्ञात कर सकते हैं जिसके लिए $(3,2, a) \mathrm{T}$ की अष्टि में हो ? अपने उत्तर के कारण बताइए।
(ग) $\mathrm{a}, \mathrm{b} \in \mathbf{C}$ के वे मान ज्ञात कीजिए जिसके लिए आव्यूह

$$
\left[\begin{array}{ccc}
1 & \mathrm{i} & 1+\mathrm{i} \\
\mathrm{a} & \mathrm{~b}+\mathrm{i} & 2-\mathrm{i} \\
1-\mathrm{i} & 2+\mathrm{i} & 1
\end{array}\right] \text { हर्मिटी हो । }
$$

3. (क) मान लीजिए V क्षेत्र K पर परिमित-विमीय सदिश समष्टि है और मान लीजिए $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ एक रैखिक रूपांतरण है । सिद्ध कीजिए कि T एकैकी है यदि और केवल यदि T आच्छादी है।
(ख) आव्यूह

$$
\mathrm{A}=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right] \text { के आइगेनमान और }
$$

आइगेनसमष्टियाँ ज्ञात कीजिए। क्या A विकर्णनीय है ? अपने उत्तर के कारण बताइए।
4. (क) $\left[\begin{array}{ccc}0 & 2 & -4 \\ -1 & -4 & 5 \\ 3 & 1 & 7 \\ 0 & 5 & -10\end{array}\right]$ को पंक्ति-समानीत

सोपानक रूप तक समानीत कीजिए। प्रत्येक चरण में बताइए कि आप किस पंक्ति संक्रिया का प्रयोग कर रहे हैं । इस आव्यूह की जाति भी बताइए।
(ख) कैली-हैमिल्टन प्रमेय का प्रयोग करके A^{8} का मूल्यांकन कीजिए, जहाँ

$$
A=\left[\begin{array}{ccc}
1 & 24 & \frac{1}{5} \\
0 & 0 & 7 \\
0 & 0 & -1
\end{array}\right]
$$

(ग) $\mathbf{R}^{5} / \mathbf{R}^{3}$ के पुष्टि सहित दो अलग-अलग अवयव दीजिए।
5. (क) मूलभूत समाकारिता प्रमेय से सिद्ध कीजिए कि $\mathbf{C}^{5} / \mathbf{C}^{4} \simeq \mathbf{C}$.
(ख) C^{4} की उपसमष्टि

$$
\begin{gathered}
W=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in C^{4} \mid x_{1}+i x_{2}=0\right. \\
\left.x_{2}+x_{3}-x_{4}=0\right\}
\end{gathered}
$$

के लिए प्रसामान्य लांबिक आधार ज्ञात कीजिए ।
6. (क) आव्यूह

$$
\mathrm{A}=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right] \text { द्वारा निरूपित वास्तविक }
$$

द्विघाती समघात ज्ञात कीजिए । इसके मुख्य अक्षों का समुच्चय भी प्राप्त कीजिए और इस तरह इसे प्रसामान्य विहित रूप तक समानीत कीजिए।
(ख) बिन्दुओं $(0,2,1),(2,1,0)$ और $(1,-1,0)$ द्वारा निर्धारित समतल का सदिश समीकरण ज्ञात कीजिए । इसके आगे, जाँच कीजिए कि रेखा $\mathbf{r}=(1+2 \alpha) \mathbf{i}+(2-3 \alpha) \mathbf{j}-(1+5 \alpha) \mathbf{k}$ इस समतल को प्रतिच्छेद करती है या नहीं । यदि करती है, तो प्रतिच्छेद बिन्दु ज्ञात कीजिए । यदि रेखा और समतल प्रतिच्छेद नहीं करते, तो एक ऐसी अन्य रेखा का समीकरण ज्ञात कीजिए जो इस समतल का प्रतिच्छेद करती है।
7. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से असत्य ? अपने उत्तरों की एक लघु उपपत्ति या एक प्रत्युदाहरण से पुष्टि कीजिए। $5 \times 2=10$
(क) यदि $\mathrm{T}: \mathbf{R}^{5} \rightarrow \mathbf{R}^{3}$ एक रैखिक रूपांतरण है, तब \mathbf{R}^{5} में एक ऐसा $u \neq 0$ है जिसके लिए $T(u)=0$.
(ख) जाति एक के 3×3 आव्यूह का एक आइगेनमान शून्य होता है।
(ग) प्रसामान्य लांबिक सदिशों का समुच्चय रैखिकतः स्वतंत्र समुच्चय है।
(घ) यदि U और V परिमित-विमीय सदिश समष्टि W की उपसमष्टियाँ हैं, तब $\operatorname{dim}(\mathrm{U} \cap \mathrm{V}) \geq 1$.
(ङ) $(\mathrm{a}, \mathrm{b}) \sim(\mathrm{c}, \mathrm{d}) \Leftrightarrow(\mathrm{a}-\mathrm{b}) \mid(\mathrm{c}-\mathrm{d})$ द्वारा \mathbf{Z}^{2} पर दिया गया संबंध ' \sim ' एक तुल्य संबंध है।

