M.Sc. (Ag) Entomology Course Structure

		Course Structure	00000
S.No.	CODE	COURSE TITLE	CREDITS
	ENT =0.4#	Semester I	2(4, 4)
1	ENT 501*	INSECT MORPHOLOGY	2(1+1)
2	ENT 502*	INSECT ANATOMY, PHYSIOLOGY AND NUTRITION	3(2+1)
3	ENT 503	PRINCIPLES OF TAXONOMY	2(2+0)
4	ENT 505*	INSECT ECOLOGY	2(1+1)
5	ENT 508*	TOXICOLOGY OF INSECTICIDES	3(2+1)
6	ENT 518*	TECHNIQUES IN PLANT PROTECTION	1(0+1)
7	COMP 705	Computer Orientation	3(2+1)
8	MAS 711	Statistics I	3(2+1)
		Total Credit	19
4	ENT 504*	Semester II	0(0.4)
1	ENT 504*	CLASSIFICATION OF INSECTS	3(2+1)
2	ENT 506	INSECT PATHOLOGY	2(1+1)
3	ENT 507*	BIOLOGICAL CONTROL OF CROP PESTS AND WEEDS	2(1+1)
4	ENT 511*#	PESTS OF FIELD CROPS	2(1+1)
5	ENT 512*#	PESTS OF HORTICULTURAL AND PLANTATION CROPS	2(1+1)
6	ENT 513	STORAGE ENTOMOLOGY	2(1+1)
7	ENT 515	GENERAL ACAROLOGY	2(1+1)
8	MAS 715	Statistics II	3(2+1)
		Total Credit	18
4	ENT FOO	Semester III PLANT RESISTANCE TO INSECTS	0(4 . 4)
1	ENT 509		2(1+1)
3	ENT 510*	PRINCIPLES OF INTEGRATED PEST MANAGEMENT	2(1+1)
4	ENT 514 ENT 516	INSECT VECTORS OF PLANT VIRUSES AND OTHER PATHOGENS SOIL ARTHROPODS AND THEIR MANAGEMENT	2(1+1)
4			2(1+1)
5	ENT 519	COMMERCIAL ENTOMOLOGY	2(1+1)
6	ENT 517	VERTEBRATE PEST MANAGEMENT	2(1+1)
7	ENT 520	PLANT QUARANTINE	2(2+0)
		Total Credit	14
		Semester IV	
1	ENT 591	MASTER'S SEMINAR	1+0
2	ENT 599	MASTER'S RESEARCH	20
	2111 000	Total Credit	21
		Ph.D. Programme	-
1	ENT 601	ADVANCED INSECT SYSTEMATICS	3(1+2)
2	ENT 602	IMMATURE STAGES OF INSECTS	2(1+1)
3	ENT 603	ADVANCED INSECT PHYSIOLOGY	2(2+0)
4	ENT 604	ADVANCED INSECT ECOLOGY	2(1+1)
5	ENT 605	INSECT BEHAVIOUR	2(1+1)
6	ENT 606	RECENT TRENDS IN BIOLOGICAL CONTROL	2(1+1)
7	ENT 607	ADVANCED INSECTICIDE TOXICOLOGY	3(2+1)
8	ENT 608	ADVANCED HOST PLANT RESISTANCE	2(1+1)
9	ENT 609	ADVANCED ACAROLOGY	2(1+1)
10	ENT 610	AGRICULTURAL ORNITHOLOGY	2(1+1)
11	ENT 611**	MOLECULAR APPROACHES IN ENTOMOLOGICAL RESEARCH	2(1+1)
12	ENT 612**	ADVANCED INTEGRATED PEST MANAGEMENT	2(2+0)
	*	•	

13	ENT 613/	PLANT BIOSECURITY AND BIOSAFETY	2(1+1)
14	ENT 691	DOCTORAL SEMINAR	2(1+0)
15	ENT 692	DOCTORAL SEMINAR II	2(1+0)
16	ENT 699	DOCTORAL RESEARCH	45

M.Sc. (Ag) ENTOMOLOGY

Semester I

Course Contents

ENT 501 INSECT MORPHOLOGY

2(1+1)

Objective

To acquaint the students with external morphology of the insect's body i.e., head, thorax and abdomen, their appendages and functions.

Theory

Principles, utility and relevance: insect body wall structure, cuticular outgrowths, colouration and special integumentary structures in insects, body tagmata, sclerites and segmentation. Head- Origin, structure and modification; types of mouthparts and antennae, tentorium and neck sclerites. Thorax- Areas and sutures of tergum, sternum and pleuron, pterothorax; Wings: structure and modifications, venation, wing coupling apparatus and mechanism of flight; Legs: structure and modifications. Abdomen- Segmentation and appendages; Genitalia and their modifications; Embryonic and post-embryonic development; Types of metamorphosis. Insect sense organs (mechano-, photo- and chemoreceptors).

Practical

Study of insect segmentation, various tagmata and their appendages; preparation of permanent mounts of different body parts and their appendages of taxonomic importance including male and female genitalia. Sense organs.

ENT 502 INSECT ANATOMY, PHYSIOLOGY AND NUTRITION 3(2+1)

Objective

To impart knowledge to the students on basic aspects of anatomy of different systems, elementary physiology, nutritional physiology and their application in entomology.

Theory

Scope and importance of insect anatomy and physiology. Structure, modification and physiology of different systems- digestive, circulatory, respiratory, excretory, nervous, sensory, reproductive, musculature, endocrine and exocrine glands.

Thermodynamics; physiology of integument, moulting; growth, metamorphosis and diapause. Insect nutrition- role of vitamins, proteins, amino acids, carbohydrates, lipids, minerals and other food constituents; extra and intracellular microorganisms and their role in physiology; artificial diets.

Practical

Dissection of different insects to study comparative anatomical details of different systems; preparation of permanent mounts of internal systems; chromatographic analysis of free amino acids of haemolymph; determination of chitin in insect cuticle; examination of insect haemocytes; determination of respiratory quotient; preparation and evaluation of various diets; consumption, utilization and digestion of natural and artificial diets.

ENT 503 PRINCIPLES OF

TAXONOMY 2(2+0)

Objective

To sensitize the students on the theory and practice of classifying organisms and the rules governing the same.

Theory

Introduction to history and principles of systematics and importance. Levels and functions of systematics. Identification, purpose, methods- character matrix, taxonomic keys. Descriptions- subjects of descriptions, characters, nature of characters, analogy vs homology, parallel vs convergent evolution, intraspecific variation in characters, polythetic and polymorphic taxa, sexual dimorphism. Classification of animals: Schools of classification- Phenetics, Cladistics and Evolutionary classification. Components of Biological Classification: Hierarchy, Rank, Category and Taxon. Species concepts, cryptic, sibling and etho-species, infra-specific categories. Introduction to numerical, biological and cytogenetical taxonomy.

Nomenclature: Common vs Scientific names. International Code of Zoological Nomenclature, criteria for availability of names, validity of names. Categories of

names under consideration of ICZN. Publications, Principles of priority, and homonymy, synonymy, type concept in zoological nomenclature. Speciation, anagenesis vs cladogenesis, allopatric, sympatric and parapatric processes.

ENT 505 INSECT ECOLOGY 2(1+1)

Objective

To teach the students the concepts of ecology, basic principles of distribution and abundance of organisms and their causes. Study life tables, organization of communities, diversity indicies. Train students in sampling methodology, calculation of diversity indicies, constructing life tables, relating insect population fluctuations to biotic and/or abiotic causes.

Theory

History and Definition. Basic Concepts. Organisation of the Biological world. Plato's Natural Balance vs Ecological Dynamics as the modern view. Abundance and diversity of insects, Estimates and Causal factors. Study of abundance and distribution and relation between the two. Basic principles of abiotic factors and their generalised action on insects. Implications for abundance and distribution of organisms including insects- Law of the Minimum, Law of Tolerance, and biocoenosis, Systems approach to ecology.

Basic concepts of abundance- Model vs Real world. Population growth- basic models – Exponential vs Logistic models. Discrete vs Continuous growth models. Concepts of Carrying capacity, Environmental Resistance and Optimal yield. Vital Statistics- Life Tables and their application to insect biology. Survivorship curves. Case studies of insect life tables. Population dynamics- Factors affecting abundance- Environmental factors, 15 dispersal and migration, Seasonality in insects. Classification and mechanisms of achieving different seasonality-Diapause (Quiescence) - aestivation, hibernation.

Biotic factors- Food as a limiting factor for distribution and abundance, Nutritional Ecology. Food chain- web and ecological succession. Interspecific interactions-Basic factors governing the interspecific interactions- Classification of interspecific interactions - The argument of cost-benefit ratios. Competition-Lotka-Volterra model, Concept of niche- ecological homologues, competitive

exclusion. Prey-predator interactions- Basic model- Lotka-Volterra Model, Volterra's principle. Functional and numerical response. Defense mechanisms against predators/parasitoids- Evolution of mimicry, colouration, concept of predator satiation; evolution of life history strategies.

Community ecology- Concept of guild, Organisation of communities- Hutchinson Ratio, May's d/w, Relation between the two and their association with Dyar's Law and Przibram's law. Relative distribution of organisms, Concept of diversity- the Wallacian view. Assessment of

diversity. Diversity- stability debate, relevance to pest management. Pest management as applied ecology.

Practical

Types of distributions of organisms. Methods of sampling insects, estimation of densities of insects and understanding the distribution parameters- Measures of central tendencies, Poisson Distribution, Negative Binomial Distribution. Determination of optimal sample size. Learning to fit basic population growth models and testing the goodness of fit. Fitting Holling's Disc equation, Assessment of prey-predator densities from natural systems and understanding the correlation between the two. Assessing and describing niche of some insects of a single guild. Calculation of niche breadth, activity breadth and diagramatic representation of niches of organisms. Calculation of some diversity indices-Shannon's, Simpson's and Avalanche Index and understanding their associations and parameters that affect their values. Problem solving in ecology. Field visits to understand different ecosystems and to study insect occurrence in these systems.

ENT 508

TOXICOLOGY OF INSECTICIDES 3(2+1)

Objective

To orient the students with structure and mode of action of important insecticides belonging to different groups, development of resistance to insecticides by insects, environmental pollution caused by toxic insecticides and their toxicological aspects.

Theory

Definition and scope of insecticide toxicology; history of chemical control; pesticide use and pesticide industry in India. Classification of insecticides and acaricides based on mode of entry, mode of action and chemical nature. Structure and mode of action of organochlorines, organophosphates, carbamates, pyrethroids, tertiary amines, neonicotinoids, oxadiazines, phenyl pyrozoles, insect growth regulators, microbials, botanicals, new promising compounds, etc. Principles of toxicology; evaluation of insecticide toxicity; joint action of insecticides- synergism, potentiation and antagonism; factors affecting toxicity of insecticides; insecticide compatibility, selectivity and phytotoxicity. Insecticide metabolism; pest resistance to insecticides; mechanisms and types of resistance; insecticide resistance management and pest resurgence. Insecticide residues, their significance and environmental implications. Insecticide Act, registration and quality control of insecticides; safe use of insecticides; diagnosis and treatment of insecticide poisoning.

Practical

Insecticide formulations and mixtures; quality control of pesticide formulations; laboratory and field evaluation of bioefficacy of insecticides; bioassay techniques; probit analysis; evaluation of insecticide toxicity and joint action. Toxicity to beneficial insects. Pesticide appliances. Working out doses and concentrations of pesticides; visit to toxicology laboratories. Good laboratory practices.

ENT 518 TECHNIQUES IN PLANT PROTECTION 1(0+1) Objective

To acquaint the students with appropriate use of plant protection equipments and techniques related to microscopoy, computation, pest forecasting, electrophoresis etc.

Theory

Pest control equipments, principles, operation, maintenance, selection, application of pesticides and biocontrol agents, seed dressing, soaking, root-dip treatment, dusting, spraying, application through irrigation water. Soil sterilization, solarization, deep ploughing, flooding, techniques to check the spread of pests through seed, bulbs, corms, cuttings and cut flowers. Use of light, transmission

and scanning electron microscopy. Protein isolation from the pest and host plant and its quantification using spectrophotometer and molecular weight determination using SDS/PAGE. Use of tissue culture techniques in plant protection. Computer application for predicting/forecasting pest attack and identification.

Semester II

ENT 504

CLASSIFICATION OF INSECTS 3(2+1)

Objective

To introduce the students to the classification of insects up to the level of families with hands-on experience in identifying the families of insects.

Theory

Brief evolutionary history of Insects- introduction to phylogeny of insects and Major Classification of Superclass Hexapoda – Classes – Ellipura (Collembola, Protura), Diplura and Insecta- Orders contained. Distinguishing characters, general biology, habits and habitats of Insect orders and economically important families contained in them. Collembola, Protura, Diplura. Class Insecta: Subclass Apterygota – Archaeognatha, Thysanura. Subclass: Pterygota, Division Palaeoptera – Odonata and Ephemeroptera. Division: Neoptera: Subdivision: Orthopteroid and Blattoid Orders (=Oligoneoptera: Plecoptera, Blattodea, Isoptera, Mantodea, Grylloblattodea, Dermaptera, Orthoptera, Phasmatodea, Mantophasmatodea, Embioptera, Zoraptera), Subdivision: Hemipteroid Orders (=Paraneoptera): Psocoptera, Phthiraptera,

Thysanoptera and Hemiptera. Distinguishing characters, general biology, habits and habitats of Insect orders and economically important families contained in them (Continued). Division Neoptera – Subdivision Endopterygota, Section Neuropteroid- Coleopteroid Orders: Strepsiptera, Megaloptera, Raphidioptera, Neuroptera and Coleoptera, Section Panorpoid Orders Mecoptera, Siphonaptera, Diptera, Trichoptera, Lepidoptera, and Section

Hymenopteroid Orders: Hymenoptera.

Practical

Study of Orders of insects and their identification using taxonomic keys. Keying out families of insects of different major Orders: Odonata, Orthoptera, Blattodea, Mantodea, Isoptera, Hemiptera, Thysanoptera, Phthiraptera, Neuroptera, Coleoptera, Diptera, Lepidoptera and

Hymenoptera. Field visits to collect insects of different orders.

ENT 506 INSECT PATHOLOGY 2(1+1)

Objective

To teach the students about various microbes that are pathogenic to insects, factors that affect their virulence; provide hands-on training in identification, isolation, culturing various pathogens and assessing pathogenicity.

Theory

History of insect pathology, infection of insects by bacteria, fungi, viruses, protozoa, rickettsiae, spiroplasma and nematodes. Epizootiology, symptomatology and etiology of diseases caused by the above and the factors controlling these. Defense mechanisms in insects against pathogens. Examples of successful instances of exploitation of pathogens for pest management and mass production techniques of pathogens. Safety and registration of microbial pesticides. Use of insect pathogens in integrated management of insect pests.

Practical

Familiarization with equipment used in insect pathology laboratory. Identification of different groups of insect pathogens and symptoms of infection. Isolation, culturing and testing pathogenicity of different groups of pathogens. Testing Koch's postulates. Estimation of pathogen load. Extraction of pathogens from live organisms and soil. Bioassays to

determine median lethal doses.

ENT 507 BIOLOGICAL CONTROL OF CROP PESTS AND WEEDS 2(1+1) Objective

To train the students with theory and practice of biological control, mass production techniques and field evaluation of various biological control agents like parasitoids, predators and various entomopathogenic microorganisms.

Theory

History, principles and scope of biological control; important groups of parasitoids, predators and pathogens; principles of classical biological control-importation, augmentation and conservation. Biology, adaptation, host seeking behaviour of predatory and parasitic groups of insects. Role of insect pathogenic nematodes, viruses, bacteria, fungi, protozoa etc., their mode of action.

Biological control of weeds using insects. Mass production of quality biocontrol agents- techniques, formulations, economics, field release/application and evaluation. Successful biological control projects, analysis, trends and future possibilities of biological control. Importation of natural enemies-

Quarantine regulations, biotechnology in biological control.

Semiochemicals in biological control.

Practical

Identification of common natural enemies of crop pests (parasitoids, predators, microbes) and weed killers. Visits (only where logistically feasible) to bio-control laboratories to learn rearing and mass production of egg, egg-larval, larval, larval-pupal and pupal parasitoids, common predators, microbes and their laboratory hosts, phytophagous natural

enemies of weeds. Field collection of parasitoids and predators. Hands-on training in culturing, identification of common insect pathogens. Quality control and registration standards for biocontrol agents.

ENT 511

PESTS OF FIELD CROPS

2(1+1)

Objective

To familiarize the students about nature of damage and seasonal incidence of insect pests that cause loss to major field crops and their effective management by different methods.

Theory

Systematic position, identification, distribution, host-range, bionomics, nature and extent of damage, seasonal abundance and management of insect and mite pests and vectors. Insect pests of cereals and millets and their management. Polyphagous pests: grasshoppers, locusts, termites, white grubs, hairy caterpillars, and non-insect pests (mites, birds, rodents, snails, slugs etc.). Insect pests of pulses, tobacco, oilseeds and their management. Insect pests of fibre crops, forages, sugarcane and their management.

Practical

Field visits, collection and identification of important pests and their natural enemies; detection and estimation of infestation and losses in different crops; study of life history of important insect pests.

ENT 512 PESTS OF HORTICULTURAL AND PLANTATION CROPS 2(1+1)

Objective

To impart knowledge on major pests of horticultural and plantation crops regarding the extent and nature of loss, seasonal history, their integrated management.

Theory

Systematic position, identification, distribution, host range, bionomics and seasonal abundance, nature and extent of damage and management of insect pests of various crops. Fruit Crops- mango, guava, banana, jack, papaya, pomegranate, litchi, grapes, *ber*, fig, citrus, *aonla*, pineapple, apple, peach and other temperate fruits. Vegetable crops- tomato, potato, radish, carrot, beetroot, cole crops, French beans, chow-chow, brinjal, okra, all gourds, gherkin, drumstick, leafy vegetables etc. Plantation crop- coffee, tea, rubber, coconut, arecanut, cashew, cocoa etc.; Spices and Condiments- pepper, cardamom, clove, nutmeg, chillies, turmeric, ginger, beetlevine etc. Ornamental, medicinal and aromatic plants and pests in polyhouses/protected cultivation.

Practical

Collection and identification of important pests and their natural enemies on different crops; study of life history of important insect pests and noninsect pests.

ENT 513

STORAGE ENTOMOLOGY

2(1+1)

Objective

To focus on requirement and importance of grain and grain storage, to understand the role of stored grain pests and to acquaint with various stored grain pest management techniques for avoiding losses in storage.

Theory

Introduction, history of storage entomology, concepts of storage entomology and significance of insect pests. Post-harvest losses *in toto visà- vis* total production of food grains in India. Scientific and socio-economic factors responsible for grain losses. Important pests namely insects, mites, rodents, birds and microorganisms associated with stored grain and field conditions including agricultural products; traditional storage structures; association of stored grain insects with fungi and mites, their systematic position, identification, distribution, host range, biology, nature and extent of damage, role of field and cross infestations and natural enemies, type of losses in stored grains and their effect on quality including biochemical changes.

Ecology of insect pests of stored commodities/grains with special emphasis on role of moisture, temperature and humidity in safe storage of food grains and commodities. Stored grain deterioration process, physical and biochemical changes and consequences. Grain storage- types of storage structures i.e., traditional, improved and modern storage structures in current usage. Ideal seeds and commodities' storage conditions.

Important rodent pests associated with stored grains and their non-chemical and chemical control including fumigation of rat burrows. Role of bird pests and their management. Control of infestation by insect pests, mites and microorganisms. Preventive measures- Hygiene/sanitation, disinfestations of stores/receptacles, legal methods. Curative measures-

Non-chemical control measures- ecological, mechanical, physical, cultural, biological and engineering. Chemical control- prophylactic and curative-Characteristics of pesticides, their use and precautions in their handling with special emphasis on fumigants. Integrated approaches to stored grain pest management.

Practical

Collection, identification and familiarization with the stored grains/seed insect pests and nature of damage caused by them; detection of insect infestation in stored food grains; estimation of losses in stored food grains; determination of

moisture content in stored food grains; familiarization of storage structures, demonstration of preventive and curative measures including fumigation techniques; treatment of packing materials and their effect on seed quality. Field visits to save grain campaign, central warehouse and FCI warehouses and institutions engaged in research or practice of grain storage like CFTRI, IGSMRI, Hapur etc. (only where logistically feasible).

ENT 515 GENERAL ACAROLOGY 2(1+1)

Objective

To aquaint the students with external morphology of different groups of mites, train in identification of commonly occurring families of plant associated mites, provide information about important mite pests of crops and their management.

Theory

History of Acarology; importance of mites as a group; habitat, collection and preservation of mites. Introduction to morphology and biology of mites and ticks. Broad classification- major orders and important families of Acari including diagnostic characteristics. Economic importance, seasonal occurrence, nature of damage, host range of mite pests of different crops, mite pests in polyhouses, mite pests of stored products and honeybees. Management of mites using acaricides, phytoseiid predators, fungal pathogens *etc.* Culturing of phytophagous, parasitic and predatory mites.

Practical

Collection of mites from plants, soil and animals; extraction of mites from soil, plants and stored products; preparation of mounting media and slide mounts; external morphology of mites; identification of mites up to family level using keys; studying different rearing techniques for mites.

Semester III

ENT 509

PLANT RESISTANCE TO INSECTS

2(1+1)

Objective

To familiarize the students with types, basis, mechanisms and genetics of resistance in plants to insects and role of plant resistance in pest management.

Theory

History and importance of resistance, principles, classification, components, types and mechanisms of resistance. Insect-host plant relationships; theories and basis of host plant selection in phytophagous insects. Chemical ecology, tritrophic relations, volatiles and secondary plant substances; basis of resistance. Induced resistance - acquired and induced systemic resistance. Factors affecting plant resistance including biotypes and measures to combat them. Screening techniques; breeding for insect resistance in crop plants; exploitation of wild plant species; gene transfer, successful examples of resistant crop varieties in India and world. Role of biotechnology in plant resistance to insects.

Practical

Screening techniques for measuring resistance; measurement of plant characters and working out their correlations with plant resistance; testing of resistance in important crops; bioassay of plant extracts of susceptible/resistant varieties; demonstration of antibiosis, tolerance and antixenosis.

ENT 510 PRINCIPLES OF INTEGRATED PEST MANAGEMENT 2(1+1)

Objective

To familiarize the students with principles of insect pest management, including concept and philosophy of IPM. Train students in computation of ETL, implementing IPM programmes.

Theory

History and origin, definition and evolution of various related terminologies. Concept and philosophy, ecological principles, economic threshold concept, and economic consideration. Tools of pest management and their integration-

legislative, cultural, physical and mechanical methods; pest survey and surveillance, forecasting, types of surveys including remote sensing methods, factors affecting surveys; political, social and legal implications of IPM; pest risk analysis; pesticide risk analysis; cost-benefit ratios and partial budgeting; case studies of successful IPM programmes.

Practical

Characterization of agro-ecosystems; sampling methods and factors affecting sampling; population estimation methods; crop loss assessment- direct losses, indirect losses, potential losses, avoidable losses, unavoidable losses. Computation of EIL and ETL; crop modeling; designing and implementing IPM system.

ENT 514 INSECT VECTORS OF PLANT VIRUSES AND OTHER PATHOGENS 2(1+1)

Objective

To teach the students about the different groups of insects that vector plant pathogens, vector-plant pathogen interaction, management of vectors for controlling diseases.

Theory

History of developments in the area of insects as vectors of plant pathogens. Important insect vectors and their characteristics; mouth parts and feeding processes of important insect vectors. Efficiency of transmission. Transmission of plant viruses and fungal pathogens. Relation between viruses and their vectors. Transmission of plant viruses by aphids, whiteflies, mealy bugs and thrips. Transmission of mycoplasma and bacteria by leaf hoppers and plant hoppers. Transmission of plant viruses by psyllids, beetles and mites. Epidemiology and management of insect transmitted diseases through vector management.

Practical

Identification of common vectors of plant pathogens- aphids, leafhoppers, whiteflies, thrips, beetles, nematodes; culturing and handling of vectors; demonstration of virus transmission through vectors- aphids, leafhoppers and whiteflies.

ENT 516 SOIL ARTHROPODS AND THEIR MANAGEMENT

2(1+1)

Objective

To impart knowledge about the different groups of arthropods found in soil, interaction between the different groups, and role of soil arthropods in humus formation. Hands-on training in sampling and identification of different groups of soil arthropods.

Theory

Soil arthropods and their classification, habitats and their identification. Estimation of populations; sampling and extraction methods. Role of soil arthropods in detritus feeding, litter breakdown and humus formation. Soil arthropods as bio-indicators of habitat qualities. Effect of soil arthropod activity on soil properties. Harmful and beneficial soil arthropods and their management, interrelationship among arthropods and other soil invertebrates and soil microorganisms. Anthropogenic effects on soil arthropods.

Practical

Sampling, extraction methods and identification of various types of soil fauna; estimation and assessment of soil arthropod population; techniques and culturing soil invertebrates.

ENT 519 COMMERCIAL ENTOMOLOGY 2(1+1)

Objective

To familiarize the students with entrepreneurial opportunities in entomology, provide information on productive insects and their products, as well as insect pests of public health and veterinary importance and their management.

Theory

Bee keeping- General colony management during different seasons. Seasonal management. Managing colonies for honey production and pollination. Artificial

queen rearing. Pests and diseases of honey bees. Bee poisoning. Production and marketing of quality honey and value added honey products. Establishment and maintenance of apiaries. Study of different species of silkworms, characteristic features, moriculture, silk and its uses, pests and diseases of silkworms, rearing and management of silkworms. Lac insect- natural enemies and their management. Economic and public health importance of insect pests in human habitation and habitats, biology, damage and control of mosquitoes, houseflies, bed bugs, ants, termites, cockroaches, flies, silverfish, head and body lice, carpet beetles, cloth moths, crickets, wasps, house dust mites, insect pests of cattle, poultry, pet animals and their management. Principles and methods of pest management in residential places and public buildings, insecticides for domestic use and their safety, pre- and postconstruction termite proofing of buildings, appliances for domestic pest control. Rodent control methods. Organic methods of domestic pest management.

Practical

Assessing pest status in dwellings (labs, canteen or hostel), implementation of pest control against flies, mosquitoes, bed bugs, cockroaches and rodents. Preand post-construction termite proofing methods, control of silverfishes in the library. Visit to poultry units and assessing pest status in poultries. Evaluation of commercially available domestic insect pest control products through bioassays. Identification of honey bee species, bee castes

and special adaptations, identification and handling of bee-keeping equipments. Handling of honey bees-hive and frame inspection. Honey extraction and processing methods of hive products extraction. Preparation of bee-keeping projects for funding. Visit to bee nursery and commercial apiaries. Silkworm rearing and management. Lac host and crop 28 management technology and processing of lac. Products and bye-products of lac.

ENT 517

VERTEBRATE PEST MANAGEMENT

2(1+1)

Objective

To impart knowledge on vertebrate pests like birds, rodents, mammals etc., 26 of different crops, their biology, damage they cause and management strategies.

Theory

Vertebrate pests of different crops; biology of vertebrate pests such as rodents, birds and other mammals. Biology of beneficial birds. Population dynamics and assessment, patterns of pest damage and assessment, roosting and nesting systems in birds. Management strategies- physical (trapping, acoustics and visual), chemical (poisons, repellents, fumigants and anticoagulants), biological (predators, parasites), cropping practices, alteration of habitats, diversion baiting and other eco-friendly methods- Operational practices- baiting, bioassays (LD50 studies), equipments and educative programmes.

Practical

Identification of important rodent and other vertebrate pests of agriculture, food preference and hoarding, social behaviour, damage assessment, field survey, population estimation, control operation and preventive methods.

ENT 520

PLANT QUARANTINE

2(2+0)

Objective

To acquaint the learners about the principles and the role of Plant Quarantine in containment of pests and diseases, plant quarantine regulations and set-up.

Theory

Definition of pest, pesticides and transgenics as per Govt. notification; relative importance; quarantine – domestic and international. Quarantine restrictions in the movement of agricultural produce, seeds and planting material; case histories of exotic pests/diseases and their status. Plant protection organization in India. Acts related to registration of pesticides and transgenics. History of quarantine legislations, PQ Order 2003. Environmental Acts, Industrial registration; APEDA, Import and Export of bio-control agents. Identification of pest/disease free areas; contamination of food with toxigens, microorganisms and their elimination; Symptomatic diagnosis and other techniques to detect pest/pathogen

infestations; VHT and other safer techniques of disinfestation/salvaging of infected material.

WTO regulations; non-tariff barriers; Pest risk analysis, good laboratory practices for pesticide laboratories; pesticide industry; Sanitary and Phytosanitary measures.