

FACULTY OF ENGINEERING AND TECHNOLOGY REGULATIONS 2015 B. TECH – AERONAUTICAL ENGINEERING (FULL TIME) CURRICULUM & SYLLABUS CHOICE BASED CREDIT SYSTEM (I-VIII SEMESTERS)

DEPARTMENT OF AERONAUTICAL ENGINEERING

BHARATH INSTITUTE OF SCIENCE AND TECHNOLOGY NO: 173, AGARAM ROAD, SELAIYUR, CHENNAI -600 073, TAMIL NADU

B.TECH - AERONAUTICAL ENGINEERING CURRICULUM AND SYLLABUS CHOICE BASED CREDIT SYSTEM I – VIII SEMESTERS

SEMESTER I									
Code No.	Category	Course Title	L	Т	Р	С			
		THEORY							
BEN101	HS	English-I	3	1	0	3			
BMA101	BS	Mathematics –I		1	0	3			
BPH 101	BS	Engineering Physics – I	3	0	0	3			
BCH101	BS	Engineering Chemistry – I		0	0	3			
BCS101	ES	Fundamentals of Computing and Programming		0	0	3			
BSS101	HS	Personality Development		1	0	2			
BBT 102	BS	Biology for Engineers		0	0	2			
BCE101	ES	Basic Civil Engineering	2	0	0	2			
BME101	ES	Engineering Graphics-E	2	3	0	4			
		PRACTICAL							
BCM1L1	ES	Basic Civil and Mechanical Engineering Practices Laboratory	0	0	3	1			
BSS1L4/ 1L5/IL6	HS								
E- Civil,	Mechanical	, Aeronautical Branches	1						
Total No.	of Contact 1	Hours: 35 Total No. of C	Credit	s: 27					
** Engineering graphics – Final examination will be evaluated by internal faculty.									
* Laboratory classes on alternate weeks. The lab examinations will be held only in the second									
semester (including the first semester experiments also).									

SEMESTER II									
Code No.	Category	Course Title	L	Т	Р	С			
	I	THEORY		1					
BEN 201	HS	English-II	3	1	0	3			
BMA201	BS	Mathematics- II	3	1	0	3			
BPH 201	BS	Engineering Physics – II	3	0	0	3			
BCH201	BS	Engineering Chemistry – II	3	0	0	3			
	HS	Foreign/Indian Language		0	0	3			
BME202	ES	Engineering Mechanics		1	0	3			
BEE201	ES	Basic Electrical and Electronics Engineering	2	0	0	2			
		PRACTICAL							
BCS2L2	ES	Computer Practices Lab	0	0	3	1			
BEE2L1	ES	Basic Electrical and Electronics Engineering Practices	0	0	3	1			
BPC2L1*	BS	Physics and Chemistry Laboratory	0	0	3/3	1			
BSS2L7	HS	Yoga to be conducted during week ends				1			
BJP201- Ja	apanese, BK	ving courses: BFR201 – French, BGM201 - R201 – Korean, BCN201 – Chinese, BTM2	201 – Tai	nil					
*Laborator	y Classes or	alternate weeks for Physics and Chemistr	ry. The la	ab exa	mination	ns will			
be held only	y in the seco	nd semester (including the first semester ex	perimen	ts also)					
Total No. of Contact Hours: 35Total No. of Credits: 24									

	SEMESTER III								
Code No.	Category	Course Title	L	Т	Р	С			
	THEORY								
BMA301	BS	Mathematics – III	3	2	0	4			
BAN301	PC	Fundamentals of Aeronautics and Astronautics	3	0	0	3			
BAN302	PC	Fundamentals of Fluid Mechanics	4	0	0	4			

BAN303	PC	Fundamentals of Aero - Thermodynamics	4	0	0	4		
BAN304	PC	Fundamentals of Structural Mechanics	4	0	0	4		
BAN305	PC	Mechanics of Machines	3	0	0	3		
PRACTICALS								
BAN3L1	PC	Fluid Mechanics and Machineries Laboratory	0	0	3	2		
BAN3L2	PC	Strength of Materials Laboratory	0	0	3	2		
BME3L1	PC	Machine Drawing	0	0	3	2		
Total No. of Con	Total No. of Contact Hours: 32Total No. of Credits: 28							

SEMESTER IV								
Code No.	Category	Course Title	L	Т	Р	С		
THEORY								
BMA402	BS	Numerical Methods	3	2	0	4		
BAN401	PC	Aircraft Structures – I	4	0	0	4		
BAN402	PC	Aerodynamics – I	4	0	0	4		
BAN403	PC	Aircraft Propulsion	4	0	0	4		
BAN404	PC	Aircraft Systems and Instrumentation	3	0	0	3		
BCE407	HS	Environmental Studies	3	0	0	3		
		PRACTICALS				-		
BAN4L1	PC	Aircraft Structures Laboratory	0	0	3	2		
BAN4L2	PC	Manufacturing Engineering Laboratory	0	0	2	1		
BAN4S1	PR	Computer Aided Design and Drafting	0	0	2	1		
Total No. of Conta	Total No. of Contact Hours: 30Total No. of Credits: 26							

	SEMESTER V							
Code No.	Category	Course Title	L	Т	Р	С		
	THEORY							
BAN501	PC	Aircraft Structures – II	4	0	0	4		
BAN502	PC	Aerodynamics – II	4	0	0	4		
BAN503	PC	Advanced Aerospace Propulsion	4	0	0	4		
BAN504	PC	Flight mechanics	4	0	0	4		
BAN505	ES	Manufacturing Engineering	3	0	0	3		

-	CE	Core Elective – I	3	0	0	3		
PRACTICALS								
BAN5L1	PC	Aerodynamics Laboratory	0	0	3	2		
BAN5L2	PC	Aero Design and Modeling Laboratory	0	0	2	1		
BAN5S2	PR	Computer Aided Analysis Laboratory	0	0	2	1		
BAN5C1	PR	Comprehension - I	0	0	0	1		
Total No. of Contact Hours: 29Total No. of Credits: 27								

	SEMESTER VI								
Code No.	Category	Course Title	L	Т	Р	С			
		THEORY			1				
BSS601	HS	Value Education and professional Ethics	3	0	0	3			
BAN601	PC	Aerospace Structural Materials and Composites	3	0	0	3			
BAN602	PC	Finite Element Methods	4	0	0	4			
BAN603	PC	Control Engineering	3	0	0	3			
-	CE	Core Elective – II	3	0	0	3			
-	NE	Non – Major Elective – I	3	0	0	3			
		PRACTICALS							
BAN6V1	PR	Value Added Program – II	0	0	2	1			
BAN6L1	PC	Aircraft System Laboratory	0	0	3	2			
BAN6L2	PC	Propulsion Laboratory	0	0	3	2			
BAN6L3	PC	Aircraft Design Project – I	0	0	4	2			
Total No. of Contac	Total No. of Contact Hours: 31Total No. of Credits: 26								

	SEMESTER VII								
Code No.	Category	Course Title	L	Т	Р	С			
	THEORY								
BAN701	PC	Computational Fluid Dynamics	3	0	0	3			
BAN702	PC	Avionics	3	0	0	3			
BAN703	PC	Heat Transfer	3	0	0	3			
-	CE	Core Elective – III	3	0	0	3			

-	NE	Non – Major Elective – II	3	0	0	3		
-	OE	Open Elective – I	3	0	0	3		
PRACTICALS								
BAN7L1	PC	Airframe and Aero Engine Repair Lab	0	0	2	1		
BAN7L2	PC	Avionics Laboratory	0	0	2	1		
BAN7L3	PC	Aircraft Design Project – II	0	0	4	2		
BAN7P1	PR	Term Paper	0	0	4	2		
Total No. of Contact Hours: 30			Total No. of Credits: 24					

SEMESTER VIII								
Code No.	Category	Course Title	L	Т	Р	С		
THEORY								
-	NE	Non – Major Elective – III	3	0	0	3		
-	OE	Open Elective – II	3	0	0	3		
		PRACTICALS	·	•				
BAN8C2	PR	Comprehension – II	0	0	0	1		
BAN8P1	PR	Project Work	0	0	18	9		
Total No. of Contact Hours: 24 Total No. of Credits:					ts: 16			

OVERALL CREDITS FOR THE PROGRAMME : 198

LIST OF ELECTIVES

List of Core Elective(CE) I:

Code No.	Course Title	L	Т	Р	С
BANE01	Basics of Aircraft Maintenance and Repair#	3	0	0	3
BANE02	Rockets and Missiles*	3	0	0	3
BANE03	Experimental Stress Analysis\$	3	0	0	3
BANE04	Experimental Aerodynamics+	3	0	0	3

List of Core Elective (CE)II:

Code No.	Course Title	L	Т	Р	С
BANE05	Helicopter Maintenance#	3	0	0	3
BANE06	Space Mechanics*	3	0	0	3
BANE07	Theory of Vibrations\$	3	0	0	3
BANE08	Helicopter Aerodynamics+	3	0	0	3

List of Core Elective (CE) III:

Code No.	Course Title	L	Т	Р	С
BANE09	Aircraft Engine Repair and Maintenance#	3	0	0	3
BANE10	Cryogenic Rocket Propulsion*	3	0	0	3
BANE11	Theory of Plates and Shells\$	3	0	0	3
BANE12	Hypersonic Aerodynamics+	3	0	0	3

- Specialization in Maintenance

- * Specialization in Propulsion
- **\$-** Specialization in Structures

+ - Specialization in Aerodynamics

List of Non Major Elective (NE) I:

Code No.	Course Title	L	Т	Р	С
BANE13	An Introduction to Combustion	3	0	0	3
BANE14	Principles of Turbo machinery in Air breathing Engines	3	0	0	3
BANE15	Nano Science and Technology	3	0	0	3
BANE16	Unmanned Aerial Vehicle	3	0	0	3

List of Non Major Elective (NE) II:

Code No.	Course Title	L	Т	Р	С
BANE17	Boundary Layer Theory	3	0	0	3
BANE18	Fatigue and Fracture Mechanics	3	0	0	3
BANE19	High Temperature Materials	3	0	0	3

List of Non Major Elective (NE) III:

Code No.	Course Title	L	Т	Р	С
BANE20	Wind Energy	3	0	0	3
BANE21	Satellite Technology	3	0	0	3
BANE22	Aircraft Rules and Regulations CAR I and II	3	0	0	3

List of Open Elective (OE) I:

Code No.	Course Title	L	Т	Р	С
BBA001	Principles of Management and Organizational Behavior	3	0	0	3
BANE23	Airport Management	3	0	0	3
BANE24	Aerospace Bio – Medical and Life Support Engineering	3	0	0	3

List of Open Elective (OE) II:

Code No.	Course Title	L	Т	Р	С	
----------	--------------	---	---	---	---	--

BBA008	Total Quality Management	3	0	0	3
BANE25	Industrial Aerodynamics	3	0	0	3
BANE26	Mechanics of Heterogeneous Materials	3	0	0	3
BBA007	Engineering Economics and Cost Analysis	3	0	0	3

BE	N101		E	NGLI	SH - I						Ι		Т	Р	С	
			To	otal Co	ontact	Hours	- 60				3	;	1	0	3	
			Pr	erequi	isite –	+2 Le	vel En	ıglish						1		
			С	ourse	Design	ed by	– Dep	ot of En	glish							
To con	JECT make fidenc	the s e in sj	tuden peech	, readi	ing and			es of c	ommu	nication fo	or fluenc	ey and	d at	tainı	nent of	
CO						ance of	of beir	ng respo	onsible	e, logical, a	nd thoro	ugh.				
CO	2	Resp	ond t	the the	situatio	ons wh	nere sh	nort rep	orts ar	nd instruction	ons are r	equire	ed.			
CO	3	Exp	lain "	how th	nings v	vork",	and w	hat to s	sugges	t when "thi	ngs don	't woi	rk			
CO	4	Dev	elop c	our confidence and authority in the practical use of language.												
CO	5	Und	erstar	d the	import	ance o	of beir	ng respo	onsible	e, logical, a	nd thoro	ugh.				
CO	6	e to Fa	ace in	tervie	ws and	l comp	etitive	e exami	nation	18						
		(I								gram outco -High, M-N			W			
1	COs/		а	b	С	d	e	f	<u> </u>	h	i		1	k	1	
2	CC		Η	Η	Η	Η	Η	М	L	L	Н	Η]	Η	Н	
	CC								L							
	CC CC		H H	М				M	H L	Н	H H				<u>Н</u> Н	
	CC		11	IVI				101	L		11				11	
	CC		Н		Н	Η	Η	Н	L		Н	Η	ľ	Ν	Н	
3	Categ	gory	Humanities & Social Studies (HS)	,	Basic Sciences &Maths (BS)	Engg Sciences		Professional Core (PC)		Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)		Project/	Project/ Term Paper/ Seminar/ Internship (PR)	
1	A	ovel		V		27th	Mast		andar	nio Comeil	Mar 20)15				
4	Appr	oval				37 th	Meeti	ng of A	caden	nic Council	, May 20	115				

UNIT I STRUCTURES

12

Parts of speech - Active and passive voices - Subject verb agreement. - Writing about School life, Hobbies, Family and friends – Word formation with prefixes and suffixes - Tenses - Concord - Summarizing - Note-making

9

UNIT II TRANSCODING

Cause and effect relations - Punctuations -Differences between verbal and nonverbal communication - E - mail communication - Homophones - Etiquettes of E mail communication. Interpreting graphic representation - Flow chart and Bar chart.

UNIT III REPORTING

Degrees of comparison - Positive, Comparative, Superlative - questions- SI units - Lab reports -Physics chemistry, workshop and Survey report for introducing new product in the market.

UNIT IV FORMAL DOCUMENTATION

Writing project proposals - Presentation skills - Prefixes and suffixes - If conditions - Writing a review-Preparing minutes of the meeting, Agenda, official circulars.

UNIT V **METHODOLOGY**

Accident reports (due to flood and fire) - Hints development - Imperatives - Marking the stress Connectives, prepositional relatives.

TEXT BOOK

1. Department Of Humanities and Social Sciences Division, Anna University, Oxford University Press, 2013.

REFERENCES:

- 1. S.P.Danavel, English and Communication for Students of Science and Engineering, Orient Blackswan, Chennai, 2011.
- 2. Rizvi, M.Asharaf, Effective Technical Communication, New Delhi, Tata McGraw Hill Publishibg Company, 2007.
- 3. Murali Krishna and SunithaMoishra, Communication Skills for Engineers . Pearson, New Delhi, 2011.

BMA101	MATHEMATICS I	L	Т	Р	C
	Total Contact Hours - 60	3	1	0	3
	Prerequisite – + 2 Level Mathematics				
	Course Designed by – Dept of Mathematics				
OBJECTIV	ES				

To make the students learn Mathematics in order to formulate and solve problems effectively in their respective fields of engineering.

UNIT 1 **MATRICES**

12

Characteristic equations- Eigen values and eigen vectors of the real matrix- Properties- Cayley-Hamilton theorem(Excluding proof)- Orthogonal transformation of a symmetric matrix to diagonal form- Quadratic form- Reduction of quadratic form to canonical form by orthogonal transformation.

12

12

12

9

UNIT II THREE DIMENSIONAL ANALYTICAL GEOMETRY

Equation of a Sphere- Plane section of a sphere- Tangent plane- Equation of cone- Right circular cone- Equation of a cylinder- Right circular cylinder.

DIFFERENTIAL CALCULUS UNIT III

Curvature in Cartesian coordinates- Centre and radius of curvature- Circle of curvature-Evolutes-Envelopes- Applications of Evolutes and Envelopes.

UNIT 1V **FUNCTIONS OF SEVERAL VARIABLES**

Partial derivatives- Euler's theorem for homogeneous functions- Total derivatives-Differentiation of implicit functions- Jacobians- Taylor's expansion- Maxima and Minima-Method of Lagrangian multipliers.

UNIT V **MULTIPLE INTEGRALS**

Double integration- Cartesian and Polar coordinates- Change of order of integration- Change of variables between Cartesian and Polar coordinates- Triple integration in Cartesian coordinates-Area as double integral- Volume as triple integral.

TEXT BOOK:

- 1. Ravish R.Singh and Mukkul Bhatt, "Engineering Mathematics-I" First Reprint, Tata McGraw Hill Pub Co., New Delhi. 2011.
- 2. Grewal.B.S, "Higher Engineering Mathematics", 40th Edition, Khanna Publications, Delhi. 2007.

REFERENCES:

- 1. Ramana.B.V. "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 2007.
- 2. Glyn James, "Advanced Engineering Mathematics", 7thEdition, Pearson Education, 2007.
- 3. Erwin Kreyszig, "Advanced Engineering Mathematics", 8th Edition, John Wiley and Sons, New York, 2003.
- 4. Murray R.Spiegel, "Advanced Calculus", Schaum's Outline Series, First Edn, McGraw Hill Intl Book Co., New Delhi, 1981.

PH101	ENGINEERING PHYSICS I	L	Т	P	С
	Total Contact Hours - 45	3	0	0	3
	Prerequisite – +2 level Physics				
	Course Designed by – Department of Physics				
OBJECTI	VES:				

To enhance the fundamental knowledge in Physics and its applications relevant to various stream Engineering and Technology

UNIT I **CRYSTAL PHYSICS**

Lattice - Unit cell - Bravais lattice - Lattice planes - Miller indices - d spacing in cubic lattice -Calculation of number of atoms per unit cell - Atomic radius - Coordination number - Packing factor for SC, BCC, FCC and HCP structures – Diamond and graphite structures (qualitative treatment)- Crystal growth techniques -solution, melt (Bridgman and Czochralski) and vapour growth techniques (qualitative)

12

12

12

UNIT II PROPERTIES OF MATTER AND THERMAL PHYSICS

Elasticity-Hooke's law - Relationship between three modulii of elasticity (qualitative) – stress - strain diagram – Poisson's ratio –Factors affecting elasticity –Bending moment – Depression of a cantilever –Young's modulus by uniform bending- I-shaped girders Modes of heat transfer-thermal conductivity- Newton's law of cooling - Linear heat flow – Lee's disc method – Radial heat flow – Rubber tube method – conduction through compound media (series and parallel).

UNIT III QUANTUM PHYSICS

Black body radiation – Planck's theory (derivation) – Deduction of Wien's displacement law and Rayleigh – Jeans' Law from Planck's theory – Compton effect. Theory and experimental verification – Properties of Matter waves – G.P Thomson experiment-Schrödinger's wave equation – Time independent and time dependent equations – Physical significance of wave function – Particle in a one dimensional box - Electron microscope - Scanning electron microscope.

UNIT IV ACOUSTICS AND ULTRASONICS

Classification of Sound- decibel- Weber–Fechner law – Sabine's formula- derivation using growth and decay method – Absorption Coefficient and its determination –factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - acoustic grating -Non Destructive Testing – pulse echo system through transmission and reflection modes - A,B and C – scan displays, Medical applications – Sonogram.

UNIT V PHOTONICS AND FIBRE OPTICS

Spontaneous and stimulated emission- Population inversion –Einstein's A and B coefficients - derivation. Types of lasers – Nd:YAG, CO2, Semiconductor lasers (homo junction & hetero junction)- Industrial and Medical Applications. Principle and propagation of light in optical fibres – Numerical aperture and Acceptance angle - Types of optical fibres (material, refractive index, mode) – attenuation, dispersion, bending - Fibre Optical Communication system (Block diagram) - Active and passive fibre sensors- Endoscope.

TEXT BOOKS:

- 1. Jayaraman D Engineering Physics I. Global Publishing House, 2014.
- 2. Arumugam M. Engineering Physics. Anuradha publishers, 2010.
- 3. Gaur R.K. and Gupta S.L. Engineering Physics. DhanpatRai Publishers, 2009.
- 4. Mani Naidu S. Engineering Physics, Second Edition, PEARSON Publishing, 2011.

REFERENCES:

- 1. Searls and Zemansky. University Physics, 2009
- 2. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009.
- 3. Palanisamy P.K. Engineering Physics. SCITECH Publications, 2011.
- 4. <u>http://ocw.mit.edu/courses/find-by-topic</u>
- 5. <u>http://nptel.ac.in/course.php?disciplineId=122</u>
- 6. <u>https://en.wikipedia.org/wiki/Engineering_physics</u>

BCH101	ENGINEERING CHEMISTRY - I	L	Τ	Р	C
	Total Contact Hours - 45	3	0	0	3

9

9

9

9

Prerequisite – +2 Level Chemistry
Course Designed by – Department of Chemistry

OBJECTIVES

To impart a sound knowledge on the principles of chemistry involving the different applica oriented topics required for all engineering branches.

UNIT I WATER TECHNOLOGY

Introduction-Characteristics : Hardness of water – types - temporary and permanent hardness - estimation by EDTA method Alkalinity – types of alkalinity - Phenolphthalein and Methyl orange alkalinity - determination –Domestic water treatment – disinfection methods (Chlorination, Ozonation , UV treatment) Boiler feed water – requirements – disadvantages of using hard water in boilers Internal conditioning (Calgon Conditioning method) – External conditioning – Demineralization process – Desalination and Reverse osmosis.

UNIT II POLYMERS

Introduction-Polymers- definition – polymerization – degree of polymerization - types of polymerization – Addition polymerization and Condensation polymerization – Mechanism of Polymerization - free radical polymerization mechanism only, Plastics: Classification – thermoplastics and thermosetting plastics – difference between thermoplastics and thermosetting plastics - preparation, properties and uses of PVC, Teflon, nylon-6,6, PET, Rubber :Types – drawbacks of natural rubber -vulcanization of rubber - properties and uses of vulcanized rubber Synthetic rubbers – butyl rubber and SBR

UNIT III ELECTRO CHEMISTRY

Introduction CELLS: types of Electrochemical cells , Electrolytic cells – Reversible and irreversible cells EMF – measurement of EMF– Single electrode potential – Nernst equation Reference electrodes : Standard Hydrogen electrode -Calomel electrode Ion selective electrode :Glass electrode and measurement of pH using Glass electrode Electrochemical series – significance Titrations :Potentiometer titrations (redox - Fe²⁺vs dichromate titrations) Conduct metric titrations (acid-base – HCI vs, NaOH titrations)

UNIT IV CORROSION AND CORROSION CONTROL

Introduction: Chemical corrosion Definition - Chemical Corrosion - Electrochemical corrosion – different types – galvanic corrosion – differential aeration corrosion – mechanism of Chemical and Electrochemical corrosion factors influencing corrosion control – sacrificial anode and impressed cathodic current methods – Protective coatings :Paints– constituents of the paint and their functions Metallic coatings – electroplating of Gold and electro less plating of Nickel.

UNIT V NON-CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICES 9

Introduction : Nuclear fission and nuclear fusion reactions – differences between nuclear fission and nuclear fusion reactions – nuclear chain Reactions – nuclear energy critical mass - super critical mass - sub - critical mass Light water nuclear reactor for power generation (block diagram only) – breeder reactor Solar energy conversion – solar cells – wind energy Fuel cells – hydrogen – oxygen fuel cell Batteries :Primary and secondary Batteries – differences between Primary and secondary Batteries Secondary batteries :Lead–acid storage battery –working –uses Nickel–cadmium battery - working –uses Solid – state battery : Lithium battery

9

9

9

TEXT BOOKS:

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry" DhanpatRai Pub, Co., New Delhi (2002).
- 2. S.S. Dara "A text book of engineering chemistry" S.Chand&Co.Ltd., New Delhi (2006).
- 3. P. J. Lucia, M. Subhashini, "Engineering Chemistry, Volume 1", Crystal Publications, Chennai, (2007).

REFERENCES:

- 1. B.K.Sharma "Engineering chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001).
- 2. B. Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub.Co.Ltd, New Delhi (2008).
- 3. http://ocw.mit.edu/courses/find-by-topic
- 4. http://nptel.ac.in/course.php?disciplineId=122
- 5. https://en.wikipedia.org/wiki/Electrochemistry

BCS101	FUNDAMENTALS OF COMPUTING AND PROGRAMMING	L	Τ	Р	С
	Total Contact Hours - 45	3	0	0	3
	Prerequisite – +2 level Physics				
	Course Designed by – Department of Physics				

OBJECTIVES

Students will understand the basics of computers and solve computer oriented problems using various computing tools.

INTRODUCTION TO COMPUTER UNIT I

Introduction- Characteristics of computer-Evolution of Computers-Computer Generations -Classification of Computers- Basic Computer Organization-Number system. Computer Software: Types of Software-System software-Application software-Software Development Steps

PROBLEM SOLVING AND OFFICE AUTOMATION UNIT II

Planning the Computer Program - Purpose - Algorithm - Flowcharts- Pseudo code Introduction to Office Packages: MS Word, Spread Sheet, Power Point, MS Access, Outlook.

UNIT III **INTRODUCTION TO C**

of C-Constants-Variables-Keywords-Data types-Operators and Expressions. Overview Managing Input and Output statements-Decision making-Branching and Looping statements.

UNIT IV **ARRAYS AND STRUCTURES**

Overview of C-Constants, Variables and Data types-Operators and Expressions -Managing Input and Output operators-Decision making-Branching and Looping.

INTRODUCTION TO C++ UNIT V

Overview of C++ - Applications of C++-Classes and objects-OOPS concepts -Constructor and Destructor- A simple C++ program –Friend classes and Friend Function.

TEXT BOOKS:

9

9

9

Q

- 1. Ashok, N.Kamthane,"Computer Programming", Pearson Education (2012).
- 2. Anita Goel and Ajay Mittal,"Computer Fundamentals and Programming in C", Dorling V Kindersley (India Pvt Ltd).,Pearson Education in South Asia,(2011).
- 3. Yashavant P. Kanetkar, "Let us C",13thEdition,BPB Publications(2013).
- 4. Yashavant P. Kanetkar,"Let us C++"10th Edition, BPB Publications (2013).

REFERENCES:

- 1. Pradeep K.Sinha, Priti Sinha "Foundations of Computing", BPB Publications (2013).
- 2. Byron Gottfried, "Programming with C", 2nd edition, (Indian Adapted Edition), TMH Publication.
- 3. PradipDey, Manas Ghosh, Fundamentals of Computing and Programming in 'C' First Edition, Oxford University Press(2009).
- 4. The C++ Programming Language , 4th Edition, Bjarne Stroustrop, Addison-Wesley Publishing Company (2013).

BSS101	PERSONALITY DEVELOPMENT	L	Τ	Р	С		
	Total Contact Hours - 30	1	1	0	2		
	Prerequisite – +2 Level Knowledge						
	Course Designed by – Department of Management Studies						
ODIECTI							

OBJECTIVES

To make students groom their personality and prove themselves as good Samaritans of society.

UNIT I INTRODUCTION TO PERSONALITY DEVELOPMENT

The concept personality- Dimensions of theories of Freud & Erickson- personality – significant of personality development. The concept of success and failure: What is success? - Hurdles in achieving success - Overcoming hurdles - Factors responsible for success – What is failure - Causes of failure. SWOT analyses.

UNIT II ATTITUDE & MOTIVATION

Attitude - Concept - Significance - Factors affecting attitudes - Positive attitude - Advantages - Negative attitude - Disadvantages - Ways to develop positive attitude - Difference between personalities having positive and negative attitude. Concept of motivation - Significance - Internal and external motives - Importance of self-motivation- Factors leading to de-motivation

UNIT III SELF-ESTEEM

Term self-esteem - Symptoms - Advantages - Do's and Don'ts to develop positive self-esteem - Low self-esteem - Symptoms - Personality having low self esteem - Positive and negative self-esteem. Interpersonal Relationships – Defining the difference between aggressive, submissive and assertive behaviours - Lateral thinking.

UNIT IV OTHER ASPECTS OF PERSONALITY DEVELOPMENT

Body language - Problem-solving - Conflict and Stress Management - Decision-making skills - Leadership and qualities of a successful leader - Character-building -Team-work - Time management -Work ethics –Good manners and etiquette.

6

,

6

6

UNIT V EMPLOYABILITY QUOTIENT6

Resume building- The art of participating in Group Discussion – Acing the Personal (HR & Technical) Interview -Frequently Asked Questions - Psychometric Analysis - Mock Interview Sessions.

TEXT BOOKS:

- 1. Hurlock, E.B (2006). Personality Development, 28th Reprint. New Delhi: Tata McGraw Hill.
- 2. Stephen P. Robbins and Timothy A. Judge (2014), Organizational Behavior 16th Edition, Prentice Hall.

REFERENCE BOOKS:

- 1. Andrews, Sudhir. How to Succeed at Interviews. 21st (rep.) New Delhi. Tata McGraw-Hill 1988.
- 2. Heller, Robert. Effective leadership. Essential Manager series. Dk Publishing, 2002
- 3. Hindle, Tim. Reducing Stress. Essential Manager series. Dk Publishing, 2003
- 4. Lucas, Stephen. Art of Public Speaking. New Delhi. Tata Mc-Graw Hill. 2001
- 5. Mile, D.J Power of positive thinking. Delhi. Rohan Book Company, (2004).
- 6. Pravesh Kumar. All about Self- Motivation. New Delhi. Goodwill Publishing House. 2005.
- 7. Smith, B. Body Language. Delhi: Rohan Book Company. 2004

BBT102	BIOLOGY FOR ENGINEERS	L	Τ	Р	С		
	Total Contact Hours – 30	2	0	0	2		
	Prerequisite – Basic Science						
	Course Designed by – Department of Industrial Bio Tech	nolo	gy				
OBJECTIVES	1						

Gain vivid knowledge in the fundamentals and uses of biology, human system and plant system.

UNIT I INTRODUCTION TO LIFE

Characteristics of living organisms-Basic classification-cell theory-structure of prokaryotic and eukaryotic cell-Introduction to biomolecules: definition-general classification and important functions of carbohydrates-lipids-proteins-nucleic acids vitamins and enzymes-genes and chromosome.

UNIT II BIODIVERSITY

Plant System: basic concepts of plant growth-nutrition-photosynthesis and nitrogen fixation-Animal System: elementary study of digestive-respiratory-circulatory-excretory systems and their functions-Microbial System: history-types of microbes-economic importance and control of microbes.

UNIT III GENETICS AND IMMUNE SYSTEM

Evolution: theories of evolution-**Mendel's** cell division-mitosis and meiosis-evidence of e **laws** of **inheritance**-variation and speciation- nucleic acids as a genetic material-central dogma immunity-antigens-antibody-immune response.

UNIT IV HUMAN DISEASES

6

6

Definition- causes, symptoms, diagnosis, treatment and prevention of diabetes, cancer, hypertension, influenza, AIDS and Hepatitis

UNIT V **BIOLOGY AND ITS INDUSTRIAL APPLICATION**

Transgenic plants and animals-stem cell and tissue engineering-bioreactors-biopharmingrecombinant vaccines-cloning-drug discovery-biological neural networks-bioremediationbiofertilizer-biocontrol-biofilters-biosensors-biopolymers-bioenergy-biomaterials-biochips-basic biomedical instrumentation.

TEXT BOOKS:

- 1. A Text book of Biotechnology, R.C.Dubey, S. Chand Higher Academic Publications, 2013
- Diseases of the Human Body, Carol D. Tamparo and Marcia A. Lewis, F.A. Davis 2. Company, 2011.
- Biomedical instrumentation, Technology and applications, R. Khandpur, McGraw Hill 3. Professional, 2004

REFERENCE BOOKS

- Biology for Engineers, Arthur T. Johnson, CRC Press, Taylor and Francis, 2011 1.
- Cell Biology and Genetics (Biology: The unity and diversity of life Volume I), Cecie Starr, 2. Ralph Taggart, Christine Evers and Lisa Starr, Cengage Learning, 2008
- Biotechnology Expanding horizon, B.D. Singh, Kalyani Publishers, 2012 3.

	BASIC CIVIL ENGINEERING	L	Т	P	С			
BCE 101	Total Contact Hours – 30	2	0	0	2			
	Prerequisite – +2 Level Maths& Physical Science							
	Course Designed by – Department of Civil Engineering							
OBJECTIVE	OBJECTIVES: Understand the basic concepts of civil engineering.							

UNIT I **CIVIL ENGINEERING MATERIALS**

Introduction - Civil Engineering - Materials - Stones - Bricks - Sand - Cement -Plain Concrete - Reinforced Cement Concrete - Steel Sections - Timber - Plywood - Paints -Varnishes (simple examples only)

UNIT II **SURVEYING**

Surveying – objectives – classification – principles of survey-Measurement of distances – Chain survey - Determination of areas - Use of compass - Use of leveling Instrument - (simple examples only)

UNIT III FOUNDATION FOR BUILDING

Bearing Capacity of Soil - Foundation - Functions - Requirement of good foundations - Types of foundations - Merits & Demerits.

SUPERSTRUCTURE UNIT IV

Stone Masonry - Brick Masonry - Columns - Lintels - Beams - Roofing - Flooring -Plastering– White Washing (Simple examples only)

UNIT V **MISCELLANEOUS TOPICS**

5

8

6

7

Types of Bridges –Dam- purpose – selection of site - Types of Dams – Water Treatment & Supply sources – standards of drinking- distribution system. – Sewage Treatment (simple examples only)

TEXT BOOKS:

- 1. Raju.K.V.B, Ravichandran .P.T, "Basics of Civil Engineering", Ayyappa Publications, Chennai, 2012.
- 2. SeetharamanS., "Basic Civil Engineering", Anuradha Agencies, (1st ed. 2005).
- 3. Dr.M.SPalanisamy, "Basic Civil Engineering" (3rded. 2000), TUG Publishers, New Delhi/Tata McGrawHill Publication Co., New Delhi

REFERENCE BOOKS:

- 1. Rangwala.S.C, "Engineering Materials", Charotar Publishing House, Anand, 41st Edition: 2014.
- 2. National Building Code of India, Part V, "Building Materials", 2005
- 3. Ramesh Babu"A Textbook on Basic Civil Engineering" (1998). Anuradha Agencies, Kumbakonam.
- 4. RamamruthamS., "Basic Civil Engineering", DhanpatRai Publishing Co. (P) Ltd. (1999).

	ENGINEERING GRAPHICS- E	L	Т	P	С		
BME 101	Total Contact Hours - 60	2	0	3	4		
	Prerequisite – +2 Level Maths& Physical Science						
	Course Designed by – Department of Mechanica	l Engir	neerin	g			
OBJECTIVES							
To understand techr	niques of drawings in various fields of engineeri	ng					

UNIT I BASIC CURVES, PROJECTION OF POINTS AND STRAIGHT LINES 6+6

Conics-construction of ellipse, parabola and hyperbola by eccentricity method-construction of cycloids- construction of involutes of square and circle-Drawing of tangent and normal to the above curves-Scales-Basic drawing conventions and standards-Orthographic projection principles- Principal planes-First angle projection- Projection of points. Projection of straight lines (only first angle projections) inclined to both the principal planes- Determination of true lengths and true inclinations by rotating line method and trapezoidal method and traces.

UNIT II PROJECTIONS OF PLANES AND SOLIDS

Projection of planes (Polygonal and circular surfaces) inclined to both the principal planes. Projection of simple solids like prisms, pyramids, cylinder, cone, tetrahedron and truncated solids when the axis is inclined to one of the principal planes/ both principal planes by rotating object method and auxiliary plane method.

UNITIII ORTHOGRAPHIC PROJECTIONS, ISOMETRIC PROJECTIONS & FREEHANDSKETCHING 6+6

Orthographic projection of Simple parts from 3D diagram-Principles of isometric projection and isometric view-isometric scale- Isometric projections of simple solids and truncated solids-Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions and miscellaneous problems Free hand sketching of orthographic & Isometric projection

6+6

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 6+6

Sectioning of solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other-obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids- Prisms, pyramids cylinders and cones. Development of lateral surfaces of solids with cut-outs and holes

UNIT V PERSPECTIVE PROJECTION, BUILDING DRAWING AND COMPUTER AIDEDDRAFTING 6+6

Perspective projection of simple solids-Prisms, Pyramids and cylinders by visual ray method. Introduction- components of simple residential or office building-specifications-plan and elevation of different types of Residential buildings and office buildings. Introduction to drafting packages and basic commands used in AUTO CAD. Demonstration of drafting packages.

TEXT BOOKS:

- 1. N.D.Bhatt and V.M.Panchal, "Engineering Drawing", Charotar Publishing House, 50th Edition, 2010.
- 2. K.V.Natarajan "A Text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2009.

REFERENCES:

- 1. K.R.Gopalakrishna, "Engineering drawing", (Vol-I & II combined) Subhas stores, Bangalore, 2007.
- 2. K.Venugopal and V. Prabhu Raja, "Engineering Graphics", New Age International Private limited, 2008.
- 3. Luzzader, Warren.J., and Duff, John.M.,, "Fundamentals of Engineering Drawing with an introduction to Interactive computer graphics for design and production", Eastern Economy Edition, Prentice Hall of India Pvt Ltd, New Delhi,2005.

Special points applicable to University Examinations on Engineering Graphics

- 1) There will be five questions, each of either or type covering all units of the syllabus.
- 2) All questions will carry equal marks of 20 each making a total of 100.

BCM1L1	BASIC CIVIL & MECHANICALENGINEERING PRACTICES LABORATORY	L	T	Р	C		
	Total Contact Hours - 30	0	0	2	1		
Prerequisite – Basic Civil and Mechanical Engineering							
	Course Designed by – Department of Mechanical Engineering& Civil Engineering						
OBJECTIV	/ES						
To provide	exposure to the students with hands on experience on variou	is ba	nsic C	Civil &	k		
Mechanical	Engineering practices.						

LIST OF EXPERIMENTS

I. CIVIL ENGINEERING PRACTICE

Buildings:

a) Study of plumbing and carpentry components of residential and industrial buildings. Safety aspects.

Plumbing Works:

- a) Study of pipeline joints, its location and functions: valves, taps, couplings, unions, reducers, elbows in household fittings.
- b) Study of pipe connections requirements for pumps and turbines.
- c) Preparation of plumbing line sketches for water supply and sewage works.
- d) Hands-on-exercise: Basic pipe connection of PVC pipes & G.I. Pipes Mixed pipe material connection Pipe connections with different joining components.
- e) Demonstration of plumbing requirements of high-rise buildings.

Carpentry using Hand tools and Power tools:

- a) Study of the joints in roofs, doors, windows and furniture.
- b) Hands-on-exercise: Wood work, joints by sawing, planning and cutting.
- c) Preparation of half joints, Mortise and Tenon joints.

II MECHANICAL ENGINEERING PRACTICE

Welding:

a) Preparation of butt joints, lap joints and tee joints by arc welding

Basic Machining:

- **a**) Simple Turning and Taper turning
- **b**) Drilling Practice

Sheet Metal Work:

- a) Forming & Bending:
- b) Model making Trays, funnels, etc.
- c) Different type of joints
- d) Preparation of air-conditioning ducts
- e) Preparation of butt joints, lap joints and tee joints by arc welding

Machine assembly practice:

- a) Assembling, dismantling and Study of centrifugal pump
- b) Assembling, dismantling and Study of air conditioner
- c) Assembling, dismantling and Study of lathe

Moulding:

- a) Moulding operations like mould preparation for gear and step cone pulley etc **Fitting:**
- a) Fitting Exercises Preparation of square fitting and vee fitting models.

Demonstration:

- a) Smithy operations, upsetting, swaging, setting down and bending. Example–Exercise Production of hexagonal headed bolt.
- b) Gas welding.

REFERENCES:

- 1. K. Jeyachandran, S. Nararajan & S, Balasubramanian, "A Primer on Engineering Practices Laboratory", Anuradha Publications, (2007).
- 2. T.Jeyapoovan, M. Saravanapandian & S. Pranitha, "Engineering Practices Lab Manual", Vikas Publishing House Pvt. Ltd. (2006)

4. A. Rajendra Prasad & P. M. M. S Sarma, "Workshop Practice", Sree Sai Publication, (2002).

5. P. Kannaiah& K.L. Narayana, "Manual on Workshop Practice", Scitech Publication, (1999).

	ENGLISH II	L	Τ	Р	С
	Total Contact Hours – 60	3	1	0	3
BEN 2	Prerequisite – English I				
	Course Designed by – Department of English				
OBJE	CTIVES				

Students will be able to actively participate in group discussions. Students will have Telepho Skills, Giving Directions and Information Transfer

UNIT I **ORIENTATION**

Numerical adjectives - Meanings in context - Same words used as different parts of speech -Paragraph writing - Non- verbal communication - Regular and Irregular verbs.

UNIT II **ORAL SKILL**

Listening to audio cassettes - C.Ds, News bulletin - Special Lectures, Discourse - Note taking -Sentence patterns - SV, SVO, SVC, SVOC, SVOCA - and Giving Instructions - Reading Comprehension answering questions. Inferring meaning.

UNIT III **THINKING SKILL**

Self- introduction describing -Group Discussion - Debate -Role play- Telephone- Thingsetiquette- Recommendation and Sequencing jumbled sentences to make a suggestionsparagraph-advertisement and notice, Designing or drafting posters, writing formal and informal invitations and replies.

UNIT IV WRITING SKILL

Definitions - Compound nouns - Abbreviations and acronyms - (a) business or official letters(for making enquiries, registering complaints, asking for and giving information, placing orders and sending replies): (b) Letters to the editor (giving suggestions on an issue).

UNIT V FORMAL INFORMATION

Editing - Prepositions - Articles - Permission letter for undergoing practical training, Essay writing - Application for a job, letter to the principal authorities regarding admissions, other issues, requirement or suitability of course etc.

TEXT BOOK:

1. Meenakshi Raman, SangeethaSharma, Technical English for Communication: Principle and Practice, OUP, 2009.

REFERENCE BOOKS:

- 1. Sumanth, English for Engineers, Vijay Nicole, Imprints pvt ltd.2013.
- 2. Meenakshi Raman and SangeethaSharma, Technical Communication Principles and Practice, Oxford University Press, 2009.
- 3. Sangeetha Sharma, Binodmishra, Communication skills for engineers and scientists, PHI Learning Pvt Ltd, New Delhi, 2010.

12

12

12

12

12

BMA 201 Prerequisite – Mathematics I Course Designed by – Department of Mathematics **OBJECTIVES**

Ability to apply these principles of mathematics in projects and research works.

UNIT I **ORDINARY DIFFERENTIAL EQUATION**

Higher order linear differential equations with constant coefficients - Method of variation of parameters - Cauchy's and Legendre's linear equations - simultaneous first order linear equations with constant coefficients.

UNIT II **VECTOR CALCULUS**

MATHEMATICS – II

Total Contact Hours - 60

Gradient, divergence and curl -Directional derivatives -Irrotational and solenoidal vector fields - vector integration- Green's theorem in a plane, Gauss divergence theorem and Stoke's **theorem** (without proofs) – simple applications involving cubes and rectangular parallelepipeds.

UNIT III **ANALYTIC FUNCTIONS**

Functions of a complex variable – Analytic functions – Necessary conditions, Cauchy-Riemann equation and sufficient conditions (without proofs) - Harmonic and orthogonal properties of analytic functions - Harmonic conjugate - construction of analytic functions - conformal mapping: W = Z + C, CZ, 1/Z and bilinear transformation.

UNIT IV **COMPLEX INTEGRATION**

Complex integration - Statement and application of Cauchy's integral theorem and Cauchy's integral formula - Taylor and Laurent expansions - Singular points - Residues -Residue theorem -Application of Residue theorem to evaluate real integrals - Unit circle and semi-circular contour (excluding poles on boundaries).

UNIT V **STATISTICS**

Mean, Median, Mode – Moments –Skewness and Kurtosis – Correlation – Rank Correlation – Regression – Chi square test for contingency tables.

TEXT BOOK:

- 1. R.M.Kannan and B.Vijayakumar" Engineering Mathematics-II "2ndEdition, SRB Publication, Chennai 2007.
- Bali.N.P and Manish Goyal, "Engineering Mathematics", 3rdEdition, Laxmi Publications 2. (P) Lltd, 2008.
- 3. Grewal .B/S "Higher Engineering Mathematics", 40thEditon, Khanna Publications, Delhi, 2007

REFERENCES:

1. Ramana.B.V, "Higher Engineering Mathematic", Tata McGraw Hill Publishing Company, New Delhi, 2007.

12

12

L

3

Т

1

Р

0

С

3

12

12

2. Gupta SC, and VK.Kapoor, "Fundamentals Mathematical Statistics", 11thedition, Sultan Chand Sons, New Delhi, 2014.

	ENGINEERING PHYSICS -II	L	Т	Р	C		
BPH201	Total Contact Hours - 45	3	0	0	3		
	Prerequisite – ENGINEERING PHYSICS -I						
	Course Designed by – Department of Physics						
OBJECT	IVES						
	To expose the students to multiple areas of science of en which have direct relevance to different Engineering application		ng m	aterials	5		

To understand the concepts and applications of conducting, Semiconducting, • magnetic & dielectric materials as well as their optical properties.

UNIT I **CONDUCTING MATERIALS**

Conductors - classical free electron theory of metals - Electrical and thermal conductivity -Wiedemann - Franz law - Lorentz number - Draw backs of classical theory - Quantum theory -Fermi distribution function – Effect of temperature on Fermi Function – Density of energy states - carrier concentration in metals.

SEMICONDUCTING MATERIALS UNIT II

Intrinsic semiconductor - carrier concentration derivation Fermi level - Variation of Fermi level with temperature - electrical conductivity - band gap determination - compound semiconductors -direct and indirect band gap- derivation of carrier concentration in n-type and p-type semiconductor - variation of Fermi level with temperature and impurity concentration - Hall effect – Determination of Hall coefficient – Applications.

MAGNETIC AND SUPERCONDUCTING MATERIALS **UNIT III**

Origin of magnetic moment - Bohr magneton - comparison of Dia, Para and Ferro magnetism -Domain theory - Hysteresis - soft and hard magnetic materials - antiferromagnetic materials -Ferrites and its applications Superconductivity : properties - Type I and Type II superconductors - BCS theory of superconductivity(Qualitative) - High Tc superconductors - Applications of superconductors - SQUID, cryotron, magnetic levitation.

DIELECTRIC MATERIALS UNIT IV

Electrical susceptibility - dielectric constant - electronic, ionic, orientational and space charge polarization - frequency and temperature dependence of polarisation - internal field - Claussius - Mosotti relation (derivation) - dielectric loss - dielectric breakdown - uses of dielectric materials (capacitor and transformer) - ferroelectricity and applications.

UNIT V **ADVANCED ENGINEERING MATERIALS**

Metallic glasses: preparation, properties and applications. Shape memory alloys (SMA): Characteristics, properties of NiTi alloy, application, Nanomaterials- Preparation -pulsed laser deposition - chemical vapour deposition - Applications - NLO materials -Birefringence- optical Kerr effect – Classification of Biomaterials and its applications.

9

9

9

9

TEXT BOOKS:

- 1. Jayaraman D Engineering Physics II. Global Publishing House, 2014.
- 2. Palanisamy P.K. Materials Science. SCITECH Publishers, 2011.
- 3. Senthilkumar G. Engineering Physics II. VRB Publishers, 2011.

REFERENCES:

1. Arumugam M., Materials Science. Anuradha publishers, 2010

- 2. Pillai S.O., Solid State Physics. New Age International(P) Ltd., publishers, 2009
- 3. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009
- 4 <u>http://ocw.mit.edu/courses/find-by-topic</u>
- 5 <u>http://nptel.ac.in/course.php?disciplineId=122</u>
- 6 https://en.wikipedia.org/wiki/Engineering_physics

	ENGINEERING CHEMISTRY-II	L	Т	Р	С
	Total Contact Hours - 45	3	0	0	3
BCH 201	Prerequisite – ENGINEERING CHEMISTRY –I				
	Course Designed by – Department of Chemistry				

OBJECTIVES

To impart a sound knowledge on the principles of chemistry involving application orier topics required for all engineering branches.

UNIT I SURFACE CHEMISTRY

Introduction : Adsorption , absorption , desorption , adsorbent , adsorbate and sorption – (definition only) Differences between adsorption and absorption Adsorption of gases on solids – factors affecting adsorption of gases on solids – Adsorption isotherms –Frendlich adsorption isotherm and Langmuir adsorption isotherm Role of adsorbents in catalysis, Ion-exchange adsorption and pollution abatement.

UNIT II PHASE RULE AND ALLOYS

Introduction :Statement of Phase Rule and explanation of terms involved – one component system – water system – Construction of phase diagram by thermal analysis - Condensed phase rule [Definition only] Two Component System : Simple eutectic systems (lead-silver system only) – eutectic temperature – eutectic composition – Pattinsons Process of desilverisation of Lead Alloys: Importance, ferrous alloys –nichrome and stainless steel – 18/8 stainless steel -heat treatment of steel – annealing – hardening – tempering normalizing – carburizing – nit riding . Non- ferrous alloys: Brass and Bronze

UNIT III ANALYTICAL TECHNIQUES

Introduction: Type of Spectroscopy - Atomic spectroscopy – molecular spectroscopy -Explanation IR spectroscopy – principles – instrumentation (block diagram only) – applications - finger print region UV-visible spectroscopy — principle – instrumentation (block diagram only) – Beer-Lambert's law- – estimation of iron by colorimetry– Atomic absorption spectroscopy- principle - instrumentation (block diagram only) - estimation of Nickel by Atomic absorption spectroscopy Flame photometry– principles – instrumentation (block diagram only) - estimation of sodium ion by Flame photometry

UNIT IV FUELS

9

9

Introduction : Calorific value – types of Calorific value - gross calorific value – net calorific value Analysis of Coal – Proximate and ultimate analysis – hydrogenation of coal - Metallurgical coke – manufacture by Otto-Hoffmann method Petroleum processing and fractions – cracking – catalytic cracking – types – fixed bed catalytic cracking method- Octane number and Cetane number (definition only) Synthetic petrol – Bergius processes – Gaseous fuels- water gas, producer gas, CNG and LPG (definition and composition only) Flue gas analysis – importance - Orsat apparatus

UNIT V ENGINEERING MATERIALS

9

Introduction: Refractory's – classification – acidic, basic and neutral refractory's – properties (refractoriness, refractoriness under load, dimensional stability, porosity, thermal spalling) Manufacture of Refractory's: alumina bricks and Magnesite bricks, Abrasives – natural and synthetic abrasives Natural type : Siliceous - quartz ; Non –siliceous – diamond Synthetic Abrasives : silicon carbide and boron carbide. Lubricants: Liquid lubricants - Properties – viscosity index, flash and fire points, cloud and pour points, oiliness) Solid lubricants – graphite and molybdenum sulphide

TEXT BOOKS:

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry" DhanpatRaiPub, Co., New Delhi (2002).
- 2. S.S.Dara "A text book of Engineering Chemistry" S.Chand&Co.Ltd., New Delhi (2006).
- 3. P. J. Lucia, M. Subhashini, "Engineering Chemistry, Volume 1", Crystal Publications, Chennai, (2007).

REFERENCES:

- 1. B.Sivasankar "Engineering Chemistry" Tata McGraw-Hill Pub. Co.Ltd, New Delhi,(2008)
- 2. B.K.Sharma "Engineering Chemistry" Krishna Prakasan Media (P) Ltd., Meerut (2001).
- 3. http://ocw.mit.edu/courses/find-by-topic
- 4. <u>http://nptel.ac.in/course.php?disciplineId=122</u>
- 5. <u>https://en.wikipedia.org/wiki/Spectroscopy</u>

BFR 201	FRENCH	L	Т	P	С
	Total Contact Hours – 45	3	0	0	3
	Prerequisite – +2 Level English		1	1	1
	Course Designed by – Department of English				
OBIECTI	IVES				

OBJECTIVES

Language gives access and insights into another culture. It is a fundamental truth that cultures de themselves through languages.

UNIT I INTRODUCTION

8

8

At the airport: Savoir- faire: exchanging greetings, self introduction, introducing another, welcoming someone, identifying someone - Grammar: verbs 'to be', 'to call oneself', subject pronouns, interrogation

UNIT II GRAMMAR

At the University: Savoir-faire: enquiring after one's welfare, taking leave, expressing appreciation -Grammar: definite & indefinite articles, gender of nouns, adjectives, present tense of regular 'er' verbs, 'to have', 'to learn', negation, irregular verbs

UNIT III CONVERSATION

At the café: Savoir –faire: speaking about one's likes, giving information, expressing admiration, asking information about someone - Grammar: Interrogative adjectives, irregular verbs, possessive and interrogative adjectives

UNIT IV PROPOSAL WRITING

At the beach: Savoir faire: proposing an outing, accepting/ refusing the proposal - Grammar: singular & plural, indefinite pronoun, demonstrative adjectives, negation, irregular verbs

UNIT V FORMAL LETTERS

A concert: Savoir -faire: inviting, accepting, expressing one's inability to accept an invitation

UNIT VI REGULAR & IRREGULAR VERBS

Grammar: Present tense of more irregular verbs, contracted articles, future tense, interrogative adverbs, **At Nalli's**Savoir- faire: asking the price of an article, protesting against the price, Grammar: possessive adjectives, Exclamative adjectives, imperative tense

REFERENCES:

1. Course Material: Synchronie I – Méthode de Français

2. Madanagobalane - Samita Publications, Chennai, 2007

	GERMAN	L	Т	Р	С
BGM 201	Total Contact Hours – 45	3	0	0	3
	Prerequisite +2 Level English			1	-1
	Course Designed by – Department of English				
OBJECTI	VES				

At the end of this course, students shall be able to obtain good knowledge of the language read, write and speak German, whereby the emphasis is laid on speech.

Course structure:

- A. German Language (speaking, reading, writing, grammar and test)
- B. Life in Germany (shopping, restaurant, doctor, government, bank, post)
- C. The German Way (introduction, doing business, conversation, meetings, dining)
- D. Germany (Culture, Climate)

UNIT IPRONOUNCIATION

Welcome: Introduction to the Language, Spelling and Pronunciation (The alphabets and numbers) Greetings, ordering, requesting, saying thank you - Grammar – the article "the", conjugation of verbs

UNIT IISELF INTRODUCTION

7

8

7

7

Shopping - Grammar – adjectives, endings before nouns, practice. Self introduction

UNIT IIITRAINING

Addresses, Occupations, Studies - Grammar - 'to be', the definite/indefinite articles, individual Training

UNIT IVORAL

Leisure Time, Sports, Hobbies - Grammar - position of a verb in a main clause , oral practice

UNIT VNARRATION

At a Restaurant, Food and Drink - Grammar – the personal pronoun in the Nominative and Accusative, Narrating an event

RESOURCES:

1. Sprachkurs Deutsch 1 (VerlagDiesterweg), New Delhi Learning Centre

	JAPANESE	L	Т	Р	С
BJP 201	Total Contact Hours - 45	3	0	0	3
	Prerequisite – +2 Level English	•			
	Course Designed by – Department of English				
OBJEC	TIVES				
То	have a basic knowledge of Japanese language, Japanese cultur	e and	l heri	itage	
То	impart knowledge Japanese lifestyle.				
То	give sufficient exposure to develop basic conversational skills				

UNIT ICULTURAL HERITAGE

Introduction-history and origin of Japanese language-Japan and its cultural heritage-Self introduction-counting numbers (1-100)-time-conversation with the use of audio devices, grammar– usage of particles wa, no, mo and ka

UNIT IIUSAGE

Greetings, seasons, days of the week and months of the year-numbers (up to 99,999)-grammar– usage of kore, sore, are, kono, sono, ano, koko and kochira, arimasu and imasu-i-ending and naending adjectives-use of audio and drills for practice

UNIT IIIORAL

Asking the price–associated vocabulary-usage of particles ni, ga and ne- use of audio and drills for practice-Introduction to basic Kanji characters- use of audio and drills for practice

UNIT IVART AND CULTURE

Family relationships- colours-Kanji (numbers) and festivals of Japan-religion-Japanese art and culture-ikebana, origami-introduction to hiragana- use of audio and drills for practice

UNIT VDRILLS AND PRACTICE

Vocobulary associated with directions-asking way-particles - e, de, mo, koko, soko, asoko,

9

9

9

9 19*

9

9

9

9 ka

doko, nani, mae, ushiro, ue, shita- use of audio and drills for practice-introduction to katakana

TEXT BOOKS

- 1. Japanese Hiragana and Katakana for beginners, Timothy G. Stout, 2011
- 2. Genki I: An integrated course in elementary Japanese, EriBanno and Yuko Ikeda, 2011

REFERENCE BOOKS

- 1. Japanese Reader collection Volume I, YumiBoutwell and Clay Boutwell, Kotoba books, 2013
- 2. Living Language Japanese Complete Edition beginners through advanced course, Living Language, 2012

BKR 201	KOREAN	L	Τ	Р	C
	Total Contact Hours - 45	3	1	0	3
	Prerequisite – +2 Level English				
	Course Designed by – Department of English				

UNIT I PLANNING

Asking/giving reasons for studying Korean, making plans for the holiday, writing letters, describing past travel experiences and future travel plans, shopping in a grocery store, shopping in electronics store, storytelling Grammar: would like to (do), want to (do), construct future tense.

UNIT II MODIFIERS

Asking about feelings, asking about problems and giving advice, brief introductions - Grammar: Noun modifier, please try doing (something), irregular adjective/verb

UNIT III PLACING ORDERS

Asking about hobbies, asking about abilities (sports), job requirements, Ordering things for delivery, ordering a meal at a restaurant - Grammar: Sentence ending for the honorific form, please do something for me, have tried (something),

UNIT IV DESCRIPTIONS

Asking about evening plans, making plans with others, making preparations - Asking about rooms, describing your room to your classmates, describing your house. Grammar: to know/not know how to do something, must (do), have to (do), should,

UNIT V GRAMMAR

Describing your plans and giving reasons, cancelling appointments. Grammar: Shall we~? / Should we~?, with, and, irregular verbs/adjective, so, because, cannot, intend to, plan to, or hope to, (more) than, the most, tag question/is n't it? ,will (do)

COURSE MATERIAL:

Korean for Non-Native Speakers (Student Book 1B) Korean Language Education Center, Sogang University

9

9

9

99

BCN 201	CHINESE	L	Τ	Р	С
	Total Contact Hours - 60	3	0	0	3
	Prerequisite – +2 Level English				
	Course Designed by – Department of English				
OBJECTIV	ES				
To hav	e a basic knowledge of Chinese language, Chinese culture	e and h	nerita	ge	
To imp	part knowledge on Chinese lifestyle and heritage.				

UNIT 1 RISE OF DIALECTS

History, Origins, Old and middle Chinese, Rise of northern dialects

UNIT IIV ARIETIES

Influences 3 Varieties of Chinese. 1. Classification 2. Standard Chinese and 3. Nomenclature

UNIT III CHARACTERS

Chinese characters, Homophones, Phonology

UNIT IV TRANSCRIPTIONS

Tones, Phonetic transcriptions, Romanization, Other phonetic transcriptions

UNIT V GRAMMAR

Grammar and morphology, Vocabulary, Loanwords, Modern borrowings and loanwords

REFERENCES:

- Hannas, William C. (1997), Asia's Orthographic Dilemma, University of Hawaii Press, ISBNHYPERLINK "http://en.wikipedia.org/wiki/Special:BookSources/978-0-8248-1892-0" 978-0-8248-1892-0.
- Qiu, Xigui (2000), Chinese Writing, trans. Gilbert Louis Mattos and Jerry Norman, Society for the Study of Early China and Institute of East Asian Studies, University of California, Berkeley, ISBN HYPERLINK

http://en.wikipedia.org/wiki/Special:BookSources/978-1-55729-071-7,978-1-55729-071-7.

- Ramsey, S. Robert (1987), The Languages of China, Princeton University Press, ISBNHYPERLINK "http://en.wikipedia.org/wiki/Special:BookSources/978-0-691-01468-5"
 978-0-691-01468-5.
- **4.** Schuessler, Axel (2007), ABC Etymological Dictionary of Old Chinese, Honolulu: University of Hawaii Press, ISBNHYPERLINK

"http://en.wikipedia.org/wiki/Special:BookSources/978-0-8248-2975-9"978-0-8248-2975-9.

5. R. L. G. " Language borrowing Why so little Chinese in English?" The Economist. June 6, 2013.

	ENGINEERING MECHANICS	L	Т	P	С				
BME 202	Total Contact Hours – 60	3	1	0	3				
	Prerequisite – Engineering Mathematics I, II, Engg. Physics		•						
	Course Designed by – Department of Mechanical Engineering								
OBJECTIVES: To understand the concept of basic engineering mechanism									

9

9

9

UNIT I BASICS AND STATICS OF PARTICLES

Introduction - Units and Dimensions - Laws of Mechanics – Lame's theorem, Parallelogram and triangular Law of forces – Vectors –Vectorial representation of forces and moments – Vector operations on forces - Coplanar Forces – Resolution and Composition of forces – Resultant of several concurrent forces - Equilibrium of a forces – Forces in space - Equilibrium of particle in space - Equivalent systems of forces – Principle of transmissibility – Single equivalent force.

UNIT II EQUILIBRIUM OF RIGID BODIES

Free body diagram – Types of supports and their reactions – requirements of stable equilibrium – Moments and Couples – Moment of a force about a point and about an axis –Vectorial representation of moments and couples– Scalar components of a moment – **Varignon's theorem** - Equilibrium of Rigid bodies in two dimensions -Equilibrium of Rigid bodies in three dimensions.

UNITIII PROPERTIES OF SURFACES AND SOLIDS

Determination of areas – First moment of area and the Centroid of standard sections – T section, I section, Composite figures, Hollow section – second moments of plane area – Rectangle, triangle, circle - T section, I section, Hollow section – Parallel axis theorem and perpendicular axis theorem – Polar moment of inertia – Principal moments of inertia of plane areas – Principal axes of inertia – Basic concept of Mass moment of inertia.

UNITIV FRICTION

Frictional force – Laws of Coloumb friction – Cone of friction – Angle of repose – Simple contact friction – Sliding of blocks – Wedge friction - Ladder friction – Screw Jack – Belt friction - Rolling resistance.

UNIT V DYNAMICS OF PARTICLES

Displacements, Velocity and acceleration, their relationship – Relative motion – Relative acceleration – Curvilinear motion of particles – **Newton's law** – work energy equation – impulse and Momentum – Impact of elastic bodies.

TEXT BOOK:

- 1. Beer, F.P and Johnson Jr. E.R, "Vector Mechanics for Engineers: Vol. 1 Statics and vol. 2 Dynamics", McGraw-Hill International Edition, 2013.
- 2. Rajasekaran, S, Sankarasubramanian, G., Fundamentals of Engineering Mechanics, Vikas Publishing House Pvt., Ltd., 2011.

REFERENCES :

- 1. Kumar, K. L Kumar, V., Engineering Mechanics, Tata McGraw Hill, New Delhi, 2010
- Palanichamy, M.S., Nagan, S., Engineering Mechanics Statics & Dynamics, Tata McGraw - Hill, 2013.
- 3. Timoshenko, and Young, Engineering Mechanics, Tata McGraw-Hill, New Delhi, 2013.
- 4. Irving H. Shames, Engineering Mechanics Statics and Dynamics, IV Edition Pearson Education Asia Pvt., Ltd., 2006.

29

12

12

12

12

	BASIC ELECTRICAL AND	L	Т	P	C			
	ELECTRONICS ENGINEERING							
DEE 201	Total Contact Hours - 30	2	0	0	2			
BEE 201	Prerequisite – Engineering Mathematics, Engineering Physi	cs-I &	& II					
	Course Designed by – Department of Electrical & Electronics Engineering							
OBJECTIVE	S: To understand the laws of electrical engineering.							

UNIT I ELECTRIC CIRCUITS

Ohm's law – Kirchoff's Laws, V – I Relationship of Resistor (R) Inductor (L) and capacitor (C). Series parallel combination of R, L&C – Current and voltage source transformation – mesh current & node voltage method –superposition theorem –Thevenin's and Norton's Theorem – Problems.

UNIT II ELECTRICAL MACHINES

Construction, principle of operation, Basic Equations and applications - D.C.Generators and D.C.Motors. -Single phase Induction Motor - Single Phase Transformer.

UNIT III BASIC MEASUREMENT SYSTEMS

Introduction to Measurement Systems, Construction and Operating principles of PMMC, Moving Iron, Dynamometer Wattmeter, power measurement by three-watt meter and two watt method – and Energy meter.

UNIT IV SEMICONDUCTOR DEVICES

Basic Concepts of semiconductor devices – PN Junction Diode Characteristics and itst Applications – HWR, FWR –Zener Diode – BJT (CB, CE, CC) configuration & Characteristics.

UNIT V DIGITAL ELECTRONICS

Number system – Logic Gates – Boolean Algebra– De-**Morgan's Theorem** – Half Adder & Full Adder – Flip Flops.

TEXT BOOKS:

- 1. N.Mittal "Basic Electrical Engineering". Tata McGraw Hill Edition, New Delhi, 1990.
- 2. A.K. Sawhney, 'A Course in Electrical & Electronic Measurements & Instrumentation', DhanpatRai and Co, 2004.
- 3. Jacob Millman and Christos C-Halkias, "Electronic Devices and Circuits", Tata McGraw Hill

REFERENCE BOOKS:

- 1. Edminister J.A. "Theory and Problems of Electric Circuits" Schaum's Outline Series. McGrawHill Book Compay, 2nd Edition, 1983.
- 2. Hyatt W.H and Kemmerlay J.E. "Engineering Circuit Analysis", McGraw Hill International Editions, 1993.
- 3. D. P. Kothari and I. J. Nagrath" Electric Machines" Tata McGraw-Hill Education, 2004
- 4. Millman and Halkias, "Integrated Electronics", Tata McGraw Hill Edition, 2004.

6

6

6

6

6

(

	COMPUTER PRACTICE LABORATORY	L	Т	Р	С
DOG	Total Contact Hours - 45	0	0	3	1
BCS 2L2	Prerequisite – Fundamentals of Computer				
	Course Designed by – Department of Computer Scien	ce &Engii	neerin	g	
OBJE	CTIVES: To impart basic computer knowledge				

A) WORD PROCESSING

Document creation, Text manipulation with Scientific Notations. Table creation, Table formatting and Conversion. Mail merge and Letter Preparation. Drawing-Flow Chart

B) SPREAD SHEET

Chart-Line Xy Bar and Pie – Formula-Formula Editor-Spread sheet-Inclusion of Object, Picture and Graphics Protecting the document and sheet-Sorting and Import/Export features.

C) SIMPLE C PROGRAMMING*

Data types, Expression Evaluation, Condition Statement. Arrays structures and Unions – Functions

D) SIMPLE C++PROGRAMMING

-Classes and Objects -Constructor and Destructor

*For Programming exercises Flow chart and Pseudo code are essential.

	BASIC ELECTRICAL AND ELECTRONIC ENGINEERING PRACTICES LABORATORY	L	Т	Р	C			
BEE2L1	Total Contact Hours – 45	0	0	3	1			
	Prerequisite – Basic Electrical and Electronics Engineering							
	Course Designed by – Department of Electrical & Electronics Er	nginee	ering					
OBJECT	OBJECTIVES: To enhance the student with knowledge on electrical and electronic equipments.							

I LIST OF EXPERIMENTS FOR ELECTRICAL ENGINEERING LAB

- 1. Fluorescent lamp wiring
- 2. Stair case wiring
- 3. Measurement of electrical quantities-voltage current, power & power factor in RLC circuit
- 4. Residential house wiring using fuse, switch, indicator, lamp and energy meter
- 5. Measurement of energy using single phase energy meter
- 6. Measurement of resistance to earth of electrical equipment

II LIST OF EXPERIMENTS FOR ELECTRONICS ENGINEERING LAB

- 1. Study of electronic components and equipments.
 - a. Resistor colour coding using digital multi-meter.
 - b. Assembling electronic components on bread board.

9

6

15

- 2. Measurement of ac signal parameters using cathode ray oscilloscope and function generator.
- 3. Soldering and desoldering practice.
- 4. Verification of logic gates (OR, AND, OR, NOT, NAND, EX-OR).
- 5. Implementation of half adder circuit using logic gates.

	PHYSICS AND CHEMISTRY LABORATORY	L	Т	P	C			
	Total Contact Hours – 45	0	0	3	1			
BPC	Prerequisite – Physics and Chemistry			1				
2L1	Course Designed by – Department of Physics & Chemistry							
OBJEC	TIVES: To impart knowledge to the students in practical physics and che	emist	ry					

I -LIST OF EXPERIMENTS – PHYSICS

- 1. Determination of Wavelength, and particle size using Laser
- 2. Determination of acceptance angle in an optical fiber.
- 3. Determination of velocity of sound and compressibility of liquid Ultrasonic interferometer.
- 4. Determination of wavelength of mercury spectrum spectrometer grating
- 5. Determination of thermal conductivity of a bad conductor Lee"s Disc method.
- 6. Determination of Young"s modulus by Non uniform bending method
- 7. Determination of specific resistance of a given coil of wire Carey Foster"s Bridge
- 8. Determination of Young"s modulus by uniform bending method
- 9. Determination of band gap of a semiconductor
- 10. Determination of Coefficient of viscosity of a liquid –Poiseuille"s method
- 11. Determination of Dispersive power of a prism Spectrometer
- 12. Determination of thickness of a thin wire Air wedge method
- 13. Determination of Rigidity modulus Torsion pendulum

II-LIST OF EXPERIMENTS – CHEMISTRY

- 1. Estimation of hardness of Water by EDTA
- 2. Estimation of Copper in brass by EDTA
- 3. Determination of DO in water (Winkler's method)
- 4. Estimation of Chloride in Water sample (Argento metry)
- 5. Estimation of alkalinity of Water sample
- 6. Determination of molecular weight
- 7. Conduct metric titration (Simple acid base)
- 8. Conduct metric titration (Mixture of weak and strong acids)
- 9. Conduct metric titration using BaCl₂vs Na ₂ SO₄
- 10. Potentiometric Titration (Fe $^{2+}$ / KMnO4 or K2 Cr 2 O 7)
- 11. pH titration (acid & base)
- 12. Determination of water of crystallization of a crystalline salt (Copper Sulphate)
- 13. Estimation of Ferric iron by spectrophotometer.

BMA301 M	ATHEMATICS – III	L	Т	Р	С	
----------	------------------	---	---	---	---	--

		6	-		
	Total Contact Hours – 75	3	2	0	4
	Prerequisite – Mathematics I & II, Engineering Physics				
	Course Designed by – Department of Mathematics				
OBJECTIV		_			
use in so 2. To acqua 3. To introd that model s 4. To develo	Suce Fourier series analysis that is important to many applications in olving boundary value problems. int the student with Fourier transform techniques used in wide variety uce the effective mathematical tools for the solutions of partial differ several physical processes op Z transform techniques for discrete time systems. op the Fourier transform techniques and convolution theorem.	/ of si	tuatior	ıs.	rt from its
	COURSE CONTENT				
UNIT I	PARTIAL DIFFERENTIAL EQUATIONS				9+6
types-homo	of PDE by eliminating arbitrary constants, functions – Solutions of the geneous linear PDE of second order with constant coefficients - grouping, multiplier methods.				
UNIT II	FOURIER SERIES				9+6
Dirichlet's A Harmonic A	conditions – General Fourier series – Half-range Sine and Cosine se analysis.	ries –	Parse	val's	identity -
UNIT III	BOUNDARY VALUE PROBLEMS				9+6
	ons of second order linear partial differential equation – Solutions d one-dimensional heat equation.	of or	ne dim	nensi	onal wave
UNIT IV	LAPLACE TRANSFORMS				9+6
final value Laplace tran constant co coefficients	asform of simple functions – Transform of elementary functions – Ba theorem – Transform of derivatives and integrals – transform of per- asforms –Convolution theorem (excluding proof) – Solution of linear pefficients and solutions of simultaneous first order differential using Laplace transformation techniques.	eriodi ODE	c func of sec	tions cond	 inverse order with constan
UNIT V	FOURIER TRANSFORMS				9+6
	gral theorem – Fourier transform pair-Sine and Cosine transforms – I tion – Convolution theorem – Parseval's identity.	Proper	ties –	Tran	sform of
Text Books 1. Grewal, I References 1. Glyn Jam 2. Kreyszig 3. Kandasar Delhi, 2 4. Narayana	 B.S., Higher Engineering Mathematics, Khanna Publications, 2007. B.S., Higher Engineering Mathematics, Khanna Publications, 2007. E., Advance Modern Engineering Mathematics, (8th edition), John Wiley & Det al, Engineering Mathematics, Vol. II & III (4th revised edition), 2000. An S., ManicavachagomPillay T. K., Ramanaiah G., Advanced Mathematics, Mathematics, S., ManicavachagomPillay T. K., Ramanaiah G., Advanced Mathematics, Mat	Sons, on), S thema	. Char	nd &	Co., New
	s, Volume II & III (2^{nd} edition), S. Viswanathan Printers and Publishe aman M. K., Engineering Mathematics – Vol. III – A & B (13^{th} ed			onal	Publishing
					33

Co., Chennai, 1998.

6. Julius S. Bendat and Allan G. Piersol., Random Data: Analysis and Measurement Procedures (4thedition), Wiley Series in Probability and Statistics, 2010.

7. https://www.wolfram.com/mathematica/

	FUNDAMENTALS OF AERONAUTICS AND ASTRONAUTICS	L	Т	Р	C			
BAN301	Total Contact Hours – 45	3	0	0	3			
DANSUI	Prerequisite – Engineering Mechanics							
Course Designed by – Department of Aeronautical Engineering								
 OBJECTIVES 1. To equip the student with the knowledge about the development of aircrafts and spacecrafts through historical reviews and about their basic configurations. 2. To accustom the student to the various basic aerodynamic terms and about the generation of aerodynamic forces. 3. To introduce to the student about the basic types of aircraft constructions and materials and the various loads acting on it. 4. To familiarize the student on the different kinds of propulsion for aircrafts and materials for gas turbine engines 5. To acquaint the student about space vehicles, re- entry, heat transfer and basics of satellite technology COURSE CONTENT 								
UNIT I	INTRODUCTION TO FLIGHT				8			
Brief history	of Aviation-Hot air balloon and heavier than air flying Modern Airplanes-Components of airplane and their function			•	plane			
Brief history configurations- Space vehicles. UNIT II	of Aviation-Hot air balloon and heavier than air flying Modern Airplanes-Components of airplane and their function FUNDAMENTALS OF AERONAUTICS	ns-Rota	ary wi	ng airc	plan crafts 11			
Brief history configurations- Space vehicles. UNIT II International St Continuity, M transonic, sonic TAS. Airfoil g coefficients-ang characteristics,	of Aviation-Hot air balloon and heavier than air flying Modern Airplanes-Components of airplane and their function FUNDAMENTALS OF AERONAUTICS andard Atmosphere-Pressure, Temperature and Density altitud omentum and Energy equations, Bernoulli's equation-1 c and supersonic flow regimes, Measurement of pressure and geometry and nomenclature-infinite and finite wing sections gle of attack-aspect ratio-Reynolds number-induced drag a Elements of Aircraft performance, stability and control.	le, Bas Mach airspo s-lift,	ic Aer numb eed- L drag a	ng airc rodynar ber-subs AS,EAS	rplane crafts 11 nics sonic S and omen airfoi			
Brief history configurations- Space vehicles. UNIT II International St Continuity, M transonic, sonic TAS. Airfoil g coefficients-ang	of Aviation-Hot air balloon and heavier than air flying Modern Airplanes-Components of airplane and their function FUNDAMENTALS OF AERONAUTICS andard Atmosphere-Pressure, Temperature and Density altitud comentum and Energy equations, Bernoulli's equation- c and supersonic flow regimes, Measurement of pressure and geometry and nomenclature-infinite and finite wing sections gle of attack-aspect ratio-Reynolds number-induced drag a	le, Bas Mach airspo s-lift,	ic Aer numb eed- L drag a	ng airc rodynar ber-subs AS,EAS	planc crafts 11 nics sonic S and omen			
Brief history configurations- Space vehicles. UNIT II International St Continuity, M transonic, sonic TAS. Airfoil g coefficients-ang characteristics, UNIT III Structural com	of Aviation-Hot air balloon and heavier than air flying Modern Airplanes-Components of airplane and their function FUNDAMENTALS OF AERONAUTICS andard Atmosphere-Pressure, Temperature and Density altitud omentum and Energy equations, Bernoulli's equation-1 c and supersonic flow regimes, Measurement of pressure and geometry and nomenclature-infinite and finite wing sections gle of attack-aspect ratio-Reynolds number-induced drag a Elements of Aircraft performance, stability and control.	le, Bas Mach l airspo s-lift, und pa	ic Aer numb eed- Id drag a trasite	ng airc odynar ber-subs AS,EA and mo drag-a naterial	plan crafts 11 nics sonic S and omen airfoi			
Brief history configurations- Space vehicles. UNIT II International St Continuity, M transonic, sonic TAS. Airfoil g coefficients-ang characteristics, UNIT III Structural com	of Aviation-Hot air balloon and heavier than air flying Modern Airplanes-Components of airplane and their function FUNDAMENTALS OF AERONAUTICS andard Atmosphere-Pressure, Temperature and Density altitud omentum and Energy equations, Bernoulli's equation- c and supersonic flow regimes, Measurement of pressure and geometry and nomenclature-infinite and finite wing sections gle of attack-aspect ratio-Reynolds number-induced drag a Elements of Aircraft performance, stability and control. AIRCRAFT STRUCTURE AND MATERIALS ponents of an airplane- monocoque and semi monocoque	le, Bas Mach l airspo s-lift, und pa	ic Aer numb eed- Id drag a trasite	ng airc odynar ber-subs AS,EA and mo drag-a naterial	plan crafts 11 nics sonic S and omen airfoi			
Brief history configurations- Space vehicles. UNIT II International St Continuity, M transonic, sonic TAS. Airfoil & coefficients-any characteristics, UNIT III Structural comp UNIT IV Propeller Engin	of Aviation-Hot air balloon and heavier than air flying Modern Airplanes-Components of airplane and their function FUNDAMENTALS OF AERONAUTICS andard Atmosphere-Pressure, Temperature and Density altitud comentum and Energy equations, Bernoulli's equation- c and supersonic flow regimes, Measurement of pressure and geometry and nomenclature-infinite and finite wing sections gle of attack-aspect ratio-Reynolds number-induced drag a Elements of Aircraft performance, stability and control. AIRCRAFT STRUCTURE AND MATERIALS ponents of an airplane- monocoque and semi monocoque ponents – composite materials and their significance in Aviation	le, Bas Mach l airspo s-lift, and pa structu n Tech	ic Aer numb eed- L drag a trasite ure –n nology	ng airc odynar per-subs AS,EA and mc drag-a naterial y	plan crafts 11 nics sonic S and omen airfoi 8 ls fo 10 c fue			
Brief history configurations- Space vehicles. UNIT II International St Continuity, M transonic, sonic TAS. Airfoil & coefficients-any characteristics, UNIT III Structural comp UNIT IV Propeller Engin	of Aviation-Hot air balloon and heavier than air flying Modern Airplanes-Components of airplane and their function FUNDAMENTALS OF AERONAUTICS tandard Atmosphere-Pressure, Temperature and Density altitud omentum and Energy equations, Bernoulli's equation- c and supersonic flow regimes, Measurement of pressure and geometry and nomenclature-infinite and finite wing sections gle of attack-aspect ratio-Reynolds number-induced drag a Elements of Aircraft performance, stability and control. AIRCRAFT STRUCTURE AND MATERIALS ponents of an airplane- monocoque and semi monocoque bonents – composite materials and their significance in Aviation AIRCRAFT PROPULSION ne – Gas Turbine Engine – Turbo prop, Turbo jet, Turbo fa	le, Bas Mach l airspo s-lift, and pa structu n Tech	ic Aer numb eed- L drag a trasite ure –n nology	ng airc odynar per-subs AS,EA and mc drag-a naterial y	rplan crafts 11 nics sonic S an omer airfo 8 ls fc 10 c fue			

Text Books:

- 1. Anderson, J. D., Introduction to Flight, TataMcGraw-Hill Higher Education, 6thedition 2010.
- 2. Kermode, A. C, Barnard, R. H and Philpott, D. R, Mechanics of Flight, Pearson education, 2012. **References:**
- 1. Shevell, R. C., Fundamentals of Flight., Prentice hall (2nd edition), 1989.
- 2. Steven, A. Brandt, Randall J. Stiles, John J. Bertin and Ray Whitford, Introduction to Aeronautics: A Design Perspective, AIAA Education series(2nd edition),2004.
- 3. Torenbeek, E and Wittenberg, H, Flight Physics:Essentials of Aeronautical Disciplines and Technology, with Historical Notes, Springer, 2009.
- 4. https://books.google.co.in/books?isbn=1600860729

5. www.grc.nasa.gov/WWW/k-12/airplane/

	FUNDAMENTALS OF FLUID MECHANICS	L	Т	Р	C
	Total Contact Hours – 60	4	0	0	4
BAN302	Prerequisite – Engineering Mechanics, Mathematics I & II	<u>.</u>			
	Course Designed by – Department of Aeronautical Engineering				
OBJECTI	/ES				
1. To learn	concepts of fluid, properties of fluid and its classification.				
	stand fluid statics and dynamics.				
	nce of similarity and model studies				
	about boundary layer concepts and its applications to pipe design.				
5. To learn	about pumps and turbine design.				
	COURSE CONTENT				
UNIT I	INTRODUCTION				10
Hydrostatic UNIT II	forces on submerged surfaces- Stability of floating bodies FLUID FLOW ANALYSIS AND FLOW MEASUREMENT	<u></u>			14
			• • •		
	eal flow-Concept of continuum-Eulerian and Lagrangian approache Streamline- Stream tube- Fluid acceleration-Continuity, momentu		•		
	es equation- Stream function – Vorticity –Irrotationality- Potential				
	ation-Bernoulli's equation and its applications-Venturimeter-Orific				
Velocity M			,		
UNIT III	DIMENSIONAL ANALYSIS				10
Buckinghar	n Pi Theorem-Non dimensional numbers and their significance-Fl	ow sir	nilarity	y and r	nodel
studies.	C C		-	,	
UNIT IV	FLOW THROUGH PIPES				12
Laminar an	1 turbulent flow- Boundary layer flow – Boundary layer thickness -	Reync	olds nu	mber a	nd its
	-Laminar fully developed pipe flow-Hagen-Poiseuille flow-Coefficie	•			
Darcy-Weis	bach equation-Hydraulic gradient- Total energy lines-Moody's	diagra	ım-Tuı	bulent	flow
through pip	es.				

UNIT V	FLUID MACHINERY	14			
Classification of fluid machines-Reciprocating and centrifugal pumps-impulse and reaction turbines-					
Working principle of Pelton, Francis and Kaplan turbines-Velocity triangles-fans and blowers.					
Text Books	5:				
1. Frank M White, Fluid Mechanics, The McGraw Hill companies. (7th edition), 2011.					
2. Rathakris	shnan, E, Fundamentals of Fluid Mechanics, Prentice-Hall (3 rd edition), 2012.				
References	:				
	Cengel and John M Cimbala, Fluid mechanics: Fundamentals and Applications, Tata				
	Hill (2^{nd} edition), 2010.				
2. Irving H	Shames, Mechanics of Fluids, The McGraw Hill companies (4 th edition), 2003.				
3. Yuan, S.	W, Foundations of Fluid Mechanics, Prentice-Hall, 1967.				
4. reu.eng.ı	ua.edu > Programs				

5. www.fluidmechanics.co.uk/

BAN303	FUNDAMENTALS OF AERO – THERMODYNAMICS	L	Т	Р	С	
	Total Contact Hours – 60	4	0	0	4	
	Prerequisite – Engineering Mechanics, Mathematics I & II					
	Course Designed by – Department of Aeronautical Engineering					
 To acquai To introduce To develop 	ice the concept of thermodynamic analysis that is central to many app int the student with the basics of thermodynamic cycles. ice a basic idea gas power cycles and vapor power cycles. p the basic understanding of refrigeration and air-conditioning system p the basic understanding of aircraft propulsion system.		ons in	enginee	ering.	
 	COURSE CONTENT					
UNIT I	BASIC THERMODYNAMICS				16	
flow proces irreversibilit	roth law, First law - Steady flow energy equation - Heat and work t ses - Second law, Kelvin-Planck statement - Clausius statemet y - Concept of Entropy, Clausius inequality, Principle of increase vailability - Entropy change in non-flow processes	ent –	Reve	rsibility	and	
UNIT II	AIR POWER CYCLES				12	
	, Diesel, Dual, Stirling and Ericsson cycle - Air standard efficiency – theoretical PV diagram of two stroke and four stroke IC engines.	Mean	effect	ive pre	ssure	
UNIT III	VAPOUR POWER CYCLES				12	
Tutur des stir a			_ Ide	1 1		
	 Rankine cycle – Means of increase of efficiency of the Rankin Rankine cycle – Second law analysis of vapour power cycles – Coge 			al rehea		
				al rehea		
regenerative UNIT IV Principles of	Rankine cycle – Second law analysis of vapour power cycles – Coge	nerati abso	on. rption	types	at and 10	

Isentropic flow through passages – Brayton cycle – Brayton cycle with intercooling, reheat and regeneration – Ideal jet propulsion cycles. Basics of heat transfer.

Text Books:

- 1. Rathakrishnan E., Fundamentals of Engineering Thermodynamics, Prentice-Hall India, 2012.
- 2. Nag.P.K., Engineering Thermodynamics, Tata McGraw-Hill, New Delhi, 2007.

Reference Books:

- 1. Yunus A Cengel and Michael A Boles., Thermodynamics- an Engineering approach, McGraw Hill Education (7th edition), 2012.
- 2. Holman.J.P., Thermodynamics, McGraw-Hill (3rd edition), 2007.
- 3. Gordon J. Van Wylen and Richard E. Sonntag and Claus Borgnakke., Fundamentals of Classical Thermodynamics Vol 1, Wiley Eastern, 1994.
- 4. Arora C.P., Thermodynamics, Tata McGraw-Hill, New Delhi, 2003.
- Merle C Potter and Craig W Somerton., Thermodynamics for Engineers, Schaum's Outline Series, Tata McGraw-Hill (2nd edition), 2009.
- 6. <u>www.thermocalc.com/</u>

7. www.grc.nasa.gov/WWW/cdtb/software/t-mats.html

	FUNDAMENTALS OF STRUCTURAL MECHANICS	L	Т	Р	C	
	Total Contact Hours – 60	4	0	0	4	
BAN304 Prerequisite – Engineering Mechanics						
	Course Designed by – Department of Aeronautical Engineering					
tension an 2. Introduce s bending a 3. To introdu columns. 4. To provide	e the students an understanding on the linear statically determinate and compression problems and understanding the strength of materials students the concept of energy methods for calculating strain energy and shear loadings. ce the concept of buckling and lateral instability and calculation of b be the design process using different theories of failures. knowledge on various induced stresses. COURSE CONTENT	s in axi	al, tors	ion,		
	REVIEW OF RIGID BODY MECHANICS				2	
UNIT I	INTRODUCTION TO STRENGTH OF MATERIALS				10	
strain diagran Poisson's rat modulus and	to mechanics of deformable bodies - Material selection criteria – st m - Hook's law - Elastic constants – definition of engineering co ios, shear modules, relation between three modulus Poison's ratio, bulk modulus. Statically determinate and indeterminate problems in ress – Impact loading – introduction to composite materials.	nstant Youn	s: elas g's mo	tic moo odulus,	dulus, shear	
UNIT II	THEORY OF ELASTICITY				12	

-	f theory of elasticity - basic assumptions - Plane stress - Plane strain - Co-or	
	ion - Stress tensor - Stress-strain dependence - General hooks law linear elastic and	
	stic - Isotropic medium – Lam's constant – Miller indices – Strain from epitaxy – Introdu	uction
to thermal s	stress analogy.	
UNIT III	BEAM THEORY	12
deflection i	and bending moment diagrams for simply supported and cantilever beams – stress, strain straight beams – flexural and shear stresses -Shear stress variation in beams of symp	
sections – E	Beams of uniform strength – Methods of evaluation of deflection.	
UNIT IV	TORSION	12
	solid and hollow circular shafts – Shear stress variation – Power transmission in shafts – coiled helical springs – Stresses in helical springs.	Open
UNIT V	BI – AXIAL STRESSES	12
Stresses in	thin circular and spherical shell under internal pressure - Volumetric strain - Com	bined
loading – H	Principle stresses and maximum shear stresses – Analytical and graphical methods - M	lohr's
circle.		
Text Books	5:	
1. Gere & 7	Timoshenko, Mechanics of Materials, McGraw Hill, 1993	
2. William	Nash, Strength of Materials, Tata McGraw Hill, 2004	
Reference	Books:	
	er, E.R. Johnston, and J.T. Dewolf, Mechanics of Materials, McGraw-Hill (4 th edition), 20	06
•	., and Shames, I.H., Solid Mechanics, McGraw Hill, Kogakusha, 1973.	
-	Timoshenko, Strength of Materials, Vol I & II, CBS Publishers and Distributors, Third	
Edition		
	out, Strength of Materials, S. Chand and Co., 1999.	
	nko,S. and Young,D.H., Elements of Strength of Materials, T.VanNostrand Co. Inc.,	
Princeto	on, N.J., 1977.	
6 way md	solids com/	

- 6. <u>www.mdsolids.com/</u>
- 7. <u>https://www.actuspotentia.com/MechMat.shtml</u>

MECHANICS OF MACHINES L T P								
D 4 11205	Total Contact Hours – 60	3	0	0	3			
BAN305 Prerequisite – Engineering Mechanics								
	Course Designed by – Department of Aeronautical Engineering							
OBJECTIVES								
1. To impart students with the knowledge about motion, masses and forces in machines.								
2. To enable students to apply fundamental of mechanics to machines which include engines, linkages etc.,								
3. To impart students with the knowledge about various power transmitting devices such as gears, belts								
etc.								
A The for illustrate denotes the second of the second of the least of a second and an element of the second s								

4. To facilitate students to understand the concept of balancing of rotating and reciprocating masses5. To give awareness to students on the phenomenon of vibration and its effects

COURSE CONTENT

UNIT I	MECHANISMS	12
of freedom ·	ructure – Kinematic link, pair and chain – Grueblers criteria – Constrained motion – Degr –Kutzbach criterion - Slider crank and crank rocker mechanisms – Inversions – Applicati analysis of simple mechanisms – Determination of velocity and acceleration.	
UNIT II	FRICTION	12
and rope dri	crew and nut – Pivot and collar – Thrust bearing – Plate and disc clutches – Belt(Flat and ves. Ratio of tensions – Effect of centrifugal and initial tension – Condition for maximum mission – Open and crossed belt drive.	,
UNIT III	GEARING AND CAMS	9
	and geometry – Nomenclature of spur and helical gears – Gear trains: Simple, Compoun- picylic gear trains - Determination of speed and torque - Cams – Types of cams and follo	
UNIT IV	FORCE ANALYSIS AND BALANCING	15
principle -S reciprocatin	a to force analysis - Static and dynamic – Inertia force and inertia torque – D'Alembert's tatic and dynamic balancing – Single and several masses in different planes –Balancing of g masses- primary balancing and concepts of secondary balancing – Single and multicyli ine) – Balancing of radial V engine – direct and reverse crank method.	
UNIT V	VIBRATION	12
Vibration is	and damped vibrations of single degree of freedom systems – Force transmitted to support of a support of the support of the support of the system of the support of the system of the support of the system of the system of the support of the system of the	
	: S., Theory of Machines, Tata McGraw–Hill Publishing Co, New Delhi, 2004. . S., Dynamics of Machinery, SciTech publication (2 nd edition), 2009.	
1992. 2. Malhotra 1989.	and Dukkipati, R.V, "Mechanism and Machine Theory", Second Edition, WileyEastern L , D.R and Gupta, H.C., "The Theory of Machines", SatyaPrakasam, Tech. IndiaPublication	ons,
 Shigley, J. Burton Pa <i>ieeexplor</i> 	and Mallick, A.K., "Theory of Machines and Mechanisms", Affiliated East West Press, 1 J.E. and Uicker, J.J., "Theory of Machines and Mechanisms", McGraw-Hill, 1980. aul, "Kinematics and Dynamic of Planer Machinery", Prentice Hall, 1979. e.ieee.org/xpls/abs_all.jsp?arnumber=5593596 plemachines.org/	989.

	FLUID MECHANICS AND MACHINERIES LAB	L	Т	Р	С
DANOL 1	Total Contact Hours – 45	0	0	3	2
BAN3L1	Prerequisite – Engineering Mechanics				
	Course Designed by – Department of Civil Engineering				

OBJECTIVES

- 1. To help the student to understand about pipe flow losses and flow through notches and weirs.
- 2. To accustom the student about buoyancy test and Bernoulli's principle
- 3. To introduce to the student about the various flow meters
- 4. To acquaint the student about the performance characteristics of various pumps
- 5. To introduce to the student about the performance characteristics of various turbines

	LIST OF EXPERIMENTS					
1	Determination of pipe flow losses.					
2	Calibration of orifice meter and venture meter.					
3	Flow through notches and weir.					
4	Flow through open orifice					
5	Buoyancy experiment – Metacentric Height.					
6	Verification of Bernoulli's Equation.					
7	Performance characteristics of centrifugal pump.					
8	Performance characteristics of submergible pump.					
9	Performance characteristics of jet pump.					
10	Performance characteristics of oil gear pump.					
11	Characteristics of impulse turbine – Pelton wheel turbine.					
12	Characteristics of reaction turbine – Francis turbine					
Reference 1. Fluid M	echanics and Machinery Lab Manual, Department of Civil Engineering, 2015					

	STRENGTH OF MATERIALS LAB	L	Т	Р	С			
DANGI G	Total Contact Hours – 45	0	0	3	2			
BAN3L2	Prerequisite – Engineering Mechanics							
	Course Designed by – Department of Aeronautical Engineering							
OBJECTIVES								
1. To enable the	1. To enable the student to understand about the tensile test and stress – strain curves and also about the							

- 1. To enable the student to understand about the tensile test and stress strain curves and also about the compression tests
- 2. To accustom the student about shear test, torsion test and hardness tests.
- 3. To introduce to the student about the impact test.
- 4. To acquaint the student about the open and closed coil spring tests.
- 5. To introduce to the student about fatigue test.

ension test of a mild steel rod. hear test on mild steel and aluminum rod. orsion test on mild steel rod. ardness test (a) Brinell& (b) Rockwell.
orsion test on mild steel rod.
ardness test (a) Brinell& (b) Rockwell.
npact tests (a) Izod (b) Charpy.
eflection test on helical spring.
atigue test: (a) Reverse plate bending (b) Rotating beam.
lock compression test.
e

	MACHINE DRAWING	L	Т	Р	С
	Total Contact Hours – 45	0	0	3	2
BME3L1	Prerequisite – Engineering Graphics				
	Course Designed by – Department of Mechanical Engineering				
OBIECTIVES	·				

OBJECTIVES

- 1. To give the students an idea of fundamental issues common to almost all areas of machine drawing.
- 2. To train the student to draw an assembled diagram of a machine part based on the details of individual parts.
- 3. To help the student to understand the machine drawing, nomenclature and various notations.
- 4. To train the students to prepare a working drawing of machines.
- 5. To enable the student to communicate his ideas through drawings.

COURSE CONTENT

- Indian standard code (BIS) of practice for engineering drawing general principle of presentation, conventional representation of threaded parts, springs, Gears and common features, Abbreviations and symbols used in technical drawings.
- > Tolerance Types Symbols used and representation on the drawing fit types, selection for different application – Allowance, Interchangeability. Surface finish Relation to the manufacturing processes – Types of representation on the drawing welding symbols.
- Preparation of working drawing for given machine components: Bolts, Screws, Studs, Nuts, Keys and Key-ways.
- Preparation of simple assembly drawings: Different types of cotter and knuckle joints.
- > Preparation of simple assembly drawing for following machine with part drawings given: Screw jack, Plummer block, connecting rod, machine vice, tail stock of lath, fuel injection pump for single cylinder engine, stop valve.

Text Books:

1. Narayanan. K. L. Machine Drawing, New age publisher, 2006.

References:

- 1. Bhatt, N. D., Machine Drawing, Charotar publishing house, 2000.
- 2. Gopala Krishnan, Machine Drawing, Subash publishers, 2001.
- 3. <u>https://www.smartdraw.com/software/mechanical-drawing-software.htm</u>
- 4. https://www.machinedesignonline.com/

	NUMERICAL METHODS	L	Т	Р	С
	Total Contact Hours – 75	3	2	0	4
BMA402	Prerequisite – Mathematics III, Engineering Physics, Engineering	ng Me	echanio	cs	
	Course Designed by – Department of Mathematics				
 To acquai To introduintegratio To develop 	ace the solution of equations and Eigen value problems. In the student with interpolation techniques used in wide variety of ace the effective mathematical tools for the solutions of numerical d			n and	
	COURSE CONTENT				
UNIT I	INTERPOLATION (FINITE DIFFERENCES)				9+6
Gauss-Jorda	thod, Newtown-Raphson method for single variable-solutions of n, Jacobian and Gauss-Siedel methods, Inverse of matrix by Ga atrix power and Jacobian methods.		•	•	
UNIT II	INTERPOLATION (FINITE DIFFERENCES)				9+6
	ivided difference formula, Lagrange's interpolation-forward and bad bad bad bad bad bad bad bad bad ba	ackwa	ard dif	ference f	ormula-
UNIT III	NUMERICAL DIFFERENTIATION AND INTEGRATIO	N			9+6
	ifferentiation with interpolation polynomials, Numerical integratio "rule, Double integrals using Trapezoidal and Simpson's rule.	n by '	Trapez	coidal Sin	mpson's
UNIT IV	INITIAL VALUE PROBLEMS FOR ORDINARY EQUATIONS	D	IFFEF	RENTIA	L 9+6
	nethods, Taylor series, Euler and modified Euler, Rungekutta methequations, multiple step methods, Milne and Adam's – Bash for				
UNIT V	BOUNDARY VALUE PROBLEMS FOR ODE AND PDE				9+6
dimensional	ence for the second order ordinary differential equations, finite heat equations (both implicit and explicit), one dimensional wave Poisson equation.				

Text Books:

- 1. Jain. M. K. Iyengar, S. R. K. And Jain, R K., Numerical Methods for Scientific and Engineering Computation, 3rd edition, New age international publication, company, 1993
- 2. Grewal, B.S., Higher Engineering Mathematics, Khanna Publications, 2007.

References:

- 1. M. K. Venkatraman., Numerical Methods, NPC, Chennai.
- 2. Richard W. Hamming., Numerical Methods for Scientists and Engineers, Dover Publications (2nd edition), 1987.

3.https://www.wolfram.com/mathematica/

		AIRCRAFT STRUCTURES I	L	Т	Р	С
		Total Contact Hours – 60	4	0	0	4
BAN4()1	Prerequisite – Engineering Mechanics, Fundamentals of Struct	ural N	Mecha	nics	
		Course Designed by – Department of Aeronautical Engineerin	g			
OBJECT	TVE	8				
1		students with the fundamentals of aircraft structures.				
-		students with statically determinate and indeterminate structure				
		e students to energy methods applied to simple aerospace structu				
		e various structural analysis of various column type aerospace st	ructu	ral ele	ments.	
5. 10 intr	oduce	e various failure theory of structural analysis.				
		COURSE CONTENT				
UNIT I TRUSSES AND FRAMES				12		
		rminate frames - Analysis of plane Truss - Method of joints - 3	D Trı	iss- Pl	ane fra	mes -
Composit	te bea	m.				
UNIT II	2	STATICALLY DETERMINATE AND INDETERMINATE	STR	UCTI	JRES	12
		lever - Fixed-Fixed beams - Clapeyron's Three Moment Equa	ation	– slop	e defle	ction
U	gy dis	tribution method.				
UNIT III]	ENERGY METHODS				12
Strain ene	ergy e	evaluation in structural members – energy theorems – dummy lo	oad &	unit lo	bad met	thods
		eciprocal theorem - energy methods applied to statically determ	inate	and ir	determ	inate
	ames	, rings & trusses				
UNIT IV		COLUMNS				12
Euler's co	olumi	n curve – inelastic buckling – effect of initial curvature – the So	outhw	ell plo	-col	umns
		ty – use of energy methods – theory of beam columns – beam				
		– stresses in beam columns.				
UNIT V]	FAILURE THEORY				12
Fail safe a	and s	afe life structures, factor of safety, Brief introduction of yield n	nateria	al, brit	tle vs.	
		or, Creep and creep rupture, viscoelastic materials - environmen				
potentials	s, effe	ct of time and temperature - Fatigue and Fracture - Maximum S	Stress	theory	y —	

Maximum Strain Theory – Maximum Shear Stress Theory – Distortion Theory – Maximum Strain energy theory – Application to aircraft Structural problems.

Text Books:

- 1. Donaldson, B.K., Analysis of Aircraft Structures An Introduction, McGraw-Hill, 1993.
- 2. Megson T M G, Aircraft Structures for Engineering Students, Edward Arnold Publishers
- 3. C.T.Sun, Mechanics of aircraft structures, John wiley& sons, inc.

References:

- 1. Timoshenko, S., Strength of Materials, Vol. I and II, Princeton D. Von Nostrand Co, 1990.
- 2. Peer, D. J., and Azar J. J., Aircraft Structures, McGraw Hill (2nd edition), 1999.
- 3. Bruhn.E.F., Analysis and design of flight vehicle structures, Tri set of offset company, 1973.
- 4. Michael C.Y.Niu ,Airframe structural design (ISBN No.962-7128-04-X), 1998
- 5. Rivello, Theory and Analysis of Flight Structures, McGraw-Hill, 1969.
- 6. Perry, Aircraft Structures, McGraw-Hill, 1950.

	AERODYNAMICS I	L	Т	Р	С		
	Total Contact Hours – 60	4	0	0	4		
BAN402	Prerequisite – Engineering Mechanics, Mathematics I, II & III, F Mechanics	Fundai	nental	s of Flu	ıid		
	Course Designed by – Department of Aeronautical Engineering						
OBJECTIVES							

- 1. To introduce student about basic concepts of mathematical formulation of air flow.
- 2. To impart theoretical knowledge about the elementary flow and their combination to analysis flow over real object.
- 3. To Study the distribution of pressure around airfoil for incompressible inviscid flow. To study transformation of flow over circle cylinder into flow over the airfoil
- 4. To study flow around wing and measure lift generated.
- 5. To introduce the students about viscous flow theory for flow over flat and solution for incompressible viscous flow over flat plate.

COURSE CONTENT

UNIT I

BASIC AERODYNAMIC PRINCIPLES

Models of fluid - System and Control volume approach, substantial, local and convective derivative, Continuity, momentum and energy equations, Inviscid flow, Euler equation, incompressible Bernoulli's Equation. Circulation and Vorticity, Green's Lemma and Stoke's Theorem, Barotropic Flow, Kelvin's theorem, Streamline, Stream Function, Irrotational flow, Potential Function, Equipotential Lines, Elementary Flows and their combinations.

UNIT II

FUNDAMENTALS OF INVISCID FLOWS

Ideal Flow over a circular cylinder, D'Alembert's Paradox, Magnus effect, KuttaJoukowski Theorem, Starting Vortex, Kutta condition, Real flow over smooth and rough cylinder, Basics of vortex theory, Basics of compressible flow.

12

Cauchy-Riemann relations, Complex Potential, Methodology of Conformal Transformation, Kutta-Joukowski transformation and its applications, Karman Trefftz Profiles, Thin Airfoil theory and its applications.

UNIT IV

FINITE WING THEORY

Vortex Filament, Biot and Savart Law, Bound Vortex and trailing Vortex, Horse Shoe Vortex, Lifting Line Theory and its limitations, induced drag coefficient, elliptic and general lift distribution, Oswald's wing efficiency factor, effect of plan form and aspect ratio

UNIT V VISCOUS FLOW THEORY

Laminar Boundary layer and its thickness, displacement thickness, momentum thickness, Energy thickness, Shape parameter, Boundary layer equations for a steady two dimensional incompressible flow, Boundary Layer growth over a Flat plate, Critical Reynolds Number, Blasius solution, Basics of Turbulent flow, Prandtl's mixing length hypothesis, Free shear layers.

Text Books:

1. Anderson, J.D., Fundamentals of Aerodynamics, McGraw Hill Book Co., 1999, Indian Edition

2. Rathakrishnan, E., Theoretical Aerodynamics, John Wiley & Sons, Inc., 2013

References:

1. Milne Thomson, L.H., Theoretical Aerodynamics, Macmillan, 1985

- 2. John J Bertin., Aerodynamics for Engineers, Pearson Education Inc, 5th Edition.
- 3. Clancy L J., Aerodynamics, John Wiley & sons, 1991.

BAN403	AIRCRAFT PROPULSION	L	Т	Р	С			
	Total Contact Hours – 60	4	0	0	4			
	Prerequisite – Engineering Mechanics, Fundamentals of Aero – Thermodynamics							
	Course Designed by – Department of Aeronautical Engineering							
OBJECTIVES								

1. To provide students with an overview of various aerospace propulsion systems.

- 2. To provide students with a sound foundation in the fundamentals of thermodynamics of aircraft engines
- 3. To teach students the elementary principles of inlets and nozzle
- 4. To teach students basic principles of compressors and turbines used in aircraft propulsion

5. To teach students about the various type of combustion chamber and combustion process

COURSE CONTENT

UNIT I

FUNDAMENTALS OF ENGINES

History and classifications of Aero engines, Working of gas turbine engine – Thrust equation – Factors affecting thrust – Engine performance parameters – Efficiency, Specific fuel consumption, Methods of thrust augmentation – Characteristics of propeller, turboprop, turbofan and turbojet engines.

UNIT II INLETS AND NOZZLES

Subsonic inlets– External and internal flow pattern – inlet performance criterion –Boundary layer separation – Supersonic inlets – the starting problem – shock boundary layer problem – external deceleration – flow stability problem – Exhaust nozzles –Theory of flow in isentropic nozzles – Losses in nozzles –Nozzle efficiency—nozzle choking –Over expanded and under expanded nozzles – Ejector and variable area nozzles – Interaction of nozzle flow with adjacent surfaces – Thrust reversal

10

14

12

Principle of operation of centrifugal compressor – Work done and pressure rise – Velocity diagrams –
Diffuser vane design considerations – Concept of pre whirl – Rotation stall – Elementary theory of axial
flow compressor – Velocity triangles – degree of reaction – Three dimensional – Air angle distributions
for free vortex and constant reaction designs – Compressor blade design – Centrifugal and Axial
compressor performance characteristics.12UNIT IVCOMBUSTION CHAMBERS12

Classification of combustion chambers – Important factors affecting combustion chamber design – Combustion process – Combustion chamber performance – Effect of operating variables on performance – Flame tube cooling – Flame stabilization – flame holders.

UNIT V TURBINES

COMPRESSORS

Elementary theory of axial flow turbine – Vortex theory – Stator and rotor blades – losses in the blade – choice of blade profile, chord and pitch – stage and overall performance – blade cooling – radial flow turbine.

Text Books:

UNIT III

1. Hill, P.G. & Peterson, C.R, Mechanics & Thermodynamics of Propulsion, Addison – Wesley Longman INC, 1999.

2. Cohen, H. Rogers, G.F.C. and SaravanaMuttoo, H.I.H., Gas Turbine Theory, Longman, 1989.

References:

- 1. Ahmed F. El-Sayed, Aircraft Propulsion and Gas turbine engines, CRS Press, 2008
- 2. Saeed Farokhi, Aircraft Propulsion, John Wiley & Sons, Inc., 2009
- 3. Rolls Royce Jet Engine 5thEdition 1996.
- 4. Oates, G.C., Aero thermodynamics of Aircraft Engine Components, AIAA Education Series.

	AIRCRAFT SYSTEMS AND INSTRUMENTATION	L	Т	Р	C
BAN404	Total Contact Hours – 45	3	0	0	3
	Prerequisite – Fundamentals of Aeronautics and Astronautics				
	Course Designed by – Department of Aeronautical Engineering				
OBJECTIV	TES				
1. To acqua	aint the student with the various aircraft systems				
1	duce to the student about the different control systems in aircrafts				
	iarize the student to the different systems associated with aircraft eng	gines			
	aint the student to the several auxiliary systems in aircrafts				
	e the student to understand about the working of basic aircraft instru	ments			
	COURSE CONTENT				
UNIT I	AIRCRAFT SYSTEMS				12
Hydraulic s	ystems - Study of typical workable system - components –Hydrau	lic sys	stems of	control	lers –
	ystems - Advantages - Working principles - Typical Air pressure				
	umatic power system - Components, Landing Gear systems – Classif	•			
UNIT II	AIRPLANE CONTROL SYSTEMS				10
Conventiona	al Systems - fully powered flight controls - Power actuated systems -	- Mode	ern con	trol sy	stems

14

- Digital fly by wire systems - Auto pilot system active control Technology.					
UNIT III ENGINE SYSTEMS	8				
Fuel systems for Piston and jet engines, - Components of multi engines. Lubricating systems for pand jet engines - Starting and Ignition systems - Typical examples for piston and jet engines.	oiston				
UNIT IV AUXILIARY SYSTEMS	8				
Basic Air cycle systems - Vapour Cycle systems, Evaporative vapour cycle systems - Evaporative cycle systems - Oxygen systems - Fire protection systems, Deicing and anti icing systems.	ve air				
UNIT V AIRCRAFT INSTRUMENTS	7				
Flight Instruments and Navigation Instruments – Gyroscope - Accelerometers, Air speed Indicators – TAS, EAS- Mach Meters - Altimeters - Principles and operation - Study of various types of engine instruments - Tachometers - Temperature gauges – Pressure gauges - Operation and Principles.					
Text Books:					
1. McKinley, J.L., and Bent, R.D., Aircraft Maintenance & Repair, McGraw-Hill, 1993.					
2. General Hand Books of Airframe and Powerplant Mechanics, U.S. Dept. of Transportation, Federal					
Aviation Administration, The English Book Store, NewDelhi1995.					
References:					
1 Malrinlay, I.L. and Dant D.D. Ainanoft Dawar Dlants, MaCrowy, Hill 1002					
1. Mekinley, J.L. and Bent, R.D., Aircraft Power Plants, McGraw-Hill, 1993.					

3. Treager, S., Gas Turbine Technology, McGraw-Hill, 1997.

	ENVIRONMENTAL STUDIES	L	Т	Р	С					
	Total Contact Hours – 45	3	0	0	3					
BCE406	Prerequisite – Engineering Chemistry, Biology for Engineers	Prerequisite – Engineering Chemistry, Biology for Engineers								
	Course Designed by – Department of Humanities and Sciences									
OBJECTIV	ES									
1. To acquai	nt the student about the various natural resources and their associated	proble	ems							
-	om the student about ecosystem and the different types of ecosystems	-		portanc	e					
3. To introduce to the student about the values of bio diversity and the importance of its conservation a										
also on e	nvironmental pollution									
4. To familia	rize the student on the social issues that have a direct effect on the env	vironn	nent							
5. To help th	e student understand about the effects of human population on the env	vironn	nent an	d reme	dial					
measures	3									
	COURSE CONTENT									
UNIT I	THE MULTIDISCIPLINARY NATURE OF ENVIRONMEN STUDIES	NTAL	4		9					
Definition, so	cope and importance, Need for public awareness.									
Natural Res	ources : Renewable And Non – Renewable Resources									
Natural resou	rces and associated problems									
a) Forest res	sources : Use and over-exploitation, deforestation, case studies. The	mber	extract	ion, m	ining,					
dams and	their effect on forests and tribal people.									
h) Water res	ources : Use and over-utilization of surface and ground water floor	d dro	noht c	onflict	s over					

b) Water resources : Use and over-utilization of surface and ground water, flood, drought conflicts over water, dams-benefits and problems.

c) Mineral resources : Uses and exploitation, environmental effects of extracting and using mineral resources, case studies.

- d) Food resources : World food problems, changes caused by agriculture and overgrazing , effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
- e) Energy resources : Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources, case studies.
- f) Land resources : Land as a resource, Land degradation, man induced landslides, soil erosion and desertification

Role of an individual in conversation of natural resources, Equitable use of resources for sustainable lifestyles.

UNIT II

ECOSYSTEMS

Concepts of an ecosystem. Structure and function of an ecosystem, producers, consumers and decomposers, Energy flow in the ecosystem, Ecological succession, Food chains, food webs and ecological pyramids - Introduction, types, characteristic features, structure and function of the following ecosystem :- Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems, (ponds, streams, lakes, rivers, oceans, estuaries)-

Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation - Ethics : Issues and possible Solutions, Climate change, global warming, acid rain, ozone layer depletion.

UNIT III BIODIVERSITY AND ENVIRONMENTAL POLLUTION

14

8

BIODIVERSITY

Introduction and Definition - genetic, species and ecosystems diversity, Biogeographical classification of India - Value biodiversity : consumptive use, productive use, social, ethical, aesthetic and option values - Biodiversity at global, national and local levels. India as a mega-diversity nation, Hot-spots of biodiversity -Threats to biodiversity, habitat, poaching of wildlife, man-wildlife conflicts, Endangered and endemic species of India, Conservation biodiversity - In-situ and Ex-situ conservation of biodiversity.

ENVIRONMENTAL POLLUTION

Definition, Causes, effects and control measures of ;- Air Pollution, Water pollution, Soil Pollution, Marine Pollution, Noise pollution, Thermal pollution, Nuclear hazards. Solid waste Management : Causes, effects and control measures of urban and industrial wastes - Role of an individual in prevention of pollution - Pollution case studies - Disaster Management : floods earthquake, cyclone and landslides.

UNIT IVSOCIAL ISSUES AND THE ENVIRONMENT8

From Unsustainable to Sustainable development, Urban problems related to energy, nuclear accident and holocaust, case studies, wasteland reclamation, Environmental Protection Act, Air (Prevention and Control of Pollution) Act, Water (Prevention and Control of Pollution) Act, Wildlife protection Act, Forest Conservation Act, Issues involved in enforcement of environmental Legislation, public awareness – Fireworks and its impact on the Environment – Chemicals used in Fireworks – (Fuel –oxidizing Agent –

Reducing Agent –Toxic Materials – Fuel –Binder- Regulator) – Harmful nature of ingredients – chemical effects on health due to inhaling fumes – Noise produced by fire crackers – Noise pollution – Noise level standards for fire crackers – Intensity of sound – Impact on hearing – Safety measures.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

6

Population growth, variation among nations, population explosion-Family Welfare programs, Environment and human health, Human Rights, Value Education, HIV and AIDS, Women and Child Welfare, Role of Information Technology in Environment and Human health - Case Studies

Text Books:

- 1. Gilbert M.Masters, "Introduction to Environmental Engineering and Science", Pearson Education Pvt., Ltd., Second Edition, ISBN 81-297-0277-0, 2004.
- 2. Brunner R.C., 1989, Hazardous Waste Incineration, McGraw Hill Inc. 480p
- 3. BharuchaErach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad 380 013, India, 1989.
- 4. Benny Joseph, "Environmental Studies"., TATA McGraw Hill, 2010

References:

- 1. Trivedi R.K., "Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards", Vol.I and II, EnviroMedia 2009
- 2. Cunningham, W.P.Cooper, T.H.Gorhani, "Environmental Encyclopedia", Jaico Publ., House, Mumbai, 2001.
- 3. Wager K.D. "Environmental Management", W.B. Saunders Co., Philadelphia, USA, 1998.
- 4. Trivedi R.K. and P.K. Goel, "Introduction to Air Pollution", Techno Science Publications 2013
- 5. Clark R.S., Marine Pollution, Clanderson Press Oxford (TB),2001.
- 6. Cunningham, W.P. Cooper, T.H. Gorhani, E & Hepworth, M.T. 2001, Environmental Encyclopedia, Jaico Publ. House, Mumabai, 1196p
- 7. Gleick, H.P. 1993. Water in crisis, Pacific Institute for Studies in Dev., Environment & Security. Stockholm Env. Institute Oxford Univ. Press. 473p
- 8. Jadhav, H & Bhosale, V.M. 1995. Environmental Protection and Laws. Himalaya Pub. House, Delhi 284 p.
- 9. Mckinney, M.L. & School, R.M. 1996. Environmental Science systems & Solutions, Web enhanced edition. 639p.
- 10. Odum, E.P. 1971. Fundamentals of Ecology. W.B. Saunders Co. USA, 574p
- 11. Rao M N. &Datta, A.K. 1987. Waste Water treatment. Oxford & IBH Publish Co. Pvt. Ltd. 345p.
- 12. Sharma B.K., 2001. Environmental Chemistry. Geol Publ. House, Meerut.
- 13. http://eng.mft.info/uploadedfiles/gfiles/c8e31c9e52d84c3.pdf

	AIRCRAFT STRUCTURES LABORATORY	L	Т	Р	C		
	Total Contact Hours – 45	0	0	3	2		
BAN4L1	Prerequisite – Fundamentals of Structural Mechanics		•				
	Course Designed by – Department of Aeronautical Engineerin						
 OBJECTIVES 1. To acquaint the student to the various experimental processes to carry out structural analysis. 2. To familiarize to the student about the analysis of beams. 3. To enable the student to understand about the analysis of columns. 4. To help the student to understand about the effect of complex loading on aircraft structures. 5. To introduce to the student about the shear flow estimation in aircraft structures. 							
1	LIST OF EXPERIMENTS Determination of Young's modulus of aluminum using electrical e	xtenson	neters				
	Determination of fracture strength and fracture pattern of ductile material.						
3	Deflection of beams with various end conditions.						
4	Verification of Maxwell's theorem and principle of superposition.						
5	Column – Testing.						

6	Testing of riveted joints.
7	Unsymmetrical Bending of a Beam
8	Determination of Shear Centre in open Section
9	Determination of Shear Centre in closed Section
10	Combined bending and Torsion of a Hollow Circular Tube
11	Constant Strength Beams
12	Wagner beam – Tension field beam
13	Free Vibration of a beams
14	Forced Vibration of a beams
15	Material properties test of composite laminate
Refere 1. Airc	nces: raft Structures Lab Manual, Department of Aeronautical Engineering, 2015

	MANUFACTURING ENGINEERING LABORATORY	L	Т	Р	С
DANALA	Total Contact Hours – 30	0	0	2	1
BAN4L2	Prerequisite – Manufacturing Engineering				
	Course Designed by – Department of Aeronautical Engineering				
OBJECTIV	TES				
1. To introdu	ace student to various machine cutting operation				
2. To train the	ne student for using the lathe				
3. To train the	ne student for performing various operation using lathe				
4. To train the	ne student for performing drilling operations and boring operation				
5. To train the	ne student for using the surface grinding machine and milling machin	e			
LIST OF EXPERIMENTS					
1	Study of centre, capstan and automatic lathes and their accessories.				
2	Exercise on setting the work piece and the tool in the lathe.				
3	Plane turning and step turning.				
4	Taper turning and knurling.				
5	Eccentric Turning.				
6	Thread cutting and grooving.				

7	Drilling and reaming.				
8	Drilling and boring.				
9	Surface grinding				
10	Study of shaper and planer machines.				
11	Study of milling and grinding machines.				
	References: 1. Machine Shop Lab Manual, Department of Mechanical Engineering, 2015				

	COMPUTER AIDED DESIGNING AND DRAFTING	L	Т	Р	C
DA MAGI	Total Contact Hours – 30	0	0	2	1
BAN4S1	Prerequisite – Engineering Graphics, Machine Drawing				
	Course Designed by – Department of Aeronautical Engineering				
OBJECTIV	ES				
-	nt the student with various computer softwares for engineering design				
	arize the student with to the various options and types of designs that	can b	e carri	ed out	using
CATIA :					
	ne student on the designing of basic mechanical parts ne student on the assembly of different mechanical parts				
	the student on the drafting of the part / model / assembly designed.				
LIST OF EXPERIMENTS					
1	Study of various softwares for engineering design and drafting				
2	Study of CATIA and its tools				
3	Exercise on 2D drawing				
4	Exercise on pad and groove				
5	Exercise on shaft, mirror and array				
6	Exercise on threading, bores and tappings				
7	Exercise on part assembly				
8	Exercise on drafting				
9	Exercise on surface modeling				
10	Exercise on kinematics				
Referen 1. CADI	ces: D Lab Manual, Department of Aeronautical Engineering, 2015				

	AIRCRAFT STRUCTURES II	L	Т	Р	С		
BAN501	Total Contact Hours – 60	4	0	0	4		
DANSUI	Prerequisite – Fundamentals of Structural Mechanics, Aircraft Structures I						
	Course Designed by – Department of Aeronautical Engineering						
OBJECTIV							
society. U to use the 2. Understar engineeri solve eng 3. Understan 4. Understar fundamen	at the basic concepts of Aircraft structural Mechanics in Ae Understand the basics of unsymmetrical bending loadings and the em in real problems. In the basic concept of shear flow in open sections and kno ing problems and understand shear flow in closed sections and ineering problems. In the buckling of plates and using the concepts to solve the sheet p and the basics of stress analysis in wing and fuselage and to intal engineering problem. provement in subject knowledge in Aircraft Structures.	para w ho know	meters w to w how problem	and kn use it to use ns.	ow how to solve them to		
	COURSE CONTENT						
UNIT I	UNSYMMETRICAL BENDING				12		
-	symmetric beams subject to skew loads - bending stresses i generalized 'k' method, neutral axis method, principal axis es.			•			
UNIT II	SHEAR FLOW IN OPEN SECTIONS				12		
distribution	I beams – concept of shear flow – the shear centre and its of in symmetrical and unsymmetrical thin-walled sections – structu- idealized sections.						
UNIT III	SHEAR FLOW IN CLOSED SECTIONS				12		
walled sing	no theory – single-cell and multi-cell tubes subject to torsion – she le & multi-cell structures subject to combined bending torsion n bending – shear center of closed sections.						
UNIT IV	BUCKLING OF PLATES				12		
sections – c carrying ca	thin plates – rectangular sheets under compression - local buc rippling strength by Needham's and Gerard's methods – thin-wa pacity of sheet stiffener panels – effective width – inter-rivet an failing strength.	lled c	olumn	strengt	th – load		
UNIT V	STRESS ANALYSIS OF WING AND FUSELAGE				12		
	STRESS MALETSIS OF WING MID FOSELAGE				14		
shear force	ural arrangements – factors influencing - wing stress analysis i and bending moment distribution over fuselage – Numerical pro agner equation - Semi-tension field beams.				nation of		

References:

- 1. Rivello, R.M., Theory and Analysis of Flight Structures, McGraw Hill, 1993.
- 2.Peery, D.J., and Azar, J.J., Aircraft Structures, 2nd edition, McGraw Hill, N.Y., 1999
- 3. Bruhn. E.H., 'Analysis and Design of Flight Vehicles Structures', Tri-state off-set company, USA,
- 1985

-		-			-
	AERODYNAMICS II	L	Т	Р	С
D 4 11500	Total Contact Hours – 60	4	0	0	4
BAN502	Prerequisite – Fundamentals of Fluid Mechanics, Aerodynamics	I			
	Course Designed by – Department of Aeronautical Engineering				
OBJECTIV	ES				
1. To make the	ne student understand concepts and 1-d equations used for compressi	ble flo	OWS.		
2. To acquain	nt the student with the estimation of flow properties across normal s	hock,	obliqu	e shoc	k and
expansion					
	rize the student to the governing equations in compressible flows.				
	e the student on problems faced by high speed flow airfoils, wings an	nd airj	plane c	onfigur	ation
	derstand design modifications required to overcome problems				
	awareness among the students about various experimental me	thods	and n	neasure	ment
technique					
COURSE CONTENT					
UNIT I FUNDAMENTAL ASPECTS OF COMPRESSIBLE FLOW					12
Compressibil	ity, Continuity, Momentum and Energy equation for steady one dime	ensior	nal flov	v,	
-	e Bernoulli's equation, Area – Mach number – Velocity relation, Ma			0	
	onal Isentropic flow through variable area duct, Isentropic relations -	Critic	cal con	ditions,	1
Characteristi	c Mach number, Maximum discharge velocity.				
UNIT II	SHOCKS AND EXPANSION WAVES				12
	k relations, Prandtl's relation, Hugonoit equation, Raleigh Supersoni			-	,
	hal shock waves, Oblique shocks, $\theta\beta$ M relation, Shock Polar, Reflect				
	and Right running waves, Interaction of oblique shock waves, slip line				anno
-	ion waves, Prandtl-Meyer expansion, Maximum turning angle, Simp		1 non-s	imple	
	rating characteristics of convergent and convergent-divergent nozzles	5.			10
UNIT III	TWO DIMENSIONAL COMPRESSIBLE FLOW				12
-	ation for 2-dimensional compressible flow, Linearization of potentia	-			
-	theory, Linearised Pressure Coefficient, Linearised subsonic flow, Pr	andtl-	Glauer	rt rule,	
Linearised su	personic flow, Method of characteristics, Wave drag coefficient.			ſ	
UNIT IV	HIGH SPEED FLOW OVER AIRFOILS, WINGS AND AIR CONFIGURATION	RPLA	NE		12
Critical Macl	n number, Drag divergence Mach number, Shock Stall, Shock- Boun	dary l	ayer in	teractic	on,
Supercritical	Airfoil Sections, Transonic area rule, Swept wing, Airfoils for super	sonic	flows,	Lift, dr	ag,
Pitching mon	nent and Centre of pressure for supersonic profiles, Shock-expansion	theor	y, wav	e drag,	
	ings, Design considerations for supersonic aircrafts, Introduction to l	Hyper	sonic F	Flows,	
Numerical A	nalysis of one Dimensional flow.				

Wind tunnels for	or Subsonic, transonic, Supersonic and hypersonic flows, Various	Measu	uremer	nt		
techniques, Pov	ver requirement, Force and moment measurement, Wind tunnel bal	lance,	Wind	tunnel		
corrections, Flo	w visualization techniques, Hot wire technique, Optical methods,	Shock	k tube,	Gun		
tunnels						
Text Books:						
1. Anderson, J.	D, Modern Compressible Flow, Third Edition, Tata McGraw-Hill	& Co	., 2012	2.		
2. Rathakrishna	n., E, Gas Dynamics, Prentice Hall of India, 2004.					
3. Yahya S.M.,	Fundamentals of Compressible Flows, Third Edition, New Age In	ternat	ional F	ublishe	ers,	
2003.						
References:						
1. Shapiro, A. H	I., Dynamics and Thermodynamics of Compressible Fluid Flow, R	Ronald	l Press	, 1982.		
2. Zucrow, M. J	I. and Anderson, J. D., Elements of Gas Dynamics, McGraw-Hill	& Co.	, 1989	•		
3. Oosthuizen,F	P.H., &Carscallen,W.E., Compressible Fluid Flow, McGraw-Hill &	& Co.	, 19976	5. Perry	΄,	
Aircraft Str	uctures, McGraw-Hill, 1950.					
	ADVANCED AEROSPACE PROPULSION	L	Т	Р	С	
D A NI502	Total Contact Hours – 60	4	0	0	4	
BAN503	Prerequisite - Fundamentals of Aero - Thermodynamics, Aircraf	t Prop	ulsion			
	Course Designed by – Department of Aeronautical Engineering					
OBJECTIVES						
1. To acquaint t	he student about the various scramjet and ramjet engine propulsion	n.				
2. To accuston	2. To accustom the student about pulsejet propulsion and the different types of jet propulsion their					
importance.		-				
3. To introduce to the student about the importance of solid propellant rockets.						
4. To introduce to the student about the importance of liquid propellant rockets.						
5. To help the s	tudent understand about the non conventional propulsion technique	es.				
	COURSE CONTENT					

UNIT I RAMJET AND SCRAMJET PROPULSION

EXPERIMENTAL METHODS

14

10

12

Operating principle of ramjet engine – Components of ramjet engines and their efficiencies – Combustion in ramjet engine – Critical, subcritical and supercritical modes of operation -Ramjet engine and its performance characteristics – Ramjet design calculations – Flame stability problems in ramjet combustors –Integral ram rockets. - Introduction to hypersonic vehicles and supersonic combustion - problems associated with supersonic combustion– Various types scramjet combustors – Fuel injection schemes in scramjet combustors – one dimensional models for supersonic combustion using method of influence coefficient.

UNIT IIPULSEJET PROPULSION

UNIT V

Pulse propulsion – Combustion process in pulse jet engines – inlet charging process – Supercritical charging and subcritical discharging – Subcritical charging and subcritical discharging – Subcritical charging and supercritical discharging.

UNIT IIISOLID PROPELLANT ROCKETS12

Operating principle - Specific impulse of a rocket - Internal ballistics - Selection criteria of solid propellants - propellant grain design considerations - Progressive, Regressive and neutral burning in solid rockets.

UNIT IV

LIQUID PROPELLANT ROCKETS

V Liquid propellant rockets – selection of liquid propellants – various feed systems for liquid rockets – cryogenic techniques - Thrust vector control - Cooling in liquid rockets and the associated heat transfer problems - advantages of liquid rockets over solid rockets - introduction to hybrid propulsion advantages and limitations of hybrid propulsion - static testing of rockets and safety considerations.

UNIT V **NON - CONVENTIONAL PROPULSION TECHNIQUES**

12

12

Introduction to nozzleless propulsion and basic concepts - Electric rocket propulsion - Plasma as a fluid-Diffusion in Partially Ionized gases - Ion propulsion - Nuclear rocket - Types - Solar Sail - comparison of performance of these propulsion systems with chemical rocket propulsion systems.

Text Books:

1. Sutton, G.P., "Rocket Propulsion Elements", John Wiley & Sons Inc., New York, 8th Edition, 2010.

2. Thomas A Ward, "Aerospace Propulsion Systems", John Wiley & Sons Inc., New York, 2010. **References:**

1. J D Mattingly, "Elements of Propulsion - Gas Turbines and Rockets", AIAA Education Series, 2006.

- 2. David H. Heiser and David T. Pratt., "Hypersonic Air -breathing Propulsion", AIAA Education Series, 1999.
- 3. DanM.Goebel, Ira Katz, 'Fundamentals of Electric Propulsion', John Wiley & Sons Inc, New York, 2003.

	FLIGHT MECHANICS	L	Т	Р	С		
	Total Contact Hours – 60	4	0	0	4		
BAN504	Prerequisite – Fundamentals of Aeronautics and Astronautics, Aerodynamics I						
	Course Designed by – Department of Aeronautical Engineer	ing					
OBJECTIVES	1						

1. To understand aircraft performance relating to steady level

2. To understand aircraft performance relating to Range, Endurance, climb & Glide

3. To acquire knowledge about Take off, Landing and Turning performance

4. To understand the principles of stability and control relating to longitudinal stability

5. To understand the principles of stability and control relating to directional and lateral stability

COURSE CONTENT

UNIT I **STEADY LEVEL FLIGHT**

International Standard Atmosphere, TAS, IAS and EAS, Streamlined and Bluff body - Skin friction Drag, Pressure Drag and Induced Drag – Drag Polar – Various drags of an airplane – Methods of Drag Reduction - Effect on Drag Polar. Steady level flight, Thrust required and Power required, Thrust available and Power available for propeller driven and jet powered aircraft, Effect of altitude, conditions for minimum drag and minimum power required

UNIT II RANGE, ENDURANCE, CLIMB AND GLIDE PERFORMANCE	
---	--

12

Range and	Endurance of Propeller and Jet aircrafts, Shallow and steep angles of	clim	o, Rate	of clin	nb,
Climb hode	ograph, Maximum Climb angle and Maximum Rate of climb- Effect	t of de	esign p	aramet	ters
for propell hodograph	er and jet aircrafts, Absolute and service ceiling, Cruise climb,	Glidi	ng flig	ght, Gl	lide
UNIT III	TAKE OFF, LANDING AND TURNING PERFORMANCE	2			10
Take-off ar	d landing performance, Turning performance, bank angle and load Pull up and pull down maneuvers, maximum turn rate, V-n diagram.	factor	, Cons		
UNIT IV	LONGITUDINAL STABILITY				14
fuselage co Free elevat aircrafts, lo to trim, elev balancing Aircraft E derivatives	iteria for longitudinal static stability, contribution to stability by win mbination, Total longitudinal stability, Neutral point-Stick fixed a for factor, static margin, Hinge moment, Power effects on stability ngitudinal control, Movement of centre of gravity, elevator control vator angle per g, maneuver point, Stick force gradient and stick force equations of motion, small disturbance theory, Estimation of Routh's discriminant, solving the stability quartic, Phugoid motion, demping	nd Sti llity-p powe ce per longit	ick fre ropelle r, eleva g, Aer tudinal	e aspe er and ator an odynai stabi	cts, jet ngle mic lity
period and UNIT V	LATERAL AND DIRECTIONAL STABILITY				12
vertical tail fin, Direction condition, s	stability-yaw and sideslip, contribution to static directional stabili , Power effects on directional stability-propeller and jet aircrafts, Ru onal control, rudder control power, rudder requirements, adverse ya pin recovery, Lateral stability-Dihedral effect, contribution of variou eron control power, strip theory, roll control by spoilers, aileron rev	udder w, asj us con	lock a ymmet nponer	nd Dor ric pov nts, late	rsal wer eral
Text Books 1. Anderson 2. Houghto	s: n, Jr., J.D. Aircraft Performance and Design, McGraw-Hill Internation on, E.L. and Carruthers, N.B. Aerodynamics for engineering stud ers, 2000				old
 2.Pamadi, Series, 3. 3. McCorm 4. Babister, 5.Etkin, B., 	R.C." Flight Stability & Automatic Control", McGraw Hill, 2005. B.N. Performance, Stability, Dynamics, and Control of Airplan	Viley, 1982.	1995.		
	MANUFACTURING ENGINEERING	L	Т	Р	С
		1			-

	MANUFACI UKING ENGINEEKING	L	I	r	C
	Total Contact Hours – 45	3	0	0	3
BAN505	Prerequisite – Engineering mechanics				
	Course Designed by – Department of Aeronautical Engineering				

OBJECTIVES

- 1. To introduce student about various metal working process
- 2. To impart theoretical knowledge about the metal cutting and machining process.
- 3. Introduce students about various special purpose machine and milling machine.
- 4. Introducing students about various drilling, boring and surface finish operations.
- 5. Introduce students about various non conventional process and high energy rate forming process.

COURSE CONTENT UNIT I METAL WORKING PROCESS 8 Mechanical working of metals -hot and cold working -rolling, extrusion, spinning, wire-drawing, press working. Welding – different types of gas and arc welding process, soldering and brazing. Casting –different types, furnaces, casting defects and inspection **UNIT II** THEORY OF METAL CUTTING AND MACHINING PROCESSES 12 Introduction, mechanics of metal cutting-chip formation, Merchant's circle theory cutting force calculations, tool materials. Influence of tool angles, tool life, cutting fluids, machining time calculations, Metal cutting economics, problem in merchant circle, tool life, machining time and economics. Lathe – introduction, types, construction, mechanisms and attachments for various operations, nomenclature of single point cutting tool. Capstan and turret lathes various mechanisms, tool and loading arrangement. Automatic lathes - single spindle and multi spindle mechanisms, CNC lathes. UNIT III SHAPER, PLANER AND MILLING PROCESS 8 Shaper, planer and slotter: types, specifications, mechanisms, holding devices, difference between shaper and planer. Milling machine – types and specification, mechanisms, holding devices, milling operations. Milling tool nomenclature, indexing types-simple, compound and differential **UNIT IV** DRILLING, BORING, BROACHING, SURFACE FINISHING PROCESS 8 Drilling, Boring- Specification, Nomenclature of drilling and reaming tool and its specification. Broaching: Specification, types, mechanisms, nomenclature of broaching tool. Grinding process, Types of grinding machines, Grinding Wheels, Honing, Super finishing, Polishing, Metal spraying, Galvanizing, Electroplating. NON-TRADITIONAL MACHINING PROCESSES AND HIGH ENERGY 9 UNIT V **RATE FORMING PROCESSES** Non-traditional machining techniques, classification, Abrasive jet machining, Electrical Discharge Machining, E. D wire cutting, Electro chemical machining, Electron Beam Machining, Laser Beam Machining, Ultrasonic Machining. Explosive forming, Electro hydraulic, Electromagnetic forming, Dynapack machine. **Text Books:** 1. P.C. Sharma., A text book of Production Technology, S.Chand& Company ltd, 2007. 2.P.N.Rao. Manufacturing Technology-Foundry Forging and Welding, TMH publishing co, 2009. **References:** 1. W.A.J. Chapman., Workshop Technology. Vol I, II& III, 1975, ELBS. 2. Roy A Lindberg, Process and Material Manufacture, PHI, 1995. 3. Kalpakjan, Manufacturing Engineering and Technology, Addison Wesley, 2005.

4. HajraChowdary S.K. The fundamentals of work shop technology Vol. I & II, Media Publishers, 1997.

	VALUE ADDED PROGRAM I	L	Т	Р	C	
DANISVI	Total Contact Hours – 30	0	0	2	1	
BAN5V1	Prerequisite – Professional Courses					
	Course Designed by – Department of Aeronautical Engineering					
and self 2. To introc 3. To boost 4. To famil stressed	VES int the student about personal value, responsibility in the society and seteem luce about goal setting, time management and planning the creativity, lateral thinking of the students iarize the student on teamwork, interpersonal skills, leadership skills l situations he student understand about decision making and self assessment					
	LIST OF ACTIVITIES					
1	An activity to describe the personal value.					
2	An activity to describe the responsibility of students in society.					
3	An activity to enhance self-confidence and self-esteem.					
4	An activity to make a goal setting.	An activity to make a goal setting.				
5	An activity to make a time management chart.					
6	An activity to describe the planning process.					
7	An activity to enhance the creativity of students.					
8	An activity to improve the lateral thinking.					
9	An activity to describe the importance of team work.					
10	An activity to enhance the interpersonal skills.					
11	An activity to enhance the leadership skills.					
12	An activity to manage the stressed situation.					
13	An activity to describe the decision making.					
14	An activity to weighing positives and negatives.					
15	An activity to make a SWOT analysis.					
Referen 1. Valu	nces: e Added Program Booklet, Department of Aeronautical Engineering,	2015				

	AERODYNAMICS LABORATORY	L	Т	Р	С	
DANET 1	Total Contact Hours – 45 0 0 3					
BAN5L1	Prerequisite – Fundamentals of Fluid Mechanics, Aerodynam	nics				
	Course Designed by – Department of Aeronautical Engineeri	ng				
 OBJECTIVES 1. To acquaint the student to the various experimental processes to carry out structural analysis. 2. To familiarize to the student about the analysis of beams. 3. To enable the student to understand about the analysis of columns. 4. To help the student to understand about the effect of complex loading on aircraft structures. 5. To introduce to the student about the shear flow estimation in aircraft structures. LIST OF EXPERIMENTS 						
1	Calibration of subsonic wind tunnel.					
2	Pressure distribution over smooth cylinder					
3	Pressure distribution over rough cylinder					
4	Pressure distribution over symmetric airfoil.					
5	Pressure distribution over cambered airfoil.					
6	Pressure distribution over a wing					
7	Force measurement using wind tunnel balance.					
8	Determination of base drag of a missile model.					
9	Study of flow field over a backward facing step.					
10	Power estimation of Wind Turbine					
11	Aerodynamic studies of automotive models.					
12	Study of Fanno flow					
13	Study of profile drag of bodies by wake survey method.					
14	Flow visualization at subsonic velocity (a) Using Tuft (b) Oil flow visualization.					
15 Flow visualization studies in supersonic flows by schilren system.						
Referen 1. Aeroo	ces: dynamics Lab Manual, Department of Aeronautical Engineering,	2015				

BAN5L2	AERO DESIGN AND MODELING LABORATORY	L	Т	Р	С	
	Total Contact Hours – 30	0	0	2	1	
DINISLE	Prerequisite – Fundamentals of Aeronautics and Astronautics					
	Course Designed by – Department of Aeronautical Engineering					

OBJECTIVES

1. To design and fabricate gliders, catapult and power gliders.

2. To design and fabricate single, double and pivoted double crank flapping wing mechanism.

3. To design and fabricate wing, vertical and horizontal stabilizer using balsa wood.

4. To design and fabricate fuselage and control surfaces using polystyrene and glass fibers.

5. To estimate discharge rate of Li-Po battery, propeller thrust and assembling Remote Control Aircraft.

LIST OF EXPERIMENTS						
1	Design and fabrication of gliders using balsa wood.					
2	Design and fabrication of catapult.					
3	Design and fabrication of power gliders.					
4	Design and fabrication of single crank flapping wing mechanism.					
5	Design and fabrication of double crank flapping wing mechanism.					
6	Design and fabrication of pivoted double crank flapping wing mechanism.					
7	Design and fabrication of wing using balsa wood.					
8	Design and fabrication of horizontal and vertical stabilizer using balsa wood					
9	Design and fabrication of fuselage using hardened polystyrene.					
10	Design and fabrication of control surfaces using glass fibers composite.					
11	Design and fabrication of fuselage using glass fibers composite.					
12	Design and fabrication of fuselage using hardened polystyrene.					
13	Estimation the discharge rate of Li-Po battery for different thrust setting.					
14	Estimating the propeller thrust for different voltage setting.					
15	Assembling of Remote Control Aircraft.					
References: 1. Aero Design and M	References: 1. Aero Design and Modeling Lab Manual, Department of Mechanical Engineering, 2015					

	COMPUTER AIDED ANALYSIS LABORATORY	L	Т	Р	С
DANES4	Total Contact Hours – 30	0	0	2	1
BAN5S1	Prerequisite – Aircraft Structures, Aerodynamics				
	Course Designed by – Department of Aeronautical Engineerin	g			
 2. To famili using ANSY 3. To train t 4. To train t 	Int the student with various computer softwares for engineering an arize the student with to the various options and types of analysis			arried	out
1	Study of ANSYS and its tools				
2	Stress analysis of beams with different loading conditions				
3	Stress analysis of a plate with circular hole				
4	Stress analysis of an axisymmetric component				
5	Vibration analysis of cantilever beam				
6	Simple conduction example				
7	Thermal mixed boundary example				
8	Flow field analysis of jets				
9	Flow field simulation over an airfoil				
10	Fluid – Structure interaction				
Referen 1. CAA	ces: Lab Manual, Department of Aeronautical Engineering, 2015				

	COMPREHENSION I	L	Т	P	С	
BAN5C1	Total Contact Hours : Test will be conducted at the end of the semester	0	0	0	1	
	Prerequisite – All the courses up to fifth semester					
	Course Designed by – Dept. Aeronautical Engineering					
OBJECTIVES						
-	complete review of Aerospace Engineering topics covere tensive understanding is achieved.	d up	to fif	th se	mesters, so	

It will also help students to face job interviews, competitive examinations and also to enhance the

- employment potential.
- To provide overview of all topics covered and to assess the overall knowledge level up to fifth semester.

	VALUE EDUCATION AND PROFESSIONAL ETHICS	L	Т	Р	С
Dagent	Total Contact Hours – 45	3	0	0	3
BSS601	Prerequisite – Professional Courses				
	Course Designed by – Department of Humanities and Social Scie	nces			
OBJECTIVE					
	e philosophy of Life, personal value, social value, mind cultural val		-		
2. To teach pr issues.	ofessional ethical values, codes of ethics, responsibilities, safety, rig	gnis a	nu rela	ted gio	Dai
	COURSE CONTENT				
UNIT I	PHILOSOPHY OF LIFE AND INDIVIDUAL QUALITIES				9
Human Life or	n Earth - Purpose of Life, Meaning and Philosophy of Life. The La	w of N	Vature	– Prot	ecting
Nature /Univer	rse. Basic Culture - Thought Analysis - Regulating desire - Guardi	ng ag	ainst a	nger - 🛛	Fo get
•	v - The Rewards of Blessing - Benevolence of Friendship - Lo	ve an	d Cha	rity - S	Self –
tranquility/Pea				[
UNIT II	SOCIAL VALUES (INDIVIDUAL AND SOCIAL WELFAR				9
•	e in Family, Society, The Law of Life Brotherhood - The Pride				
	s/duties of Man : - a) to himself, b) to his family, c) to his environi e in his lives, Thriftness (Thrift)/Economics. Health - Education				
	/ duties of the community, World peace.	- 001	CITIAIN	.e - 10	opic s
UNIT III	MIND CULTURE & TENDING PERSONAL HEALTH				9
	- Life and Mind - Bio - magnetism, Universal Magnetism (Go				
	Genetic Centre – Thought Action – Short term Memory – Exp				
	elising the Mind, Stages - Meditation, Spiritual Value. Structure ody-life body relation, natural causes and unnatural causes for disc				
diseases	ouy- me body relation, natural causes and unnatural causes for disc	cases,	Methe		Juring
UNIT IV	ENGINEERING AS SOCIAL EXPERIMENTATION AND RESPONSIBILITIES FOR SAFETY	ENC	GINEE	RS'S	9
Engineering a	s Experimentation – Engineer as Responsible Experimenters –	Code	s of E	Ethics -	- The
Challenger, ca	se study. Assessment of Safety and Risk – Risk Benefit Analysis a				
Three Mile Isla	and and Chernobyl case studies.				
UNIT V	ENGINEER'S RESPONSIBILITIES FOR RIGHTS AND GI	LOBA	L ISS	UES	9
	d Loyalty – Respect for Authority – Collective Bargaining – Cont		•		
	upational Crime – Whistle Blowing – Professional Rights – Emplo (IPR) – Discrimination.	yee F	Rights -	– Intell	ectual
1.0	Corporations – Environmental Ethics – Computer Ethics – W	/eano	ns De	velonm	ent –
	Managers – Consulting Engineers – Engineers as Expert Eye W				
Moral Leaders	hip				

Text Books:

- 1. Value Education for Health, Happiness and Harmony, The World Community Service, Centre Vethathiri Publications (Unit 1 III).
- 2. Mike W Martin and Roland Schinzinger, Ethics In Engineering, Tata McGraw Hill, Newyork 2005 (Units IV & V)

References:

- 1. Philosophy of Universal Magnetism (Bio magnetism, Universal Magnetism) The World Community Service Centre Vethathiri Publications (for Unit III)
- 2. Thirukkural with English Translation of Rev. Dr. G.U. Pope, Uma Publication, 156, Serfoji Nagar, Medical College Road, Thanjavur 613 004 (for Units I III)
- 3. R S Nagaarazan, Textbook On Professional Ethics And Human Values, New Age International Publishers, 2006 (for Units IV-V)
- 4. Charles D Fledderman, Engineering Ethics, Prentice Hall, New Mexico, 2004(for Units IV-V)

	AEROSPACE STRUCTURAL MATERIALS AND COMPOSITES	L	Т	Р	С
BAN601	Total Contact Hours – 45	3	0	0	3
DAILOUI	Prerequisite – Fundamentals of Structural Mechanics				
	Course Designed by – Department of Aeronautical Engineering				
2. To develo 3. To learn d	nt the student with various types of aerospace composite materials. p the understanding of composite mechanics. ifferent theory of laminate design.				
	ifferent theory of failure analysis. clear understanding of composite fabrication process.				
<i>5.</i> 10 have a	COURSE CONTENT				
UNIT I	INTRODUCTION				9
and direction polycrystalli	s- determination of structures of simple crystals by x-ray diffractions-packing geometry in metallic-ionic and covalent solids-Conception ne structures and their effect on properties of materials-Crustin crystalline solids and their role in influencing various properties.	t of aı ystal	norpho	ous-sing	gle and
UNIT II	AEROSPACE MATERIALS				9
Semi Abrog	 Physical Metallurgy – Wrought Aluminum Alloys – Cast Aluminated Forms– Plastics and Rubber – Introduction to FRP, Glass and C Characteristics and Application– Super Alloys. Emerging Trends in 	arbon	Comp	osites-	Fibers
UNIT III	MECHANICS OF COMPOSITES				9
Fiber Volum for anisotrop	anics – Mechanics of materials approach, elasticity approach to deter ne ratio – Mass fraction – Density of composites-Generalized Hooke nic, orthotropic and isotropic materials - Macro Mechanics – Stress-s kis, arbitrary axis – Determination of material properties - Experiment	e's Lav train r	w - Ela elatior	astic co is with	nstants respect
UNIT IV	LAMINATION THEORY AND FAILURE ANALYSIS				9

Governing differential equation for a unidirectional lamina and general laminate, angle ply and cross ply laminate, Failure criteria for composites--Failure modes of sandwich panels - Bending stress and shear flow in composite beams.

UNIT V FABRICATION METHODS

Various open and closed mould processes, Manufacture of fibers, Types of resins, properties and applications, Netting analysis-Basic design concepts of sandwich construction - Materials used for sandwich construction.

Text Books:

1. Jones, R.M., "Mechanics of Composite Materials", Taylor & Francis, II Edition, 2000.

2. MadhujiMukhapadhyay, "Mechanics of Composite Materials and Structures", University Press, 2004

References:

- 1. Agarwal, B.D., and Broutman, L.J., "Analysis and Performance of FibreComposites", John Wiley and sons. Inc., New York, 1995.
- 2. Lubin, G., "Handbook on Advanced Plastics and Fibre Glass", Von Nostrand Reinhold Co., New York, 1989.
- 3. Autar K Kaw, "Mechanics of Composite Materials", CRC Press, 1997.
- 4. Calcote, L R. "The Analysis of laminated Composite Structures", Von Nostrand Reinhold Co., New York 1998.
- 5. Allen Baker, "Composite Materials for Aircraft Structures", AIAA Series, Second Edition, 1999.

	FINITE ELEMENT METHODS	L	Т	Р	С
	Total Contact Hours – 60	4	0	0	4
BAN602	Prerequisite – Fundamentals of Fluid Mechanics, Structural Mech Aerothermodynamics	nanics	,		
	Course Designed by – Department of Aeronautical Engineering				

OBJECTIVES

1. To acquaint the student with basic numerical methods for analyzing structural components.

- 2. To develop the understanding of finite element modeling and analysis of one dimensional system.
- 3. To develop the understanding of finite element modeling and analysis of two dimensional system.
- 4. To develop the understanding of finite element modeling and analysis of three dimensional system

5. To acquaint with the application of finite element method to aerospace structures.

COURSE CONTENT

UNIT I INTRODUCTION

Introduction to FEA - historical background - Review of various approximate methods – Raleigh Ritz's, Galerkin and finite difference methods- Governing equation and convergence criteria of finite element method - Examples of Finite Element Modeling

UNIT II ONE DIMENSIONAL SYSTEMS

Direct stiffness method – spring element- Derivation of the stiffness matrix- Example of a springassemblage-Assembly of global stiffness matrix-Types of boundary conditions- The Potential energy approach –Examples-Prismatic bar under axial loading- bending of beams - Fundamentals of Finite Element Modeling – Element Division - Numbering Scheme- Coordinate and Shape Functions- The Potential Energy Approach- Assembly of Global Stiffness Matrix and Load Vector- Treatment of

12

12

Boundary Conditions- Temperature Effects- Shear Force and Bending Moment - Examples.

UNIT III	TWO DIMENSIONAL SYSTEMS	12
	s structure-Introduction- Plane Trusses-Coordinate Transformation – Local & C	Global
Coordinate-	• The Element Stiffness Matrix- Stress Calculations- Temperature Effects – Examples.	
	s & strain – Constant Strain Triangle (CST)- Isoparametric Representation- Potential E	Inergy
Approach -	Element Stiffness; Force Terms Stress Calculations- Temperature Effects- Examples	
UNIT IV	THREE DIMENSIONAL SYSTEMS	12
Axisymmet	ric formulation – Element stiffness matrix and force vector – Galerkin approach – Body	forces
and temper	ature effects - Stress calculations - Boundary conditions and Nodal Solution; Mappin	ig and
Numerical	Integration- Four node quadrilateral for axisymmetric problems -Applications to cyl	inders
under interr	al or external pressures – Rotating discs	
UNIT V	APPLICATIONS OF FEM TO AEROSPACE STRUCTURES	12
Linear stat	ic analysis-non linear static analysis -dynamic analysis-simple harmonic motion-dat	mping
consideration	on-forced vibration- typical issues in contact analysis-contact impact algorithm-Case s	tudies
problems us	sing software packages and MATLAB coding.	
Text Books	5:	
1. Tirupath	i.R. Chandrapatha and Ashok D. Belegundu,"Introduction to Finite Elements in Enginee	ering",
	Hall India, Fourth Edition, 2011.	
2. Rao. S.S 2005.	S., "Finite Element Methods in Engineering", Butterworth and Heinemann, Fourth E	dition,
References	:	
	N.,"An Introduction to Finite Element Method ",McGraw Hill, 3rd edition, 2005.	
	nurthy, C.S., "Finite Element Analysis", Tata McGraw Hill, 2nd 2001.	
3. Bathe, K 1985.	.J. and Wilson, E.L., "Numerical Methods in Finite Elements Analysis", Prentice Hall of	India,
	D Cook, David S Malkus, Michael E Plesha, "Concepts and Applications of Finite El s", John Wiley and Sons, Inc., Fourth edition, 2001.	ement
	egerlind, "Applied Finite Element Analysis", John Wiley and Sons, Inc.Second Edition, Logan, "A First Course in the Finite Element Method", 5th Edition, PWS Publishing	1984

Company, Boston, 2010.

	CONTROL SYSTEM	L	Т	Р	С
DANKOZ	Total Contact Hours – 45	3	0	0	3
BAN603	Prerequisite – Basic Electrical and Electronics& Mathematics				
	Course Designed by – Department of Aeronautical Engineering				
ORIECTIVE					

OBJECTIVES

- 1. To provide students an understanding on various physical systems, development of flight control system and their important. Also Introduce students the concept of electrical analogies to mechanical system
- 2. Introduce students the concept of feedback control system, Block diagram reduction technique and signal flow graph
- 3. To impart knowledge on various signals, system response on respective signals and time response of first order and second order system. Also to provide knowledge on steady state errors

- 4. To provide knowledge on concept of stability, Routh Hurwitz criteria for stability. Make student to develop Stability analysis using Bode plot, Root locus technique
- 5. To provide students brief knowledge on digital control system, Digital controllers. To introduce zplane and z- transform techniques.

COURSE CONTENT

UNIT I

INTRODUCTION

Historical review, Simple pneumatic, hydraulic and thermal systems, Series and parallel system, Analogies, mechanical and electrical components, Development of flight control systems.

UNIT II

OPEN AND CLOSED LOOP SYSTEMS

Feedback control systems Block diagram representation of control systems, Reduction of block diagrams, Output to input ratios.

UNIT III CHARACTERISTIC EQUATION AND FUNCTIONS

Laplace transformation, Response of systems to different inputs viz., Step impulse, pulse, parabolic and sinusoidal inputs, Time response of first and second order systems, steady state errors and error constants of unity feedback circuit.

UNIT IV CONCEPT OF STABILITY

Necessary and sufficient conditions, Routh-Hurwitz criteria of stability, Root locus and Bode techniques, Concept and construction, frequency response.

UNIT V SAMPLED DATA SYSTEMS

Sampled data control systems - functional elements-sampling process - z-transforms- properties - inverse z transforms- response between samples-modified z-transforms - ZOH and First order Hold process-mapping between s and z planes - pulse transfer functions - step response - stability analysis-Jury's stability test - Introduction to digital control system, Digital Controllers and Digital PID controllers.

Text Books:

- 1. Ogato, Modern Control Engineering, Fifth Edition, Prentice-Hall of India Pvt.Ltd., New Delhi, 2010.
- 2. Azzo, J.J.D. and C.H. Houpis, Feedback control system analysis and synthesis, McGraw-Hill international 3rs Edition, 1998.

References:

- 1. Kuo, B.C. Automatic control systems, Prentice-Hall of India Pvt.Ltd., New Delhi, 2009.
- 2. Houpis, C.H. and Lamont, G.B. Digital control Systems, McGraw Hill Book co., New York, U.S.A. 1995.
- 3. Naresh K Sinha, Control Systems, New Age International Publishers, New Delhi, 1998.

	VALUE ADDED PROGRAM II	L	Т	Р	C
DANG 14	Total Contact Hours – 30	0	0	2	1
BAN6V1	Prerequisite – Professional Courses				
	Course Designed by – Department of Aeronautical Engineering				
OBJECTIVE					

1. To boost up the technical writing skills of the student

9

9

9

9

- 2. To enhance the presentation skills of the student
- 3. To familiarize the student on attractive resume writing
- 4. To familiarize the student on Interviews and Group Discussions
- 5. To advance the problem solving ability of the student

	COURSE CONTENT
1	A business letter to a company asking for Quotation.
2	A cover letter for applying a Job.
3	A sample Email communication for the given situation.
4	A model Technical report writing.
5	An activity to analysis the audience.
6	An activity to practice the body language.
7	An activity to practice the voice modulation.
8	An activity to present a self introduction.
9	An activity to present a technical seminar.
10	An activity to write a proper resume.
11	A mock interview and group discussion.
12	Problems on critical reasoning and sentence correction.
13	Problems on number, Simple interest and compound interest.
14	Problems on Analytical and Logical Reasoning.
15	Problems on probability, permutation and combination.
Refere 1. Val	ences: ue Added Program II Preparatory Material, Department of Aeronautical Engineering, 2015

	AIRCRAFT SYSTEM LABORATORY	L	Т	Р	С
DANKE 1	Total Contact Hours – 45	0	0	3	2
BAN6L1	Prerequisite – Aircraft Systems and Instrumentation				
	Course Designed by – Department of Aeronautical Engineering				
OBJECTIVE	8				
1. Appreciate t	he need of various aircraft systems, components, accessories and it	s func	tions.		
2. Understand	the importance of aircraft system maintenance and checks.				

3. Understand the jacking procedure, leveling and symmetric checks done in the aircraft.

4. Understand the rigging procedure of the aircraft, Understand the operation of Brake torque load test and fuel clogging test

	LIST OF EXPERIMENTS
1	Aircraft systems observations during Ground run.
2	Aircraft "Mooring" procedure.
3	Aircraft "Leveling" procedure
4	Control System "Rigging check" procedure
5	Aircraft "Symmetry Check" procedure
6	Procedure to find the centre of gravity of Aircraft
7	"Flow test" to assess of filter element clogging
8	"Pressure Test" To assess hydraulic External/Internal Leakage
9	"Functional Test" to adjust operating pressure
10	"Pressure Test" procedure on aircraft fuel system components
11	"Brake Torque Load Test" on wheel brake units
12	Maintenance and rectification of snags in hydraulic systems.
13	Rectification of snags in aircraft fuel systems.
14	Tyre pressure checking and Oleo leg pressure procedure.
15	Landing gear strut wheel dismantling and assembly procedure.
	ences: craft Systems Lab Manual, Department of Aeronautical Engineering, 2015

	PROPULSION LABORATORY	L	Т	Р	C
	Total Contact Hours – 45	0	0	3	2
BAN6L2	Prerequisite – Aerodynamics I & II, Aircraft Propulsion				
	Course Designed by – Department of Aeronautical Engineering				
OBJECTIVE	\mathbf{S}				

1. Understand the need of various incompressible circular and non circular jets.

- 2. Understand the importance of velocity in supersonic circular and noncircular jets.
- 3. Understand the determination of wall jet velocity profile in the aircraft.
- 4. Understand the need of operation of a ramjet engine.
- 5. Develop the studies of liquid fuel atomizer and pre-mixed flame.

1	Estimation of spread rate in incompressible circular jets.
2	Estimation of spread rate in incompressible non- circular jets.
3	Estimation of centre line velocity decay in supersonic circular jets.
4	Estimation of centre line velocity decay in supersonic non-circular jets.
5	Determination of Wall jet velocity profile.
6	Determination of Impingement jet velocity profile.
7	Study of free convective heat transfer over a flat plate.
8	Study of forced convective heat transfer over a flat plate.
9	Study of conduction heat transfer in a flat plate.
10	Operation of a subsonic Ramjet engine.
11	Flame stabilization studies using conical flame holders.
12	Velocity and pressure measurements of Co-axial jets.
13	Effect of swirl on diffusion flame.
14	Studies liquid fuel atomizers.
15	Studies on pre-mixed flame.

BAN6L3	AIRCRAFT DESIGN PROJECT I	L	Т	Р	C
	Total Contact Hours – 60	0	0	4	2
	Prerequisite – Fundamentals of Aeronautics and Astronautics, Flight Mechanics				
	Course Designed by – Department of Aeronautical Engineering				

OBJECTIVES

- 1. To familiarize the student to the different configurations of airplanes and on the comparison of the parameters of different airplanes to arrive at a proper selection of main parameters to design a new aircraft
- 2. To enable the student to be able to estimate the weight of the aircraft according to the main parameters selected
- 3. To enable the student to select an appropriate power plant and estimate the wing geometry according to the results of weight estimation
- 4. To enable the student to calculate tail dimensions and to estimate the total drag of the airplane and also to perform a stability analysis of the airplane
- 5. To make the student able to draft a three view diagram of the designed airplane.

1 2	Comparative configuration study of different types of airplanes
2	
	Comparative study on specification and performance details of aircraft
3	Preparation of comparative data sheets
4	Work sheet layout procedures
5	Comparative graphs preparation.
6	selection of main parameters for the design
7	Preliminary weight estimations.
8	Selection of main parameters,
9	Power plant selection.
10	Aerofoil selection,
11	Wing and stabilizers selection.
12	Control surfaces designing.
13	Drag estimation
14	Detailed performance calculations and stability estimates
15	Preparation of layouts of balance diagram and three view drawings

3. CADD and CAA Lab Manuals, Department of Aeronautical Engineering, 2015

BAN701	COMPUTATIONAL FLUID DYNAMICS	L	Т	Р	С	
	Total Contact Hours – 45	3	0	0	3	
	Prerequisite – Fundamentals of Fluid Dynamics, Aerodynamics I & II					
	Course Designed by – Department of Aeronautical Engineering					
OBJECTIVES						
1. To make the student be familiar with the various fluid flow analysis technique.						

2. To give insight of various computational technique for fluid flow analysis.

- 3. To acquaint the student with various challenges involved in computational techniques.
- 4. To get exposure regarding its applications and recent developments.
- 5. To learn advanced computing techniques like parallel computing, vector computing etc.

COURSE CONTENT UNIT I **INTRODUCTION** 10 Basic Equations of fluid dynamics and their classification - Boundary Conditions - Incompressible inviscid flows - source, vortex and doublet panel method - Discretization of Partial Differential Equation - Truncation error, stability consistency, accuracy and convergence of numerical schemes. **UNIT II** 9 **GOVERNING EQUATIONS** Conservation Equations- Direct numerical Simulation - Large Eddy Simulation - Time-Averaged Equations for Turbulent flow – Reynolds Stress Equations – Turbulence modeling UNIT III WALL EFFECTS 8 The Role of Walls – Wall functions – Renormalization Group k- Models – Low-Reynolds number k-Models **UNIT IV** NUMERICAL METHODS 10 Finite Volume Method - SIMPLE Algorithm - Advanced Discretization Methods and Numerical Schemes - Solution Procedure - Differencing Scheme, Numerical Diffusion, Relaxation Factors and convergence UNIT V **APPLICATIONS** 8 Large Scale problems in CFD - Iterative Solvers - Preconditioning Techniques - Vector and Parallel Computing – Post Processing for Visualization. Text Books: 1. JiyuanTu, Guan, HengYeoh, Chaoqun Liu, "Computational Fluid Dynamics A Practical Approach" Springer Verlag, 2012. 2. J. D.Anderson, "Computational Fluid Dynamics", McGraw Hill International, 2012. **References:** 1. H.K. Versteeg and W. Malalsekera "An Introduction to Computational Fluid Dynamics, The Finite Volume Method", Longman Scientific & Technical, 2007. 2. T. J. Chung, "Computational Fluid Dynamics", Cambridge University Press, 2002. 3. C. Hirch, "Numerical Computation of Internal and External Flows" Volume-2, John Wiley and Sons, 1994. 4. http://www.cfdonline.com

BAN702	AVIONICS	L	Т	Р	C	
	Total Contact Hours – 45	3	0	0	3	
	Prerequisite – Basic Electricals & Electronics, Aircraft Systems & Instrumentation and Aerodynamics					
	Course Designed by – Department of Aeronautical Engineering					
OBJECTIVE	S the stadents are an electron dimensional framework in similar days					

1. To provide the students an understanding on need for avionics in civil and military industry, avionics subsystems, integrated systems and design approaches

- 2. Introduce students about digital computer, digital numbering, digital arithmetics, logic gates, combinational logic circuits, microprocessor & memories and interface to it with analogue system
- 3. To introduce avionics system architecture- Data buses, MIL, ARINC standards
- 4. To provide idea of different cockpits, cockpit displays, panels, I/O technologies
- 5. To impart brief knowledge on various avionics systems. Reliability, maintainability and certification

COURSE CONTENT

UNIT I

INTRODUCTION TO AVIONICS

Need for avionics in civil and military aircraft and space systems – Integrated avionics and weapon systems – Typical avionics subsystems - Design approaches and recent advances - Application Technologies.

UNIT II

PRINCIPLE OF DIGITAL SYSTEMS

Digital computer – Digital number system- number systems and codes-Fundamentals of logic and combinational logic circuits –Digital arithmetic – interfacing with analogue systems - Microprocessors – Memories.

UNIT III DIGITAL AVIONICS ARCHITECTURE

Avionics system architecture - Databuses - MIL-STD-1553B - ARINC - 420 - ARINC - 629.

UNIT IV FLIGHT DECKS AND COCKPITS

Control and display technologies: CRT, LED, LCD, EL and plasma panel – Touch screen – Direct voice input (DVI) – Civil and Military Cockpits: MFDS, HUD, MFK, HOTAS.

UNIT V INTRODUCTION TO AVIONICS SYSTEMS

Communications systems- Navigation systems – Flight control systems – Radar – Electronic Warfare – Utility systems Reliability and maintainability – Certification.

Text Books:

- 1. Middleton, D.H., Ed., Avionics systems, Longman Scientific and Technical, Longman Group UK Ltd., England, 1989.
- 2. Spitzer, C.R. Digital Avionics Systems, Prentice-Hall, Englewood Cliffs, N.J., U.S.A. 1987.

References:

- 1. Collinson. R.P.G., Introduction to Avionics, Chapman & Hall, 1996
- 1. Malvino, A.P. and Leach, D.P. Digital Principles and Applications, Tata McGraw Hill, 1990.
- 2. Gaokar, R.S. Microprocessors Architecture-Programming and Applications, Prentice Hall, 2002...

BAN703	HEAT TRANSFER	L	Т	Р	С	
	Total Contact Hours – 45	3	0	0	3	
	Prerequisite – Fundamentals of Aero – Thermodynamics, Fluid Mechanics					
	Course Designed by – Department of Aeronautical Engineering					
OBJECTIVES						
1. To acquain the student shout the fundamentals of heat transfer						

- 1. To acquaint the student about the fundamentals of heat transfer.
- 2. To introduce to the student about the heat transfer analysis of conduction problems.
- 3. To introduce to the student about the heat transfer analysis of convection problems.
- 4. To introduce to the student about the heat transfer analysis of radiation problems.

9

9

9

9

5. To help t	he student understand about the various heat transfer problems in the aerospace application	ns.
	COURSE CONTENT	
UNIT I	FUNDAMENTALS OF HEAT TRANSFER	9
	heat transfer: Conduction – Convection – Radiation – One dimensional steady state Composite Medium – Critical thickness – Effect of variation of thermal Conductivurfaces.	
UNIT II	CONDUCTION HEAT TRANSFER	9
•	tate. Heat Conduction: Lumped System Analysis – Heat Transfer in Semi infinite and ir e of Transient – Temperature charts – Application of numerical techniques.	finite
UNIT III	CONVECTIVE HEAT TRANSFER	9
in free con flows betw	n – Free convection in atmosphere - free convection on a vertical flat plate – Empirical revection – Forced convection – Laminar and turbulent - convective heat transfer analy een parallel plates, over a flat plate and in a circular pipe. Empirical relations, application echniques in problem solving.	sis in
UNIT IV	RADIATIVE HEAT TRANSFER AND HEAT EXCHANGERS	9
Radiation-F factors-Rad	E HEAT TRANSFER: Concept of black body-Intensity of radiation-Laws of Black Radiation from non black surfaces- real surfaces – Radiation between surfaces-Radiation iation shields. CHANGERS: Types-overall heat transfer coefficient- LMTD- NTU method of heat exch	shape
UNIT V	HEAT TRANSFER PROBLEMS IN AEROSPACE ENGINEERING	9
Heat transfe using MAT	er problems in gas turbine, rocket thrust chambers and Re-entry vehicles –numerical problems LAB.	ems
Edition 2. Holman, References 1. Sutton, C	a, S.C. "Fundamentals of Engineering, Heat and Mass Transfer, Wiley Eastern Ltd. F , New Delhi, 2012. J.P., "Heat Transfer ", McGraw Hill Book Co., Inc., New York, TenthEdition.,2009.	ourth
	N.,"Heat Transfer A Basic Approach", The McGraw-Hill Company, reprint 1995.	

BAN7L1	AIRFRAME AND AERO ENGINE REPAIR LAB	L	Т	Р	С		
	Total Contact Hours – 30	0	0	2	1		
	Prerequisite – Aircraft Structures & Propulsion						
	Course Designed by – Department of Aeronautical Engineering						
OBJECTIVES							
1. To know the	e basic concepts of the maintenance and repair of both piston and	jet ae	ro eng	ines an	d the		

2. To practice the procedures of dismantling of piston engine and jet engine, study of components,

accessories of both engines and handling safety precautions.

- 3.To demonstrate the various inspection methods such as visual inspection dimensional checks and testing methods especially NDT have studied clearly and
- 4. Ability to inspect surface defects, internal defects, by using dye penetrant method and identification of defects on jet engine components.
- 5. To know about the reassembly procedure of piston engines, jet engines and starting procedure of piston engines.

	LIST OF EXPERIMENTS
1	Dismantling and reassembling a piston engine
2	Piston Engine - cleaning, visual inspection, NDT checks.
3	Piston Engine Components - dimensional checks.
4	Study of carburetor, fuel pump, spark plug and ignition system.
5	Dismantling and reassembling a jet engine
6	Jet Engine – identification of components & defects.
7	Jet Engine – NDT checks and dimensional checks
8	Engine starting procedures.
9	Aircraft wood gluing by single scarf and double scarf joint point.
10	Welded single & double V-joints using MIG, TIG & PLASMA welding.
11	Fabric and Riveted patch repairs.
12	Tube bending and flaring
13	Sheet metal forming.
14	Repairing of Acrylic sheets.
15	Repairing the composite panels.

	AVIONICS LABORATORY	L	Т	Р	С
	Total Contact Hours – 30	0	0	2	1
BAN7L2	Prerequisite – Basic Electricals and ElectronicsEngg& Avionics				
	Course Designed by – Department of Aeronautical Engineering				

OBJECTIVES

- 1. To learn and practice about basic digital electronic circuits like Adder, subtractor, multiplexer, demultiplexer, encoder, decoder etc.
- 2. To learn about timer, shift register and comparator circuits.
- 3. To understand the 8-bit and 16 bit operation and to learn mnemonic's coding for 8-bit and 16-bit circuit.
- 4. To understand the concept of interface programming and analog to digital conversion.
- 5. To acquaint the concept of data buses, its configuration and remote terminal configuration.

LIST OF EXPERIMENTS Addition/Subtraction of binary numbers. 1 2 Multiplexer/Demultiplexer Circuits. 3 Encoder/Decoder Circuits. 4 Timer Circuits, Shift Registers, Binary Comparator Circuits. 5 Addition and Subtraction of 8-bit and 16-bit numbers. Sorting of Data in Ascending & Descending order. 6 7 Sum of a given series with and without carry. 8 Greatest in a given series & Multi-byte addition in BCD mode. 9 Interface programming with 4 digit 7 segment Display & Switches & LED's. Channel Analog to Digital Converter & Generation of Ramp, Square, Triangular waveby 10 Digital to Analog Converter. 11 Study of Different Avionics Data Buses. 12 MIL-Std - 1553 Data Buses Configuration with Message transfer. 13 MIL-Std - 1553 Remote Terminal Configuration. **References:** 1. Avionics Lab Manual, Department of Aeronautical Engineering, 2015

	AIRCRAFT DESIGN PROJECT II	L	Т	Р	С		
	Total Contact Hours – 60	0	0	4	2		
BAN7L3	Prerequisite – Flight Mechanics, Aircraft Structures I & II, Aerodynamics I & II, Aircraft Design Project I, Computer Aided Design and Analysis						
	Course Designed by – Department of Aeronautical Engineering						
OBJECTIVES							
1. To introduce	e to the student about the various kinds of loads acting on an airpla	ne and	l about	the det	ailed		

1. To introduce to the student about the various kinds of loads acting on an airplane and about the detailed structural design of an aircraft

- 2. To enable the student to be able to estimate the loads on aircraft's wing and fuselage
- 3. To enable the student to able to perform a detailed design of the aircraft's wing and fuselage components
- 4. To enable the student to make a detailed design report and a layout of aircraft drawings
- 5. To enable the student to model the designed aircraft and perform a flow analysis and structural analysis

	COURSE CONTENT
1	V-n diagram for the design study
2	Gust and maneuverability envelopes
3	Critical loading performance and final V-n graph calculation
4	Structural design study – Theory approach
5	Load estimation of wings
6	Load estimation of fuselage.
7	Balancing and Maneuvering loads on tail plane, Aileron and Rudder loads.
8	Detailed structural layouts.
9	Design of some components of wings, fuselage
10	Preparation of a detailed design report with drawings.
11	Preparation of model using computer aided design packages.
12	Preparation of structural analysis report for wing.
13	Preparation of structural analysis report for Fuselage.
14	Preparation of flow analysis report for wing.
15	Preparation of flow analysis report for fuselage.
2. Ana	ences: craft Performance and Design, "John D Anderson", Tata McGraw Hill Publications alysis and Design of Flight Vehicle Structures, E F Bruhn DD and CAA Lab Manuals, Department of Aeronautical Engineering, 2015

BAN7P1	TERM PAPER	L	Т	Р	С
	Total Contact Hours – 60	0	0	4	2
	Prerequisite – Professional Courses				
	Lab Manual Prepared by – Dept of Aeronautical Engineeri	ng			

OBJECTIVES To teach the student the procedures and methodologies for understanding the literature survey and preparati research paper. LIST OF TASKS PREPARING PROPOSAL 1 **Proposed Research Topic** Purposes Background Method: (suggested methods – develop your own to suit your research topic) 2 **CONDUCTING LITERATURE REVIEW** Exploring and Sharpening your Topic **Evaluating Information** Taking Notes and Keeping Records 3 **COMPLETING ANNOTATED BIBLIOGRAPHY** Citing Your Sources and Avoiding Plagiarism Writing and Annotated Bibliography **IDENTIFYING PROBLEM STATEMENT** 4 Meeting the Challenges of Research **Developing New Information** 5 **COMPLETING OUTLINE FOR THE RESEARCH** Organizing Your Project into an outline Pick up your critique paper and begin editing and incorporate the suggestions from guide 6 SUBMITTING FIRST DRAFT Drafting your Project Entering Conversations and Supporting Your Claims 7 SUBMITTING WORKS CITED Create the individual citations Apply the formatting rules 8 SUBMITTING FULL PAPER Revising, Editing, and Proofreading Designing and Presenting Your Project Conducting Research in the Disciplines **Documenting Sources REFERENCES:** 1. Website. 2. Printed Journals

BAN8P1PROJECT WORKLTP

Total Contact Hours – 18 hours per week	0	0	18	9
Prerequisite – Basic Subjects, Aerodynamics, Aircraft Structures, Flight Mechanics, Engineering Mathematics	Aircr	aft Pro	pulsion	1,
Course Designed by – Department of Aeronautical Engineering				

OBJECTIVE :

The objective of the project work is to enable the students in convenient groups of not more than 4 members on a project involving theoretical and experimental studies related to the branch of study. Every project work shall have a guide who is the member of the faculty of the institution. Six periods per week shall be allotted in the time table and this time shall be utilized by the students to receive the directions from the guide, on library reading, laboratory work, computer analysis or field work as assigned by the guide and also to present in periodical seminars on the progress made in the project. Each student shall finally produce a comprehensive report covering background information, literature survey, problem statement, project work details and conclusion. This final report shall be in typewritten form as specified in the guidelines.

	COMPREHENSION II	L	Т	P	C			
	Total Contact Hours : Test will be conducted at the end of the semester	0	0	0	1			
BAN8C1	Prerequisite – All the courses upto eighth semester	1	1	1				
l	Course Designed by – Dept. of Aeronautical Engineering							
OBJECTI	OBJECTIVES							
	• To provide a complete review of Aeronautical/Aerospace Engineering topics covered up to eighth semesters, so that a comprehensive understanding is achieved.							
• It will also help students to face job interviews, competitive examinations and also to enhance the employment potential.					the			

• To provide overview of all topics covered and to assess the overall knowledge level up to eighth semester.

CORE ELECTIVE-I

BANE01	BASICS OF AIRCRAFT MAINTENANCE AND REPAIR	L	Т	Р	С		
	Total Contact Hours – 45	3	0	0	3		
	Prerequisite – Aircraft Systems						
	Course Designed by – Department of Aeronautical Engineering						
OBJECTIVES							
1. To acquaint the student with the fundamentals aspects of aircraft maintenance and repair.							
2. To understar	2. To understand the maintenance and repair aspects of aircraft structures.						

- 3. To understand the maintenance and repair aspects of primary aircraft systems.
- 4. To understand the maintenance and repair aspects of engine and fuel systems.
- 5. To understand the maintenance and repair aspects auxiliary systems and instruments.

	COURSE CONTENT							
UNIT I	FUNDAMENTAL ASPECTS OF AIRCRAFT MAINTENANCE AND REPAIR	9						
practices- H	Importance of aircraft maintenance and repair – CAR stipulations- Hazardous materials and safety practices- Earlier aircrafts with wood structures – Maintenance of fabric covered airplanes – Aircraft painting and markings							
UNIT II	MAINTANENACE AND REPAIR OF AIRCRAFT STRUCTURES	9						
repair –	Aircraft tubing repair – Special welding repairs – Soldering and brazing – Sheet metal inspection and repair – Repair practices – Rivet – Repair design – Maintenance and repair of Plastic materials – Composite materials – Inspection and repair of composite material.							
UNIT III	MAINTENANCE OF PRIMARY AIRCRAFT SYSTEM	9						
inspection -	Importance of various aircraft system – Hydraulic system maintenance practices – Service, flushing and inspection –Trouble shooting and maintenance of Hydraulic and Pneumatic System – Inspection and maintenance of landing gear.							
UNIT IV	MAINTENANCE OF ENGINE AND FUEL SYSTEM	9						
Aircraft eng shooting.	gine maintenance – Fuel system inspection – Inspection and repair of fuel tank – Tr	rouble						
UNIT V	MAINTENANCE OF AUXILIARY SYSTEM AND INSTRUMENTS	9						
Oxygen system, service and maintenance – Installation and maintenance of instruments – Testing instruments and systems – checking of a typical vacuum system.								
Text Books 1. Kroes W	atkins Delp," Aircraft Maintenance and Repair", McGraw Hill, 7th edition, New York, 20	13.						
References	: chanics, "Aircraft Hand Book", F A A Himalayan Book House, New Delhi, 1996.							

2. A&P Mechanics, "General Hand Book", F A A Himalayan Book House, New Delhi, 1996.

			R	OCKET	S AN	D MI	SSILI	ES			L	Т	Р	(C
		Total C	ontact Ho	urs – 45	5						3	0	0		3
BA	ANE02	Prerequisite – Aerodynamics, Aircraft Stability and Control, Avionics, Aircraft Structural Materials and Composites													
Course Designed by – Department of Aeronautical Engineering															
OB.	JECTIVI	ES													
To l	earn abou	t the aero	dynamics	and sta	bility	of Ro	ckets a	and M	issil	es.					
			pping of (indicates									LOW			
	COs	/ POs	а	b	с	d	e	f	g	h	i	j		k	1
1	C	D1													М
	CO	02	Н	Н	Н					Н		H	I		Μ

		CO3	Н	Н	Μ					М		Н		
		CO4	Н		Н					М				
		CO5	Н	Н	Н	М				L				Η
		CO6								Н				Н
3		Category	Humanities & Social Sciences (HS)	Basic Sciences (BS)		Engineering Sciences (ES)	Professional Core	(PC) Cora Flantiva		Non – Major Elective (NE)	Open Elective (OE)	Project Work,	Seminar, Term Paper, Internship	(PR)
4		Approval			37 th N	leetino	of Ac		X ic Co	ouncil, Ma	v 2015	5		
		rippio (ui		C		SE CO				<i>, unen, 1</i> , 1, 1	<i>cy</i> 2012	·		
UNI			T SYSTI											9
and cons	Ignition system in rockets – types of igniters and igniter design considerations – injection system and propellant feed systems of liquid rockets and their design considerations – design considerations of liquid rocket thrust chambers – combustion mechanisms of liquid and solid propellants.								sign					
UNI II			YNAMI	CS OF I	ROCI	KETS	AND	MIS	SIL	ES				9
	rame	components	of rocket	s and m	issile	s – fo	rces a	cting	on	a missile	while	passin	ig thro	ough
		ere – classifica												
		ents – lift for – drag estimat												inai
UNI III			T MOTI											9
	dime	ensional and t	wo-dimen	sional r	ocket	motio	ns in	free s	pace	e and hor	nogene	eous gra	avitati	onal
		lescription of												
	ude – altitu	- simple appro	oximations	s to buri	1 out	velocit	ty and	altit	ıde -	– estimat	ion of	culmin	ation 1	time
UNI			IG AND	CONTE	ROL	OF RO	OCKI	ETS /	ND	MISSII	ES			9
IV	ion r											ilos	multia	
vehi dyna inclu mult	Design philosophy behind multistaging of launch vehicles and ballistic missiles – multistage vehicle optimization – stage separation techniques in atmosphere and in space – stage separation dynamics and lateral separation characteristics – various types of thrust vector control methods including secondary injection thrust vector control – numerical problems on stage separation and multistaging.							tion nods						
UNI V	IT	MATER	RIALS FO	OR ROO	СКЕТ	'S AN	D MI	SSIL	ES					9
and	Selection criteria of materials for rockets and missiles – materials for various airframe components and engine parts – materials for thrust control devices – various adverse conditions faced by aerospace vehicles and the requirement of materials to perform under these conditions.													

Text Books:

- 1.Martin J L Turner, Rocket and Spacecraft Propulsion, Springer-Praxis Publishing, 2001
- 2.Sutton, G.P., "Rocket Propulsion Elements", John Wiley & Sons Inc., New York, 7th Edition, 2001

Reference Books:

- 1. J.D.Mattingly, Elements of Propulsion Gas Turbines and Rockets, AIAA Education series, 2006,.
- 2. Mathur, M.L., and Sharma, R.P., "Gas Turbine, Jet and Rocket Propulsion", Standard Publishers and Distributors, Delhi, 1988.
- 3. www.propulsion-analysis.com/
- 4. www.rocket.com/design-and-analysis

	EXPERIMENTAL STRESS ANALYSIS	L	Т	Р	C
DANE	Total Contact Hours – 45	3	0	0	3
BANE03	Prerequisite – Aircraft Structures I & II				-
	Course Designed by – Department of Aeronautical Engineering				
OBJECTI	TES				
 To under in stress To under To learn 	nt with the basics of measurement. stand the principle of extensometers, electrical resistance strain gaug analysis. stand the principle of photo elasticity and their application in stress a prittle coating and moiré methods in stress analysis. nt with the non-destructive testing methods.	-		applica	tion
<i>J.</i> 10 acqua	<u> </u>				
	COURSE CONTENT				
UNIT I	UNIT I MEASUREMENTS AND EXTENSOMETERS				
	bles of measurements, Accuracy, Sensitivity and range of measurements, Accuracy, Sensitivity and range of measurements and their uses, Advantage				•
UNIT II	ELECTRICAL RESISTANCE STRAIN GAUGES				9
and tempera	operation and requirements, Types and their uses, Materials for strai ture compensation, cross sensitivity, Rosette analysis, Wheatstone b tatic and dynamic strain measurements, strain indicators.	0 0			
UNIT III PHOTOELASTICITY					
UNIT III					9
Two dimen optic law, T	ional photo elasticity, Photo elastic materials, Concept of light – pho ransmission and Reflection polariscopes, Interpretation of fringe path echniques, Introduction to three dimensional photo elasticity.				ess
Two dimen optic law, T	ional photo elasticity, Photo elastic materials, Concept of light – pho ransmission and Reflection polariscopes, Interpretation of fringe pat				ess
Two dimen optic law, T separation t UNIT IV	ional photo elasticity, Photo elastic materials, Concept of light – pho ransmission and Reflection polariscopes, Interpretation of fringe pattechniques, Introduction to three dimensional photo elasticity.				ess and

Fundamentals of NDT, Radiography, Ultrasonics, Eddy Current testing, Fluorescent Penetrant Testing, Acoustic Emission Technique,

Text Books:

- 1. Dally, J.W., and Riley, W.F., "Experimental Stress Analysis", McGraw Hill Inc., New York, Fourth Edition 2005.
- 2. James F. Doyle ,"Modern Experimental Stress Analysis ",John Wiley & Sons, 2004.

References:

- 1. Hetenyi, M., "Hand book of Experimental Stress Analysis", John Wiley and Sons Inc., New York, 1972.
- 2. Pollock A.A., "Acoustic Emission in Acoustics and Vibration Progress", Ed. Stephens R.W.B., Chapman and Hall,1993.
- 3. Max Mark Frocht," Photo Elasticity", John Wiley and Sons Inc., New York, 1968
- 4. A.J.Durelli, "Applied Stress Analysis", Prentice Hall of India Pvt Ltd., New Delhi, 1970
- 5. Srinath, L.S., Raghava, M.R., Lingaiah, K., Garagesha, G., Pant B., and Ramachandra, K., "Experimental Stress Analysis", Tata McGraw Hill, New Delhi, 1984.
- 6. Ramesh, K., " Experimental Stress Analysis", Indian Institute of Technology Madras, India, Ebook, 2009.

	EXPERIMENTAL AERODYNAMICS	L	Т	Р	С
BANE04	Total Contact Hours – 45	3	0	0	3
DAINE04	Prerequisite – Fundamentals of Fluid Mechanics, Aerodynamics	I			
	Course Designed by – Department of Aeronautical Engineering				
OBJECTIVES	5				
1. To understar	nd the methods of low speed wind tunnel testing				
	nd the methods of high speed wind tunnel testing				
-	nowledge about measurement of pressure, velocity and temperatur	e in fl	ow fiel	ds	
	nd the principles of flow visualization and analogue methods				
5. To understar	nd the principles of data acquisition and uncertainty analysis				
	COURSE CONTENT				
UNIT I	LOW SPEED WIND TUNNEL TESTING				9
Sphere, Yaw	nd tunnels-Power losses in wind tunnel, energy ratio, Calibrati meter, Turbulence sphere, Pressure sphere, Wind tunnel balance CL and CDforairfoils			-	
UNIT II	HIGH SPEED WIND TUNNEL TESTING				9
	ind tunnels- Blow down, Induction Type Tunnels, Losses in su time estimation, Hypersonic, transonic tunnels, Shock tunnels, Gu	-		nnels, S	econd
UNIT III	MEASUREMENT TECHNIQUES				9
	urement, Hot wire anemometer, laser Doppler anemometer for Temperature measurement, Measurement of wall shear stress, F				-
UNIT IV	FLOW VISUALIZATION AND ANALOGUE METHOD	S			9

Smoke tunnel, Tuft method, chemical coating, interferometer, Schlieren and Shadowgraph methodHeleshaw Apparatus, Hydraulic analogy, limitations of analogy

UNIT V

DATA ACQUISITION AND UNCERTAINTY ANALYSIS

Measurement systems, data acquisition, signal conditioning, multiplexing, data conversion, uncertainty analysis

Text Books:

1. Rathakrishnan. E "Instrumentation, Measurement and Experiments in Fluids", CRCPress, London, 2007

References:

- 1. Rae W.H and Pope. A "Low speed wind tunnel testing" John Wiley Publication, 1999
- 2. Pope. AandGoin. L "High speed wind tunnel testing" John Wiley, 1985

CORE ELECTIVE-II

	HELICOPTER MAINTENANCE	L	Т	Р	С
	Total Contact Hours – 45	3	0	0	3
BANE05	Prerequisite – Aircraft Systems and Instrumentation				
	Course Designed by – Department of Aeronautical Engineering				
OBJECTIV	TES				
1. To acquai	nt with the basic fundamental of helicopter concept.				
2. To unders	tand the concept of inspection and maintenance of main rotor system.				
	tand the concept of inspection and maintenance of main rotor transmi				
	tand the concept of inspection and maintenance of power plant and ta	il roto	er.		
5. To acquai	nt with airframes and related systems				
	COURSE CONTENT				
UNIT I	HELICOPTER FUNDAMENTALS				9
Basic direct	ons – Ground handling, bearing – Gears.				
UNIT II	INSPECTION AND MAINTENANCE OF MAIN ROTOR S	YSTE	M		9
dynamic ba adjustment - Swash plate	enance – blade alignment – Static main rotor balance – Vibration lance – Blade sweeping –Electronic balancing – Dampener mainte - Auto rotation adjustments – Mast & Flight Control Rotor - Mast – flight control systems collective – Cyclic – Push pull tubes – Torq Gradient unit control boosts – Maintenance & Inspection control rigg	nance Stabi ue tul	– Co lizer, d	unter w damper	veight ners –
UNIT III	INSPECTION AND MAINTENANCE OF MAIN ROTOR T	RAN	SMISS	SION	9
Roller unit	mission coupling – Drive shaft – Maintenance clutch – Free wheelin – Torque meter – Rotor brake – Maintenance of these components ransmissions.				
UNIT IV	INSPECTION AND MAINTENANCE OF POWER PL ROTOR	ANT	& [ΓAIL	9
Fixed wing	power plant modifications - Installation - Different type of power	plant	maint	enance	. Tail

rotor system – Servicing tail rotor track – System rigging.

UNIT V AIRFRAMES AND RELATED SYSTEMS

Fuselage maintenance – Airframe Systems – Special purpose equipment.

Text Books:

1. JEPPESEN, "Helicopter Maintenance", Jeppesons and Sons Inc., 2000.

References:

- 1. "Civil Aircraft Inspection Procedures", Part I and II, CAA, English Book House, New Delhi, 1998.
- 2. LARRY REITHMIER, "Aircraft Repair Manual", Palamar Books Marquette, 1992.

	SPACE MECHANICS	L	Т	Р	C
BANE06	Total Contact Hours – 45	3	0	0	3
DAILEOU	Prerequisite – Engineering Mechanics				
	Course Designed by – Department of Aeronautical Engineering				
OBJECTIVES					
1. To introduce motion in sp	to the student about the basic concepts in space mechanics and a bace	bout tl	ne laws	s that g	overn
-	e student to decide on the locations for satellite injections in to	the or	bit and	the va	arious
	as on satellites in space				
1	the student about the interplanetary trajectories and to select/des	ign ap	propria	ate traje	ectory
	o mission requirements	0 1		Ũ	
4. To introduce	to the student about the trajectories for ballistic missiles				
5. To familiariz	e the student about the different types of materials used in spacecra	afts			
	COURSE CONTENT				
UNIT I	BASIC CONCEPTS AND THE GENERAL N- BODY PR				9
	em - reference frames and coordinate systems - terminology rela				
	ted concepts – Kepler's laws of planetary motion and proof of the				
-	tion - the many body problem- Lagrange-Jacobi identity – the cir				•
-	ration points – the general N-body problem two body problems –	relatio	ns betv	ween po	osition
and time.					
UNIT II	SATELLITE INJECTION AND SATELLITE PERTURE				9
1	ts of satellite injection - satellite orbit transfer - various cases				
	rs - special and general perturbations - Cowell's method and End	cke's r	nethod	– metł	10d of
	rbital elements – general perturbations approach.				
UNIT III	INTERPLANETARY TRAJECTORIES				9
	onal interplanetary trajectories – fast interplanetary trajector				
	trajectories - launch of interplanetary spacecraft - trajectory en	stimati	on abo	out the	target
-	pt of sphere of influence – Lambert's theorem				
UNIT IV	BALLISTIC MISSILE TRAJECTORIES				9
	o ballistic missile trajectories – boost phase – the ballistic phas s – time of flight – re-entry phase – the position of impact point – in		•		•
UNIT V	MATERIALS FOR SPACECRAFT				9
Space enviror	ment – peculiarities of space environment – effect of space env	vironm	ent on	materi	als of
L				0.4	

spacecraft structure - materials required for the construction of space craft - TPS for re-entry space vehicles.

Text Books:

1.Cornelisse, J.W., "Rocket Propulsion and Space Dynamics", J.W. Freeman &Co., Ltd, London, 1982 2. Parker, E.R., "Materials for Missiles and Spacecraft", McGraw Hill Book Co. Inc., 1982.

References:

1. Sutton, G.P., "Rocket Propulsion Elements", John Wiley & Sons Inc., New York, 7th Edition, 2001.

			-		
	THEORY OF VIBRATIONS	L	Т	Р	С
	Total Contact Hours – 45	3	0	0	3
BANE07	Prerequisite – Engineering Mechanics, Flight Mechanics				<u>.</u>
	Course Designed by – Department of Aeronautical Engineering				
OBJECTIV	/ES				
1. To know	about the role of Vibrations, vibration analysis and ideas about Aero	elasti	city in	engine	ering
and indu					
	e thorough understanding of single degree of freedom, Two degree		freedor	n and	multi
-	of freedom systems and deriving equations to solve for natural freque	•	1		
	stand the Newton second Law, Energy method and know how to use	1t to	solve s	ingle d	egree
	om systems. stand the approximate methods to solve vibration engineering prob	leme i	n Two	deare	e and
	gree of freedom systems.		II I WC	uegie	c and
	erstand the collars triangle and various aero elastic phenomena i	n the	aircra	ft stru	ctural
compon					
-	COURSE CONTENT				
UNIT I	SINGLE DEGREE OF FREEDOM SYSTEMS				9
Introduction	to simple harmonic motion, D'Alembert's Principle, Free vibration	s - D	amped	vibrati	ons –
	ations, with and without damping – support excitation – Vibration me		-		
UNIT II	MULTI DEGREES OF FREEDOM SYSTEMS				9
Two degree	es of freedom systems - Static and Dynamic couplings - vibration	abso	rber- 1	Princip	al co-
ordinates -	Principal modes and orthogonal condition - Eigen value problems				
Lagrangean	equations and application.				
UNIT III	CONTINUOUS SYSTEMS AND APPROXIMATE METHO	DS			9
Vibration	of elastic bodies - Vibration of strings - Longitudinal -	Later	al an	d Tor	sional
	pproximate methods - Rayleigh's method - Dunkerly's method -	- Ray	leigh-H	Ritz me	ethod,
Matrix Itera	tion method.				
UNIT IV	ELEMENTS OF AEROELASTICITY				9
	Coupling - Aero elastic instabilities and their prevention - Basic ic				
	ersal of aileron control – aileron efficiency-semi rigid theory and su				
	ation – rigid and elastic wings. Tail efficiency. Effect of elasti	c def	ormatio	on on	static
longitudinal	•				0
UNIT V	FLUTTER PHENOMENON				9

Physical interpretation of the classical Flutter – Non-dimensional parameters – stiffness criteria – Dynamic mass balancing – Dimensional similarity - Flutter analysis- Calculation of the flutter speed via P-Method – concept of dummy structural damping , violent flutter, moderate flutter and mild flutter and prevention of flutter.

Text Books:

- 1. Y.C. Fung, "An Introduction to the Theory of Aeroelasticity", John Wiley & Sons Inc., New York, 2008.
- 2. Thomson W T, 'Theory of Vibration with Application' CBS Publishers, 1990.

References:

- 1. Timoshenko S., Vibration Problems in Engineering John Wiley and Sons, New York, 1993.
- 2. Bisplinghoff R.L., Ashely H and Hogman R.L., Aeroelasticity Addision Wesley Publication, New Tork, 1983.
- 3. R.H. Scanlan and R.Rosenbaum, "Introduction to the study of Aircraft Vibration and Flutter", Macmillan Co., New York, 1981.
- 4. R.D.Blevins, "Flow Induced Vibrations", Krieger Pub Co., 2001

	HELICOPTER AERODYNAMICS	L	Т	Р	С
	Total Contact Hours – 45	3	0	0	3
BANE08	Prerequisite – Fundamentals of Aeronautics and Astronautics, Ae	rodyn	amics	Ι	
	Course Designed by – Department of Aeronautical Engineering				
OBJECTIVES					
l. To acquaint	with the basics of rotating wing concept.				
	d the concept of hovering flight dynamics.				
	d the concept of forward flight dynamics.				
•	ne climb and descent performance.				
5. To acquaint	with ground effect machines.				
	COURSE CONTENT				
UNIT I	INTRODUCTION TO ROTATING WING CONCEPT				9
Evolution of h	elicopter-Helicopter configurations - Configurations based on Toro	-			
-	l helicopters –Methods of Control, rotor blade pitch control, –Colle - Lag and flapping hinges.	ective	pitch a	and Cyc	elic
-		ective	pitch a	and Cyc	
pitch – Lead - UNIT II Actuator disc	- Lag and flapping hinges.	-Figu	re of m	erit-Th	9 rust
pitch – Lead – UNIT II Actuator disc and power coe	- Lag and flapping hinges. HOVERING FLIGHT DYNAMICS theory-Blade Element Theory-ideal twist Induced & profile power	-Figu	re of m	erit-Th	9 rust
pitch – Lead – UNIT II Actuator disc and power coe ceiling. UNIT III Forward flight	- Lag and flapping hinges. HOVERING FLIGHT DYNAMICS theory-Blade Element Theory-ideal twist Induced & profile power- efficients-calculation of drag, torque, power-Ground effect in hover	-Figu r- Esti	re of m matior	erit-Th	9 rust er 9

Vertical flight-flow patterns surrounding the rotor-Power required in climb and descent- Descent speed calculations-Take-off techniques.

UNIT VGROUND EFFECT MACHINES9Types – Hover height, lift augmentation and power calculations for plenum chamber and peripheral jet
machines – Drag of hovercraft on land and water –Applications of hovercraft.9Text Books:1. Gupta. L "Helicopter Engineering", Himalayan Books, 19962. Seddon. J "Basic Helicopter Aerodynamics" AIAA education series, 1990.

References:

- 1. Gessow A & Myers G.C "Aerodynamics of Helicopter" Mac Millan& Co, 1987
- 2. Saunders "Dynamics of Helicopter flight", John Wiley, 1975
- 3. Newman. S "Foundation of Helicopter Flight" Halsted Press, 1994

CORE ELECTIVE-III

AIRCRAFT ENGINE REPAIR AND MAINTENANCE L Т Р С Total Contact Hours - 45 3 0 0 3 **BANE09** Prerequisite – Aircraft Systems Course Designed by – Department of Aeronautical Engineering **OBJECTIVES** 1.To know about the hydraulic, pneumatic, brake and landing gear systems principle, function of components, types and operation of typical system. 2. To study and differentiate conventional and modern aircraft control systems and engine control systems 3. To study about layout, components, functions of fuel, lubrication, starting, ignition systems of piston and jet engines. 4. To understand air-conditioning, air cycle, vapor cycle, oxygen, deicing, anti icing and fire protection systems of aero plane. 5. To study construction and operation of flight, navigation instruments and engine instruments installed in the aero plane. **COURSE CONTENT** 9 **UNIT I** INSPECTIONS AND TROUBLE SHOOTING OF PISTON ENGINES Need for Inspection, maintenance and trouble shooting in Piston engine - Inspection of all components -Daily and routine checks – Overhaul procedures – Compression testing of cylinders – Special inspection schedules - Engine fuel, control and exhaust systems - Engine mount and super charger - Details of carburetion and injection systems for small and large engines - Ignition system components - Spark plug - Maintenance and inspection check to be carried out. **UNIT II** 9 **INSPECTION AND TROUBLE SHOOTING OF PROPELLER** Propeller theory - operation, construction assembly and installation -Pitch change mechanism-Propeller axially system- Damage and repair criteria - General Inspection procedures - Checks on constant speed propellers - Pitch setting, Propeller Balancing, Blade cuffs, Governor/Propeller operating conditions. UNIT III **OVERHAULING OF PISTON ENGINES** 9 Symptoms of failure - Fault diagnostics - Case studies of different piston engine systems - Rectification during testing equipments for overhaul: Tools and equipments requirements for various checks and alignment during overhauling - Tools for inspection - Tools for safety and for visual inspection - Methods

and instruments for non destructive testing techniques - Equipment for replacement of parts and their repair. Engine testing: Engine testing procedures and schedule preparation - Online maintenance

UNIT IV

INSPECTION AND TROUBLE SHOOTING OF GAS TURBINE ENGINE

Gas turbine engine inspection & checks – Use of instruments for online maintenance – Maintenance procedures of gas turbine engines – Trouble shooting and rectification procedures – Component maintenance procedures – Systems maintenance procedures. Special inspection procedures: Foreign Object Damage – Blade damage – etc. Gas turbine testing procedures – test schedule preparation – Storage of Engines – Preservation and de-preservation procedures.

UNIT V OVERHAULING OF GAS TURBINE ENGINES

9

9

Gas turbine Engine Overhaul procedures – Inspections and cleaning of components – Repairs schedules for overhaul – Balancing of Gas turbine components. Trouble Shooting - Procedures for rectification – Condition monitoring of the engine on ground and at altitude – engine health monitoring and corrective methods.

Text Books:

1. KROES & WILD, "Aircraft Power plants", 7th Edition – McGraw Hill, New York, 1994.

References:

- 1. TURBOMECA, "Gas Turbine Engines", The English Book Store, New Delhi, 1995.
- 2. UNITED TECHNOLOGIES PRATT & WHITNEY, "The Aircraft Gas turbine Engine and its Operation", The English Book Store, New Delhi.

	CRYOGENIC ROCKET PROPULSION L T P C									
	Total Contact Hours – 45	3	0	0	3					
BANE10	Prerequisite – Engineering Thermodynamics									
	Course Designed by – Department of Aeronautical Engineering									
OBJECTIVES	5									
1. To introduce	to the student the basics of cryogenic systems and associated proc	esses.								

- 2. To acquaint the student with the propellants used in cryogenic technology.
- 3. To introduce the various equipments and accessories used in cryogenic rocket propulsion.
- 4. To familiarize the student to the different flow circuits and parts in a cryogenic engine.
- 5. To enable the student to understand about various challenges in implementing cryogenic rocket technology.

COURSE CONTENT

UNIT I

INTRODUCTION TO CRYOGENIC SYSTEMS

Review of Basic Thermodynamics, Properties of Cryogenic fluids, First and Second Law approaches to the study of thermodynamic cycles, Isothermal, Adiabatic and Isenthalpic processes. Liquefaction systems, ideal, Cascade, LindeHampson and Claude cycles and their derivatives; Refrigerators: Stirling, Gifford-McMahon cycles and their derivatives. Cryogenic Insulations: Foam, Fibre, powder and Multilayer. Applications – common materials used.

UNIT II CRYO FUEL SYSTEM	IS
--------------------------	----

Cryogenic and semi – cryogenic propellants - Hydrogen - properties, production and pretreatment - Liquefaction of hydrogen - Linde, Claude and helium - hydrogen condensing cycles, Ortho-para conversion. Storage and handling of liquefied hydrogen - applications of hydrogen, and its safety.

UNIT III

CRYO EQUIPMENTS AND ACCESSORIES

9

9

9

Mechanical and Thermal Properties of engineering materials at low temperatures; Compressors: types, construction and characteristics; Expansion machines: characteristics of reciprocating and turbine expanders, design of J-T expander; Heat exchangers: theory, types, design approaches and selection criteria, Irreversibilities in cryogenic Heat exchangers; Design of cryogenic storage vessels, transfer devices, insulation system, valves; Characteristics of cryogenic pumps, Instrumentation in cryogenic systems; Safety in cryogenic systems.

UNIT IV CRYOGENIC ENGINES

Fluid circuits of various cryogenic engines and semi-cryogenic engines; Design of regeneratively cooled combustion chamber, film cooling, dump cooling, transpiration cooling and radiation cooling. Design of expansion nozzle- characteristics, Design of injector– hydraulic characteristics; Engine thrust and mixture ratio control, Igniters, Propellant tanks.

UNIT V CHALL

CHALLENGES IN CRYOGENIC ROCKET TECHNOLOGY

Problems in storage and handling of cryogenic propellants: safety aspects, Thermal protection systems for stage tanks, Thermal stratification- destratification, Geysering effect – geysering elimination, Zero "g" problems – restart mechanism.

Text Books:

1. "Operation of a Cryogenic Rocket Engine", "Kitsche, Wolfgang", Springer Publications, 2011.

2. "A text book of Cryogenics", "Valery V. Kostionk", Discovery Publishing House, 2010.

References:

1. "Rocket Propulsion Elements", "Sutton G. P., Bibliarz"

	THEORY OF PLATES AND SHELLS	L	Т	Р	С					
DANE11	Total Contact Hours – 45	3	0	0	3					
BANE11	Prerequisite – Fundamentals of Structural Mechanics									
	Course Designed by – Department of Aeronautical Engineering									
OBJECTIV	VES									
1. To acquai	int with the classical plate theory.									
2. To analyz	the plates of various shapes.									
3. To learn t	he concept of Eigen value analysis.									
	various numerical approximation method for plate analysis.									
	int the concept of shell structures.									
	COURSE CONTENT									
UNIT I	CLASSICAL PLATE THEORY				9					
Classical Pla Loading.	Classical Plate Theory – Assumptions – Differential Equations – Boundary Conditions – Axi-Symmetric Loading.									
UNIT II	PLATES OF VARIOUS SHAPES				9					

<u> </u>		
	ethod of Solution for Simply Supported Rectangular Plates – Levy's Method of Solu	
Rectangular	Plates under Different Boundary Conditions – Annular Plates – Plates of other shap	bes.
UNIT III	EIGEN VALUE ANALYSIS	9
Stability and	d Free Vibration Analysis of Rectangular Plates.	
UNIT IV	APPROXIMATE METHODS	9
Rayleigh –	Ritz, Galerkin Methods– Finite Difference Method – Application to Rectangular Pla	ites for
Static, Free	Vibration and Stability Analysis.	
UNIT V	SHELLS	9
Basic Conce	epts of Shell Type of Structures – Membrane and Bending Theories for Circular Cyl	indrical
Shells.		
Text Books	;;	
1. Timoshe	nko, S.P. Winowsky. S., and Kreger, Theory of Plates and Shells, McGraw Hill	Book Co.
1990.		
2. Varadhar	n. T. K. & Bhaskar.K., "Analysis of Plates – Theory and Problems", Narosa Publish	ing House
2000		
References	:	
1. Flugge, V	V. Stresses in Shells, Springer – Verlag, 1985.	
2. Timosher	nko, S.P. and Gere, J.M., Theory of Elastic Stability, McGraw Hill Book Co.1986.	
3. Harry Kr	aus, 'Thin Elastic Shells', John Wiley and Sons, 1987.	
4. Llyod Ha	milton, Donald, "Beams, Plates and Shells", McGraw Hill, 1976.	
5. AnselUg	ural, Stresses in Plates & Shells, McGraw Hill, 1981	

AnselUgural, Stresses in Plates & Shells, McGraw Hill, 1981
 Reddy.J.N., "Theory & Analysis of Elastic Plates", CRC, I Edition, 1999

	HYPERSONIC AERODYNAMICS	L	Т	Р	С
BANE12	Total Contact Hours – 45	3	0	0	3
	Prerequisite – Aerodynamics I & II				
	Course Designed by – Department of Aeronautical Engineering				
OBJECTIV	/ES				
1. To study	the environment around hypersonic vehicles created by strong shock w	vaves			
2. To introd	uce students to real gas effects caused by high temperature conditions.				
	pressure and heat transfer phenomena at the stagnation point of a hype		c vehic	le.	
•	the distribution of pressure around a general vehicle shape.				
•	the distribution of heat transfer and skin friction around a general vehi	icle sh	ape.		
	COURSE CONTENT				
UNIT I	FUNDAMENTALS OF HYPERSONIC AERODYNAMICS				9

Introduction to hypersonic aerodynamics-differences between hypersonic aerodynamics and supersonic aerodynamics-concept of thin shock layers-hypersonic flight paths – hypersonic similarity parameters-shock wave and expansion wave relations of inviscid hypersonic flows.

UNIT II	SIMPLE FLOWS	SOLUTION	METHODS	FOR	HYPERSONIC	IN	VISCID	9
	• • •							

Local surface inclination methods-Newtonian theory-modified Newtonian law-tangent wedge and tangent cone and shock expansion methods-approximate theory-thin shock layer theory.

UNIT III	VISCOUS HYPERSONIC FLOW THEORY	9
•	ayer equation for hypersonic flow-hypersonic boundary layers-self similar and non self single yers-solution methods for non self similar boundary layers aerodynamic heating.	milar
UNIT IV	VISCOUS INTERACTIONS IN HYPERSONIC FLOWS	9
	n to the concept of viscous interaction in hypersonic flows-strong and weak viscous -hypersonic viscous interaction similarity parameter-introduction to shock wave boundary ctions.	ý
UNIT V	INTRODUCTION TO HIGH TEMPERATURE EFFECTS	9
	igh temperature flows-chemical effects in air-real and perfect gases-Gibb's free energy an emically reacting mixtures-recombination and dissociation.	ıd
Text Books 1. John. D. 2006.	Anderson. Jr., "Hypersonic and High Temperature Gas Dynamics", AIAA Series, New	York,
References		
Publish	Anderson. Jr., "Modern compressible flow with historical perspective", McGraving Company, New York, 1996. Bertin, "Hypersonic Aerothermodynamics", published by AIAA Inc., Washington. D.C., 19	

NON MAJOR ELECTIVE-I

	AN INTRODUCTION TO COMBUSTION	L	Т	Р	С		
	Total Contact Hours – 45	3	0	0	3		
BANE13	Prerequisite – Fundamentals of Aerothermodynamics, Aircraft Pr	opuls	ion				
	Course Designed by – Department of Aeronautical Engineering						
OBJECTIV	ES						
1. To acquai	nt with the basics of combustion.						
2. To understand the combustion process in aircraft piston engines.							
3. To unders	tand the combustion process in gas turbine engines.						
4. To unders	tand the combustion process in scramjet engines.						
5. To unders	tand the combustion process in rocket engines.						
	COURSE CONTENT						
UNIT I	INTRODUCTION TO COMBUSTION				9		
Thermo cher	nical equations – heat of reaction- first, second and third order reacti	ons –	premiz	xed flai	mes –		
diffusion fla	mes – measurement of burning velocity – various methods – effect of	of var	ious pa	aramete	ers on		
burning velo	city – flame stability – deflagration – detonation – Rankine-Hugon	iot cu	rves –	radiatio	on by		
flames					-		
UNIT II	COMBUSTION IN AIRCRAFT PISTON ENGINES				9		
Introduction	ntroduction to combustion in aircraft piston engines – various factors affecting the combustion efficiency						

- fuels used for combustion in aircraft piston engines – various factors affecting the combustion entitlency combustion and the methods to prevent the detonation

UNIT III	COMBUSTION IN GAS TURBINE ENGINES	9
combustior combustior	n in gas turbine combustion chambers - recirculation – combustion efficiency, factors aff a efficiency, fuels used for gas turbine combustion chambers – combustion stability – a – differences between the design of ramjet combustion chambers and gas turbine comb flame holders types – numerical problems.	ramje
UNIT IV	COMBUSTION IN SCRAMJET ENGINES	9
propulsion-	n to supersonic combustion – need for supersonic combustion for hypersonic air-bre supersonic combustion controlled by diffusion, mixing and heat convection – analy nd mixing processes - supersonic burning with detonation shocks - various types of supe	ysis of
UNIT V	COMBUSTION IN ROCKET ENGINES	9
1 1	ellant combustion - double and composite propellant combustion – various combustion r on in liquid rocket engines – single fuel droplet combustion model – combustion hybrid r	
Delhi, I 2. Lefebvre References 1.Warnatz	R turns, "An Introduction to Combustion", Tata Mc. Graw Hill Publishing Co., Ltd. Reprint 2013. AG and Dilip R Ballal, "Gas Turbine Combustion", CRC press, Third Edition, 2010. J, Maas U and Dibble RW, "Combustion", Springer, Fourth Edition, 2006.	-
2. Beer, J.M 1981.	M., and Chiger, N.A. "Combustion Aerodynamics", Applied Science Publishers Ltd., Lo	ondon
	S.P., and Chandra Mohan, "Fuels and Combustion", Tata McGraw Hill Publishing Co.	., Ltd.

	PRINCIPLES OF TURBO MACHINERY IN AIR BREATHING ENGINES	L	Т	Р	С		
BANE14	Total Contact Hours – 45	3	3 0	0	3		
	Prerequisite – Aircraft Propulsion						
	Course Designed by – Department of Aeronautical Engineering						
OBJECTIV	OBJECTIVES						
1. To famili	1. To familiarize the student on the working principle of air breathing engines						
2. To enabl	2. To enable the student to be able to design axial flow compressors and fans based on the operating						
requiren	nents						
	nt should be able to design axial flow turbines based on the operating i		ements				
-	int the student about the designing procedure for centrifugal compress						
5. To enable	e the student to design radial flow turbines based on operating condition	ons					
	COURSE CONTENT						
UNIT I	INTRODUCTION TO TURBOMACHINERIES				5		
Introduction - Blades and flow - Work input and output - Dynamic scaling – Losses and Efficiency							
UNIT II	AXIAL FLOW COMPRESSORS AND FANS				13		

Radial Equilibrium Equation; Design of compressor blades; 2-D blade section design : Airfoil Data; Axial Flow Track Design; Axial compressor characteristics; Multi-staging of compressor characteristics; Transonic Compressors; Shock Structure Models in Transonic Blades; Transonic Compressors Characteristics; 3-D Blade shapes of Rotors and Stators; Instability in Axial Compressors; Loss of Pressure Rise; Loss of Stability Margin; Noise problem in Axial Compressors and Fans

UNIT III AXIAL FLOW TURBINES

9

9

9

Turbine Blade 2-D (cascade) analysis Work Done; Degree of Reaction; Losses and Efficiency; Flow Passage; Subsonic, transonic and supersonic turbines, Multi-staging of Turbine; Exit flow conditions; Turbine Cooling; Turbine Blade design – Turbine Profiles : Airfoil Data and Profile construction

UNIT IV CENTRIFUGAL COMPRESSORS:

Elements of centrifugal compressor/ fan; Inlet Duct Impeller; Slip factor; Concept of Rothalpy; Modified work done; Incidence and lag angles; Diffuser ; Centrifugal Compressor Characteristics; Surging; Chocking; Rotating stall; Design

UNIT V RADIAL TURBINE:

Thermodynamics and Aerodynamics of radial turbines; Radial Turbine Characteristics; Losses and efficiency; Design of radial turbine

Text Books:

- 1. Nicholas Cumpsty, Compressor Aerodynamics, 2004, Kreiger Publications, USA.
- 2. Johnson I.A., Bullock R.O. NASA-SP-36, Axial Flow Compressors, 2002 (re-release), NTIS.
- 3. Ahmed F. El-Sayed; Aircraft Propulsion and Gas Turbine Engines; CRC press, 2008

References:

- 1. El-Wakil, M M; Power plant Technology, 1984, McGraw-Hill Pub.
- 2. NASA-SP-290, Axial Flow turbines, 2002 (re-release), NTIS, USA.
- 3. J H Horlock, Axial flow compressors, Butterworths, 1958, UK.
- 4. J H Horlock, Axial Flow Turbines, Butterworths, 1965, UK.
- 5. B Lakshminarayana; Fluid Mechanics and Heat Transfer in turbomachineries, Â 1995, USA.

BANE15	NANO SCIENCE TECHNOLOGY	L	Т	Р	C		
	Total Contact Hours – 45	3	0	0	3		
	Prerequisite – Engineering Physics, Fundamentals of Structural M	Mechanics					
	Course Designed by – Department of Aeronautical Engineering						
OBJECTIVES	5						
1. To acquaint	with the fundamentals of viscous flow.						
2. To learn the	2. To learn the different regime of viscous flow and its solution.						
3. To understan	nd the concept of laminar boundary layer.						
4 To understan	nd the concept of turbulent boundary layer						

- 4. To understand the concept of turbulent boundary layer.
- 5. To acquaint the concept of compressible boundary layer.

COURSE CONTENT

UNIT I INTRODUCTION

Introduction to nano scale materials - atomic & molecular size. Scientific revolutions-nanotechnology application area. Scope of nano science and technology

UNIT II	NANOSTRUCTURES AND DIMENSIONS	9
	on of nanostructures-zero, one, two and three dimensional nanostructures. Size Dependen ares-quantum size effects in nanostructures. Chemistry of tailored nano shapes.	ncy in
UNIT III	NANOMATERIAL SYNTHESIS	9
•	f nanomaterials-top down and bottom up approach. Method of nanomaterials preparation on the sis-mechanical grinding-gas phase synthesis.	– wet
UNIT IV	NANOMATERIAL PROPERTIES	9
	volume ratio. Surface properties of nanoparticles. Mechanical, optical, electronic, mag d chemical properties of nanomaterials. Size dependent properties-size dependent abso ape impact.	
UNIT V	PHYSICAL PROPERTIES OF NANOSTRUCTURED MATERIALS	9
	ots-optical properties and applications. Carbon nano tubes-physical properties and applications	
monolayer.	ehavior of nanomaterials. Electronic transport in quantum wires. Surface chemistry of ta	llored
Text Books	S:	
1. T. Pradee	ep, "Nano the Essential Nanoscience and Nanotechnology", Tata McGraw hill, 2007.	
2. Mick W	ilson, KamaliKannargare., Geoff Smith, "Nano technology: Basic Science and Eme	erging
Technol	logies", Overseas Press, 2005.	
References	-	
	P. Poole, Frank J. Owens, "Introduction to Nanotechnology", Wiley Inter Science, 2003.	
	Ratner, Daniel Ratner, "Nanotechnology: A gentle introduction to the next Big Idea", Pr R:1st Edition, 2002.	entice
3. J. Dutta,	H. Hoffmann, "Nanomaterials", Topnano-21, 2003.	

	UNMANNED AERIAL VEHICLE	L	Т	Р	С			
BANE16	Total Contact Hours – 45	3	0	0	3			
DANEIU	Prerequisite – Fundamentals of Aeronautics and Astronautics, Fli	ght M	lechani	cs				
	Course Designed by – Department of Aeronautical Engineering	Course Designed by – Department of Aeronautical Engineering						
OBJECTIVI	DBJECTIVES							
1. To introdu	1. To introduce to the student about the basic ideas of Unmanned Aerial Vehicles							
2. To familiarize the students about the aerodynamics and airframe configurations								
3. To accusto	m the student to the wide variety of unmanned aerial vehicles							
4. To acquair	t the student about the various communication and navigation syst	ems o	of unm	anned a	aerial			
vehicles								
5. To enable t	he student to understand about the control and stability of UAV's							
	COURSE CONTENT							
UNIT I	INTRODUCTION TO UNMANNED AIRCRAFT SYSTEM	(S			9			
•	Basis of UAS-System Composition- Conceptual Phase-Preliminary e Applications of UAS	v Desi	gn-Sel	ection	of the			
UNIT II	AERODYNAMICS AND AIRFRAME CONFIGURATION	S			9			

Lift-induced Drag - Parasitic Drag - Rotary-wing Aerodynamics - Response to Air Turbulence - Airframe Configurations Scale Effects - Packaging Density – Aerodynamics - Structures and Mechanisms -Selection of power-plants - Modular Construction - Ancillary Equipment

UNIT III CHARACTERISTICS OF AIRCRAFT TYPES

Long-endurance, Long-range Role Aircraft – Medium-range, Tactical Aircraft - Close-range/Battlefield Aircraft - MUAV Types - MAV and NAV Types - UCAV - Novel Hybrid Aircraft Configurations -Research UAV

UNIT IV COMMUNICATIONS NAVIGATION

Communication Media - Radio Communication - Mid-air Collision (MAC) Avoidance - Communications Data Rate and Bandwidth Usage - Antenna Types NAVSTAR Global Positioning System (GPS) -TACAN - LORAN C - Inertial Navigation - Radio Tracking - Way-point Navigation

UNIT V CONTROL AND STABILITY

HTOL Aircraft - Helicopters - OTE/OTE/SPH - Convertible Rotor Aircraft - Payload Control - Sensors - culmon filter- Autonomy

Text Books:

1. Reg Austin., Unmanned Aircraft Systems, John Wiley and Sons., 2010

References:

1. Milman&Halkias, "Integrated Electronics", McGraw Hill, 1999.

2. Malvino& Leach, "Digital Principles & Applications", McGraw Hill, 1986

3. Collinson R.P.G, "Introduction to Avionics", Chapman and Hall, India, 1996

4.BernadEtikin,"Dynamic of flight stability and control", John Wiley, 1972

NON MAJOR ELECTIVE-II

	BOUNDARY LAYER THEORY	L	Т	Р	С
	Total Contact Hours – 45	3	0	0	3
BANE17	Prerequisite – Maths				
	Course Designed by – Department of Aeronautical Engineering				
OBJECTIV	'ES				
1. To acquai	nt with the fundamentals of viscous flow.				
2. To learn t	he different regime of viscous flow and its solution.				
3. To understand the concept of laminar boundary layer.					
4. To unders	tand the concept of turbulent boundary layer.				
5. To acquai	nt the concept of compressible boundary layer.				
	COURSE CONTENT				
UNIT I	FUNDAMENTAL EQUATIONS OF VICOUS FLOW				9
	l equations of viscous flow, Conservation of mass, Conservation				
-	tions, Energy equation, Mathematical character of basic equations, Div , Non dimensionalising the basic equations and boundary conditions,		-		
	w, boundary layer flow	voru		iisiuera	uons,
UNIT II	SOLUTIONS OF VICOUS FLOW EQUATIONS				9

9

9

Solutions of viscous flow equations, Couette flows, Hagen-Poisuelle flow, Flow between rotating concentric cylinders, Combined Couette-Poiseuille Flow between parallel plates, Creeping motion, Stokes solution for an immersed sphere, Development of boundary layer, Displacement thickness, momentum and energy thickness.

UNIT III

LAMINAR BOUNDARY LAYER EQUATIONS

Laminar boundary layer equations, Flat plate Integral analysis of Karman – Integral analysis of energy equation – Laminar boundary layer equations – boundary layer over a curved body-Flow separation-similarity solutions, Blasius solution for flat-plate flow, Falkner–Skan wedge flows, Boundary layer temperature profiles for constant plate temperature –Reynold's analogy, Integral equation of Boundary layer – Pohlhausen method – Thermal boundary layer calculations

UNIT IV TURBULENT BOUNDARY LAYEREQUATIONS

Turbulence-physical and mathematical description, Two-dimensional turbulent boundary layer equations — Velocity profiles – The law of the wall – The law of the wake – Turbulent flow in pipes and channels – Turbulent boundary layer on a flat plate – Boundary layers with pressure gradient, Eddy Viscosity, mixing length, Turbulence modeling

UNIT V COMPRESSIBLE BOUNDARY LAYERSEQUATIONS

9

9

9

Compressible boundary layer equations, Recovery factor, similarity solutions, laminar supersonic Cone rule, shock-boundary layer interaction

Text Books:

1. White, F. M., Viscous Fluid Flow, McGraw-Hill & Co., Inc., New York, 2005.

References:

1. Schlicting, H., Boundary Layer Theory, McGraw-Hill, New York, 2000.

2. Reynolds, A, J., Turbulent Flows Engineering, John Wiley and Sons, 1980.

	FATIGUE AND FRACTURE MECHANICS	L	Т	Р	С			
	Total Contact Hours – 45	3	0	0	3			
BANE18	Prerequisite – Fundamentals of Structural Mechanics							
	Course Designed by – Department of Aeronautical Engineering							
OBJECTIVES								
1. To familia	1. To familiarize the student about the basic terminologies of fatigue and fracture mechanics							
2. To enable	the student to grasp the various statistical tools used in fatigue analys	sis						
3. To acquai	nt the student about the physical processes taking place during fatigue	e						
4. To introd	ice to the student about the mechanism taking place during fracture							
5. To make	he student realize about the importance of fatigue and fracture mecha	nics in	n aeros	pace				
industry	industry							
COURSE CONTENT								
UNIT I	FATIGUE OF STRUCTURES				9			

S.N. curves - Endurance limits - Effect of mean stress, Goodman, Gerber and Soderberg relations and diagrams - Notches and stress concentrations - Neuber's stress concentration factors - Plastic stress concentration factors - Notched S.N. curves.

Low cycle and high cycle fatigue - Coffin - Manson's relation - Transition life - cyclic strain hardening and softening - Analysis of load histories - Cycle counting techniques -Cumulative damage - Miner's theory - Other theories.

UNIT III PHYSICAL ASPECTS OF FATIGUE

Phase in fatigue life - Crack initiation - Crack growth - Final Fracture - Dislocations - fatigue fracture surfaces.

UNIT IV FRACTURE MECHANICS

Strength of cracked bodies - Potential energy and surface energy - Griffith's theory - Irwin - Irwin extension of Griffith's theory to ductile materials - stress analysis of "cracked bodies - Effect of thickness on fracture toughness - stress intensity factors for typical 'geometries.

UNIT V FATIGUE DESIGN AND TESTINIG

Safe life and Fail-safe design philosophies - Importance of Fracture Mechanics in aerospace structures - Application to composite materials and structures.

Text Books:

1. Prashant Kumar, Elements of Fracture Mechanics, Tata McGraw Hill, New Delhi, India, 2009.

2..T.L. Anderson, Fracture Mechanics - Fundamentals and Applications, 3rd Edition, Taylor and Francis Group, 2005

References:

1. K. R.Y. Simha, Fracture Mechanics for Modern Engineering Design, Universities Press (India) Limited, 2001

2. D.Broek, Elementary Engineering Fracture Mechanics, Kluwer Academic Publishers, Dordrecht, 1986.

3. Barrois W, Ripely, E.L., "Fatigue of aircraft structure," Pergamon press. Oxford, 1983

	HIGH TEMPERATURE MATERIALS	L	Т	Р	C
	Total Contact Hours – 45	3	0	0	3
BANE19	Prerequisite – Fundamentals of Structural Mechanics	1			
	Course Designed by – Department of Aeronautical Engineering				
OBJECTIV	VES				
1. To acqua	nt the student with the fundamentals of creep.				
2. To make	the student understand about design with creep resistance.				
3. To famili	arize the student about fracture, cracks and their mechanics.				
	uce to the student about oxidation and corrosion in hot environments.				
5. To acqua	nt the student with various super alloys and other materials.				
1	COURSE CONTENT				
UNIT I	CREEP				9
Factors influ	encing functional life of components at elevated temperatures, defini	tion o	f creep	curve,	
	es of creep, metallurgical factors influencing various stages, effect of		-		
UNIT II	DESIGN FOR CREEP RESISTANCE				9
-	ansient creep time, hardening, strain hardening, expressions of rupture naterials, Monkman-Grant relationship.	e life (of cree	p, ducti	le

9

9

LINUT III		9
UNIT III	FRACTURE	9
and ductile	es of fracture, brittle to ductile from low temperature to high temperature, cleavage fractu fracture due to micro void coalescence-diffusion controlled void growth; fracture maps fo oys and oxides.	
UNIT IV	OXIDATION AND HOT CORROSION	9
alloy additi	Pilling, Bedworth ratio, kinetic laws of oxidation- defect structure and control of oxidation ons, hot gas corrosion deposit, modified hot gas corrosion, fluxing mechanisms, effect of ments on hot corrosion, interaction of hot corrosion and creep, methods of combat hot	n by
UNIT V	SUPER ALLOYS AND OTHER MATERIALS	9
Iron base, N	lickel base and Cobalt base super alloys, composition control, solid solution strengthening	<u>z</u> ,
	n hardening by gamma prime, grain boundary strengthening, TCP phase, embrittlement,	
solidificatio	on of single crystals, Intermetallics, high temperature ceramics.	
Text Books		
1. Raj. R., "	Flow and Fracture at Elevated Temperatures", American Society for Metals, USA, 1985.	
2. Hertzber	g R. W., "Deformation and Fracture Mechanics of Engineering materials", 4th Edition,	John
	USA, 1996.	
3. Courtney	T.H, "Mechanical Behavior of Materials", McGraw-Hill, USA, 1990.	
References	:	
1. Boyle J.7	, Spencer J, "Stress Analysis for Creep", Butterworths, UK, 1983.	
2. Bressers.	J., "Creep and Fatigue in High Temperature Alloys", Applied Science, 1981.	
3. McLean	D., "Directionally Solidified Materials for High Temperature Service", TheMetals So	ciety,
USA, 19	985.	

NON MAJOR ELECTIVE-III

	WIND ENERGY	L	Т	Р	С		
DANESO	Total Contact Hours – 45	3	0	0	3		
BANE20	Prerequisite – Aerodynamics I						
	Course Designed by – Department of Aeronautical Engineering						
OBJECTIVES	8						
	1. To familiarize the student about the fundamentals about wind energy and the various measurements						
associated	with it						
2. To acquaint	the student with the aerodynamics of wind turbines						
3. To introduce	e to the student about the components of wind turbines and the gear	coup	led ger	nerators			
4. To introduce	e to the student about the direct rotor coupled generators	-	•				
5. To accustom	5. To accustom the student to the control systems and monitoring systems for wind turbines						
COURSE CONTENT							

UNIT I

WIND ENERGY FUNDAMENTALS & WIND MEASUREMENTS

9

Wind Energy Basics, Wind Speeds and scales, Terrain, Roughness, Wind Mechanics, PowerContent, Class of wind turbines, Atmospheric Boundary Layers, Turbulence. Instrumentation for wind measurements, Wind data analysis, tabulation, Wind resource estimation, Betz's Limit, Turbulence Analysis

UNIT II	AERODYNAMICS THEORY & WIND TURBINE TYPES	9
Airfoil tern	ninology, Blade element theory, Blade design, Rotor performance and dynamics, Bala	ncing
	Rotor & Blade), Types of loads; Sources of loads Vertical Axis Type, Horizontal	-
-	peed Constant Frequency, Variable speed Variable Frequency, Up Wind, Down Wind,	
Control, P	tch Control, Gear Coupled Generator type, Direct Generator Drive /PMG/Rotor Excited	Sync
Generator		
UNIT III	GEAR COUPLED GENERATOR WIND TURBINE COMPONENTS	9
	AND THEIR CONSTRUCTION	-
	Sensors /Encoder /Resolvers, Wind Measurement : Anemometer & Wind Vane,	
	ation System, Soft Starter, Switchgear [ACB/VCB], Transformer, Cables and asse	
-	ion Panel, Programmable Logic Control, UPS, Yaw & Pitch System : AC Drives, Safety	
	enerator Rotor Resistor controller (Flexi Slip), Differential Protection Relay for Gene	
• •	per Capacitor Charger & Batteries/ Super Capacitor for Pitch System, Transient Suppre	ssor /
Lightning A	Arrestors, Oscillation & Vibration sensing	
UNIT IV	DIRECT ROTOR COUPLED GENERATOR	9
Excited Rot	tor Synch. Generator / PMG Generator, Control Rectifier, Capacitor Banks, Step Up / Boo	ost
	DC-DC Step Up), Grid Tied Inverter, Power Management, Grid Monitoring Unit (Voltag	
and Current	t), Transformer, Safety Chain Circuits	
UNIT V	MODERN WIND TURBINE CONTROL & MONITORING SYSTEM	9
Details of F	itch System & Control Algorithms, Protections used & Safety Consideration in Wind tur	bines,
	ine Monitoring with Error codes, SCADA & Databases: Remote Monitoring and Gener	
	peration & Maintenance for Product Life Cycle, Balancing technique (Rotor & Blade), FA	ACTS
	VRT & New trends for new Grid Codes.	
Text Books		
	J.K, Standalone and Hybrid Wind Energy Systems, CRC Press, 2010	
2 Mario G	arcia –Sanz, Constantine H. Houpis, Wind Energy Systems, CRC Press 2012	
References		
References 1.Freris, L.J	L., Wind Energy Conversion Systems, Prentice Hall, 1990	
References 1.Freris, L.I 2.Spera, D.	L., Wind Energy Conversion Systems, Prentice Hall, 1990 A., Wind Turbine Technology: Fundamental concepts of Wind Turbine Engineering, ASM	ИE
References 1.Freris, L.I 2.Spera, D. Press, 199	L., Wind Energy Conversion Systems, Prentice Hall, 1990 A., Wind Turbine Technology: Fundamental concepts of Wind Turbine Engineering, ASN 94.	ЛЕ
References 1.Freris, L.I 2.Spera, D. Press, 199 3. Duffie, A	L., Wind Energy Conversion Systems, Prentice Hall, 1990 A., Wind Turbine Technology: Fundamental concepts of Wind Turbine Engineering, ASM	

	SATELLITE TECHNOLOGY	L	Т	Р	С
DANE	Total Contact Hours – 45	3	0	0	3
BANE21	Prerequisite – Basic Electrical and Electronics, Engineering Mech	nanics	5		
	Course Designed by – Department of Aeronautical Engineering				
OBJECTIVES	8				
1. To introduce	e to the student about different types of satellites and their functions	5			

oduce to the student about different types of satellites and their functions 1.10

- 2. To accustom the student to the governing equations of motion and orbital mechanics
- 3. To acquaint the student to the structure of the satellites and the components used and their thermal protection
- 4. To familiarize the student about the control system for spacecraft

5. To enable the student to understand about the power system in a satellite and the various bus electronics used

COURSE CONTENT

UNIT I

INTRODUCTION TO SATELLITE SYSTEMS

Common satellite applications and missions – Typical spacecraft orbits – Definitions of spin the three axis stabilization-Space environment – Launch vehicles – Satellite system and their functions (structure, thermal, mechanisms, power, propulsion, guidance and control, bus electronics).

UNIT II ORBITAL MECHANICS

Fundamental of flight dynamics – Time and coordinate systems – Orbit determination and prediction – Orbital maneuvers – GPS systems and application for satellite/orbit determination – Ground station network requirements.

UNIT III SATELLITE STRUCTURES & THERMAL CONTROL

Satellite mechanical and structural configuration: Satellite configuration choices, launch loads, separation induced loads, deployment requirements – Design and analysis of satellite structures – Structural materials and fabrication – The need of thermal control: externally induced thermal environment – Internally induced thermal environment - Heat transfer mechanism: internal to the spacecraft and external heat load variations – Thermal control systems: active and passive methods.

UNIT IV SPACECRAFT CONTROL

Control requirements: attitude control and station keeping functions, type of control maneuvers – Stabilization schemes: spin stabilization, gravity gradient methods, 3 axis stabilization – Commonly used control systems: mass expulsion systems, momentum exchange systems, gyro and magnetic torque - Sensors star and sun sensors, earth sensor, magnetometers and inertial sensors

UNIT V POWER SYSTEM AND BUS ELECTRONICS

Solar panels: Silicon and Ga-As cells, power generation capacity, efficiency – Space battery systems – battery types, characteristics and efficiency parameters – Power electronics. Telemetry and telecommand systems: Tm & TC functions, generally employed communication bands (UHF/VHF, S, L, Ku, Kaetc), their characteristics and applications- Coding Systems – Onboard computer- Ground checkout Systems.

Text Books:

- 1. Spacecraft Thermal Control, Hand Book, Aerospace Press, 2002.
- 2. Introduction Space Flight, Francis J. Hale Prentice Hall, 1994.

References:

- 1. Analysis and Design of Flight Vehicle Structures, Tri-State off set company, USA, 1980.
- 2. Space Systems Engineering Rilay, FF, McGraw Hill, 1982.
- 3. Principles of Astronautics Vertregt. M., Elsevier Publishing Company, 1985
- 4 .Space Communications Systems, Richard.F, FilipowskyEugen I Muehllorf Prentice Hall, 1995
- 5. Space Vehicle Design, Michael D. Griffin and James R. French, AIAAEducation Series, 1991.

	AIRCRAFT RULES AND REGULATIONS CAR I & II	L	Т	Р	С
BANE22	Total Contact Hours – 45	3	0	0	3
	Prerequisite – Professional Courses				

9

9

9

9

OBJECTIVES 1. To familiarize the student about the CAR series A & B 2. To familiarize the student about the CAR series C & D 3. To familiarize the student about the CAR series E & F 4. To familiarize the student about the CAR series L & M 5. To familiarize the student about the CAR series T & X COURSE CONTENT UNIT I C.A.R. SERIES "A " & " B " 9 C.A.R series 'A' - procedure for civil air worthiness Requirements and responsibility operators vis-a-vi Air Worthiness directorate - Responsibilities of operators/owners; procedure of CAR issue, amendment Air worthiness directorate - Responsibilities of operators/owners; procedure of CAR issue, amendment Air worthiness directorate - Responsibilities of operators/owners; procedure of CAR issue, amendment AIR activities of operations. C.A.R. series "B" - issue approval of cockpit check list, MEL, CDL - Deficiency list (MEL & CDL) preparation and use of cockpit check list and emergency check list. UNIT II C.A.R. SERIES "C " & " D " 9 C.A.R. SERIES "C " & " D " Origon and rectification and analysis; Flight report; Reporting and rectification of defect object recording, monitoring, i		Course Designed by – Department of Aeronautical Engineering	
1. To familiarize the student about the CAR series A & B 2. To familiarize the student about the CAR series C & D 3. To familiarize the student about the CAR series L & M 5. To familiarize the student about the CAR series T & X COURSE CONTENT UNIT I C.A.R. SERIES "A " & " B " Q A series 'A' - procedure for civil air worthiness Requirements and responsibility operators vis-a-vi Ark SERIES "A " & " B " Q C.A.R series 'A' - procedure for civil air worthiness Requirements and responsibility operators vis-a-vi Ark SERIES "C " & " B " UNIT II C.A.R. Series "B " – issue approval of cockpit check list, MEL, CDL - Deficiency list (MEL & CDL) preparation and use of cockpit check list and emergency check list. UNIT II C.A.R. SERIES "C " & " D " Q C.A.R. SERIES "C " & " D " Defect recording, monitoring, investigation and reporting and rectification of defect observed on aircraft, Analytical study of in-fight readings & recordings; Maintenance control b reliability Method. C.A.R. series 'D'-aircraft maintenance programmes - Reliability Programme (Engines); Aircraft maintenance perodstand component TBOs - Initial & revision. </th <th>OBJECTI</th> <th></th> <th></th>	OBJECTI		
3. To familiarize the student about the CAR series E & F 4. To familiarize the student about the CAR series L & M 5. To familiarize the student about the CAR series T & X COURSE CONTENT UNIT I CAR. SERIES "A " & " B " Q COURSE CONTENT OCURSE contents A " or procedure for civil air worthiness Requirements and responsibility operators vis-a-vi Ar Worthiness directorate - Responsibilities of operators/owners; procedure of CAR issue, amendment to objectives and targets of airworthiness directorate; airworthiness regulations and safety oversight o engineering activities of operations. C.A.R. series "B" – issue approval of cockpit check list, MEL, CDL - Deficiency list (MEL & CDL) preparation and use of cockpit check list and emergency check list. UNIT II C.A.R. SERIES "C " & D " Q C.A.R. series 'C - defect recording, monitoring, investigation and reporting - Defect recording on aircraft maintenance programmes - Reliability Programme (Engines); Aircraft Postarcraft maintenance programmes - Reliability Programme (Engines); Aircraft Reliability Areatoris and component			
4. To familiarize the student about the CAR series L & M 5. To familiarize the student about the CAR series T & X COURSE CONTENT UNIT I C.A.R. SERIES "A " & " B " 9 C.A.R. series 'A' - procedure for civil air worthiness Requirements and responsibility operators vis-a-vi Air Worthiness directorate - Responsibilities of operators/owners; procedure of CAR issue, amendment etc; objectives and targets of airworthiness directorate; airworthiness regulations and safety oversight o engineering activities of operations. C.A.R. series "B " – issue approval of cockpit check list, MEL, CDL - Deficiency list (MEL & CDL) preparation and use of cockpit check list and emergency check list. 9 C.A.R. series 'C - defect recording, monitoring, investigation and reporting - Defect recording reporting, investigation, rectification and analysis; Flight report; Reporting and rectification of defect 9 C.A.R. series 'D - aircraft maintenance programmes - Reliability Programme (Engines); Aircraft maintenance of reciprocating engines; TBO Revision programme; Maintenance of fuel and oil uplift and consumption records - Light aircraft engines 9 C.A.R. series 'E - approval of organizations - Approval of organizations in categories A, B, C, D, E, F, & G; Requirements of infrastructure at stations other than parent base. 9 C.A.R. series 'E - aincraft maintenance engineer – licensing - Issue of AME			
5. To familiarize the student about the CAR series T & X COURSE CONTENT UNIT I C.A.R. SERIES "A " & "B " 9 C.A.R. series 'A' - procedure for civil air worthiness Requirements and responsibility operators vis-a-vi Are series 'A' - procedure for civil air worthiness Requirements and responsibility operators vis-a-vi Are series 'A' - procedure of CAR issue, amendment tery operations. C.A.R. series "B" - issue approval of cockpit check list, MEL, CDL - Deficiency list (MEL & CDL) preparation and use of cockpit check list and emergency check list. UNIT II C.A.R. SERIES "C " & " D " 9 C.A.R. series 'C' - defect recording, monitoring, investigation and reporting and rectification of defect cobserved on aircraft; Analytical study of in-fight readings & recordings; Maintenance control by reliability Method. 9 C.A.R. series 'D'-aircraft maintenance programmes - Reliability Programme (Engines); Aircraft maintenance of fuel and oil uplift and consumption records - Light aircraft engines Fixing routine maintenance of of rel and oil uplift and consumption records - Light aircraft engines Fixing routine maintenance of of series - Approval of organizations - Approval of organizations. UNIT II C.A.R. series T - aircraft maintenance of renewal of certificate of Airworthiness ervesere erveserere - approval of organizations - Approval of organizat			
COURSE CONTENT UNIT I C.A.R. SERIES "A " & " B " 9 C.A.R series 'A' - procedure for civil air worthiness Requirements and responsibility operators vis-a-vi Air Worthiness directorate - Responsibilities of operators/owners; procedure of CAR issue, amendment etc; objectives and targets of airworthiness directorate; airworthiness regulations and safety oversight o engineering activities of operations. 9 C.A.R. series "B" - issue approval of cockpit check list, MEL, CDL - Deficiency list (MEL & CDL) preparation and use of cockpit check list and emergency check list. 9 C.A.R. series 'C' - defect recording, monitoring, investigation and reporting - Defect recording reporting, investigation, rectification and analysis; Flight report; Reporting and rectification of defect observed on aircraft; Analytical study of in-fight readings & recordings; Maintenance control by reliability Method. C.A.R. series 'D'-aircraft maintenance programmes - Reliability Programme (Engines); Aircraft maintenance programme& their approval - On condition maintenance of reciprocating engines; TBO revision programme; Maintenance of fuel and oil uplift and consumption records - Light aircraft engines Fixing routine maintenance periods and component TBOs - Initial & revisions. UNIT III C.A.R. SERIES "E" & "F" 9 C.A.R. series 'E' - approval of organizations - Approval of organizations in categories A, B, C, D, E, F, & G; Requirements of infrastructure at stations other than parent base. C.A.R. series 'E' - air worthiness and continued air worthiness - Procedure relating to registration on aircraft; Procedure for issue / revalidation of Type Certificate o			
UNIT I C.A.R. SERIES "A " & " B " 9 C.A.R series 'A' - procedure for civil air worthiness Requirements and responsibility operators vis-a-vi Air Worthiness directorate - Responsibilities of operators/owners; procedure of CAR issue, amendment etc; objectives and targets of airworthiness directorate; airworthiness regulations and safety oversight o engineering activities of operations. C.A.R. series "B" - issue approval of cockpit check list, MEL, CDL - Deficiency list (MEL & CDL) reperation and use of cockpit check list and emergency check list. UNIT II C.A.R. SERIES "C " & " D " 9 C.A.R. series 'C' - defect recording, monitoring, investigation and reporting; Maintenance control by reliability Method. Out control of fuel and oil uplift and consumption records - Light aircraft; Analytical study of in-fight readings & recordings; Maintenance control by reliability Method. C.A.R. series 'D'-aircraft maintenance programmes - Reliability Programme (Engines); Aircraft maintenance of fuel and oil uplift and consumption records - Light aircraft engines; TBO Revision programmes & their approval - On condition maintenance of reciprocating engines; TBO Revision programmes their approval - On condition maintenance. UNIT III C.A.R. SERIES "E " & " 9 C.A.R. series 'E' - approval of organizations - Approval of organizations. UNIT III C.A.R. SERIES "E " & " F " Q: Requirements of infrastructure at stations other than parent base. C.A.R. series 'E' - air worthiness and continued air worthiness - Procedure relating to registration o aircraft; Procedure for issue / re	5. To famil		
C.A.R series 'A' - procedure for civil air worthiness Requirements and responsibility operators vis-a-vi Air Worthiness directorate - Responsibilities of operators/owners; procedure of CAR issue, amendment tet; objectives and targets of airworthiness directorate; airworthiness regulations and safety oversight o engineering activities of operations. C.A.R. series 'B'' - issue approval of cockpit check list, MEL, CDL - Deficiency list (MEL & CDL) preparation and use of cockpit check list and emergency check list. UNIT II C.A.R. SERIES 'C' & "D" Q.A.R. series 'C' - defect recording, monitoring, investigation and reporting and rectification of defect observed on aircraft; Analytical study of in-fight readings & recordings; Maintenance control by reliability Method. C.A.R. series 'D'-aircraft maintenance programmes - Reliability Programme (Engines); Aircraft maintenance programme& their approval - On condition maintenance of reciprocating engines; TBO Revision programme; Maintenance of fuel and oil uplift and consumption records - Light aircraft engines UNIT II C.A.R. SERIES "E" & F " Q.A.R. series 'E' - aiproval of organizations - Approval of organizations in categories A, B, C, D, E, F, & G; Requirements of infrastructure at stations other than parent base. C.A.R. series 'E' - aiproval of organizations - Approval of organizations in categories A, B, C, D, E, F, & G; Requirements of infrastructure at stations other than parent base. <tr< th=""><th></th><th>COURSE CONTENT</th><th>1</th></tr<>		COURSE CONTENT	1
Air Worthiness directorate - Responsibilities of operators/owners; procedure of CAR issue, amendment tet; objectives and targets of airworthiness directorate; airworthiness regulations and safety oversight of engineering activities of operations. C.A.R. series "B" – issue approval of cockpit check list, MEL, CDL - Deficiency list (MEL & CDL) preparation and use of cockpit check list and emergency check list. 9 C.A.R. series 'C' - defect recording, monitoring, investigation and reporting and rectification of defect observed on aircraft; Analytical study of in-fight readings & recordings; Maintenance control by reliability Method. 9 C.A.R. series 'D'-aircraft maintenance programmes - Reliability Programme (Engines); Aircraft maintenance programmes their approval - On condition maintenance of reciprocating engines; TBO Revision programme; Maintenance of fuel and oil uplift and consumption records - Light aircraft engines Fixing routine maintenance of organizations - Approval of organizations in categories A, B, C, D, E, F, & G; Requirements of infrastructure at stations other than parent base. 9 C.A.R. series 'E' - approval of organizations - Approval of organizations in categories A, B, C, D, E, F, & G; Requirements of infrastructure at stations other than parent base. 9 C.A.R. series 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification and experience requirements, Complete Series T. 9 C.A.R. series 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification and experience requirements, Complete Series T. 9 C.A.R. series 'L' - aircraft maintenance engineer – licensing - Issue of AME License, i	UNIT I	C.A.R. SERIES "A " & " B "	9
etc; objectives and targets of airworthiness directorate; airworthiness regulations and safety oversight o engineering activities of operations. C.A.R. series "B" – issue approval of cockpit check list, MEL, CDL - Deficiency list (MEL & CDL) preparation and use of cockpit check list and emergency check list. UNIT II C.A.R. SERIES "C " & "D " C.A.R. series 'C' - defect recording, monitoring, investigation and reporting and rectification of defect observed on aircraft; Analytical study of in-fight readings & recordings; Maintenance control by reliability Method. C.A.R. series 'D'-aircraft maintenance programmes - Reliability Programme (Engines); Aircraft maintenance programme& their approval - On condition maintenance of reciprocating engines; TBO Revision programme; Maintenance of fuel and oil uplift and consumption records - Light aircraft engines Fixing routine maintenance periods and component TBOs - Initial & revisions. UNIT III C.A.R. SERIES "E " & "F " Q C.A.R. series 'F' - approval of organizations - Approval of organizations in categories A, B, C, D, E, F, & G; Requirements of infrastructure at stations other than parent base. C.A.R. series F' - air worthiness and continued air worthiness - Procedure relating to registration o aircraft; Procedure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; Issue revalidation of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness UNIT IV C.A.R. SERIES "L " & "M " Q.C.A.R. series T' - aircraft maintenance engineer – licensing - Issue of AME License, its classification and experience requirements, Complete Series T.' C.A.R. series 'M Mandatory Modifications / Inspections. UNIT V C.A.R. SERIES "T " & "X " Q.C.A.R. series 'T' - miscellaneous requirements - Registration Markings of aircraft; Weight and balance control of an aircraft; Provision of first aid kits & Physician's kit in an aircraft; Use firmishing materials in an aircraft; Provedure for issue of taxy permit; Procedure for issue of type app	C.A.R serie	s 'A' - procedure for civil air worthiness Requirements and responsibility operators vis	s-a-vis
engineering activities of operations. C.A.R. series "B" – issue approval of cockpit check list, MEL, CDL - Deficiency list (MEL & CDL) preparation and use of cockpit check list and emergency check list. UNIT II C.A.R. SERIES "C " & " D " 9 C.A.R. series 'C' - defect recording, monitoring, investigation and reporting and rectification of defect observed on aircraft; Analytical study of in-fight readings & recordings; Maintenance control by reliability Method. C.A.R. series 'D'-aircraft maintenance programmes - Reliability Programme (Engines); Aircraft maintenance programme their approval - On condition maintenance of reciprocating engines; TBO Revision programme; Maintenance of fuel and oil uplift and consumption records - Light aircraft engines Fixing routine maintenance periods and component TBOs - Initial & revisions. UNIT III C.A.R. SERIES "E" & " F " 9 C.A.R. series 'E' - approval of organizations - Approval of organizations in categories A, B, C, D, E, F, & G; Requirements of infrastructure at stations other than parent base. C.A.R. series 'F' - air worthiness and continued air worthiness - Procedure relating to registration of aircraft; Procedure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; Issue revalidation of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness UNIT IV C.A.R. SERIES "L " & " M " 9 C.A.R. series 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification and experience requirements, Complete Series 'L'. C.A.R. series 'M Mandatory Modifications / Inspections. UNIT V C.A.R. SERIES "T " & " X " C.A.R. series 'T flight testing of aircraft - Flight testing of (Series) aircraft for issue of C of A; Fight testing of aircraft for which C or A had been previously issued. C.A.R. series 'X' - miscellaneous requirements - Registration Markings of aircraft; Weight and balance control of an aircraft; Provision of first aid kits & Physician's kit in an aircraft; Weight and			
C.A.R. series "B" – issue approval of cockpit check list, MEL, CDL - Deficiency list (MEL & CDL) preparation and use of cockpit check list and emergency check list. UNIT II C.A.R. SERIES "C * & " D " Q.A.R. series C' - defect recording, monitoring, investigation and reporting - Defect recording preparation and use of cockpit check list and analysis; Flight report; Reporting and rectification of defect observed on aircraft; Analytical study of in-fight readings & recordings; Maintenance control by reliability Method. C.A.R. series 'D'-aircraft maintenance programmes - Reliability Programme (Engines); Aircraft maintenance programme& their approval - On condition maintenance of reciprocating engines; TBO Revision programme; Maintenance of fuel and oil uplift and consumption records - Light aircraft engines Fixing routine maintenance periods and component TBOs - Initial & revisions. UNIT III C.A.R. SERIES "E" & "F " C.A.R. series 'E' - air worthiness and continued air worthiness - Procedure relating to registration o aircraft; Procedure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; Issue revalidation Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness UNIT IV C.A.R. SERIES "L & M M (9) C.A.R. series 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification and exeprerience requirements, Complete Series 'L'.<			ght of
preparation and use of cockpit check list and emergency check list. UNIT II C.A.R. SERIES "C * & " D " 9 C.A.R. series 'C' - defect recording, monitoring, investigation and reporting - Defect recording reporting, investigation, rectification and analysis; Flight report; Reporting and rectification of defect observed on aircraft; Analytical study of in-fight readings & recordings; Maintenance control by reliability Method. C.A.R. series 'D'-aircraft maintenance programmes - Reliability Programme (Engines); Aircraft maintenance programme& their approval - On condition maintenance of reciprocating engines; TBO Revision programme; Maintenance of fuel and oil uplift and consumption records - Light aircraft engines Fixing routine maintenance periods and component TBOs - Initial & revisions. UNIT III C.A.R. SERIES "E" & "F " 9 C.A.R. series 'E' - approval of organizations - Approval of organizations in categories A, B, C, D, E, F, & G; Requirements of infrastructure at stations other than parent base. 9 C.A.R. series 'F' - air worthiness and continued air worthiness - Procedure relating to registration o aircraft; Procedure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; Issue revalidation of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness 9 C.A.R. series 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification and experience requirements, Complete Series 'L'. 9 C.A.R. series 'M' Mandatory Modifications / Inspections. 9	0	1	(וחי
UNIT II C.A.R. SERIES "C " & " D " 9 C.A.R. series 'C' - defect recording, monitoring, investigation and reporting and rectification of defect observed on aircraft; Analytical study of in-fight readings & recordings; Maintenance control by reliability Method. 9 C.A.R. series 'D'-aircraft maintenance programmes - Reliability Programme (Engines); Aircraft maintenance programme; Maintenance of fuel and oil uplift and consumption records - Light aircraft engines; Fixing routine maintenance periods and component TBOs - Initial & revisions. 9 C.A.R. series 'E' - approval of organizations - Approval of organizations in categories A, B, C, D, E, F, & G; Requirements of infrastructure at stations other than parent base. 9 C.A.R. series 'E' - air worthiness and continued air worthiness - Procedure relating to registration o aircraft; Procedure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; Issue revalidation of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness 9 C.A.R. series 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification and experience requirements, Complete Series 'L'. 9 C.A.R. series 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification and experience requirements, Complete Series 'L'. 9 C.A.R. series 'T' - flight testing of aircraft - Flight testing of aircraft for issue of C of A; Fight testing of aircraft for which C or A had been previously issued. 9 C.A.R. series 'T' - miscellaneous requirements - Registration Markings of aircraf			CDL)
C.A.R. series 'C' - defect recording, monitoring, investigation and reporting - Defect recording reporting, investigation, rectification and analysis; Flight report; Reporting and rectification of defect observed on aircraft; Analytical study of in-fight readings & recordings; Maintenance control by reliability Method. C.A.R. series 'D'-aircraft maintenance programmes - Reliability Programme (Engines); Aircraft maintenance programmes their approval - On condition maintenance of reciprocating engines; TBO Revision programme; Maintenance of fuel and oil uplift and consumption records - Light aircraft engines Fixing routine maintenance periods and component TBOs - Initial & revisions. UNIT III C.A.R. SERIES "E" & "F" 9 C.A.R. series 'E' - approval of organizations - Approval of organizations in categories A, B, C, D, E, F, & G; Requirements of infrastructure at stations other than parent base. C.A.R. series 'F' - air worthiness and continued air worthiness - Procedure relating to registration o aircraft; Procedure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; Issue revalidation of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness UNIT IV C.A.R. SERIES "L " & "M " 9 C.A.R. series 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification and experience requirements, Complete Series 'L'. C.A.R. series 'M Mandatory Modifications / Inspections. UNIT V C.A.R. SERIES "T " & "X " 9 C.A.R. series 'T' - flight testing of aircraft - Flight testing of (Series) aircraft for issue of C of A; Figh testing of aircraft; Provision of first aid kits & Physician's kit in an aircraft; Use furnishing materials in an aircraft; Provision of first aid kits & Physician's kit in an aircraft; Use furnishing materials in an aircraft; Provision of first aid kits & Document to be carried on board on Indian registeree aircraft; Procedure for issue of taxy permit; Procedure for iss	1 1		Q
reporting, investigation, rectification and analysis; Flight report; Reporting and rectification of defect observed on aircraft; Analytical study of in-fight readings & recordings; Maintenance control by reliability Method. C.A.R. series 'D'-aircraft maintenance programmes - Reliability Programme (Engines); Aircraft maintenance programme; Maintenance of fuel and oil uplift and consumption records - Light aircraft engines Fixing routine maintenance periods and component TBOs - Initial & revisions. UNIT III C.A.R. SERIES "E" & "F" 9 C.A.R. series 'E' - approval of organizations - Approval of organizations in categories A, B, C, D, E, F, & G; Requirements of infrastructure at stations other than parent base. C.A.R. series 'E' - air worthiness and continued air worthiness - Procedure relating to registration o aircraft; Procedure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; Issue revalidation of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness UNIT IV C.A.R. SERIES "L " & "M " 9 C.A.R. series 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification and experience requirements, Complete Series 'L'. C.A.R. series 'M 'Mandatory Modifications / Inspections. UNIT V C.A.R. SERIES "T " & "X " 9 C.A.R. series 'T' - flight testing of aircraft - Flight testing of (Series) aircraft for issue of C of A; Figh testing of aircraft for which C or A had been previously issued. C.A.R. series 'X' - miscellaneous requirements - Registration Markings of aircraft; Weight and balanc control of an aircraft; Provision of first aid kits & Physician's kit in an aircraft; Use furnishing materials in an aircraft; Provision of first aid kits & Dhysican's kit in an aircraft; Use furnishing materials in an aircraft; Provedure for issue of taxy permit; Procedure for issue of type approval of aircraft component			
C.A.R. series 'E' - approval of organizations - Approval of organizations in categories A, B, C, D, E, F, & G; Requirements of infrastructure at stations other than parent base. C.A.R. series 'F' - air worthiness and continued air worthiness - Procedure relating to registration or aircraft; Procedure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; Issue revalidation of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness; UNIT IV C.A.R. SERIES "L " & " M " Q 9 C.A.R. series 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification and experience requirements, Complete Series 'L'. C.A.R. series 'M' Mandatory Modifications / Inspections. UNIT V C.A.R. SERIES "T " & " X " Q C.A.R. series 'T' - flight testing of aircraft - Flight testing of (Series) aircraft for issue of C of A; Fight testing of aircraft for which C or A had been previously issued. C.A.R. series 'X' - miscellaneous requirements - Registration Markings of aircraft; Weight and balance control of an aircraft; Provision of first aid kits & Physician's kit in an aircraft; Use furnishing materials in an aircraft; Procedure for issue of taxy permit; Procedure for issue of taxy permit; Procedure for issue of type approval of aircraft component	Revision pr	ogramme; Maintenance of fuel and oil uplift and consumption records - Light aircraft en	
G; Requirements of infrastructure at stations other than parent base. C.A.R. series 'F' - air worthiness and continued air worthiness - Procedure relating to registration of aircraft; Procedure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; Issue revalidation of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness UNIT IV C.A.R. SERIES "L " & " M " C .A.R. series 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification and experience requirements, Complete Series 'L'. C.A.R. series 'M' Mandatory Modifications / Inspections. UNIT V C.A.R. SERIES "T " & " X " Q C.A.R. series 'T' - flight testing of aircraft - Flight testing of (Series) aircraft for issue of C of A; Figh testing of aircraft for which C or A had been previously issued. C.A.R. series 'X' - miscellaneous requirements - Registration Markings of aircraft; Weight and balance control of an aircraft; Provision of first aid kits & Physician's kit in an aircraft; Use furnishing materials in an aircraft; Provision of first aid kits & Physician's kit in an aircraft; Oncessions; Aircraft log books; Document to be carried on board on Indian registered aircraft; Procedure for issue of taxy permit; Procedure for issue of type approval of aircraft component	UNIT III	C.A.R. SERIES "E" & " F "	1
C.A.R. series 'F' - air worthiness and continued air worthiness - Procedure relating to registration of aircraft; Procedure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; Issue revalidation of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness; VNIT IV C.A.R. SERIES "L " & " M " 9 C.A.R. series 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification and experience requirements, Complete Series 'L'. C.A.R. series 'M' Mandatory Modifications / Inspections. UNIT V C.A.R. SERIES "T " & " X " 9 C.A.R. series 'T' - flight testing of aircraft - Flight testing of (Series) aircraft for issue of C of A; Figh testing of aircraft for which C or A had been previously issued. C.A.R. series 'X' - miscellaneous requirements - Registration Markings of aircraft; Weight and balance control of an aircraft; Provision of first aid kits & Physician's kit in an aircraft; Use furnishing materials in an aircraft; Concessions; Aircraft log books; Document to be carried on board on Indian registered aircraft; Procedure for issue of taxy permit; Procedure for issue of type approval of aircraft component	C.A.R. seri		9
aircraft; Procedure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; Issue revalidation of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness UNIT IV C.A.R. SERIES "L " & " M " 9 C.A.R. series 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification and experience requirements, Complete Series 'L'. C.A.R. series 'M' Mandatory Modifications / Inspections. UNIT V C.A.R. SERIES "T " & " X " 9 C.A.R. series 'T' - flight testing of aircraft - Flight testing of (Series) aircraft for issue of C of A; Fight testing of aircraft for which C or A had been previously issued. C.A.R. series 'X' - miscellaneous requirements - Registration Markings of aircraft; Weight and balance control of an aircraft; Provision of first aid kits & Physician's kit in an aircraft; Use furnishing materials in an aircraft; Concessions; Aircraft log books; Document to be carried on board on Indian registered aircraft; Procedure for issue of taxy permit; Procedure for issue of type approval of aircraft component			
revalidation of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness UNIT IV C.A.R. SERIES "L " & " M " 9 C.A.R. series 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification and experience requirements, Complete Series 'L'. 9 C.A.R. series 'M' Mandatory Modifications / Inspections. 9 UNIT V C.A.R. SERIES "T " & " X " 9 C.A.R. series 'T' - flight testing of aircraft - Flight testing of (Series) aircraft for issue of C of A; Fight testing of aircraft for which C or A had been previously issued. 9 C.A.R. series 'X' - miscellaneous requirements - Registration Markings of aircraft; Weight and balance control of an aircraft; Provision of first aid kits & Physician's kit in an aircraft; Use furnishing materials in an aircraft; Concessions; Aircraft log books; Document to be carried on board on Indian registered aircraft; Procedure for issue of taxy permit; Procedure for issue of type approval of aircraft component	G; Require	nents of infrastructure at stations other than parent base.	, F, &
UNIT IVC.A.R. SERIES "L " & " M "9C.A.R. series 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification and experience requirements, Complete Series 'L'. C.A.R. series 'M' Mandatory Modifications / Inspections.9UNIT VC.A.R. SERIES "T " & " X "9C.A.R. series 'T' - flight testing of aircraft - Flight testing of (Series) aircraft for issue of C of A; Fight testing of aircraft for which C or A had been previously issued. C.A.R. series 'X' - miscellaneous requirements - Registration Markings of aircraft; Weight and balance control of an aircraft; Provision of first aid kits & Physician's kit in an aircraft; Use furnishing materials in an aircraft; Procedure for issue of taxy permit; Procedure for issue of type approval of aircraft component	G; Require C.A.R. ser	nents of infrastructure at stations other than parent base. es 'F' - air worthiness and continued air worthiness - Procedure relating to registrati	, F, &
C.A.R. series 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification and experience requirements, Complete Series 'L'. C.A.R. series 'M' Mandatory Modifications / Inspections. UNIT V C.A.R. SERIES "T " & " X " C.A.R. series 'T' - flight testing of aircraft - Flight testing of (Series) aircraft for issue of C of A; Figh testing of aircraft for which C or A had been previously issued. 9 C.A.R. series 'X' - miscellaneous requirements - Registration Markings of aircraft; Weight and balance control of an aircraft; Provision of first aid kits & Physician's kit in an aircraft; Use furnishing materials in an aircraft; Concessions; Aircraft log books; Document to be carried on board on Indian registered aircraft; Procedure for issue of taxy permit; Procedure for issue of type approval of aircraft component	G; Requires C.A.R. ser aircraft; Pro	nents of infrastructure at stations other than parent base. es 'F' - air worthiness and continued air worthiness - Procedure relating to registration cedure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; I	, F, &
experience requirements, Complete Series 'L'.C.A.R. series 'M' Mandatory Modifications / Inspections.UNIT VC.A.R. SERIES "T " & " X "QC.A.R. series 'T' - flight testing of aircraft - Flight testing of (Series) aircraft for issue of C of A; Fight testing of aircraft for which C or A had been previously issued.C.A.R. series 'X' - miscellaneous requirements - Registration Markings of aircraft; Weight and balance control of an aircraft; Provision of first aid kits & Physician's kit in an aircraft; Use furnishing materials in an aircraft; Concessions; Aircraft log books; Document to be carried on board on Indian registered aircraft; Procedure for issue of taxy permit; Procedure for issue of type approval of aircraft component	G; Require C.A.R. ser aircraft; Pro revalidation	nents of infrastructure at stations other than parent base. es 'F' - air worthiness and continued air worthiness - Procedure relating to registration cedure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; I of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthines	, F, &
C.A.R. series 'M' Mandatory Modifications / Inspections. 9 UNIT V C.A.R. SERIES "T " & " X " 9 C.A.R. series 'T' - flight testing of aircraft - Flight testing of (Series) aircraft for issue of C of A; Fight testing of aircraft for which C or A had been previously issued. 9 C.A.R. series 'X' - miscellaneous requirements - Registration Markings of aircraft; Weight and balance control of an aircraft; Provision of first aid kits & Physician's kit in an aircraft; Use furnishing materials in an aircraft; Concessions; Aircraft log books; Document to be carried on board on Indian registered aircraft; Procedure for issue of taxy permit; Procedure for issue of type approval of aircraft component	G; Require C.A.R. ser aircraft; Pro- revalidation UNIT IV	nents of infrastructure at stations other than parent base. es 'F' - air worthiness and continued air worthiness - Procedure relating to registration ocedure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; I of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness C.A.R. SERIES "L " & " M "	, F, &
C.A.R. series 'T' - flight testing of aircraft - Flight testing of (Series) aircraft for issue of C of A; Figh testing of aircraft for which C or A had been previously issued. C.A.R. series 'X' - miscellaneous requirements - Registration Markings of aircraft; Weight and balance control of an aircraft; Provision of first aid kits & Physician's kit in an aircraft; Use furnishing materials in an aircraft; Concessions; Aircraft log books; Document to be carried on board on Indian registered aircraft; Procedure for issue of taxy permit; Procedure for issue of type approval of aircraft component	G; Require C.A.R. ser aircraft; Pro revalidation UNIT IV C.A.R. seri	nents of infrastructure at stations other than parent base. es 'F' - air worthiness and continued air worthiness - Procedure relating to registration ocedure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; I of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness C.A.R. SERIES "L " & " M " es 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification	, F, &
testing of aircraft for which C or A had been previously issued. C.A.R. series 'X' - miscellaneous requirements - Registration Markings of aircraft; Weight and balance control of an aircraft; Provision of first aid kits & Physician's kit in an aircraft; Use furnishing materials in an aircraft; Concessions; Aircraft log books; Document to be carried on board on Indian registered aircraft; Procedure for issue of taxy permit; Procedure for issue of type approval of aircraft component	G; Require C.A.R. ser aircraft; Pro- revalidation UNIT IV C.A.R. seri experience	nents of infrastructure at stations other than parent base. es 'F' - air worthiness and continued air worthiness - Procedure relating to registration ocedure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; I of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness C.A.R. SERIES "L " & " M " es 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification requirements, Complete Series 'L'.	, F, &
testing of aircraft for which C or A had been previously issued. C.A.R. series 'X' - miscellaneous requirements - Registration Markings of aircraft; Weight and balance control of an aircraft; Provision of first aid kits & Physician's kit in an aircraft; Use furnishing materials in an aircraft; Concessions; Aircraft log books; Document to be carried on board on Indian registered aircraft; Procedure for issue of taxy permit; Procedure for issue of type approval of aircraft component	G; Require C.A.R. ser aircraft; Pro revalidation UNIT IV C.A.R. seri experience C.A.R. seri	nents of infrastructure at stations other than parent base. es 'F' - air worthiness and continued air worthiness - Procedure relating to registration occdure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; I of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness C.A.R. SERIES "L " & " M " es 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification requirements, Complete Series 'L'. es 'M' Mandatory Modifications / Inspections.	, F, & ion o issue ss 9 n and
control of an aircraft; Provision of first aid kits & Physician's kit in an aircraft; Use furnishing materials in an aircraft; Concessions; Aircraft log books; Document to be carried on board on Indian registered aircraft; Procedure for issue of taxy permit; Procedure for issue of type approval of aircraft component	G; Require C.A.R. ser aircraft; Pro revalidation UNIT IV C.A.R. seri experience C.A.R. seri UNIT V	nents of infrastructure at stations other than parent base. es 'F' - air worthiness and continued air worthiness - Procedure relating to registration occdure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; I of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness C.A.R. SERIES "L " & " M " es 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification requirements, Complete Series 'L'. es 'M' Mandatory Modifications / Inspections. C.A.R. SERIES "T " & " X "	, F, & ion o issue is 9 n and 9
an aircraft; Concessions; Aircraft log books; Document to be carried on board on Indian registered aircraft; Procedure for issue of taxy permit; Procedure for issue of type approval of aircraft component	G; Require C.A.R. ser aircraft; Pro- revalidation UNIT IV C.A.R. seri experience C.A.R. seri UNIT V C.A.R. seri testing of a	nents of infrastructure at stations other than parent base. es 'F' - air worthiness and continued air worthiness - Procedure relating to registration becdure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; I a of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness C.A.R. SERIES "L " & " M " es 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification requirements, Complete Series 'L'. es 'M' Mandatory Modifications / Inspections. C.A.R. SERIES "T " & " X " es 'T' - flight testing of aircraft - Flight testing of (Series) aircraft for issue of C of A; rcraft for which C or A had been previously issued.	, F, & ion o issue iss 9 n and 9 Figh
aircraft; Procedure for issue of taxy permit; Procedure for issue of type approval of aircraft component	G; Require C.A.R. seri aircraft; Pro- revalidation UNIT IV C.A.R. seri experience C.A.R. seri UNIT V C.A.R. seri testing of a C.A.R. seri	nents of infrastructure at stations other than parent base. es 'F' - air worthiness and continued air worthiness - Procedure relating to registration occlure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; I of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness C.A.R. SERIES "L " & " M " es 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification requirements, Complete Series 'L'. es 'M' Mandatory Modifications / Inspections. C.A.R. SERIES "T " & " X " es 'T' - flight testing of aircraft - Flight testing of (Series) aircraft for issue of C of A; rcraft for which C or A had been previously issued. es 'X' - miscellaneous requirements - Registration Markings of aircraft; Weight and ba	, F, & ion o issue is 9 n and 9 Figh
	G; Require C.A.R. seri aircraft; Pro- revalidation UNIT IV C.A.R. seri experience C.A.R. seri UNIT V C.A.R. seri testing of a C.A.R. seri control of a	nents of infrastructure at stations other than parent base. es 'F' - air worthiness and continued air worthiness - Procedure relating to registrationedure for issue / revalidation of Type Certificate of aircraft and its engines / propeller; I of Certificate of Airworthiness; Requirements for renewal of Certificate of Airworthiness C.A.R. SERIES "L " & " M " es 'L' - aircraft maintenance engineer – licensing - Issue of AME License, its classification requirements, Complete Series 'L'. es 'M' Mandatory Modifications / Inspections. C.A.R. SERIES "T " & " X " es 'T' - flight testing of aircraft - Flight testing of (Series) aircraft for issue of C of A; rcraft for which C or A had been previously issued. es 'X' - miscellaneous requirements - Registration Markings of aircraft; Weight and ban aircraft; Provision of first aid kits & Physician's kit in an aircraft; Use furnishing material of the state of	, F, & ion o issue iss 9 n and Figh alanc ials in
	G; Require C.A.R. seri aircraft; Pro- revalidation UNIT IV C.A.R. seri experience C.A.R. seri UNIT V C.A.R. seri testing of a C.A.R. seri control of a an aircraft;	nents of infrastructure at stations other than parent base. es 'F' - air worthiness and continued air worthiness - Procedure relating to registrationed and the end of the end o	, F, & ion o issue iss 9 n and Figh alanc ials in steree

Text Books:

1. " Aircraft Manual (India) ", The English Book Store, 17-1, Connaught Circus, New Delhi.

References:

- 1. " Civil Aviation Requirements with latest Amendment (Section 2 Airworthiness) ", Published by DGCA, The English Book Store, 17-1, Connaught Circus, New Delhi.
- 2. "Aeronautical Information Circulars (relating to Airworthiness) ", from DGCA.Advisory Circulars ", form DGCA.

OPEN ELECTIVE-I

	PRINCIPALS OF MANAGEMENT AND	L	Т	Р	С
	ORGANIZATIONAL BEHAVIOUR	L	1	1	C
BBA001	Total Contact Hours – 45	3	0	0	3
	Prerequisite – Professional Courses				
	Course Designed by – Department of Management Studies				
OBJECTIV	YES				
 To give in To acquaid To get ext 	nt the student about the management, various types of management for sight of various methods of management of organization and manage nt the student with various functions of organizational behavior. posure regarding its applications and recent developments of group dy ne student understand about the professional ethics and social response	erial as ynami	spects.		
	COURSE CONTENT				
UNIT I	NATURE OF MANAGEMENT				9
Development	theory and practice – effective management – Management : Science of A of Management thoughts – Taylor's – Henry Fayol – Hawthrone exper bert Simon – Peter Drucker – Various approaches – Management thoughts.				
UNIT II	MANAGEMENT PROCESS				9
Planning – Frank and features	n – Functions of management – Managers and environment – External and undamentals – Definitions & Features – Steps in planning – types of planning – Hierarchy of objectives – role – Process of MBO – Policy & Strategy – & Group Decisions.	ng – C	bjectiv	es – Co	oncepts
UNIT III	ORGANIZATION STRUCTURE				9
Line & Staff Selection – T of Motivatio	Theory & Approach –Authority & Responsibility – Delegation – Centraliz Relationship – Staffing – Fundamentals – System approach – Manpower Graining and development – Performance appraisal – Direction – Fundament on-Maslow's Hersberg'sMaClelland's theory X,Y & Z leadership – fron – Type – Controlling – System and Process.	Plann ntals N	ing – R Iotivati	lecruitn on – Tł	nent & neories
UNIT IV	ORGANIZATIONAL BEHAVIOUR				9

Definition – Organization – Managerial Role and Functions – Organizational Approaches, Individual behaviour – Causes – Environmental effect – Behaviour and performance, perception – Organizational implications, Personality – Contributing factors – Dimension, Motivation – Need Theories – Process Theories – Job satisfaction, Learning and Behaviour – Learning Curves, Work Design and Approaches.

Groups – Contributing factors –Group Norms, types – Causes – Intergroup relations – Conflict and Resolution – Change Process –Resistance to change.

Text Books:

- 1. Herald Knootz and Heinz weihrich, 'Essentials of Management', McGraw Hill Publishing Company, Singapore International Edition, 2004.
- 2. Ties AF, Stoner and R. Edward Freeman, "Management" Prentice Hall of India Pvt. Ltd., New Delhi -110011, 1995..

References:

- 1. Joseph I. Massie 'Essentials of Management', Prentice Hall of India Pvt. Ltd., New Delh-110011, 2004.
- 2. L.M. Prasad "Principles and Practice of Management", Sultan Chand & Sons.2001
- 3. Uma Sekaran, "Organizational Behaviour", Tata McGraw Hill, 2007
- 4. <u>https://www.extension.harvard.edu</u>1

	AIRPORT MANAGEMENT	L	Т	Р	C
	Total Contact Hours – 45	3	0	0	3
BANE23	BANE23 Prerequisite – Professional Courses				
	Course Designed by – Department of Aeronautical Engineering				
OBJECTIV	ES				
administ 2. To accust 3. To introdu 4. To acquai	ace to the student about air transportation, various organizations invol- rative structure in aviation. The student about economic parameters in an aviation industry. The student about the processes involved in airline scheduling. The student about the various processes to ensure aircraft reliability arize the student about the technologies used in aircraft maintenance.				
	COURSE CONTENT				
UNIT I	INTRODUCTION				9
Developmen	t of air transportation, comparison with other modes of transport $-R_{0}$	ole of	IATA,	ICAO	_
•	aviation industry airline – Factors affecting general aviation, use of a		· •		ne
•	and organization – levels of management, functions of management,		iples c	of	
organization	planning the organization - chart, staff departments & line departme	nts.			
UNIT II	AIRLINE ECONOMICS				9

Forecasting	Forecasting – Fleet size, Fleet planning, the aircraft selection process, operating cost, passenger capacity,				
	etc. – Passenger fare and tariffs – Influence of geographical, economic & political factors	on			
routes and route selection.					
Fleet Planning: The aircraft selection process – Fleet commonality, factors affecting choice of fleet, route					
selection and Capitol acquisition – Valuation & Depreciation – Budgeting, Cost planning – Aircrew					
evaluation -	- Route analysis – Aircraft evaluation.				
UNIT III	PRINCIPLES OF AIRLINES SCHEDULING	9			
Equipment	maintenance, Flight operations and crew scheduling, Ground operations and facility				
limitations,	equipments and types of schedule – hub & spoke scheduling, advantages / disadvantages	&			
preparing fl	ight plans – Aircraft scheduling in line with aircraft maintenance practices.				
UNIT IV	AIRCRAFT RELIABILITY	9			
Aircraft reli	ability – The maintenance schedule & its determinations – Condition monitoring mainten	ance			
- Extended	range operations (EROPS) & ETOPS – Ageing aircraft maintenance production.				
UNIT V	TECHNOLOGY IN AIRCRAFT MAINTENANCE	9			
	TECHNOLOGY IN AIRCRAFT MAINTENANCE eduling (with reference to engineering) – Product support and spares – Maintenance shari	- -			
Airlines sch		- -			
Airlines sch Equipments	eduling (with reference to engineering) – Product support and spares – Maintenance shari	ing –			
Airlines sch Equipments On board m	eduling (with reference to engineering) – Product support and spares – Maintenance shari and tools for aircraft maintenance – Aircraft weight control – Budgetary control.	ing –			
Airlines sch Equipments On board m vibration m	eduling (with reference to engineering) – Product support and spares – Maintenance shari and tools for aircraft maintenance – Aircraft weight control – Budgetary control. aintenance systems – Engine monitoring – Turbine engine oil maintenance – Turbine eng	ing –			
Airlines sch Equipments On board m vibration m	eduling (with reference to engineering) – Product support and spares – Maintenance shari and tools for aircraft maintenance – Aircraft weight control – Budgetary control. aintenance systems – Engine monitoring – Turbine engine oil maintenance – Turbine eng onitoring in aircraft – Life usage monitoring – Current capabilities of NDT – Helicopter e – Future of aircraft maintenance.	ing –			
Airlines sch Equipments On board m vibration m maintenance Text Books	eduling (with reference to engineering) – Product support and spares – Maintenance shari and tools for aircraft maintenance – Aircraft weight control – Budgetary control. aintenance systems – Engine monitoring – Turbine engine oil maintenance – Turbine eng onitoring in aircraft – Life usage monitoring – Current capabilities of NDT – Helicopter e – Future of aircraft maintenance.	ing –			
Airlines sch Equipments On board m vibration m maintenance Text Books 1. FEDRIC	eduling (with reference to engineering) – Product support and spares – Maintenance shari and tools for aircraft maintenance – Aircraft weight control – Budgetary control. aintenance systems – Engine monitoring – Turbine engine oil maintenance – Turbine eng onitoring in aircraft – Life usage monitoring – Current capabilities of NDT – Helicopter e – Future of aircraft maintenance.	ing –			
Airlines sch Equipments On board m vibration m maintenance Text Books 1. FEDRIC	eduling (with reference to engineering) – Product support and spares – Maintenance shari and tools for aircraft maintenance – Aircraft weight control – Budgetary control. aintenance systems – Engine monitoring – Turbine engine oil maintenance – Turbine eng onitoring in aircraft – Life usage monitoring – Current capabilities of NDT – Helicopter e – Future of aircraft maintenance. J.H., "Airport Management", 2000. END, "Aircraft Maintenance Management", 2000.	ing –			
Airlines sch Equipments On board m vibration m maintenance Text Books 1. FEDRIC 2. C.H. FRI References	eduling (with reference to engineering) – Product support and spares – Maintenance shari and tools for aircraft maintenance – Aircraft weight control – Budgetary control. aintenance systems – Engine monitoring – Turbine engine oil maintenance – Turbine eng onitoring in aircraft – Life usage monitoring – Current capabilities of NDT – Helicopter e – Future of aircraft maintenance. J.H., "Airport Management", 2000. END, "Aircraft Maintenance Management", 2000.	ing –			
Airlines sch Equipments On board m vibration m maintenance Text Books 1. FEDRIC 2. C.H. FRI References 1. Gene Kro	eduling (with reference to engineering) – Product support and spares – Maintenance shari and tools for aircraft maintenance – Aircraft weight control – Budgetary control. aintenance systems – Engine monitoring – Turbine engine oil maintenance – Turbine eng onitoring in aircraft – Life usage monitoring – Current capabilities of NDT – Helicopter e – Future of aircraft maintenance. J.H., "Airport Management", 2000. END, "Aircraft Maintenance Management", 2000.	ing –			
Airlines sch Equipments On board m vibration m maintenance Text Books 1. FEDRIC 2. C.H. FRI References 1. Gene Kro 2. Wilson &	 eduling (with reference to engineering) – Product support and spares – Maintenance shari and tools for aircraft maintenance – Aircraft weight control – Budgetary control. aintenance systems – Engine monitoring – Turbine engine oil maintenance – Turbine eng onitoring in aircraft – Life usage monitoring – Current capabilities of NDT – Helicopter e – Future of aircraft maintenance. I.H., "Airport Management", 2000. END, "Aircraft Maintenance Management", 2000. ppf, "Airline Procedures". 	ing –			
Airlines sch Equipments On board m vibration m maintenance Text Books 1. FEDRIC 2. C.H. FRI References 1. Gene Kro 2. Wilson & 3. Philip Lo	 eduling (with reference to engineering) – Product support and spares – Maintenance shari and tools for aircraft maintenance – Aircraft weight control – Budgetary control. aintenance systems – Engine monitoring – Turbine engine oil maintenance – Turbine eng onitoring in aircraft – Life usage monitoring – Current capabilities of NDT – Helicopter e – Future of aircraft maintenance. I.H., "Airport Management", 2000. END, "Aircraft Maintenance Management", 2000. ppf, "Airline Procedures". c Bryon, "Air Transportation". 	ing –			

5. Alexander T Wells, "Air Transportation", Wadsworth Publishing Company, California, 1993
--

	AEROSPACE BIO – MEDICAL AND LIFE SUPPORT ENGINEERING	L	Т	Р	С
BANE24	Total Contact Hours – 45	3	0	0	3
D1111124	Prerequisite – Basic Electrical and Electronics				
	Course Designed by – Department of Aeronautical Engineering				
OBJECTIVES					

1. To apply engineering methods to the study of astronaut adaptation to reduced gravity environments.

- 2. To use analytical techniques, such as structural idealizations, control theory, electrical circuit, and mechanical system analogs to model astronaut performance.
- 3. To enable quantitative assessment of the effectiveness of countermeasures.
- 4. To consider the socio-political implications for advanced technological R&D (e.g., space policy, health policy, international collaboration).
- 5. To teach, perform outreach, and demonstrate mastery of a chosen engineering concept.

COURSE CONTENT					
UNIT I	INTRODUCTION	9			
Physiologic	al problems associated with human space flight – review of terminologies	1			
UNIT II	BIO – MECHANICS IN SPACE FLIGHT	9			
Bone Mechanics, Muscle Mechanics, Musculoskeletal Dynamics, and the Cardiovascular System during					
	t – their equations of motion	_			
UNIT III	BIO – MECHANICAL MODELING	9			
	dealizations - mechanical and electrical modeling of muscle groups - musculoskeletal g	groups			
– joints, ele	ctrical analogies to model astronaut performance				
UNIT IV	LIFE SUPPORT SYSTEMS	9			
Onboard en monitoring	nvironment control systems – waste product management and recycling system – and control	bio –			
UNIT V	EXTRA – VEHICULAR ACTIVITY	9			
Extra Vehic	cular activity – challenges – specialties of space suits – life support system for EVA				
 "Fundam FL: Krid References "Human Gomi, H Arm Sti Aubert, J 	Anatomy Manual: The Skeleton", Gatesville, TX, Medical Plastics Laboratory, Inc., 1997 Hiroaki, and MitsuoKawato. "Equilibrium-Point Control Hypothesis Examined by Mea iffness during Multijoint Movement." Science 272, no. 5258 (1996): 117-120. A.E., F. Beckers, and B. Verheyden. "Cardiovascular Function and Basics of Physiology	7 asured			
4. Flash, T. Cyberne 5.Bizzi, E., Control	 ravity." ActaCardiol 60, no. 2 (2005): 129-151. "The Control of Hand Equilibrium Trajectories in Multi-joint Arm Movements." Biole etics 57 (1987): 257-274. W. Chapple, and N. Hogan. "Mechanical Properties of Muscles: Implications for I." Trends in Neurosciences 5, no. 11 (1982): 395-398. 	Motor			
Factors Collabo Center o 7. Stuster, J duration	an, Boris S., and Inessa B. Kozlovskaya. "Results of Studies of the Effects of Space 1 of Human Physiological Systems and Psychological Status, and Suggestions of H prative Activities between the NSBRI and the IBMP." Section 3: Muscles. State Res of Russian Federation Institute for Biomedical Problems Report, Moscow, 2000. L., C. Bachelard, and P. Suedfeld. "The Relative Importance of Behavioral Issues during 1 n ICE Missions." Aviat. Space Env. Med. (September 2000): A17-A25. , A. "Man in Extreme Environments." Aviat. Space Env. Med. (September 2000): A126-A	Future search Long-			
	OPEN ELECTIVE-II				

	TOTAL QUALITY MANAGEMENT	L	Т	Р	C
BBA008	Total Contact Hours – 45	3	0	0	3

	Prerequisite – Professional Courses	
	Course Designed by – Department of Management Studies	
 To famili To acqua To introc manage To famili 	luce to the student about the basic terms related to quality and concepts of quality manag iarize the student about the basic principles of total quality management and the student with the basic statistical tools used in process control luce to the student about the various tools used in implementing and checking total qualit	
	COURSE CONTENT	
UNIT I	INTRODUCTION	9
Quality Co Leadership	of Quality, Dimensions of Quality, Quality Planning, Quality costs – Analysis Techniqu sts, Basic concepts of Total Quality Management, Historical Review, Principles of – Concepts, Role of Senior Management, Quality Council, Quality Statements, Stra Deming Philosophy, Barriers to TQM Implementation.	TQM,
UNIT II	TQM PRINCIPLES	9
	Retention, Employee Involvement - Motivation, Empowerment, Teams, Recognition	
Cycle, 5S,	erformance Appraisal, Benefits, Continuous Process Improvement – Juran Trilogy, H Kaizen, Supplier Partnership –Partnering, sourcing, Supplier Selection, Supplier R p Development, Performance Measures – Basic Concepts, Strategy, Performance Measure STATISTICAL PROCESS CONTROL (SPC)	ating,
Cycle, 5S, Relationshi UNIT III The seven Population	Kaizen, Supplier Partnership –Partnering, sourcing, Supplier Selection, Supplier R p Development, Performance Measures – Basic Concepts, Strategy, Performance Measure	ating, re. 9 rsion,
Cycle, 5S, Relationshi UNIT III The seven Population	Kaizen, Supplier Partnership –Partnering, sourcing, Supplier Selection, Supplier R p Development, Performance Measures – Basic Concepts, Strategy, Performance Measure STATISTICAL PROCESS CONTROL (SPC) tools of quality, Statistical Fundamentals – Measures of central Tendency and Disper and Sample, Normal Curve, Control Charts for variables and attributes, Process capa	ating, re. 9 rsion,
Cycle, 5S, Relationshi UNIT III The seven Population Concept of UNIT IV Benchmark House of Q	Kaizen, Supplier Partnership –Partnering, sourcing, Supplier Selection, Supplier R p Development, Performance Measures – Basic Concepts, Strategy, Performance Measure STATISTICAL PROCESS CONTROL (SPC) tools of quality, Statistical Fundamentals – Measures of central Tendency and Dispe and Sample, Normal Curve, Control Charts for variables and attributes, Process capal six sigma, New seven Management tools. TQM TOOLS ing – Reasons to Benchmark, Benchmarking Process, Quality Function Deployment (QF uality, QFD Process, Benefits, Taguchi Quality Loss Function, Total Productive Mainter	ating re. 9 rsion pility 9 D) –
Cycle, 5S, Relationshi UNIT III The seven Population Concept of UNIT IV Benchmark House of Q	Kaizen, Supplier Partnership –Partnering, sourcing, Supplier Selection, Supplier R p Development, Performance Measures – Basic Concepts, Strategy, Performance Measure STATISTICAL PROCESS CONTROL (SPC) tools of quality, Statistical Fundamentals – Measures of central Tendency and Dispe and Sample, Normal Curve, Control Charts for variables and attributes, Process capal six sigma, New seven Management tools. TQM TOOLS ing – Reasons to Benchmark, Benchmarking Process, Quality Function Deployment (QF)	ating, e. 9 rsion, pility, 9 D) –
Cycle, 5S, Relationshi UNIT III The seven Population Concept of UNIT IV Benchmark House of Q (TPM) – Co UNIT V Need for Implementa Requirementa Requirementa 1. Dale H. 2004). I References 1. Evans. J. (Thoms	Kaizen, Supplier Partnership –Partnering, sourcing, Supplier Selection, Supplier R p Development, Performance Measures – Basic Concepts, Strategy, Performance Measures STATISTICAL PROCESS CONTROL (SPC) tools of quality, Statistical Fundamentals – Measures of central Tendency and Dispe and Sample, Normal Curve, Control Charts for variables and attributes, Process capal six sigma, New seven Management tools. TQM TOOLS ing – Reasons to Benchmark, Benchmarking Process, Quality Function Deployment (QF uality, QFD Process, Benefits, Taguchi Quality Loss Function, Total Productive Mainter oncept, Improvement Needs, FMEA –Stages of FMEA. QUALITY SYSTEMS ISO 9000 and Other Quality Systems, ISO 9000:2000 Quality System –Eler ation of Quality System, Documentation, Quality Auditing, TS16949, ISO 14000 – Con- nts and Benefits. S: Besterfiled, et al., "Total Quality Management", Pearson Education, Inc.2003. (Indian r ISBN 81-297-0260-6. :: R. & Lindsay. W,M "The Management and Control of Quality", (5th Edition),South-We on Learning), 2002 (ISBN 0-324-06680-5).	ating re. 9 rsion pility 9 D) – ance 9 nents ncept
Cycle, 5S, Relationshi UNIT III The seven Population Concept of UNIT IV Benchmark House of Q (TPM) – Co UNIT V Need for Implementa Requirement Text Books 1. Dale H. 2004). I References 1. Evans. J. (Thoms 2. Feigenba 3.Oakland.	Kaizen, Supplier Partnership –Partnering, sourcing, Supplier Selection, Supplier R p Development, Performance Measures – Basic Concepts, Strategy, Performance Measure STATISTICAL PROCESS CONTROL (SPC) tools of quality, Statistical Fundamentals – Measures of central Tendency and Dispe and Sample, Normal Curve, Control Charts for variables and attributes, Process capal six sigma, New seven Management tools. TQM TOOLS ing – Reasons to Benchmark, Benchmarking Process, Quality Function Deployment (QF uality, QFD Process, Benefits, Taguchi Quality Loss Function, Total Productive Mainter Decept, Improvement Needs, FMEA –Stages of FMEA. QUALITY SYSTEMS ISO 9000 and Other Quality Systems, ISO 9000:2000 Quality System –Eler ation of Quality System, Documentation, Quality Auditing, TS16949, ISO 14000 – Con ths and Benefits. S: Besterfiled, et al., "Total Quality Management", Pearson Education, Inc.2003. (Indian re ISBN 81-297-0260-6. :: R. & Lindsay. W,M "The Management and Control of Quality", (5th Edition),South-We	ating, re. 9 rsion, oility, 9 D) – ance 9 nents, ncept,

International 1996.

5. Zeiri. "Total Quality Management for Engineers", Wood Head Publishers, 1991.

	INDUSTRIAL AERODYNAMICS	L	Т	Р	С	
DANTE	Total Contact Hours – 45	3	0	0	3	
BANE25	Prerequisite – Aerodynamics I		I			
	Course Designed by – Department of Aeronautical Engineering					
 OBJECTIVES 1. To introduce to the student about the aerodynamics taking place in the atmosphere 2. To familiarize the student about the aerodynamics of flow over bluff bodies and its effect on those bodies 3. To acquaint the student about the various mechanisms and procedures by which energy can be extracted from the wind 4. To accustom the student about the aerodynamics of flow around buildings, towers and bridges and also about ventilation and architectural aerodynamics 5. To familiarize the student about the loads on a structure due to wind and the resulting vibrations and their calculations 						
	COURSE CONTENT					
UNIT I	ATMOSPHERIC BOUNDARY LAYER				9	
-	rculation-Local winds-Terrain types-Mean velocity profiles-Power urbulence profiles-Roughness parameters-simulation techniques in		-		law-	
UNIT II	BLUFF BODY AERODYNAMICS				9	
numbers-Separ	rs and separation-Two dimensional wake and vortex formation-Stro ration and reattachments-Power requirements and drag coefficients gle-aerodynamics of trains.			•		
UNIT III	WIND ENERGY COLLECTORS				9	
	vertical axis machines-energy density of different rotors-Power conomentum theory.	effici	ent-Bet	Z		
UNIT IV	BUILDING AERODYNAMICS				9	
Pressure distribution on low rise buildings-wind forces on buildings-Environmental winds in city blocks- special problems of tall buildings-building codes-ventilation and architectural aerodynamics						
UNIT V	FLOW INDUCED VIBRATIONS				9	
Vortex shedding, lock & effects of Reynolds number on wake formation in turbulent flows- across wind galloping-wake galloping-along wind galloping of circular cables-oscillation of tall structures and launch vehicles under wind loads-stall flutter.						
 Text Books: 1. Blevins R.D "Flow Induced Vibrations", Van Nostrand, 1990 2.Sovran, M(ed) "Aerodynamic drag mechanism of bluff bodies and road vehicles", Plenum Press, N.Y, 1990 References: 						

- Sachs P "Wind Forces in Engineering", Pergamon Press, 1988
 Scorer R.S "Environmental Aerodynamics", Ellis Harwood Ltd, England, 1978
 Calvert N.G "Wind Power Principles", Charles Griffin & Co London, 1979.

DANE24	MECHANICS OF HETEROGENEOUS MATERIALS	L	Т	Р	С	
	Total Contact Hours – 45	3	0	0	3	
BANE26	Prerequisite – Engineering Physics I, Fundamentals of Structural Mechanics					
Course Designed by – Department of Aeronautical Engineering						
 OBJECTIVES 1. To introduce to the student about the various heterogeneous materials. 2. To accustom the student to the mechanics of heterogeneous materials. 3. To acquaint the student to the structure of particulate, fibrous and cellular solids and their properties. 4. To familiarize the student about the hierarchical structure in heterogeneous materials. 5. To enable the student to understand various design considerations in application of heterogeneous materials. COURSE CONTENT 						
UNIT I	INTRODUCTION				9	
Material heterogeneity. Survey of laminated, fibrous, particulate, cellular and porous, platelet structures. Single crystal properties and polycrystal properties. Heterogeneity of biological materials and designed heterogeneity. Strength of fibers. Constituent materials. Griffith's experiments, stress concentrations. Concept of equivalent homogeneity. Micro and nanotructures.						
UNIT II	STRUCTURE OF HETEROGENEOUS MATERIALS				9	
Unidirectional fibrous media. Bounds on physical properties: Voigt and Reuss bounds; Hashin-Shtrikman. Prediction of stiffness and strength for different directions. Symmetry and physical properties. Crystal symmetry classes. Generalized Hooke's law of elasticity. Modulus and compliance matrices. Anisotropy and dielectric and piezoelectric properties. Thermal expansion. Experimental methods.						
UNIT III PARTICULATE, FIBROUS AND CELLULAR SOLIDS				12		
Structure. Particulate materials. Dental composites, metal matrix composites, asphalt. Toughened polymers via compliant inclusions. Stiffness vs. volume fraction. Self healing polymers. Attainment of the Hashin-Shtrikman bounds. Unidirectional fibrous materials; stiffness, strength, thermal expansion. Fibrous solids with short-fibers. Nano-tubes as fibers. Platelet reinforcement. Shear lag model. Laminates. Polycrystalline aggregates. Piezoelectric composites. Metal matrix composites. Structure property relations of cellular solids. Lightweight cellular solids. Foams, structural honeycombs, sandwich structures. Polymer lattice structures. Syntactic foams. Poisson's ratio of composites and foams. Applications.						
UNIT IV	HIERARCHICAL STRUCTURE				6	
Structure within structure. Bone, wood, tendon and other materials of biological origin. Fibrous aspects of bone structure. Tendon and ligament as fibrous biological materials. Biological cellular solids. Cellular architecture of bone, wood, bamboo.						
UNIT V	DESIGN CONSIDERATIONS				9	

Fracture mechanics, stress concentrations, free-edge effects. In situ composites; eutectic structure. Gradient effects. Role of microstructure size. Generalized continuum models; Cosserat elasticity. Toughness: empirical criteria; causal mechanisms. Spongy impact absorber, bone cement.

Text Books:

1. L. J. Gibson, and M. F. Ashby, Cellular Solids, Cambridge, (1999).

2. M. F. Ashby and D. R. H. Jones, Engineering Materials, 2nd ed. Butterworth, (1998).

References:

1. J. F. Nye, Physical Properties of Crystals, Oxford, (1976).

2. B. D. Agarwal and L. J. Broutman, Analysis and Performance of Fiber Composites, J. Wiley, 2nd ed. (1990).