DEPARTMENT OF PHYSICS

Syllabus for APPLIED PHYSICS

Unit -1

Theory of Relativity:

Frame of reference, Galilean principle of relativity, MichelsonMorley experiment, Postulates of special theory of relativity, Lorentz transformations, Length contraction, time dilation, Relativistic addition of velocities, Variation of mass with velocity, Mass energy equivalence, energy-momentum relationship.

Unit-2

(i)Acoustics:

Ultrasonic waves: Production and engineering applications, basis requirements for an acoustically good hall, determination of wavelength, reverberation time, Sabine's formula.

(ii) Wave Optics:

Interference by division of amplitude: Newton's rings experiment, interference by division of wavefront: Fresnel's biprism experiment, Diffraction at single slit, diffraction grating, Resolving Power of grating

Unit-3

(i) X-ray:

Origin of continuous and characteristic X-ray, Duanne-Huntt limit for minimum wavelength, Moseley's law, Bragg's law for X-ray diffraction
(ii) Super Conductivity:

Superconductors, Meissner effect, Type-I and Type-II, Super conductors, BCS theory, application of superconductors

Uint-4

Quantum Physics:-

Inadequacy of classical mechanics-Qualitative study of black body radiation and photoelectric effect, Compton effect, DeBroglie's hypothesis, Davison - Germer experiment, Uncertainty principle and its applications, Wave function and wave packet, phase and group velocities, Probabilities and normalization, Schrödinger equation: Time dependent and time independent, Application of Schrödinger equation: particle in a box

Unit -5

(i) Dielectric materials :

Dielectric constant, Dielectric polarization and its types, polar and non polar dielectric materials, E, P and D vectors, Concept of internal fields, Clausius- Mossoti equation.

(ii) Magnetic materials :

Dia, para, ferro and ferrite magnetic materials, hard and soft magnetic materials, hystersis loop, antiferromagnetism.

