CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY Third Semester of M.Sc. (Mathematics) Examination November 2018 <u>MA813 Topology-II</u>

Date: 28/11/2018, Wednesday Time: 10:00 a.m. to 10:45 a.m. Maximum Marks: 20

Multiple Choice Questions

Important Instructions:

- 1. Tick the correct answer and it should be written in question paper itself.
- 2. You can use only non-programmable calculator. No other gadget is allowed in the examination hall.
- 3. Each question carries one mark.
- 4. All notations are standard.

Q - I Choose the correct answer from the given options for the followings:

- **1.** For the subsets A and B of a topological space _____ is true.
 - (a) $\overline{A} \cap \overline{B} = \overline{A \cap B}$ (c) $\overline{A} \cup \overline{B} = \overline{A \cup B}$

(b)
$$A^{\circ} \cup B^{\circ} = (A \cup B)^{\circ}$$
 (d) None of these

2. The basis element for the product topology on the set $X = \bigcup_{i=1}^{\infty} X_i$ are of the form

[20]

- (a) for i = 1, 2, ..., n, $B_i = U_i \in X_i$ and $B_i = X_i$
- (b) for i = 1, 2, ..., n, $B_i = U_i \in X_i$ but $B_i = X_i$
- (c) for all $i, U_i \in X_i$
- (d) None of these
- **3.** If \mathbb{R}_{ℓ} denotes the lower limit topology and \mathbb{R}_{u} denotes the usual topology then
 - (a) \mathbb{R}_{ℓ} is finer than \mathbb{R}_{u} (c) $\mathbb{R}_{\ell} = \mathbb{R}_{u}$
 - (b) \mathbb{R}_u is finer than \mathbb{R}_ℓ (d) None of these

4. The element of the form $\left\{\frac{a}{b}\right\}$, $a, b \in \mathbb{Q}$, $b \neq 0$ as a subspace of \mathbb{R}_u is _____. (a) open (b) not open (c) closed (d) None of these

- 5. If $I_{\mathbb{R}}$ denotes the identity map on \mathbb{R} , then _____.
 - (a) $I_{\mathbb{R}} : (\mathbb{R}, \tau_u) \to (\mathbb{R}, \tau_\ell)$ is continuous
 - (b) $I_{\mathbb{R}} : (\mathbb{R}, \tau_u) \to (\mathbb{R}, \tau_d)$ is continuous
 - (c) $I_{\mathbb{R}} : (\mathbb{R}, \tau_u) \to (\mathbb{R}, \tau_\ell)$ is not continuous
 - (d) $I_{\mathbb{R}} : (\mathbb{R}, \tau_d) \to (\mathbb{R}, \tau_u)$ is not continuous

If Sⁿ denote the closed unit sphere in ℝⁿ⁺¹, then one point compactification of ℝⁿ is homeomorphic to _____.

- (a) S^n (c) S^{n+1}
- (b) $S^n p, \ p = (0, 0, \dots, 0, 1) \in \mathbb{R}^{n+1}$ (d) None of these

7	7. Every subset of \mathbb{R} with co-finite topology is					
	(a) finite	(b) compact	(c)	not closed	(d) None of these	
8	• The function $f : \mathbb{R} \to [0,1]$ defined by $f(x) = x$, if $ x \le 1$ and $f(x) = \frac{1}{ x }$,					
	$[x] \geq 1$, then <u></u> .		(c) f is not onto			
	(\mathbf{a}) f is discontinuous					
	(b) j is one one (d) all of these					
9). The set $(0,1)$ has a compactification given by the map $f(x) = $, $x \in \mathbb{R}$.					
	(a) $\frac{1}{x}$		(c)	$\cos x$		
	(b) $\sin x$		(d)	$(\cos 2\pi x, \sin 2\pi x)$)	
10. $\mathbb{R} \setminus \{0\}$ is homeomorphic to						
	(a) (0,1)		(c)	$\{(x,y)\in \mathbb{R}^2: xy$	v = 1	
	(b) $\{(x,y) \in \mathbb{R}^2 : y$	=x	(d)	None of these		
11	11. $X = \{1, 2, \dots, 2018\}$ with usual topology is					
	(a) not a T_2 space		(c) not a T_1 space			
	(b) not a compact s	space	(d)	a T_2 space		
12. If a space is Hausdorff but not a regular, then it is also.						
	(a) non-compact	(b) compact	(c)	normal	(d) None of these	
13. Let $X = [0,1], A_n = \left[\frac{1}{n}, 1\right]$. Then $f : \mathbb{R} \to [0,1]$ given by $f(0) = 1, f(x) = \frac{1}{x}, (0 < 1)$						
	$x \leq 1$) is discontinuous					
	(a) for all $x \in X$		(c)	at $x = 0$		
	(b) on A_n for all $n > 0$ (d) None of these			None of these		
14	14. Urysohn lemma gives a rich supply of continuous real valued functions from					
	(a) 2^{nd} countable as	nd Hausdorff spaces	(c)	regular spaces		
	(b) 2^{nd} countable spaces (d) 2^{nd} countable			2^{nd} countable ar	nd regular spaces	
15	15. Arbitrary product of connected spaces need not be connected with respect to topology.					

(a) product (b) box (c) usual (d) None of these

- 16. The sets $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ and $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 4x 3\}$ are _____. (a) not connected (c) totally disconnected (b) connected (d) None of these
- 17. Let the space $X = [2016, 2017] \cup [2018, 2019]$ as a subspace of real line \mathbb{R} . Then
 - (a) [2016, 2017] and [2018, 2019] are not closed sets
 - (b) [2016, 2017] and [2018, 2019] are not open sets
 - (c) [2016, 2017] and [2018, 2019] are clopen sets
 - (d) None of these
- **18.** If $f(x) = \sin x$, $x \in \mathbb{R}$ then f([0,1]) is _____ in usual topology.
 - (a) not homeomorphic to \mathbb{R} (c) homeomorphic to \mathbb{C}
 - (b) homeomorphic to \mathbb{R} (d) None of these
- **19.** Suppose $\{X_{\alpha} : \alpha \in \Lambda\}$ is a collection of locally compact spaces. Then $\prod_{\alpha \in \Lambda} X_{\alpha}$ is locally compact if _____.
 - (a) each X_{α} is compact for finitely many but for all
 - (b) each X_{α} is compact for finitely many
 - (c) each X_{α} is compact for all but finitely many
 - (d) None of these
- **20.** [0,1] is _____ of (0,1] by the map $f(x) = \sin \frac{1}{x}$
 - (a) Stone cĕch compactification (c) homeomorphism
 - (b) not a Stone cech compactification (d) None of these

Candidate's Seat No._____ CHAROTAR UNIVERSITY OF SCIENCE AND TECHNOLOGY Third Semester of M.Sc. (Mathematics) Examination November 2018 MA813 Topology-II

Date: 28/11/2018, Wednesday Time:10:45 a.m. to 01:00 p.m. Maximum Marks:50

Instructions:

- 1. Section I and Section II must be written in separate answer books.
- 2. You can use only non-programmable calculator. No other gadget is allowed in the examination hall.
- 3. Figures to the right indicate marks.
- 4. All notations are standard.

SECTION I

 ${\bf Q}$ - ${\bf II}$ (A) Attempt any TWO of the followings:

- (1) Is the statement "Every T_1 space need not be T_2 ." true or false? Justify.
- (2) Prove that a second countable regular space is normal.
- (3) Prove that a space is locally connected if and only if every component of an open set is open.

[8]

[12]

- (B) Attempt any SIX of the followings:
 - (1) State and prove the Pasting lemma.
 - (2) Prove that every metrizable space is a Hausdorff space.
 - (3) Is the statement "(0,1) and $S^1 \{0\}$ are homeomorphic" true or false? Justify.
 - (4) Define first and second countable space.
 - (5) Prove that a compact Hausdorff space is regular.
 - (6) State Urysohn lemma.
 - (7) Prove that every normal space is completely regular.
 - (8) State Tietze extension theorem.
 - (9) Let C and D form a separation of X. If Y is a connected subspace of X, then prove that Y lies entirely within C or D.

SECTION II

- **Q** III (A) Attempt any THREE of the following.
 - (1) (a) Let \mathfrak{B} and \mathfrak{B}' be bases for topologies τ and τ' on X respectively. Then prove that the following are equivalent:
 - (i) τ' is finer than τ .

(ii) For each $x \in X$ and each $B \in \mathfrak{B}'$ containing x, there exists $B' \in \mathfrak{B}'$ such that $x \in B' \subseteq B$.

(b) Let Y be a subspace of a space X. Then prove that $A \subseteq Y$ is closed in Y (in a subspace topology) if and only if $A = C \cap Y$, for some closed subset C of X.

- (2) (a) Let A, X and Y be topological spaces and f₁: A → X, f₂: A → Y. Prove that the map f: A → X × Y defined by f(a) = (f₁(a), f₂(a)), a ∈ A, is continuous if and only if f₁, f₂ are continuous.
 (b) If a function f: X → Y is continuous, then prove that for each x ∈ X and each neighborhood V of f(x), there exists a neighborhood of U of X such that f(U) ⊆ V.
- (3) Let X be a non-empty compact Hausdorff space such that every point of X is a limit point of X. Then prove that X is uncountable.
- (4) Let X be a locally compact Hausdorff space which is not compact and Y be one point compactification of X. Then prove that Y is Hausdorff space, X is a subspace of Y, Y - X is a single point and $\overline{X} = Y$.
- (5) State and prove Tychonoff theorem.
- (B) Attempt any TWO of the following.
 - (1) If X, Y are compact then prove that $X \times Y$ is compact with respect to the product topology.
 - (2) Prove that $\mathbb{R}^2_{\ell} = \mathbb{R}_{\ell} \times \mathbb{R}_{\ell}$ is not normal with respect to the product topology.
 - (3) Prove that the arbitrary product of connected space is connected with respect to the product topology but not with respect to the box topology.

[18]

[12]