Appendix A

Four Year Degree Course in Engineering And Technology Course and Examination Scheme With Credit Grade System Third Semester B.E. (Electronics Engineering)

		, r	Геас	hing S	Scheme					Examina	ation Scher	ne			
			ours Wee	Per k				THEOF	RY				PRA	CTICAL	
Subject Code	Subject	L	Т	Р	Number of Credits	Duration of Paper (Hrs.)	Max. Marks ESE	Max Marl Sessio MSE	ĸs	Total	Min . Passing Marks	Max. Marks TW	Max. Marks POE	Total	Min . Passing Marks
EN 301	Applied Mathematics-III	3	1	0	4	3	80	10	10	100	40				
EN 302	Electronic Devices & Circuits	4	1	0	4	3	80	10	10	100	40				
EN 303	Network Theory	3	1	0	4	3	80	10	10	100	40				
EN304	Programming Language C ++	3	1	0	3	3	80	10	10	100	40				
EN 305	Electronic Measurements & Instrumentation	3	1	0	3	3	80	10	10	100	40				
Laborator	ies														
EN 306	Electronic Devices & Circuits	0	0	3	2							25	25	50	25
EN 307	Programming Language C ++	0	0	3	2							25	25	50	25
EN 308	Electronic Measurements & Instrumentation	0	0	3	2							25	25	50	25
Total		16	5	9											
Semester	Total		30		24					500				150	650

Four Year Degree Course in Engineering and Technology Course and Examination Scheme with Credit Grade System Fourth Semester B.E. (Electronics Engineering)

		r	Геас	hing S	Scheme					Examina	ation Scher	ne			
			ours Wee					THEO	RY				PRA	CTICAL	
Subject Code	Subject	L	Т	Р	Number of Credits	Duration of Paper	Max. Marks	Ma Ma Sessi	rks	Total	Min . Passing	Max. Marks	Max. Marks	Total	Min . Passing
						(Hrs.)	ESE	MSE	IE		Marks	TW	POE		Marks
EN 401	Applied Mathematics-IV	3	1	0	4	3	80	10	10	100	40				
EN 402	Digital Circuits & Fundamentals of Microprocessors	4	1	0	4	3	80	10	10	100	40				
EN 403	Electromagnetic Fields	3	1	0	4	3	80	10	10	100	40				
EN404	Electronic Engineering Materials & Components	3	0	0	3	3	80	10	10	100	40				
EN 405	Basic Electrical Machines	3	1	0	3	3	80	10	10	100	40				
Laborato	ries														
EN 406	Digital Circuits & Fundamentals of Microprocessors	0	0	3	2							25	25	50	25
EN 407	Basic Electrical Machines	0	0	3	2							25	25	50	25
EN 408	Programming Practice (MATLAB/SCILAB)	0	0	2	2							25	25	50	25
EN 409	Personal Proficiency-I	0	0	2	2							50		50	25
Total		16	4	10											
Semester	r Total		30		26					500				200	700

Four Year Degree Course in Engineering and Technology Course and Examination Scheme with Credit Grade System Fifth Semester B.E. (Electronics Engineering)

			Геас	hing S	Scheme					Examina	ation Scher	me			
			ours Wee					THE	ORY				PRA	CTICAL	,
Subject Code	Subject	L	Т	Р	Number of Credits	Duration of Paper (Hrs.)	Max. Marks ESE	Ma	ax. arks sional IE	Total	Min . Passing Marks	Max. Marks TW	Max. Marks POE	Total	Min . Passing Marks
EN 501	Linear Integrated Circuits	3	1	0	3	3	80	10	10	100	40				
EN 502	Signals & Systems	3	1	0	4	3	80	10	10	100	40				
EN 503	Power Electronics	3	0	0	3	3	80	10	10	100	40				
EN504	Advanced Microprocessors & Interfacing	3	1	0	3	3	80	10	10	100	40				
EN 505	Professional management Techniques	3	0	0	3	3	80	10	10	100	40				
Laborator	ries														
EN 506	Linear Integrated Circuits	0	0	3	2							25	25	50	25
EN 507	Advanced Microprocessors & Interfacing	0	0	3	2							25	25	50	25
EN 508	Power Electronics	0	0	3	2							25	25	50	25
EN 509	Personal Proficiency-II	0	0	2	2							50		50	25
Total	•	15	3	11											
Semester	Total		29		24					500				200	700

Four Year Degree Course in Engineering and Technology Course and Examination Scheme with Credit Grade System Sixth Semester B.E. (Electronics Engineering)

		r.	Геас	hing S	Scheme					Examina	ation Scher	ne			
			ours Wee					THEOF	RY				PRA	CTICAL	,
Subject Code	Subject	L	Т	Р	Number of Credits	Duration of Paper (Hrs.)	Max. Marks ESE	Max Marl Sessio MSE	ks	Total	Min . Passing Marks	Max. Marks TW	Max. Marks POE	Total	Min . Passing Marks
EN 601	Principles of communication	3	1	0	3	3	80	10	1E 10	100	40				
EN 602	Fields & Radiating Systems	3	1	0	4	3	80	10	10	100	40				
EN 603	Control System Engineering	3	1	0	4	3	80	10	10	100	40				
EN604	Computer Architecture & Organization	3	1	0	4	3	80	10	10	100	40				
EN 605	Microcontrollers & Their Applications	3	1	0	3	3	80	10	10	100	40				
Laborato	ries														
EN 606	Principles of communication	0	0	3	2							25	25	50	25
EN 607	Microcontrollers & Their Applications	0	0	3	2							25	25	50	25
EN 608	Electronics Workshop	0	0	3	3							25	25	50	25
Total		15	5	9											
Semester	r Total		29		25					500				150	650

Four Year Degree Course in Engineering and Technology Course and Examination Scheme with Credit Grade System Seventh Semester B.E. (Electronics Engineering)

		r	Геас	hing S	Scheme					Examina	ation Schei	ne			
			ours Wee					THEOF	RY				PRA	CTICAL	
Subject Code	Subject	L	Т	Р	Number of Credits	Duration of Paper (Hrs.)	Max. Marks ESE	Max Marl Sessio	ks	Total	Min . Passing Marks	Max. Marks TW	Max. Marks POE	Total	Min . Passing Marks
						(HIS.)	ESE	MSE	IE		Warks	1 VV	PUE		Marks
EN 701	UHF & Microwaves	3	1	0	3	3	80	10	10	100	40				
EN 702	Digital & Wireless Communication	3	1	0	4	3	80	10	10	100	40				
EN 703	Digital Signal Processing	3	1	0	3	3	80	10	10	100	40				
EN704	VLSI Design	3	1	0	4	3	80	10	10	100	40				
EN 705	Elective-Ii) Radio Frequency CircuitDesignii) Mechatronicsiii) Optoelectronic Devices &Communicationiv)Device Modelling	3	1	0	4	3	80	10	10	100	40				
Laborator			_												
EN 706	UHF & Microwaves	0	0	3	2							25	25	50	25
EN 707	Digital Signal Processing	0	0	3	2							25	25	50	25
EN 708	Project Seminar	0	0	2	2							50		50	25
Total		15	5	8											
Semester	Total		28		24					500				150	650

Four Year Degree Course in Engineering and Technology Course and Examination Scheme with Credit Grade System Eighth Semester B.E. (Electronics Engineering)

		r	Геас	hing S	Scheme					Examina	ation Scher	ne			
			ours Wee					THEOP	RY				PRA	CTICAL	
Subject Code	Subject	L	Т	Р	Number of Credits	Duration of Paper (Hrs.)	Max. Marks ESE	Max Marl Sessio MSE	ks	Total	Min . Passing Marks	Max. Marks TW	Max. Marks POE	Total	Min . Passing Marks
EN 801	Computer Networks	3	1	0	4	3	80	10	10	100	40				
EN 802	Digital Image Processing	3	1	0	3	3	80	10	10	100	40				
EN 803	Digital System Design	3	1	0	3	3	80	10	10	100	40				
EN804	Embedded Systems	3	1	0	4	3	80	10	10	100	40				
EN 805	Elective – II i) Neural Networks & Fuzzy logic ii) Micro Electro Mechanical Systems (MEMS) iii) Biomedical Engineering iv)Industrial Instrumentation	3	0	0	3	3	80	10	10	100	40				
Laborato	ries														
EN 806	Digital Image Processing	0	0	3	2							25	25	50	25
EN 807	Digital System Design	0	0	3	2							25	25	50	25
EN 808	Project	0	0	6	6							75	75	150	75
Total		15	4	12											
Semester	r Total		31		27					500				250	750

GONDWANA UNIVERSITY, GADCHIROLI

FACULTY OF ENGINEERING AND TECHNOLOGY

CONSOLIDATED STATEMENT OF VARIOUS PARAMETERS IN TEACHING & EXAMINATION SCHEME OF B.E. (ELECTRONICS ENGINEERING)

SR.NO.	SEMESTER	NO. OF THEORY SUBJECTS	NO OF LABS/PRACT	TEACHING HOURS(TH) (L+T)	TEACHING HOURS (PRACT)	TOTAL CREDIT	MAX. THEORY MARKS	MAX.PRACT MARKS	MAX. MARKS TOTAL
1	Ι								
2	Π								
3	III	5	3	21	9	24	500	150	650
4	IV	5	4	20	10	26	500	200	700
5	V	5	4	18	11	24	500	200	700
6	VI	5	3	20	9	25	500	150	650
7	VII	5	3	20	8	24	500	150	650
8	VIII	5	3	19	12	27	500	250	750
		30	20	119	59	150	3000	1100	4100

*Audit course. It is neither considered as passing head nor considered for earning some credit(s). However, this is mandatory to be taken up at the respective college level

Subject wise Board of Studies Affiliation

Board of Studies	Subject Codes
APPLIED SCIENCES & HUMANITIES	EN 301,EN 401,EN 505
ELECTRICAL ENGINEERING	EN 303,EN 405,EN 503,EN 603
ELECTRONICS ENGINEERING	Rest all ,except above enlisted

Course Code: EN 301

Title of the Course: APPLIED MATHEMATICS III

Course Se	cheme				Evaluation	Scheme (Theory)		
Lecture	Tutorial	Practical	Periods/ week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
3	1	0	4	4	3	10	10	80	100

Unit	Contents	Hours
Ι	Laplace Transform	
	Definition, Properties (statements only). Periodic functions and unit step function, Inverse Laplace transform by partial fractions and convolution theorem. Solution of ordinary linear differential equations with constant coefficients by Laplace transform	11
II	Matrices	
	Inverse of matrix by adjoint and partitioning method, Rank of a matrix and consistency of system of linear simultaneous equations, Linear dependence, Linear and orthogonal transformation, Eigen values and eigen vectors, Reduction to diagonal form	08
III	Matrices	
	Cayley-Hamilton Theorem, Sylvester's Theorem (statements only) Solution of second order linear differential equation with constant coefficient by matrix method. Largest eign value and corresponding eign vector by iteration	08
IV	Partial Differential Equations	
	Linear Partial Differential Equations -first order and first degree i.e. Lagrange's form, Linear homogeneous equations of higher order with constant coefficients ,Method of separation of variables.	08
V	Fourier series and Fourier Transforms	
	Periodic functions and their Fourier series expansion, Fourier Series for even and odd functions, Change of interval, Half range expansions, Fourier integrals and Fourier Transforms.	10

TEXT BOOKS:

- 1. Higher Engineering Mathematics -B.S.Grewal, Khanna Publications
- 2. Probability and Statistics by Murray R Spiegel 3/e Schaum's Outline Series
- 3. Higher Engineering Mathematics By H.K.Dass S.Chand

Reference Book:

A Text Book of Engineering Mathematics by N.P. Bali and Manish Goyal Laxmi Publications

Course Code: EN 302

Title of the Course: ELECTRONICS DEVICES AND CIRCUITS

Course S	cheme				Evaluation	Scheme (Theory)		
Lecture	Tutorial	Practical	Periods/ week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
4	1	0	5	4	3	10	10	80	100

Unit	Contents	Hours
Ι	BIPOLAR JUNCTION TRANSISTORS	
	Transistor fundamentals, Theory of operation, Current components, Early Effect, Ebers-Moll Model, Transistor circuit configurations, static characteristics, Transistor Biasing and Thermal stabilization: The operating point, AC & DC Load lines, Bias stability, Stability factor, Biasing of BJT, Different biasing arrangements, Thermal runway	12
II	FIELD EFFECT TRANSISTORS	
	Introduction, Operation, V-I Characteristics, Transfer Characteristics, Drain characteristics, FET as VVR, Metal Oxide Semiconductor Field Effect Transistor (MOSFET): Introduction, Operation and characteristics, Depletion MOSFET, Enhancement MOSFET	10
III	LOW FREQUENCY TRANSISTOR AMPLIFIER	
	h-parameter Models for CB, CE, CC configurations and their Interrelationship, Analysis and Comparison of the three Configurations, Miller's Theorem, Cascading, Simplified Models and Calculation for CE and CC Amplifiers, Design of amplifiers, Direct coupled feedback pair, high input impedance circuit, Introduction to High Frequency Transistor Amplifiers	14
IV	LARGE SIGNAL AMPLIFIERS	
	Classification, large signal amplifier characteristics, class A amplifiers, class A amplifier with direct-coupled resistive load, transformer-coupled class A amplifier, class A push pull amplifiers, class B amplifiers, transformer-coupled push-pull class B amplifier, complementary symmetry push-pull class B amplifier, class AB amplifier, Design of transformer less Class AB amplifier	12
V	FEEDBACK AMPLIFIERS	
	Types of Feedback, Feedback Topologies Classification of Amplifiers, Advantages of negative feedback, Oscillators: Positive Feedback, Barkhausan criterion, RC phase shift oscillator, Wien Bridge oscillator, Collpit & Hartley Oscillator, Crystal oscillator	12

Text books:

- 1. Integrated Electronics Millman & Halkias, Tata Mc Graw Hill Company.
- Microelectronics circuits-Sedra/Smith, Oxford University Press.
 Microelectronics Millman and Grabel, Tata Mc Graw Hill Company

Reference Books:

- Electronic Devices and Circuit by Allen Motorshed Eastern Economy Edition
 Electronics Devices and circuits by Shalivanan,.....

Course Code: EN 303

Title of the Course: Network Theory

Course S	Course Scheme			Evaluation Scheme (Theory)					
Lecture	Tutorial	Practical	Periods/ week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
3	1	0	4	4	3	10	10	80	100

Unit	Contents	Hours
Ι	INTRODUCTION	
	Nodal and Mesh analysis of networks, source transformation, mutual inductances in mesh and nodal analysis, Duality.	9
II	NETWORK THEOREMS	
	Network Theorems(Applications to ac networks): Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum power transfer theorem, Reciprocity theorem, Millman's theorem, Compensation theorem, Tellegen's theorem.	9
III	FOURIER SERIES AND GRAPH THEORY	
	Fourier series, Evaluation of Fourier coefficients, waveform symmetries as related to Fourier coefficients, Exponential form of Fourier series, steady state response to periodic signals, Fourier integral and transform. Graph theory: Graph of a network, tree, co-tree, basic loop and basic cut set, incidence matrix, cut set matrix, Tie-set matrix.	9
IV	LAPLACE TRANSFORMS & TRANSIENT RESPONSE OF NETWORKS	
	Definition of Laplace transform, properties of Laplace transforms, Laplace transform theorems, inverse Laplace transform, Laplace transform of periodic functions, Convolution integral, Partial fractions, applications of Laplace transforms. Transient behaviour, initial conditions, concept of complex frequency, driving points and transfer functions, Poles and zeros of network functions, restrictions on Pole and Zero locations for driving point functions, restrictions on Pole and Zero locations, time domain behaviour from the Pole and Zero plot.	9
V	TWO PORT NETWOKS	
	Relationship of two-port variables, short circuit admittance parameters, open circuit impedance parameters, transmission parameters, hybrid parameters, relationships between parameter sets, parallel connection of two port networks. Three phase unbalanced circuits and power calculations.	9

Text Books	1.Network analysis by M.E. Van Valkenburg, Prentice Hall of India Pvt.Ltd. 2.Linear network theory by Kelkar and Pandit, Pratibha publication, Nagpur.
Reference books:	1.Engineering Network analysis and filter design by Gopal Bhise, Prem Chaddha, D. Kulshreshtha, Umesh publication, Delhi.
	2. Circuit theory by a. Chakrabarti, Dhanpat Rai and co.
	3. Circuit and Networks by A. Sudhakar, Shyammohan, Tata McGraw Hill.

Course Code: EN 304

Title of the Course: PROGRAMMING LANGUAGE C++

Course S	Course Scheme			Evaluation Scheme (Theory)					
Lecture	Tutorial	Practical	Periods/ week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
3	1	0	4	3	3	10	10	80	100

Unit	Contents	Hours
Ι	INTRODUCTION	
	Concept of Object Oriented Programming (OOP): Procedure Oriented Programming, OOP, Basic Concept of OOP, Benefits of OOP, Data Types : Basic Data Types, User Defined Data Types, Derived data types, Variables: Declaration of Variables, Dynamic Initialization of Variables, Reference Variables, Introduction to C++: Parts of C++ program, cout and cin objects, #include Directive, Variables and Constants, Comments, Operators: Arithmetic, Relational & Logical Operators, Type cast Operator, Scope resolution operator	7
II	CONTROL STATEMENTS & ARRAYS	
	Control Structures: for, dowhile, while, ifelse, switch, Arrays and strings : Operations on arrays : searching(linear and binary),sorting(bubble sort, insertion sort, selection sort)multidimensional array, strings ,strings manipulation , arrays of strings	9
III	FUNCTIONS	
	Function: Function Prototyping, Call by reference, Return by reference, Inline functions, Default arguments, const arguments, Function overloading, Recursion Classes & Objects : Defining a class, Defining member Functions, making an Outside function Inline, Nesting of Member Functions, Access Specifiers, Memory Allocation for Objects, Static Data Members, Static Member Functions, Arrays of Objects, Objects as Function Arguments, Friend functions	11
IV	CONSTRUCTORS & OPERATOR OVERLOADING	
	Constructors and Destructors : Constructors, Parameterized constructors, Constructors with default arguments, Dynamic initialization of Objects, Copy constructor, Dynamic Constructors, Constructors for Two-dimensional Arrays, constant Objects and constructor , Destructors. singly linked list (creation, insertion, deletion, updation) Operator Overloading : Introduction, Defining Operator Overloading, Overloading Unary and Binary Operators , Overloading Unary and Binary Operators using Friend functions, Rules for Overloading Operators	9
V	INHERITANCE, POLYMORPHISM & FILE PROCESSING	
	Inheritance : Introduction, Defining Derived classes, Single, Multilevel, Multiple, Hybrid Inheritance, Multipath inheritance and Virtual Base classes, Abstract class, Polymorphism: Introduction, Pointer to Objects, Pointers to Derived Classes, Virtual Functions, Pure Virtual Functions, File handling : Introduction, Classes for File Stream Operations, Opening and closing a File, Detecting End of File, More about Open(), File pointers and their Manipulations, Updating a file	9

Text Books:	1.Mastering c++ by Venugopal, Rajkumar, Ravi Shankar 2.Object oriented programming with c++ fifth edition by Balagurusamy
Reference books	 1) Object oriented programming in C++ by Robert Lafore 2) Thinking in C++ by Sunil Pandey 3) Let us C++, Yashawant P Kanetkar

Course Code: EN 305

Title of the Course: ELECTRONICS MEASUREMENTS AND INSTRUMENTATION

Course Se	Course Scheme			Evaluation Scheme (Theory)					
Lecture	Tutorial	Practical	Periods/ week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
3	1	0	4	3	3	10	10	80	100

Unit	Contents	Hours
Ι	INTRODUCTION	
	Statistical analysis of measurement of errors, accuracy, precision types of errors, Digital voltmeter: Characteristic features, advantages and applications, Digital LCR meter, Digital	9
	Multimeter	
II	BRIDGES & THEIR APPLICATIONS	
	Bridges: Wheat stone, Kelvin, Max-well, Ray, Schering, Wienbridge Potentiometer, Measurement of Inductance, Capacitance using AC bridges, measurement of frequency	9
III	SENSORS & TRANSDUCERS I	
	Generalized instrumentation systems, active & passive transducers, primary and secondary transducers, digital & analog transducers, static & dynamic characteristic, Variable inductance transducers, Self generating & passive type, LVDT, Piezoelectric transducers, Proximity sensors: Eddy current, Capacitive and Inductive type	9
IV	SENSORS & TRANSDUCERS II	
	Laws of thermoelectric circuits, thermocouples, cold junction compensation, thermistors, Resistance temperature detector, radiation pyrometer, optical pyrometer, temperature measurement of flowing liquids, Strain Gauges: Wire wound, foil, semiconductor & capacitor types, Strain gauge circuits: Ballast, Wheatstone Bridge, Temperature compensation, Calibration of Strain gauge, Light sensors: Photodiodes, phototransistors, photoresistors	9
V	SIGNAL CONDITIONING AND BUS STANDARDS	
	Signal conditioning techniques: linearization, gain clipping, filtering, differential amplification, shielding techniques, data acquisition systems, IEEE 4888 bus & I2C bus: principle of operation, protocols	9

Text Books

1.A Course in Electrical /Electronic Measurement and Instrumentation –A.K.Sawhney Dhanpat Rai & Sons Delhi

2.Instrumentation Devices & Systems-Ranjan C.S.,Sharma G.R. and Mani V.S.V.,Tata McGraw Hill Publications

Reference Books:

1.Sensors and Transducers –Patranbis D, A H Wheeler and Company

2.Measurement System application and Design-E O Doebelin Tata Mc Graw Hill

3.Instrumentation, Measurement and Analysis-B.C.Nakra, K A Chaudhary Tata Mc Graw Hill

Course Code: EN 306

Title of the Course: **ELECTRONICS DEVICES AND CIRCUITS**

Course Scheme					Evaluation Scheme(Laboratory)		
Lecture	Tutorial	Practical	Periods/	Credits	TW	POE	Total
			week				
0	0	3	3	2	25	25	50

It includes at least 7-8 experiments based on the theory syllabus of Electronics devices and circuits.

(At least two experiments should be conducted using simulator like Pspice)

List of suggested experiments
1. Study of half wave rectifier
2. Study of full wave rectifier
3. Study of Bridge rectifier
4. Study of characteristics of Zener diode
5. Study of characteristics of BJT
6. Study of characteristics of FET
7. Study of frequency response of CE amplifier
8. Study of push-pull amplifier
9. Study of phase shift oscillator
10. Study of negative feedback amplifiers
11. Study of H parameters

Course Code: EN 307

Title of the Course: PROGRAMMING LANGUAGE C++

Course Scheme					Evaluation Scheme(Laboratory)		
Lecture	Tutorial	Practical	Periods/	Credits	TW	POE	Total
			week				
0	0	3	3	2	25	25	50

It includes at least 7-8 programs based on the theory syllabus of Programming Language C++.

List of suggested programs
1) Program to print the sum of series $1 + \frac{x}{1!} + \frac{x^2}{2!} + \cdots$
2A) Program to sort the array using bubble sort
2B) Program to sort the array using selection sort
2C) Program to sort the array using insertion sort
3A) Program to search an element in the array using linear search
3B) Program to search an element in the array using binary search
4) Print number of vowels, characters in a string
5) Program to find area of triangle using function overloading
6) Program based on multiple inheritance
7) Program to convert decimal to binary and binary to decimal
8) Program based on classes and objects
9) Program to concatenate two strings
10) Program on file handling
11) Program to print transpose of matrix
12) Program to find addition of two matrices
13) Program to find multiplication of two matrices
14) Program to create singly linked list
15) Program to insert an element in singly linked list

Course Code: EN 308

Title of the Course: ELECTRONIC MEASUREMENTS AND INSTRUMENTATION

Course Sch	eme		Evaluation Scheme(Laboratory)				
Lecture	Tutorial	Practical	Periods/ week	Credits	TW POE Tot		
0	0	3	2	25	25	50	

It includes at least 7-8 experiments based on the theory syllabus electronics Measurements and Instrumentation.

List of suggested experiments

1. Study of Bridges

2. To study characteristics and performance of different types of temperature transducers

3. Study of LVDT

4. Study of strain gauges

5. Study of light sensors

Course Code: EN 401

Title of the Course: APPLIED MATHEMATICS IV

Course Se	Course Scheme					Evaluation Scheme (Theory)			
Lecture	Tutorial	Practical	Periods/ week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
3	1	0	4	4	3	10	10	80	100

Unit	Contents	Hours
Ι	Z- Transform	
	Definition and propertie, Inverse Z-transform by partial fractions and convolution theorem. Application to solve difference equation with constant coefficients.	07
II	Complex Variables	
	Analytic functions Cauchy Riemann conditions, Conjugate functions, Singularities, Cauchy's Integral theorem and Cauchy's Integral Formula (statements only) Laurent's Theorem (statement only) Residue Theorem and application of residuals to evaluate Real integral of the form $\int_0^{2\pi} f(sin\theta, cos\theta) d\theta$ and $\int_{-\infty}^{\infty} \frac{f(x)}{F(x)} dx$ where F(x) has no zeros on real axis.	11
III	Numerical Methods	
	Solution of algebraic and transcendental equations by False position method, Newton-Raphson method. Non linear simultaneous equations by Newton-Raphson Method. Solution of system of simultaneous linear equations by Gauss Jordan method, Gauss Seidel method, Crouts method	08
IV	Numerical Methods	
	Solution of ordinary first order first degree differential equation by Taylor's series method, Runge-Kutta 4th order method, Euler's modified method, Milne's Predictor Corrector method. Largest eigen values and corresponding eigen vector by iteration method.	08
V	Random Variables, and Probability Distribution	
	Random variables Distribution functions of discrete and continuous random variables, Joint distributions, Mathematical Expectations, Moments, Moments generating function and Characteristic function. Coefficient of skewness and Kurtosis	11

Text Books

- 1. Higher Engineering Mathematics By B.S.Grewal Khanna Publications
- 2. Probability and Statistics by Murray R Spiegel Schaums outline Series
- 3. Higher Engineering Mathematics By H.K.Dass S Chand Publications

Reference Book:

A Text Book of Engineering Mathematics by N.P. Bali and Manish Goyal Laxmi Publications

Course Code: EN 402

Title of the Course: DIGITAL CIRCUITS AND FUNDAMENTALS OF MICROPPROCESSOR

Course So	Course Scheme					Evaluation Scheme (Theory)			
Lecture	Tutorial	Practical	Periods/ week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
4	1	0	5	4	3	10	10	80	100

Unit	Contents	Hours				
Ι	COMBINATIONAL CIRCUITS I					
	Introduction to POS & SOP forms, Karnaugh Map (Up to 5 variables), Combinational circuits: Full Adder, Half adder, Binary Adder, BCD Adder, Carry Look Ahead Adder, Parallel Adder, Half Subtractor, Full subtractor, Code converter	12				
II	COMBINATIONAL CIRCUITS II					
	Magnitude Comparator, Parity Generator, Parity Checker, Multiplexer, De-Multiplexers, Decoder, Encoder, Priority Encoder	10				
III	SEQUENTIAL CIRCUITS					
	Single cell memory element, Registers: SISO, SIPO, PISO, PIPO, Latch, Flipflops: SR,D,T, JK, Master Slave JK Flip Flop, Race around condition, Conversion of one Flip Flop to Another, Synchronous Counters: Binary Counter, Binary UP/DOWN counter, BCD counter, Asynchronous Counters: Binary Ripple Counter, BCD ripple Counter	14				
IV	INTRODUCTION TO µP 8085					
	Architecture, Pin Diagram, Addressing Modes, Types of Instructions, Flags, Instruction Set, Timing Diagram	14				
V	INTRODUCTION TO INTERRUPTS & 8255 PPI					
	Subroutine Delay, Interrupts: Schematic Block Diagram, Types of Interrupts, SIM & RIM, Interfacing with 8255 (Programmable Peripheral Interface)	10				

Text Book:

1) "Fundamental of Digital Electronics":,A.Anand Kumar,Prentice Hall India,

- 1) "Modern Digital Electronics "R. P. Jain, Tata McGraw Hill,4th Edition
- 2) "Microprocessor Architecture, Programming, and Applications with the 8085",

Ramesh S. Gaonkar, Prentice Hall

Reference Books:

1) "Modern Digital Electronics "R. P. Jain, Tata McGraw Hill,4th Edition,

- 2)"8 Bit Microprocessor", V.J.Vibhute, P.B.Borole, Technova Educational Publication,
- 3) "Fundamental of Digital Circuits":,R.K.Krishna,Rajni Publications

Course Code: EN 403

Title of the Course: **ELECTROMAGNETIC FIELDS**

Course So	Course Scheme					Evaluation Scheme (Theory)			
Lecture	Tutorial	Practical	Periods/ week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
3	1	0	4	4	3	10	10	80	100

Unit	Contents	Hours
Ι	SCALAR AND VECTOR FIELDS	
	Different coordinate system (Cartesian, cylindrical, spherical), Divergence, curl, gradient	7
II	ELECTROSTATICS	
	Coulumb's law, Electric field intensity, field due to point, line and sheet of charge, Electric flux density, Gauss's law and its applications, Divergence theorem, Electric potential, Electric field in free space, conductor, dielectric, boundary condition, Poisson's and Laplace equations, capacitance, energy density, dielectric strength	11
III	MAGNETOSTATICS	
	Lorentz law of force, Magnetic fields intensity, Biot-Savert law, Ampere's law, Stokes theorem ,magnetic field due to straight conductor, circuit loop, infinite sheet of current, magnetic flux density (B) in free space, conductor, magnetic materials, Magnetic fields in multiple media, Boundary conditions, Scalar and vector magnetic potential	9
IV	TIME VARYING FIELDS & MAXWELL'S EQUATIONS	
	Faradays law, induced emf, transformer and motional emf, Maxwell's equations(differential & integral forms), displacement current, continuity equation, proof of Maxwell's equations, Boundary conditions for time varying fields, retarded potential	7
V	ELECTROMAGNETIC WAVES	
	Electromagnetic wave equations, wave parameters, velocity, intrinsic impedance, propagation constant, wave in free space, lossy and lossless dielectric, conductor-skin depth, Poynting Vector, Poynting theorem, Uniform plane wave, Introduction to plane wave, Snell's law and Brewster angle.	11

Text Books :

1. John D. Kraus, 'Electromagnetic' Tata Mcgraw Hill,Book Co. New York 4th Edition

2. William H. Hayt 'Engineering Electromagnetic' Tata Mcgraw Hill, Edition2001

Reference Books :

1Sadikee 'Element of Electromagnetic' second edition, oxford university press 1995

2 G.S.N. Raju 'Electromagnetic field theory and transmission line' Pearson Education , 4th edition

Course Code: EN 404

Title of the Course: ELECTRONIC ENGINEERING MATERIALS AND COMPONENTS

Course Se	Course Scheme					Evaluation Scheme (Theory)			
Lecture	Tutorial	Practical	Periods/ week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
3	0	0	3	3	3	10	10	80	100

Unit	Contents	Hours
Ι	MAGNETIC AND DIELECTRIC MATERIALS	
	Magnetic materials: ferro magnetic, ferri magnetic, antiferro magnetic, para and diamagnetic materials with examples, magnetically soft and hard materials,dielectric parameters, polarization, polarizability, types of polarization, internal or local electric field, derivation of lorentz equation, clausius - mossotti equation, dielectric loss and breakdown, ferroelectric, piezo electric & pyroelectric materials.	11
II	CONDUCTING AND SUPERCONDUCTING MATERIALS	
	Conductivity of pure metals & alloys, temperature coefficient of resistivity, high conductivity materials, high resistivity materials, heating elements, fuses, contact materials, connectors, switches, heat sinks, fixed and variable resistors non linear resistors, resistors used in electronic circuits, superconductivity, type I & II materials, high temperature superconductivity, applications of superconductivity.	9
III	SEMICONDUCTING MATERIALS	
	Semiconductors, band gap, electron & hole mobilities. Purification & doping of semiconductor materials, characteristics of semiconductor devices, diodes, zener & breakdown diodes, tunnel diodes, varactors, transistors (BJT, FET, MOSFET, UJT), DIAC, SCR & TRIAC, hall effect devices.	9
IV	SEMICONDUCTOR FABRICATION AND OPTICAL PROPERTIES OF MATERIALS	
	LSI, VLSI ,Czochralski Crystal Pulling Technique, Fabrication of linear & digital ICs, CMOS devices, Energy levels and spontaneous emission of light,Stimulated emission,Absorption reflection and refraction of light ,Interaction of light with electrons in solids,Optical effects in semiconductors,LED, LASERS, Optical communication	7
V	NANOMATERIALS	
	Introduction - Nanomaterials: definition, properties, Types: Nanoparticles, Synthesis by Chemical reduction method, Nanoporous materials: Synthesis by Sol-gel method, Nanowires: Synthesis by VLS mechanism, Carbon Nanotubes: Singlewalled and multiwalled nanotubes, Mechanical and electrical properties ,Applications, Synthesis: Electric arc discharge method , Physical Vapour Deposition (PVD), Chemical Vapour Deposition (CVD), Laser Ablation method.	9

Text book

1.Electrical engineering materials –S.P.Seth Dhanpat rai & Sons 2.Introduction to Nanotechnology, Charles P.Poole Jr, and Frank J Owens .Wiley Interscience

Reference Books

1.Electronic engineering materials and devices-Allison

Course Code: EN 405

Title of the Course: BASIC ELECTRICAL MACHINE

C	Course Scheme					Evaluation Scheme (Theory)			
Lecture	Tutorial	Practical	Periods/ week	Credits	Duration of paper, hrs	MSE	IE	ESE	Total
3	1	0	4	3	3	10	10	80	100

Unit	Contents	Hours
Ι	Transformer	
	Construction and working principle of single phase transformer, effect of loading, open circuit and short circuit tests, regulation, efficiency, all day efficiency. Construction and principle of three phase transformer, connections (Y-Y, Δ - Δ , Y- Δ , Δ -Y), parallel operation, auto transformer.	9
II	D. C. Generator	
	Construction, principle, emf generated, Types according to methods of excitation, commutator and commutation action, armature reaction, characteristics, applications.	9
III	D C Motor	
	Construction, principle, Comparison of motor and generator action, back emf, torque equation, Types according to methods of excitation, characteristics, applications, Starting and speed control.	9
IV	Induction Motor	
	Construction and principle of three phase induction motor, types, torque, slip, torque-slip characteristic equivalent circuit, No load and Blocked rotor test, starting, speed control(Only introduction of stator and rotor side methods are expected) and applications. Single phase induction motor : principle of operation, starting methods (Split phase and capacitor start), Shaded pole motor, Universal motor.	9
V	Synchronous Machines	
	Principle of alternator, types, phasor diagram, equation of induced emf, alternator on load, voltage regulation, methods to find voltage regulation (direct loading and synchronous impedance).Principle of synchronous motor, starting of motor, equivalent circuit, V and inverted V curves. (Cylindrical pole machine studies are expected)	9

Text Books -

1. A Text Book of Electrical Technology, Volume II, by B.L.Theraja and A.K.Theraja, S.Chand and Co. Ltd.

Basic Electrical Engineering, by V.N.Mittal and Arvind Mittal, Tata McGraw Hill
 Electric Machines, By I.J.Nagrath and D.P.Kothari, Tata McGraw Hill

Reference Books –

1. Electrical machinery by Dr.P. S. Bimbhra, Khanna Publisher

2.Performance & design of AC machine by M. G. Say, CSB Publishers & Distributors, New Delhi 3.Theory and Performance of Electrical Machine by J. B. Gupta, S.K.Katariya and Sons

Course Code: EN 406

Title of the Course: DIGITAL CIRCUITS AND FUNDAMENTALS OF MICROPROCESSORS

Course Sch	ieme		Evaluation Scheme(Laboratory)				
Lecture	Tutorial	Practical	Periods/ week	Credits	TW	POE	Total
0	0	3	3	2	25	25	50

It includes at least 7-8 programs based on the theory syllabus of Digital Circuits and Fundamentals of Microprocessors

	List of suggested programs
1.	To Study Adder, Subtractor Circuits
2.	To Study Encoder, Decoder Circuits
3.	To Study Multiplexer, Demultiplexer Circuits
4.	To Study SR Latch, Flipflops
5.	To Study of Counters
6.	Writing programs for the addition & subtraction of two 16 bit numbers
7.	Write a program to arrange a block of data in reverse order
8.	Write a program to find largest number from given sequence of ten bytes
9.	Write a program to separate even and odd numbers from given sequence of ten bytes

Course Code: EN 407

Title of the Course: BASIC ELECTRICAL MACHINES

Course Scheme					Evaluation Scheme(Laboratory)		
Lecture	Tutorial	Practical	Periods/ week	Credits	TW	POE	Total
0	0	3	3	2	25	25	50

It includes at least 7-8 experiments based on the theory syllabus of Basic Electrical machines

	List of suggested experiments
1.	Magnetization characteristics of D.C. generator (separately excited)
2.	To perform load test on cumulative compound motor
3.	Open circuit /Short circuit test on 3Ø transformer
4.	Load test on 3Ø Induction motor
5.	Regulation of 3Ø Alternator by direct loading
6.	Regulation of 3Ø Alternator by Open circuit /Short circuit test
7.	Load test on shunt generator
8.	Load test on cumulative compound generator

Course Code: EN 408

Title of the Course: **PROGRAMMING PRACTICE (MATLAB / SCILAB)**

Course Scheme					Evaluation Scheme(Laboratory)		
Lecture	Tutorial	Practical	Periods/ week	Credits	TW	POE	Total
0	0	2	2	2	25	25	25

It includes at least 7-8 programs based on following syllabus

Contents	
1. INTRODUCTION TO MATLAB (Command window, Figure window, Current	
directory, Workspace, Command history, Figure Window, Editor Window, handling M	
files, general commands, Math and assignment operators)	
2. ARRAYS(Creating arrays, different types of matrix arrays, addition, subtraction,	
transpose and other matrix operations)	
3. PLOTS(Fundamentals of Plotting, Subplots, Legends, Titles and Labels, Printing and	
Saving Graphs, Loading Data Files, Other Interesting Features of Matlab Plotting)	
4. TRANSFORMS (Z-transform, Laplace, Fourier. Refer MATLAB demos)	
5. STATISTICAL PARAMETERS (Mean, Standard Deviation, Variance, coefficient of	
Kurtosis. <i>Refer MATLAB demos</i>)	
6. POLYNOMIALS (Polynomial Evaluation: Addition, Scalar Multiple, Multiplication,	
division, derivatives, roots of polynomial)	

References:

- **1.** MATLAB / SCILAB Simulator latest version.
- 2. MATLAB ; A practical approach by Stormy Attaway
- 3. Getting started with MATLAB By Rudra Pratap

Course Code: EN 409

Title of the Course: PERSONAL PROFICIENCY I

Course Scheme					Evaluation Scheme(Laboratory)		
Lecture	Tutorial	Practical	Periods/ week	Credits	TW	POE	Total
0	0	2	2	2	50	0	50

Contents
After completing this course the student should able to get proficiency in
1. Reading, Writing and Speaking Skills
Effective reading: Uses of words, improving the vocabulary, The dictionaries and how to use
them
Writing skill: Writing letters at work, how to write reports, writing resume, job application,
modes of address The skill of good speaking: improving your voice and speech, the art of
conversation, public speaking, being interviewed by media, job interview, dealing with the boss,
dealing with the subordinates, how to run a meeting, negotiating and selling.
2. Thinking skill: How to think, critical thinking and lateral thinking.
3. Memorising and memorising skills

Minimum 9 experiments based on above syllabus,

- 1. Vocabulary building (words/week)
- 2. Demonstration of audio, video CDs (LRs)
- 3. Reading and writing paragraphs from English daily.
- 1. Precise writing and comprehension.
- 2. Enriching communication with use of idioms and phrases.
- 3. Learning read/write/speak by listening to learning recourses
- 4. Supervised one to one, one to many and many to many communication (letter,
- extempore, board writing, telephonic conversation, debate, elocution etc.)
- 5. Demonstration of Audio, Video CDs of interviews, speeches etc.
- 6. Audio recording of the conversations and analyzing it offline.
- 7. Pronunciation of foreign language words commonly practiced. (French, Greek, Latin etc)
- 8. Six thinking hats/lateral thinking.
- 9. Practice of memorizing

References

1. Communication in English for technical students, by Orient Longman, TTTI

Calcutta

- 2. How to write and speak better, Reader's digest, Touchan Books Limited. Editor John Ellison Kahn
- 3. Six Hat thinking, by E. D. Bono, Pengwin Books
- 4. English Grammar by Wren and Martin.
- 5. Word Power Made Easy by Norman Lewis, Goyal Saab, Goyal Publishers

Note: Syllabus for the V to VIII Semester courses shall be prescribed in due course of time.