ANNA UNIVERSITY COIMBATORE

CURRICULAM & SYLLABI - REGULATION 2008

B.E.MECHANICAL ENGINEERING CURRICULUM

SEMESTER-5

Code No.	Course title	L	Т	Ρ	Μ	С
THEORY						
	THERMAL ENGINEERING	3	1	0	100	4
	COMPUTER AIDED MANUFACTURING	3	0	0	100	3
	DESIGN OF MACHINE ELEMENTS	3	2	0	100	5
	(Common for Mechanical and Automobile Engineering)					
	DYNAMICS OF MACHINERY	3	2	0	100	5
	HYDRAULIC & PNEUMATIC SYSTEMS	3	0	0	100	3
	(Common for Mechanical and Automobile Engineering)					
	COMPOSITE MATERIALS	3	0	0	100	3
	(Common for Mechanical and Automobile Engineering)					
PRACTICAL						
	THERMAL ENGINEERING LABORATORY	0	0	3	100	2
	KINEMATICS & DYNAMICS LABORATORY	0	0	3	100	2
	ELECTRONICS & MICROPROCESSORS LABORATORY	0	0	3	100	2
	Total	18	5	9	900	29

SEMESTER-6

Code No.	Course title	L	Т	Ρ	М	С
THEORY						
	FINITE ELEMENT ANALYSIS	3	1	0	100	4
	(Common for Mechanical and Automobile Engineering)					
	DESIGN OF TRANSMISSION SYSTEM	3	2	0	100	5
	AUTOMOBILE ENGINEERING	3	0	0	100	3
	POWER PLANT ENGINEERING	3	0	0	100	3
	GAS DYNAMICS AND JET PROPULSION	3	0	0	100	3
	ENGINEERING ECONOMICS AND FINANCE	3	0	0	100	3
	(Common for Mechanical and Automobile Engineering)					
PRACTICAL						
	SIMULATION & ANALYSIS LABORATORY	0	0	3	100	2
	COMPUTER AIDED MANUFACTURING LABORATORY	0	0	3	100	2
	HEAT POWER LABORATORY	0	0	3	100	2
	COMPREHENSION LABORATORY AND MINI PROJECT	0	0	3	100	2
	Total	18	3	12	1000	29

SEMESTER-7

Code No.	Course title	L	Т	Ρ	м	С
THEORY						
	BUSINESS CONCEPTS (Common for Mechanical and Automobile Engineering)	3	0	0	100	3
	DESIGN OF JIGS, FIXTURES, PRESS TOOLS AND MOULDS	3	1	0	100	4
	METROLOGY & MEASUREMENTS	3	0	0	100	3
	MECHATRONICS	3	0	0	100	3
	ELECTIVE – I	3	0	0	100	3
	ELECTIVE – II	3	0	0	100	3
PRACTICAL						
	METROLOGY & MEASUREMENTS LABORATORY	0	0	3	100	2
	MECHATRONICS LABORATORY	0	0	3	100	2
	TECHNICAL SEMINAR	0	0	3	100	2
	PROJECT WORK PHASE-I	0	0	3	100	2
	Total	18	1	9	900	27

ELECTIVES - SEMESTER 7

Code No.	Course title	L	Т	Ρ	М	С
1	OPTIMIZATION TECHNIQUES	3	1	0	100	4
2	COMPUTATIONAL FLUID DYNAMICS	3	1	0	100	4
3	REFRIGERATION & AIR-CONDITIONING	3	1	0	100	4
4	INTERNAL COMBUSTION ENGINES	3	1	0	100	4
5	TURBO MACHINERY	3	1	0	100	4
6	INDUSTRIAL TRIBOLOGY	3	1	0	100	4
7	DESIGN FOR MANUFACTURE & ASSEMBLY	3	1	0	100	4
8	TOOL DESIGN	3	0	0	100	3
9	MANAGEMENT INFORMATION SYSTEMS	3	0	0	100	3
10	SOFTWARE ENGINEERING	3	0	0	100	3
11	UNCONVENTIONAL MACHINING PROCESSES	3	0	0	100	3
12	INDUSTRIAL ROBOTICS	3	0	0	100	3
13	MICRO ELECTRO MECHANICAL SYSTEM (MEMS)	3	0	0	100	3
14	FACILITIES PLANNING AND DESIGN	3	0	0	100	3
15	VIBRATION AND NOISE CONTROL	3	1	0	100	4
16	DESIGN OF PLASTIC COMPONENTS	3	0	0	100	3

SEMESTER-8

Code No.	Course title	L	Т	Ρ	М	С
THEORY						
	TOTAL QUALITY MANAGEMENT	3	0	0	100	3
	ELECTIVE –III	3	0	0	100	3
	ELECTIVE –IV	3	0	0	100	3
	PROJECT WORK	0	0	12	100	6
	Total	9	0	12	400	15

ELECTIVES - 8

Code No.	Course title	L	Т	Ρ	М	С
1	ALTERNATIVE ENERGY SOURCES	3	0	0	100	3
2	CRYOGENIC ENGINEERING	3	0	0	100	3
3	NUCLEAR ENGINEERING	3	0	0	100	3
4	ENERGY CONSERVATION AND MANAGEMENT	3	0	0	100	3
5	PRODUCT DESIGN, DEVELOPMENT AND LIFE CYCLE MANAGEMENT	3	0	0	100	3
6	ENTREPRENEURSHIP DEVELOPMENT	3	0	0	100	3
7	ENTERPRISE RESOURCE PLANNING	3	0	0	100	3
8	PRODUCTION PLANNING & COST ESTIMATION	3	0	0	100	3
9	MAINTENANCE ENGINEERING	3	0	0	100	3
10	INDUSTRIAL SAFETY	3	0	0	100	3
11	PROFESIONAL ETHICS & HUMAN VALUES	3	0	0	100	3
12	RAPID PROTOTYPING, TOOLING AND REENGINEERING	3	0	0	100	3
13	SIX SIGMA AND LEAN MANUFACTURING	3	0	0	100	3
14	PROJECT MANAGEMENT	3	0	0	100	3
15	LOGISTICS AND SUPPLY CHAIN MANAGEMENT	3	0	0	100	3

REGULATION 2008: B.E.MECHANICAL ENGINEERING SYLLABUS

	SEMESTER-5					
	THERMAL ENGINEERING 3 1 0 10	0 4				
	GAS POWER CYCLES	9				
Stirling, Ericsson, Otto, Diesel, Dual, Lenoir, Atkinson, Brayton cycles. Calculation of me effective pressure and air standard efficiency, actual and theoretical PV diagrams of four stro and two stroke engines.						
UNIT II	INTERNAL COMBUSTION ENGINES	10				
Classification phenomenon detonation,	on of I.C engines, four stroke and two stroke cycle engines, combu- on and characteristics of combustion chamber design in SI and CI en knocking, delay period - timing diagrams – super-charging - ignition system and stem. Engine tests - performance, heat balance, and retardation - Morse test.	stion gine,				
UNIT III	NOZZLES, TURBINES & STEAM POWER CYCLES	9				
saturated f condition for and regene	zles- flow through steam nozzles, effect of friction, critical pressure ratio and s low. Steam turbines- impulse and reaction turbine, compounding, velocity diag or maximum efficiency, multi stage turbines, conditional lines, cycles with rehe erating heating, reheat factor, degree of reaction, governing of turbines. Steam p erties of steam, Rankine Cycle, Determination of Dryness fraction of steam.	iram, ating				
UNIT IV	AIR COMPRESSORS	8				
effect of cle compresso	ons of compressors - Reciprocating air compressor - performance characteri earance volume, free air delivery and displacement, intercooler, after cooler - R r - vane type, centrifugal and axial, flow performance characteristics - S r - performance characteristics	otary				
UNIT V	REFRIGERATION AND AIR CONDITIONING	9				
chart, Vapo conditioning estimation Use of stan	tals of refrigeration – COP - Vapour compression refrigeration system - cycle our absorption system- comparison, properties of refrigerants. Fundamentals g system, cycle, controls, air handling and distribution, simple cooling and heat dard thermodynamic table, Mollier diagram, Psychometric chart and Refriger e are permitted in the examination)	of air Ioad				
	LECTURE :	45				
	TUTORIAL :	15				
	TOTAL :	60				
REFEREN	CES					
1 R.K.Ra	iput, "Thermal Engineering", Laxmi Publications, New Delhi, Sixth edition, 2005					
	daraman C.P, Domkundwar and A.V. Domkundwar, "A course in The ering", Dhanpat Rai & Sons, Fifth Edition, 2002	ermal				
3 Holman	J.P. "Thermodynamics", McGraw-Hill, 1985.					
4 Arora C	P., "Refrigeration and Air conditioning", Tata McGraw-Hill, New Delhi, 1994					
	B.K., "Thermal Engineering", Tata McGraw-Hill, New Delhi New Delhi, 1998					
6 V.Gane	san, "Internal Combustion Engines", Tata McGraw-Hill, New Delhi, 1994					

		COMPUTER AIDED MANUFACTURING 3	0	0	10) 3
UN		CAD/CAM INTERFACE				5
As	sembly-	nds in Manufacturing Engineering-Group Technology-Design for M Total approach to product development-Concurrent Engineering-Ra n to CAD/CAM software packages.				
UN		FUNDAMENTALS OF CNC MACHINES				10
Сс	ontouring	nology-Functions of CNC Control in Machine Tools-Classification System-Interpolators, open loop and closed loop CNC systems- eatures-Direct Numerical Control (DNC systems).				
UN		CONSTRUCTIONAL FEATURES OF CNC MACHINES				8
me ho	embers-8 Iding de	onsiderations of CNC machines for improving machining ac Slide ways-Sides linear bearings-Ball screws-Spindle drives and evices and tool holding devices-Automatic Tool changers. Fe of Operation-Machining Centres-Tooling for CNC machines.		driv	es-v	vork
UN		PART PROGRAMMING FOR CNC MACHINES				10
Сс	mputer	control codes-Standards-Manual Programming-Canned cycles Assisted Programming, CAD/CAM approach to NC part programmir from 3D models.				
UN		COMPUTER AIDED PROCESS PLANNING AND DATA BASE F	OR C	AM		12
aic De mo da	ded proceevelopme odeling a ta base	anning - role of process planning in CAD/CAM integration - approa ess planning -variant approach and generative approaches. ent of databases -database terminology- architecture of databa and data associations -relational data bases - database operators and relational database. Emerging Challenges in CAD/CAN	ase s s - ac	yste Ivan	ms-o tage	data s of
THC	anageme				1	
		ent-Product Modeling-Assembly and Tolerance Modeling.	сти	RE	:	45
		ent-Product Modeling-Assembly and Tolerance Modeling.	ECTU TORI		:	45 -
		ent-Product Modeling-Assembly and Tolerance Modeling.		AL	:	45 - 45
RE	FEREN	ent-Product Modeling-Assembly and Tolerance Modeling. LE TU CES	TORI TOT	AL AL	:	- 45
1	Ibrahim	ent-Product Modeling-Assembly and Tolerance Modeling. LE TU CES a Zeid." CAD-CAM Theory and Practice", Tata McGraw-Hill Publishin	TORI TOT	AL AL		- 45 88.
	Ibrahim Mikell.F	ent-Product Modeling-Assembly and Tolerance Modeling. LE TU CES	TORI TOT	AL AL	: : ., 19 tegra	- 45 88.
1	Ibrahim Mikell.F manufa	ent-Product Modeling-Assembly and Tolerance Modeling. LE TU CES D Zeid." CAD-CAM Theory and Practice", Tata McGraw-Hill Publishin P.Groover "Automation, Production Systems and comp	TORI TOT ng Cc outer	AL AL 0.Ltd in	tegra	- 45 88. ated
1 2	Ibrahim Mikell.F manufa Yoram 1986.	ent-Product Modeling-Assembly and Tolerance Modeling. LE TU CES a Zeid." CAD-CAM Theory and Practice", Tata McGraw-Hill Publishin P.Groover "Automation, Production Systems and comp acturing", Pearson Education 2001.	TORI TOT ng Cc outer	AL AL 0.Ltd in	tegra	- 45 88. ated
1 2 3	Ibrahim Mikell.F manufa Yoram 1986. Mc Mal	ent-Product Modeling-Assembly and Tolerance Modeling. LE TU CES a Zeid." CAD-CAM Theory and Practice", Tata McGraw-Hill Publishin P.Groover "Automation, Production Systems and comp acturing", Pearson Education 2001. Koren," Computer Control of Manufacturing Systems", McGraw-Hill	TORI TOT ng Co outer Il Boo	AL AL in k C	tegra	- 45 88. ated
1 2 3 4	Ibrahim Mikell.F manufa Yoram 1986. Mc Mal P.Radh G.T.Sn	ent-Product Modeling-Assembly and Tolerance Modeling. LE TU CES a Zeid." CAD-CAM Theory and Practice", Tata McGraw-Hill Publishin P.Groover "Automation, Production Systems and comp acturing", Pearson Education 2001. Koren," Computer Control of Manufacturing Systems", McGraw-Hill hon and J.Browne, "CAD/CAM", Addison-Wesley, 1998	TORI TOT ng Cco outer Il Boo	AL AL in k Co 92	omp	- 45 88. ated any,

		DESIGN OF MACHINE ELEMENTS 3	2	0	100) [5
		(Common for Mechanical and Automobile Engineering)				
-	JNIT I	STEADY AND VARIABLE STRESSES				9
bas and var frai	sed on i d torsion rious loa me - Fac	n to the design process - factor influencing machine design, select mechanical properties, Fits and Tolerances, Preferred numbers – nal stress equations – Impact and shock loading – calculation of prin nd combinations, eccentric loading – Design of curved beams – cra- ctor of safety - theories of failure – stress concentration – design for rg, Goodman and Gerber relations.	- Dire nciple ane h	ect, stre nook	Bend esses and	ding foi 'C'
		DESIGN OF SHAFTS AND COUPLINGS				9
-		solid and hollow shafts based on strength, rigidity and critical speed	Da	oian	of	
and	d key v	vays - Design of rigid and flexible couplings – Introduction to couplings - design of knuckle joints.				
U		DESIGN OF FASTNERS AND WELDED JOINTS				9
		astners - Design of bolted joints including eccentric loading – Design e vessels and structures - theory of bonded joints. (Riveted joints - s				ints
U		DESIGN OF SPRINGS AND LEVERS				9
De	sian of	helical, leaf, disc and torsional springs under constant loads and				-
		torsion springs - Belleville springs – Design of Levers	i vary	ying	load	s -
Co			i vary	ying	load	s – 9
Co U De jou din	NIT V sign of t irnal bea	torsion springs - Belleville springs – Design of Levers DESIGN OF BEARINGS AND FLYWHEELS pearings – sliding contact and rolling contact types. – Cubic mean arings – Mckees equation – Lubrication in journal bearings – calcu s – Design of flywheels involving stresses in rim and arm.	load ulatio	– D	esig	g n o
Co U De jou din	NIT V sign of t irnal bea	torsion springs - Belleville springs – Design of Levers DESIGN OF BEARINGS AND FLYWHEELS bearings – sliding contact and rolling contact types. – Cubic mean arings – Mckees equation – Lubrication in journal bearings – calcu s – Design of flywheels involving stresses in rim and arm. of P S G Design Data Book is permitted in the University examinati	load ulatio ion)	– D n of	esig	g n of ring
Co U De jou din	NIT V sign of t irnal bea	torsion springs - Belleville springs - Design of Levers DESIGN OF BEARINGS AND FLYWHEELS bearings - sliding contact and rolling contact types Cubic mean arings - Mckees equation - Lubrication in journal bearings - calcu s - Design of flywheels involving stresses in rim and arm. of P S G Design Data Book is permitted in the University examinati LE	load ulatio ion)	– D n of RE	esig bea	9 9 9 1 1 1 1 1 1 1 1 1 1
Co U De jou din	NIT V sign of t irnal bea	torsion springs - Belleville springs – Design of Levers DESIGN OF BEARINGS AND FLYWHEELS pearings – sliding contact and rolling contact types. – Cubic mean arings – Mckees equation – Lubrication in journal bearings – calcu s – Design of flywheels involving stresses in rim and arm. of P S G Design Data Book is permitted in the University examinati LE TUT	load ulatio ion) CTU	– D n of <u>RE</u> AL	esig	9 n o ring 45 15
Co U De jou din No	NIT V sign of k irnal bea nensions te: (Use	torsion springs - Belleville springs - Design of Levers DESIGN OF BEARINGS AND FLYWHEELS Dearings - sliding contact and rolling contact types Cubic mean arings - Mckees equation - Lubrication in journal bearings - calcuse - Design of flywheels involving stresses in rim and arm. of P S G Design Data Book is permitted in the University examinati LE TUT	load ulatio ion)	– D n of <u>RE</u> AL	esig bea	! ! n o rinį 45
Co U De jou din No RE 1	NIT V sign of b irnal bea nensions te: (Use FEREN Norton	torsion springs - Belleville springs – Design of Levers DESIGN OF BEARINGS AND FLYWHEELS bearings – sliding contact and rolling contact types. – Cubic mean arings – Mckees equation – Lubrication in journal bearings – calcuse – Design of flywheels involving stresses in rim and arm. of P S G Design Data Book is permitted in the University examinati LE TUT CES R.L, "Design of Machinery", Tata McGraw-Hill Book Co, 2004.	load ulatio ion) CTU	– D n of <u>RE</u> AL	esig bea	45 15
Co U De jou din No RE 1 2	NIT V sign of k irnal bea nensions te: (Use FEREN Norton Orthwe	torsion springs - Belleville springs – Design of Levers DESIGN OF BEARINGS AND FLYWHEELS Dearings – sliding contact and rolling contact types. – Cubic mean arings – Mckees equation – Lubrication in journal bearings – calcuse – Design of flywheels involving stresses in rim and arm. of P S G Design Data Book is permitted in the University examinati LE TUT CES R.L, "Design of Machinery", Tata McGraw-Hill Book Co, 2004. in W, "Machine Component Design", Jaico Publishing Co, 2003.	load ulatio ion) CTU TORI TOT	– D n of RE AL AL	esig bea	45 15
Co De jou din No RE 1 2	NIT V sign of k irnal bea nensions te: (Use FEREN Norton Orthwe	torsion springs - Belleville springs – Design of Levers DESIGN OF BEARINGS AND FLYWHEELS bearings – sliding contact and rolling contact types. – Cubic mean arings – Mckees equation – Lubrication in journal bearings – calcuse – Design of flywheels involving stresses in rim and arm. of P S G Design Data Book is permitted in the University examinati LE TUT CES R.L, "Design of Machinery", Tata McGraw-Hill Book Co, 2004.	load ulatio ion) CTU TORI TOT	– D n of RE AL AL	esig bea	15
Co U De jou din No RE 1 2 3	NIT V sign of b irnal bea nensions te: (Use FEREN Norton Orthwe Ugural	torsion springs - Belleville springs – Design of Levers DESIGN OF BEARINGS AND FLYWHEELS Dearings – sliding contact and rolling contact types. – Cubic mean arings – Mckees equation – Lubrication in journal bearings – calcuse – Design of flywheels involving stresses in rim and arm. of P S G Design Data Book is permitted in the University examinati LE TUT CES R.L, "Design of Machinery", Tata McGraw-Hill Book Co, 2004. in W, "Machine Component Design", Jaico Publishing Co, 2003.	load ulatio ion) iCTU TORI TOT	– D n of RE AL 200	esig bea	45 15
Co U De jou dim No RE 1 2 3 4 ST	NIT V sign of b irnal bea nensions te: (Use FEREN Norton Orthwe Ugural Spotts ANDAR	torsion springs - Belleville springs – Design of Levers DESIGN OF BEARINGS AND FLYWHEELS Dearings – sliding contact and rolling contact types. – Cubic mean arings – Mckees equation – Lubrication in journal bearings – calcu s – Design of flywheels involving stresses in rim and arm. of P S G Design Data Book is permitted in the University examinati LE TUT CES R.L, "Design of Machinery", Tata McGraw-Hill Book Co, 2004. in W, "Machine Component Design", Jaico Publishing Co, 2003. A.C, "Mechanical Design – An Integral Approach, McGraw-Hill Book M.F., Shoup T.E "Design and Machine Elements" Pearson Educatio DS 60: Part 1: 1982 Terms, definitions and classification of Plain	load ulatio ion) :CTU TORI TOT x Co, on, 20	– D n of RE AL 200 004.	lesig bea	45 60
Co U De jou din No RE 1 2 3 4	NIT V sign of k irnal bea nensions te: (Use EFEREN Norton Orthwe Ugural Spotts ANDAR IS 102 Constru	torsion springs - Belleville springs - Design of Levers DESIGN OF BEARINGS AND FLYWHEELS Dearings - sliding contact and rolling contact types Cubic mean arings - Mckees equation - Lubrication in journal bearings - calcu s - Design of flywheels involving stresses in rim and arm. of P S G Design Data Book is permitted in the University examinati LE TUT CES R.L, "Design of Machinery", Tata McGraw-Hill Book Co, 2004. in W, "Machine Component Design", Jaico Publishing Co, 2003. A.C, "Mechanical Design - An Integral Approach, McGraw-Hill Book M.F., Shoup T.E "Design and Machine Elements" Pearson Educatio DS 60: Part 1: 1982 Terms, definitions and classification of Plain bearing	load ulatio ion) CTU TORI TOT	- D n of RE AL AL 200 004.	esig bea : : : 4.	45 15 60

TOTAL : 60 REFERENCES 1 Rattan S.S, "Theory of Machines", Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007. 2 Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", New Age International, New Delhi, 2007. 3 Thomas Bevan, "Theory of Machines" CBS Publishers and Distributers, 1984. 4 Ballaney.P.L "Theory of Machines", Khanna Publishers,1990. 5 Shigley J.E. and Uicker J.J., "Theory of Machines and Mechanisms", McGraw-Hill, Inc., 1995. 6 Sadhu Singh "Theory of Machines", Pearson Education, 2002.		DYNAMICS OF MACHINERY 3 2 0 100 5
Applied and constraint forces-static equilibrium conditions-two, three force members - equations of motion - dynamic force analysis - Inertia force and inertia torque - D'Alemberts - gas forces - equivalent masses - bearing loads - crank shaft torque - turning moment diagrams - fly wheels - Coefficient of fluctuation of energy and speed Weight of flywheel required UNIT II BALANCING 9 Static and dynamic balancing - balancing of rotating masses - balancing of single and multi-cylinder engines - balancing of reciprocating masses - patial balancing in locomotive engines - balancing of reciprocating masses - patial balancing in locomotive engines - balancing force Gyroscopes - gyroscopic offeces and torques - gyroscopic stabilization - controlling force Gyroscopes - gyroscopic frees and torques - gyroscopic stabilization - gyroscopic effects in automobiles, ships and airplanes 9 UNIT IV LONGITUDINAL VIBRATION 9 Undamped free vibration of single degree of freedom system - simple pendulum, compound pendulum, series, springs in parallel and combinations. Damped free vibration or single degree of freedom system. types of damping-viscous damping, critically damped, under damsed system. Logarithmic decrement. Forced vibration of single degree of freedom system wibrations of beams-natural frequency- energy method - Dunkerly''s method. critical speed - whiriing of shafts. 9 Torsional systems. Holzer's method, Signature Analysis. 9 Intro V TRANSVERSE AND TORSIONAL VIBRATIONS 9 Torsional systems - natural frequency of two and three rotor systems, equivalent shafts, geared systems. Holzer's method, Signature Analysis. <	1	
Static and dynamic balancing - balancing of rotating masses - balancing of single and multi- cylinder engines - balancing of reciprocating masses- partial balancing in locomotive engines - balancing linkages - balancing machines-inline and V-engines UNIT III CONTROL MECHANISMS 9 Governors - types - centrifugal governors - gravity controlled and spring controlled centrifugal governors - types - centrifugal governors - gravity controlled and spring controlled centrifugal governors - types - centrifugal governors - gravity controlled and spring controlled centrifugal governors - types - centrifugal governors - gravity controlled and spring controlled centrifugal governors - types - centrifugal governors - gravity controlled and spring controlled centrifugal governors - types - gyroscopic forces and torques - gyroscopic stabilization - gyroscopic effects in automobiles, ships and airplanes 9 UNIT IV LONGITUDINAL VIBRATION 9 Undamped free vibration of single degree of freedom system- single degree of freedom system, types of damping-viscous damping, critically damped, under damped system. Logarithmic decrement. Forced vibration of single degree of freedom system- constant harmonic excitation, steady state vibration, magnification factor, vibration isolation and transmissibility. 9 Transverse vibrations of beams-natural frequency - energy method - Dunkerly''s method. critical speed – whirling of shafts. 9 Torsional systems- natural frequency of two and three rotor systems, equivalent shafts, geared systems, Holzer's method, Signature Analysis. 1 RefERENCES 1 Rattan S.S, "Theory of Machines", Tata McGraw-Hi	Ap eq pri for	plied and constraint forces-static equilibrium conditions-two, three force members – uations of motion - dynamic force analysis - inertia force and inertia torque – D'Alemberts nciple - the principle of superposition - dynamic analysis in reciprocating engines – gas ces - equivalent masses - bearing loads - crank shaft torque - turning moment diagrams - fly
cylinder engines - balancing of reciprocating masses- partial balancing in locomotive engines - balancing linkages - balancing machines-inline and V-engines UNIT III CONTROL MECHANISMS 9 Governors - types - centrifugal governors - gravity controlled and spring controlled centrifugal governors characteristics – stability- sensitiveness-hunting, isochronisms-effect of friction - controlling force Gyroscopes - gyroscopic forces and torques - gyroscopic stabilization - gyroscopic effects in automobiles, ships and airplanes 9 UNIT IV LONGITUDINAL VIBRATION 9 Undamped free vibration of single degree of freedom system- simple pendulum, compound pendulum -springs in series, springs in parallel and combinations. Damped free vibration of single degree of freedom system, types of damping-viscous damping, critically damped, under damped system. Logarithmic decrement. Forced vibration of single degree of freedom system-constant harmonic excitation, steady state vibration, magnification factor, vibration isolation and transmissibility. 9 Transverse vibrations of beams-natural frequency- energy method - Dunkerly's method. critical speed –whirling of shafts. 9 Tortal 15 15 Tortal 160 ReFERENCES 1 1 Rattan S.S, "Theory of Machines", Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007. 2 Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", New Age International, New Delhi, 2007. 3 Thomas Bevan, "Theory of Machines	U	INIT II BALANCING 9
Governors - types - centrifugal governors - gravity controlled and spring controlled centrifugal governors characteristics – stability- sensitiveness-hunting, isochronisms-effect of friction - controlling force Gyroscopes - gyroscopic forces and torques - gyroscopic stabilization - gyroscopic effects in automobiles, ships and airplanes UNIT IV LONGITUDINAL VIBRATION 9 Undamped free vibration of single degree of freedom system- simple pendulum, compound pendulum -springs in series, springs in parallel and combinations. Damped free vibration of single degree of freedom system, types of damping-viscous damping, critically damped, under damped system. Logarithmic decrement. Forced vibration of single degree of freedom system-constant harmonic excitation, steady state vibration, magnification factor, vibration isolation and transmissibility. 9 Transverse vibrations of beams-natural frequency- energy method - Dunkerly's method. critical speed –whirling of shafts. 9 Torsional systems- natural frequency of two and three rotor systems, equivalent shafts, geared systems, Holzer's method, Signature Analysis. 1 Rattan S.S, "Theory of Machines", Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007. 1 2 Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", New Age International, New Delhi, 2007. 3 Thomas Bevan, "Theory of Machines" CBS Publishers and Distributers, 1984. 4 Ballaney.P.L "Theory of Machines", Pearson Education, 2002. 5 5 Shigley J.E. and Uicker J.J., "Theory of Machines and Mechanisms", McGraw-Hill, Inc., 199	cyl	inder engines - balancing of reciprocating masses- partial balancing in locomotive engines -
Governors - types - centrifugal governors - gravity controlled and spring controlled centrifugal governors characteristics – stability- sensitiveness-hunting, isochronisms-effect of friction - controlling force Gyroscopes - gyroscopic forces and torques - gyroscopic stabilization - gyroscopic effects in automobiles, ships and airplanes UNIT IV LONGITUDINAL VIBRATION 9 Undamped free vibration of single degree of freedom system- simple pendulum, compound pendulum -springs in series, springs in parallel and combinations. Damped free vibration of single degree of freedom system, types of damping-viscous damping, critically damped, under damped system. Logarithmic decrement. Forced vibration of single degree of freedom system-constant harmonic excitation, steady state vibration, magnification factor, vibration isolation and transmissibility. 9 Transverse vibrations of beams-natural frequency- energy method - Dunkerly's method. critical speed –whirling of shafts. 9 Torsional systems- natural frequency of two and three rotor systems, equivalent shafts, geared systems, Holzer's method, Signature Analysis. 1 Rattan S.S, "Theory of Machines", Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007. 1 2 Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", New Age International, New Delhi, 2007. 3 Thomas Bevan, "Theory of Machines" CBS Publishers and Distributers, 1984. 4 Ballaney.P.L "Theory of Machines", Pearson Education, 2002. 5 5 Shigley J.E. and Uicker J.J., "Theory of Machines and Mechanisms", McGraw-Hill, Inc., 199	U	NIT III CONTROL MECHANISMS 9
Undamped free vibration of single degree of freedom system- simple pendulum, compound pendulum -springs in series, springs in parallel and combinations. Damped free vibration of single degree of freedom system, types of damping-viscous damping, critically damped, under damped system. Logarithmic decrement. Forced vibration of single degree of freedom system-constant harmonic excitation, steady state vibration, magnification factor, vibration isolation and transmissibility. UNIT V TRANSVERSE AND TORSIONAL VIBRATIONS 9 Transverse vibrations of beams-natural frequency- energy method - Dunkerly's method. critical speed –whirling of shafts. 9 Torsional systems- natural frequency of two and three rotor systems, equivalent shafts, geared systems, Holzer's method, Signature Analysis. 9 REFERENCES 1 Rattan S.S, "Theory of Machines", Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007. 2 Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", New Age International, New Delhi, 2007. 3 Thomas Bevan, "Theory of Machines" CBS Publishers and Distributers, 1984. 4 Ballaney.P.L. "Theory of Machines", Khanna Publishers,1990. 5 Shigley J.E. and Uicker J.J., "Theory of Machines", Pearson Education, 2002. 6 Sadhu Singh "Theory of Machines", Pearson Education, 2002. 7 Rao J.S and Gupta.K,"Introduction course on theory and practice of Mechanical	go co	vernors characteristics – stability- sensitiveness-hunting, isochronisms-effect of friction - ntrolling force Gyroscopes - gyroscopic forces and torques - gyroscopic stabilization -
Undamped free vibration of single degree of freedom system- simple pendulum, compound pendulum -springs in series, springs in parallel and combinations. Damped free vibration of single degree of freedom system, types of damping-viscous damping, critically damped, under damped system. Logarithmic decrement. Forced vibration of single degree of freedom system-constant harmonic excitation, steady state vibration, magnification factor, vibration isolation and transmissibility. UNIT V TRANSVERSE AND TORSIONAL VIBRATIONS 9 Transverse vibrations of beams-natural frequency- energy method - Dunkerly's method. critical speed –whirling of shafts. 9 Torsional systems- natural frequency of two and three rotor systems, equivalent shafts, geared systems, Holzer's method, Signature Analysis. 9 REFERENCES 1 Rattan S.S, "Theory of Machines", Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007. 2 Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", New Age International, New Delhi, 2007. 3 Thomas Bevan, "Theory of Machines" CBS Publishers and Distributers, 1984. 4 Ballaney.P.L. "Theory of Machines", Khanna Publishers,1990. 5 Shigley J.E. and Uicker J.J., "Theory of Machines", Pearson Education, 2002. 6 Sadhu Singh "Theory of Machines", Pearson Education, 2002. 7 Rao J.S and Gupta.K,"Introduction course on theory and practice of Mechanical	U	NIT IV I ONGITUDINAL VIBRATION 9
Transverse vibrations of beams-natural frequency- energy method - Dunkerly's method. critical speed –whirling of shafts. Torsional systems- natural frequency of two and three rotor systems, equivalent shafts, geared systems, Holzer's method, Signature Analysis. LECTURE : 45 TUTORIAL : 15 TUTORIAL : 15 TOTAL : 60 REFERENCES 1 Rattan S.S, "Theory of Machines", Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007. 2 Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", New Age International, New Delhi, 2007. 3 Thomas Bevan, "Theory of Machines" CBS Publishers and Distributers, 1984. 4 Ballaney.P.L "Theory of Machines", Khanna Publishers, 1990. 5 Shigley J.E. and Uicker J.J., "Theory of Machines and Mechanisms", McGraw-Hill, Inc., 1995. 6 Sadhu Singh "Theory of Machines", Pearson Education, 2002. 7 Rao J.S and Gupta.K,"Introduction course on theory and practice of Mechanical	pe sin da co	ndulum -springs in series, springs in parallel and combinations. Damped free vibration of igle degree of freedom system, types of damping-viscous damping, critically damped, under mped system. Logarithmic decrement. Forced vibration of single degree of freedom system- nstant harmonic excitation, steady state vibration, magnification factor, vibration isolation and
Transverse vibrations of beams-natural frequency- energy method - Dunkerly's method. critical speed –whirling of shafts. Torsional systems- natural frequency of two and three rotor systems, equivalent shafts, geared systems, Holzer's method, Signature Analysis. LECTURE : 45 TUTORIAL : 15 TUTORIAL : 15 TOTAL : 60 REFERENCES 1 Rattan S.S, "Theory of Machines", Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007. 2 Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", New Age International, New Delhi, 2007. 3 Thomas Bevan, "Theory of Machines" CBS Publishers and Distributers, 1984. 4 Ballaney.P.L "Theory of Machines", Khanna Publishers, 1990. 5 Shigley J.E. and Uicker J.J., "Theory of Machines and Mechanisms", McGraw-Hill, Inc., 1995. 6 Sadhu Singh "Theory of Machines", Pearson Education, 2002. 7 Rao J.S and Gupta.K,"Introduction course on theory and practice of Mechanical	U	NIT V TRANSVERSE AND TORSIONAL VIBRATIONS 9
TUTORIAL : 15 TOTAL : 60 REFERENCES 1 Rattan S.S, "Theory of Machines", Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007. 2 Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", New Age International, New Delhi, 2007. 3 Thomas Bevan, "Theory of Machines" CBS Publishers and Distributers, 1984. 4 Ballaney.P.L. "Theory of Machines", Khanna Publishers, 1990. 5 Shigley J.E. and Uicker J.J., "Theory of Machines and Mechanisms", McGraw-Hill, Inc., 1995. 6 Sadhu Singh "Theory of Machines", Pearson Education, 2002. 7 Rao J.S and Gupta.K,"Introduction course on theory and practice of Mechanical	Tra sp To	ansverse vibrations of beams-natural frequency- energy method - Dunkerly's method. critical eed –whirling of shafts. rsional systems- natural frequency of two and three rotor systems, equivalent shafts, geared
TUTORIAL : 15 TOTAL : 60 REFERENCES 1 Rattan S.S, "Theory of Machines", Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007. 2 Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", New Age International, New Delhi, 2007. 3 Thomas Bevan, "Theory of Machines" CBS Publishers and Distributers, 1984. 4 Ballaney.P.L. "Theory of Machines", Khanna Publishers, 1990. 5 Shigley J.E. and Uicker J.J., "Theory of Machines and Mechanisms", McGraw-Hill, Inc., 1995. 6 Sadhu Singh "Theory of Machines", Pearson Education, 2002. 7 Rao J.S and Gupta.K,"Introduction course on theory and practice of Mechanical		
 Rattan S.S, "Theory of Machines", Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007. Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", New Age International, New Delhi, 2007. Thomas Bevan, "Theory of Machines" CBS Publishers and Distributers, 1984. Ballaney.P.L "Theory of Machines", Khanna Publishers,1990. Shigley J.E. and Uicker J.J., "Theory of Machines and Mechanisms", McGraw-Hill, Inc., 1995. Sadhu Singh "Theory of Machines", Pearson Education, 2002. Rao J.S and Gupta.K,"Introduction course on theory and practice of Mechanical 		TUTORIAL : 15
 Rattan S.S, "Theory of Machines", Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007. Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", New Age International, New Delhi, 2007. Thomas Bevan, "Theory of Machines" CBS Publishers and Distributers, 1984. Ballaney.P.L "Theory of Machines", Khanna Publishers,1990. Shigley J.E. and Uicker J.J., "Theory of Machines and Mechanisms", McGraw-Hill, Inc., 1995. Sadhu Singh "Theory of Machines", Pearson Education, 2002. Rao J.S and Gupta.K,"Introduction course on theory and practice of Mechanical 	RF	FERENCES
 Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", New Age International, New Delhi, 2007. Thomas Bevan, "Theory of Machines" CBS Publishers and Distributers, 1984. Ballaney.P.L "Theory of Machines", Khanna Publishers,1990. Shigley J.E. and Uicker J.J., "Theory of Machines and Mechanisms", McGraw-Hill, Inc., 1995. Sadhu Singh "Theory of Machines", Pearson Education, 2002. Rao J.S and Gupta.K,"Introduction course on theory and practice of Mechanical 		Rattan S.S, "Theory of Machines", Tata McGraw-Hill Publishing Company Ltd., New Delhi,
 3 Thomas Bevan, "Theory of Machines" CBS Publishers and Distributers, 1984. 4 Ballaney.P.L "Theory of Machines", Khanna Publishers,1990. 5 Shigley J.E. and Uicker J.J., "Theory of Machines and Mechanisms", McGraw-Hill, Inc., 1995. 6 Sadhu Singh "Theory of Machines", Pearson Education, 2002. 7 Rao J.S and Gupta.K,"Introduction course on theory and practice of Mechanical 	2	Rao J.S and Dukkipati R.V, "Mechanism and Machine Theory", New Age International, New
 Ballaney.P.L "Theory of Machines", Khanna Publishers,1990. Shigley J.E. and Uicker J.J., "Theory of Machines and Mechanisms", McGraw-Hill, Inc., 1995. Sadhu Singh "Theory of Machines", Pearson Education, 2002. Rao J.S and Gupta.K,"Introduction course on theory and practice of Mechanical 	3	
 6 Sadhu Singh "Theory of Machines", Pearson Education, 2002. 7 Rao J.S and Gupta.K,"Introduction course on theory and practice of Mechanical 	4	Ballaney.P.L "Theory of Machines", Khanna Publishers, 1990. Shigley J.E. and Uicker J.J., "Theory of Machines and Mechanisms", McGraw-Hill, Inc.,
7 Rao J.S and Gupta.K,"Introduction course on theory and practice of Mechanical	6	Sadhu Singh "Theory of Machines", Pearson Education, 2002.
	7	Rao J.S and Gupta.K,"Introduction course on theory and practice of Mechanical

	HYDRAULICS AND PNEUMATIC SYSTEMS30			
	FLUID POWER SYSTEMS AND FUNDAMENTALS			9
Introductio of fluid po symbols. Basics of	bon to fluid power, Advantages of fluid power, Application of fluid power sy ower systems, Properties of hydraulic fluids – General types of fluids – Hydraulics-Applications of Pascals Law- Laminar and Turbulent flow Darcy's equation – Losses in pipe, valves and fittings.	Flui	d po	/pes
UNIT II	HYDRAULIC SYSTEM AND COMPONENTS			9
piston pum pumps. Fluid Powe Double ac	f Hydraulic Power: Pumping theory – Pump classification – Gear pump, V np, construction and working of pumps – pump performance – Variable di er Actuators: Linear hydraulic actuators – Types of hydraulic cylinders – S cting special cylinders like tanden, Rodless, Telescopic, Cushioning on of double acting cylinder, Rotary actuators – Fluid motors, Gear, Van	ispla Singl mec	cem e ac chan	ent ting ism
Shuttle va valve, Flov	DESIGN OF HYDRAULIC CIRCUITS on of Control Components : Director control valve – 3/2 way valve – 4/2 alve – check valve – pressure control valve – pressure reducing valv w control valve – Fixed and adjustable, electrical control solenoid val	e, se	eque	ve ·
Construction Shuttle van valve, Flow ladder diag Accumulat accumulat	on of Control Components : Director control valve – 3/2 way valve – 4/2 alve – check valve – pressure control valve – pressure reducing valv w control valve – Fixed and adjustable, electrical control solenoid val gram. tors and Intensifiers: Types of accumulators – Accumulators circuit tors, intensifier – Applications of Intensifier – Intensifier circuit.	e, se ves,	eque Rel	ye ence ays
Construction Shuttle van valve, Flow ladder diag Accumulate accumulate	on of Control Components : Director control valve – 3/2 way valve – 4/2 alve – check valve – pressure control valve – pressure reducing valv w control valve – Fixed and adjustable, electrical control solenoid val gram. tors and Intensifiers: Types of accumulators – Accumulators circuit tors, intensifier – Applications of Intensifier – Intensifier circuit.	ts, s	eque Rel sizinç	ye enc ays g c g
Construction Shuttle van valve, Flow ladder diag Accumulate accumulate UNIT IV Pneumatice Air control Fluid Pow	on of Control Components : Director control valve – 3/2 way valve – 4/2 alve – check valve – pressure control valve – pressure reducing valv w control valve – Fixed and adjustable, electrical control solenoid val gram. tors and Intensifiers: Types of accumulators – Accumulators circuit tors, intensifier – Applications of Intensifier – Intensifier circuit.	ricato	eque Rel sizinç or Ui	yve ence ays g c 9 nit
Construction Shuttle van valve, Flow ladder diag Accumulate accumulate UNIT IV Pneumatice Air control Fluid Pow	on of Control Components : Director control valve – 3/2 way valve – 4/2 alve – check valve – pressure control valve – pressure reducing valv w control valve – Fixed and adjustable, electrical control solenoid val gram. tors and Intensifiers: Types of accumulators – Accumulators circuit tors, intensifier – Applications of Intensifier – Intensifier circuit. PNEUMATIC SYSTEMS AND COMPONENTS c Components: Properties of air – Compressors – Filter, Regulator, Lubr valves, Quick exhaust valves, pneumatic actuators. <i>y</i> er Circuit Design, Speed control circuits, synchronizing circuit, Penur	ricato	eque Rel sizinç or Ui	ye - enca ays g c g nit - auli
Construction Shuttle valve, Flow ladder diag Accumulat accumulate UNIT IV Pneumatic Air control Fluid Pow circuit, Sector UNIT V Servo sys proportiona Fluidics – Pneumatic	 on of Control Components : Director control valve – 3/2 way valve – 4/2 alve – check valve – pressure control valve – pressure reducing valve w control valve – Fixed and adjustable, electrical control solenoid val gram. tors and Intensifiers: Types of accumulators – Accumulators circuit tors, intensifier – Applications of Intensifier – Intensifier circuit. PNEUMATIC SYSTEMS AND COMPONENTS c Components: Properties of air – Compressors – Filter, Regulator, Lubral valves, Quick exhaust valves, pneumatic actuators. ver Circuit Design, Speed control circuits, synchronizing circuit, Penur quential circuit design for simple applications using cascade method. DESIGN OF PNEUMATIC CIRCUITS stems – Hydro Mechanical servo systems, Electro hydraulic servo server serve	ricato mo h	eque Rel sizino or Ui nydra	ye ance ays ays g c 9 nit auli 9 ance auli
Construction Shuttle valve, Flow ladder diag Accumulat accumulate UNIT IV Pneumatic Air control Fluid Pow circuit, Sec UNIT V Servo sys proportiona Fluidics – Pneumatic	 on of Control Components : Director control valve – 3/2 way valve – 4/2 alve – check valve – pressure control valve – pressure reducing valve w control valve – Fixed and adjustable, electrical control solenoid val gram. tors and Intensifiers: Types of accumulators – Accumulators circuit tors, intensifier – Applications of Intensifier – Intensifier circuit. PNEUMATIC SYSTEMS AND COMPONENTS c Components: Properties of air – Compressors – Filter, Regulator, Lubratives, Quick exhaust valves, pneumatic actuators. ver Circuit Design, Speed control circuits, synchronizing circuit, Penur quential circuit design for simple applications using cascade method. DESIGN OF PNEUMATIC CIRCUITS stems – Hydro Mechanical servo systems, Electro hydraulic servo serve sal valves. Introduction to fluidic devices, simple circuits, Introduction to Elect c logic circuits, ladder diagrams, PLC applications in fluid power control. 	e, so ves, ts, s ricato mo h syste	eque Rel sizino or Ui nydra	g o 9 nit - auli- auli- auli- owe
Construction Shuttle valve, Flow ladder diag Accumulat accumulate UNIT IV Pneumatic Air control Fluid Pow circuit, Sec UNIT V Servo sys proportiona Fluidics – Pneumatic	 In the control Components : Director control valve – 3/2 way valve – 4/2 valve – check valve – pressure control valve – pressure reducing valve w control valve – Fixed and adjustable, electrical control solenoid val gram. Itors and Intensifiers: Types of accumulators – Accumulators circuit tors, intensifier – Applications of Intensifier – Intensifier circuit. PNEUMATIC SYSTEMS AND COMPONENTS C Components: Properties of air – Compressors – Filter, Regulator, Lubral valves, Quick exhaust valves, pneumatic actuators. Ver Circuit Design, Speed control circuits, synchronizing circuit, Penur quential circuit design for simple applications using cascade method. DESIGN OF PNEUMATIC CIRCUITS Stems – Hydro Mechanical servo systems, Electro hydraulic servo se al valves. Introduction to fluidic devices, simple circuits, Introduction to Elect c logic circuits, ladder diagrams, PLC applications in fluid power control. ilure and troubleshooting. 	ricato mo h syste	eque Rel sizino or Ui nydra	ence ays g o <u>9</u> nit - auli and auli

TE	EXT BOOKS
1	Anthony Esposito, "Fluid Power with Applications", Pearson Education 2000
2	Majumdar S.R., "Oil Hydraulics", Tata McGraw-Hill, 2000.
RE	FERENCES
1	Majumdar S.R., "Pneumatic systems – Principles and maintenance", Tata McGraw Hill, 1995
2	Anthony Lal, "Oil hydraulics in the service of industry", Allied publishers, 1982.
3	Harry L. Stevart D.B, "Practical guide to fluid power", Taraoeala sons and Port Ltd. Broadey, 1976
4	Michael J, Prinches and Ashby J. G, "Power Hydraulics", Prentice Hall, 1989.
5	Dudelyt, A. Pease and John T. Pippenger, "Basic Fluid Power", Prentice Hall, 1987.

	COMPOSITE MATERIALS 3	0	0	100	3
	(Common for Mechanical and Automobile Engineering)				
UNIT I	INTRODUCTION				9
Definition	 Classification of Composite materials based on structure es of composites – application of composites – functional requirer 				natrix
Applicatio	ment types – Fibres – continuous, particulate and whisker reinford ons – Comparison of fibre strengths –. Matrix materials – Propertie y fibre with matrix – Effect of surface roughness – Interfacial bondi	s.	ents	– Prope	erties
	REINFORCEMENTS AND MATRICES				9
Kevlar fib	types of fibers - Manufacturing , properties and applications of glas ers. Thermoset and thermoplastic matrices - properties of polyeste , polypropylene and PEEK matrices				
	MANUFACTURING OF ADVANCED COMPOSITES				9
	matrix composites: Preparation of Moulding compounds and pre- - Autoclave method – Filament winding method – Compression noulding.				
	MECHANICS OF LAMINATED COMPOSITES				9
	ain relationship for anisotropic and orthotropic materials - Rule	ot iv	lixtu	res - Inv	
orthoptrop laminar s	s of orthotropic laminates – strength of an orthotropic lamina bic lamina - macro mechanical behavior of laminates - classical l tresses.		failu	ire crite	eria o
laminar s	bic lamina - macro mechanical behavior of laminates - classical l tresses.		failu	ire crite	eria o - inte
laminar s UNIT V Fatigue - composite	 bic lamina - macro mechanical behavior of laminates - classical latresses. COMPOSITE STRUCTURES S-N curves - Fatigue behaviors of CMCs - Fatigue of particle a lass - Hybrid composites - Thermal fatigue. 	amii	failu nate whis	ire crite theory - ker rein	eria c - inte 9 force
laminar s UNIT V Fatigue - composite Introducti	 bic lamina - macro mechanical behavior of laminates - classical latresses. COMPOSITE STRUCTURES S-N curves – Fatigue behaviors of CMCs – Fatigue of particle a 	amii and mina	failunate	theory -	eria o - inte 9 forceo
laminar s UNIT V Fatigue - composite Introducti	 bic lamina - macro mechanical behavior of laminates - classical latresses. COMPOSITE STRUCTURES S-N curves - Fatigue behaviors of CMCs - Fatigue of particle a es - Hybrid composites - Thermal fatigue. on to structures - selection of material, manufacturing and lar 	amii and mina e op	failu nate whis timiz	theory -	eria o - inte 9 forceo
laminar s UNIT V Fatigue - composite Introducti	 bic lamina - macro mechanical behavior of laminates - classical latresses. COMPOSITE STRUCTURES S-N curves – Fatigue behaviors of CMCs – Fatigue of particle a es – Hybrid composites – Thermal fatigue. on to structures - selection of material, manufacturing and lar joints - bonded joints - bolted joints - bonded and bolted – laminate 	and and e op	failunate whis timiz	ker reint ker reint	eria o - inte 9 forceo ation
laminar s UNIT V Fatigue - composite Introducti	bic lamina - macro mechanical behavior of laminates - classical l tresses. COMPOSITE STRUCTURES - S-N curves – Fatigue behaviors of CMCs – Fatigue of particle a es – Hybrid composites – Thermal fatigue. on to structures - selection of material, manufacturing and lar joints - bonded joints - bolted joints - bonded and bolted – laminate LEC TUT	and and e op	failunate whis timiz	ker reint ker reint	eria o - inte 9 forceo ation
laminar s UNIT V Fatigue - composite Introducti design of	bic lamina - macro mechanical behavior of laminates - classical latresses. COMPOSITE STRUCTURES - S-N curves – Fatigue behaviors of CMCs – Fatigue of particle a es – Hybrid composites – Thermal fatigue. on to structures - selection of material, manufacturing and lar joints - bonded joints - bolted joints - bonded and bolted – laminate LEC TUT	and mina e op CTU	failunate whis timiz	ker reint ker reint	eria c - inte 9 forced ation 4
Iaminar s UNIT V Fatigue - composite Introducti design of REFERE 1 Mallic	bic lamina - macro mechanical behavior of laminates - classical latresses. COMPOSITE STRUCTURES - S-N curves – Fatigue behaviors of CMCs – Fatigue of particle a es – Hybrid composites – Thermal fatigue. on to structures - selection of material, manufacturing and lar joints - bonded joints - bolted joints - bonded and bolted – laminate LEC TUT NCES: k, P.K., "Fiber Reinforced Composites: Materials, Manufacturin	and mina e op CTU ORI.	failunate whis te c timiz RE AL AL	ker reint configura configura	eria o - inte 9 forced ation 4!
Iaminar s UNIT V Fatigue - composite Introducti design of REFERE 1 Mallic Editio 2 Agarw	bic lamina - macro mechanical behavior of laminates - classical latresses. COMPOSITE STRUCTURES - S-N curves – Fatigue behaviors of CMCs – Fatigue of particle a es – Hybrid composites – Thermal fatigue. on to structures - selection of material, manufacturing and lar joints - bonded joints - bolted joints - bonded and bolted – laminate LEC TUT NCES:	amin and mina e op CTUI ORI. COT.	failunate whis ite c timiz RE AL AL nd [ker rein configura configura cation.	ria c - inte 9 forced ation 4: 4: 4: 5
Iaminar s UNIT V Fatigue - composite Introducti design of REFERE 1 Mallic Editio 2 Agarw Wiley 3 Autar	bic lamina - macro mechanical behavior of laminates - classical latresses. COMPOSITE STRUCTURES - S-N curves – Fatigue behaviors of CMCs – Fatigue of particle a es – Hybrid composites – Thermal fatigue. on to structures - selection of material, manufacturing and lar joints - bonded joints - bolted joints - bonded and bolted – laminate	amin and mina e op CTUI ORI. COT. g al er C	failunate whis ite c timiz RE AL AL nd [ker rein configura configura cation.	ria c - inte 9 forced ation 4: 4: 4: 5
Iaminar s UNIT V Fatigue - composite Introducti design of REFERE 1 Mallic Editio 2 Agarw Wiley 3 Autar 4 Robei	bic lamina - macro mechanical behavior of laminates - classical latresses. COMPOSITE STRUCTURES - S-N curves – Fatigue behaviors of CMCs – Fatigue of particle a es – Hybrid composites – Thermal fatigue. on to structures - selection of material, manufacturing and lar joints - bonded joints - bolted joints - bonded and bolted – laminate LEC TUT NCES: k, P.K., "Fiber Reinforced Composites: Materials, Manufacturin n, Marcel Dekker Inc, 2007. ral, B.D., and Broutman L.J., "Analysis and Performance of Fib and Sons, 2006.	amina and mina e op CTUI ORI. FOT	failunate whis te c timiz RE AL AL Comp 999	ker reinter ker reinter configuration.	ria c - inte 9 forced ation 4: 4: 4: 5

	THERMAL ENGINEERING LABORATORY	0	0	3	100
1	Study of IC Engines				
2	Valve Timing and Port Timing Diagrams.				
3	Performance Test on 4-stroke Diesel Engine.				
4	Heat Balance Test on 4-stroke Diesel Engine.				
5	Morse Test on Multi cylinder Petrol Engine.				
6	Retardation Test to find Frictional Power of a Diesel Engine.				
7	Study of Steam Boilers and Turbines.				
8	Determination of Viscosity using Red Wood Viscometer.				
9	Determination of Flash Point and Fire Point.				
10	Performance Test on Steam Turbine.				
11	Performance test on reciprocating air compressor				
12	Performance test on centrifugal blower				

	KINEMATICS & DYNAMICS LABORATORY	0	0	3	100	
LIST	F OF EXPERIMENTS					
1	Kinematics of 4 bar mechanisms – Slider crank and Crank Rocker Determination of velocity and acceleration.	r Me	echa	nism	-	
2	Kinematics of Universal Joints - Determination of velocity and acc	cele	ratio	n		
3	Kinematics of Gear Trains – Simple, Compound, Epi-cyclic and Di Determination of velocity ratio and Torque	iffer	entia	al :		
4	Governors - Determination of sensitivity, effort, etc. for Watt, Porte controlled Governors	ər, F	Proel	l, Sp	ring	
5	Cam – Determination of jump speed and profile of the cam.					
6	Motorized Gyroscope-Verification of laws -Determination of gyrosc	copi	c co	uple.		
7	Whirling of shaft-Determination of critical speed of shaft with conc	entr	atec	l loac	ls.	
8	Balancing of rotating and reciprocating masses.					
9	Determination of moment of inertia by oscillation method for flywheel.	r co	onne	ecting	rod	and
10	Vibrating system - Spring mass system - Determination of dampin degree of freedom system	ng co	o-eff	icien	t of sir	ngle
11	Determination of torsional frequencies for compound pendulum ar with lumped Moment of inertia.	nd fl	ywh	eel s	ystem	
12	Transverse vibration –free- Beam. Determination of natural freque beam.	ency	anc	d defl	ection	of
	Total No	of p	perio	ods	:	45

	ELECTRONICS AND MICROPROCESSOR LAB	0	0	3	100	2
	ELECTRONICS	•	•	•		
1	V-I Characteristics of PN Junction and 'Zener' diode.					
2	Transistor characteristics in Common Emitter mode.					
3	Study of RC-Phase shift Oscillator.					
4	Study of Logic gates and verification of their truth tables.					
5	Study of Half-adder and Full adder and verification of their	r tru	th tab	les.		
6	Study of Flip-flops. (i) R-S Flip-flop. (ii) D Flip-flop. (iii) J-K Flip-flop. (iv) T- Flip-flop.					
	MICROPROCESSOR					
7	 Writing Assembly level programming in 8085 microproces (i) 8-bit Addition. (ii) 8-bit Subtraction. (iii) 8-bit Multiplication. (iv) 8-bit Division. 	sor	for the	e fol	lowing	
8	Writing Assembly level programming in 8085 microproces and Minimum number in a block of data.	sor	for fin	ding) Maxin	num
9	Writing Assembly level programming in 8085 microproces of data from one block to another block.	sor	for tra	nsfe	erring a	block
10	Writing Assembly level programming in 8085 microproces	sor	for so	rting	g data.	
11	Stepper motor Interfacing in 8085 Microprocessor.					
		Т	otal N	o of	Perio	ds :45

REGULATION 2008: B.E.MECHANICAL ENGINEERING SYLLABUS SEMESTER-6

		FINITE ELEMENT ANALYSIS 3	1	0	100) 4
		(Common to Mechanical and Automobile Engineering)				
		Introduction				8
Hi Dis for	storical scretisat	background – Relevance of FEA to design problems, Application to ion – Matrix approach, Matrix algebra – Gaussian elimination – Gov uum – Classical Techniques in FEM – Weighted residual method	/erni	ng e	quati	m – ons
UN		ONE DIMENSIONAL PROBLEMS				12
Ele orc tru As	ement m der elem sses – E	ment modeling – Coordinates and shape functions – Potential en natrices and vectors – Assembly for global equations – Boundary co nents - Shapes functions – Applications to axial loadings of rods – E Bending of beams – Finite element formulation of stiffness matrix ar to Global equations –boundary conditions – Solutions and Post proc	onditi Exten nd Ic	ons sion bad v	– Hig to pl vecto	jher ane rs –
UN		TWO DIMENSIONAL PROBLEMS – SCALAR VARIABLE PROB	BLEN	IS		6
		nent modeling – CST element – Element equations, Load vecto – Assembly – Application to heat transfer - Examples	ors a	nd b	ound	lary
UN		TWO DIMENSIONAL PROBLEMS – VECTOR VARIABLE PROB		IS		10
-						
Ve	ctor Var	iable problems – Elasticity equations – Plane Stress, Plane Strain ar	nd A	xisyr	nmet	
pro	blems -	iable problems – Elasticity equations – Plane Stress, Plane Strain ar - Formulation – element matrices – Assembly – boundary conditions				ric
pro Ex	oblems - amples	- Formulation – element matrices – Assembly – boundary conditions	and	solu		ric
pro Ex UN Na fur	oblems - amples IIT V atural c octions -		and BLEN	I solu /IS nent-	utions - Sh	ric 5 9 ape
pro Ex UN Na fur	oblems - amples IIT V atural c octions -	- Formulation – element matrices – Assembly – boundary conditions ISOPARAMETRIC ELEMENTS FOR TWO DIMENSIONAL PROB coordinates, Iso parametric elements, Four node quadrilateral of – Element stiffness matrix and force vector – Numerical integr – Displacement and Stress calculations – Examples.	and BLEN	solu //S nent- n -	utions - Sh	ric 5 9 ape
pro Ex UN Na fur	oblems - amples IIT V atural c octions -	- Formulation – element matrices – Assembly – boundary conditions ISOPARAMETRIC ELEMENTS FOR TWO DIMENSIONAL PROB coordinates, Iso parametric elements, Four node quadrilateral of – Element stiffness matrix and force vector – Numerical integr – Displacement and Stress calculations – Examples. LE	and BLEN elerr ratior	I solu MS nent- n -	utions - Sh	ric 9 ape ess
pro Ex UN Na fur	oblems - amples IIT V atural c octions -	- Formulation – element matrices – Assembly – boundary conditions ISOPARAMETRIC ELEMENTS FOR TWO DIMENSIONAL PROB coordinates, Iso parametric elements, Four node quadrilateral of – Element stiffness matrix and force vector – Numerical integr – Displacement and Stress calculations – Examples. LE TUT	and BLEN elem ratior	I SOLU MS nent- n - IRE IAL	utions - Sh	9 ape ess 45
pro Ex UN Na fur into	oblems - amples IIT V atural c actions - egration	- Formulation – element matrices – Assembly – boundary conditions ISOPARAMETRIC ELEMENTS FOR TWO DIMENSIONAL PROB coordinates, Iso parametric elements, Four node quadrilateral of – Element stiffness matrix and force vector – Numerical integr – Displacement and Stress calculations – Examples. LE TUT	and BLEM elerr ratior	I SOLU MS nent- n - IRE IAL	utions - Sh	ric 9 ape ess 45
pro Ex UN Na fur into	blems - amples IIT V atural c nctions egration EXT BOC Chand	- Formulation – element matrices – Assembly – boundary conditions ISOPARAMETRIC ELEMENTS FOR TWO DIMENSIONAL PROB coordinates, Iso parametric elements, Four node quadrilateral of – Element stiffness matrix and force vector – Numerical integr – Displacement and Stress calculations – Examples. LE TUT DKS rupatla T.R., and Belegundu A.D., "Introduction to Finite Elements	and BLEM elem ration	INDERIC	utions	9 ape ess 45 15 60
prc Ex Na fur inte	blems - amples IIT V atural c octions egration EXT BOC Chand Pearso Logan	- Formulation – element matrices – Assembly – boundary conditions ISOPARAMETRIC ELEMENTS FOR TWO DIMENSIONAL PROB coordinates, Iso parametric elements, Four node quadrilateral of – Element stiffness matrix and force vector – Numerical integr – Displacement and Stress calculations – Examples. LE TUT DKS	and BLEN elem ratior CTU CTU TOR TOT	I SOIU MS ment- n IRE IAL Engin	- Sh Stiffn : : :	9 ape ess 45 15 60
Prc Ex Na fur inte TE 1 2	Ext BOC Chand Pearso 2002	 Formulation – element matrices – Assembly – boundary conditions ISOPARAMETRIC ELEMENTS FOR TWO DIMENSIONAL PROB soordinates, Iso parametric elements, Four node quadrilateral of – Element stiffness matrix and force vector – Numerical integr – Displacement and Stress calculations – Examples. LE TUT OKS rupatla T.R., and Belegundu A.D., "Introduction to Finite Elements on Education 2002, 3 rd Edition. D.L., "A First course in the Finite Element Method", Third Edition, Th	and BLEN elem ratior CTU CTU TOR TOT	I SOIU MS ment- n IRE IAL Engin	- Sh Stiffn : : :	9 ape ess 45 15 60
Prc Ex Na fur inte TE 1 2	EXT BOC Chand Pearso Logan 2002 FEREN	- Formulation – element matrices – Assembly – boundary conditions ISOPARAMETRIC ELEMENTS FOR TWO DIMENSIONAL PROB coordinates, Iso parametric elements, Four node quadrilateral of – Element stiffness matrix and force vector – Numerical integr – Displacement and Stress calculations – Examples. LE TUT OKS rupatla T.R., and Belegundu A.D., "Introduction to Finite Elements on Education 2002, 3 rd Edition.	and BLEM elem ration CTU TOR TOT	I Solu MS ment- n IRE IAL TAL Engin	- Sh Stiffn : : :	9 ape ess 45 15 60
Pro Ex Na fur into TE 1 2 RE	Ext BOC Chand Pearso Logan 2002 FEREN Rao S.	- Formulation – element matrices – Assembly – boundary conditions ISOPARAMETRIC ELEMENTS FOR TWO DIMENSIONAL PROB coordinates, Iso parametric elements, Four node quadrilateral of – Element stiffness matrix and force vector – Numerical integr – Displacement and Stress calculations – Examples. LE TUT OKS rupatla T.R., and Belegundu A.D., "Introduction to Finite Elements on Education 2002, 3 rd Edition. D.L., "A First course in the Finite Element Method", Third Edition, Th ICE BOOKS	and BLEM elemration CTU TOR TOT s in I	I solu IS In	utions - Sh Stiffn : : : : :	9 ape ess 45 15 60
Pro Ex Na fur inte 1 2 RE 1	EXT BOC Chand Pearso Logan 2002 FEREN Rao S. David V Robert	 Formulation – element matrices – Assembly – boundary conditions ISOPARAMETRIC ELEMENTS FOR TWO DIMENSIONAL PROE coordinates, Iso parametric elements, Four node quadrilateral of – Element stiffness matrix and force vector – Numerical integr – Displacement and Stress calculations – Examples. LE TUT OKS rupatla T.R., and Belegundu A.D., "Introduction to Finite Elements on Education 2002, 3 rd Edition. D.L., "A First course in the Finite Element Method", Third Edition, Th ICE BOOKS S., "The Finite Element Method in Engineering", Pergammon Press,	and BLEN elem ratior CTU TOR TOT aoms 198	Solu Solu Solution Solu	tions - Sh Stiffn : : : : : : : : : : : : : : : : : :	9 ape es: 45 15 60 ing

	DESIGN OF TRANSMISSION SYSTEMS	3	2	0	100	5
UNIT I	TRANSMISSION SYSTEMS USING FLEXIBLE ELEMENTS					9
	⁴ V belts and pulleys – selection of Flat belts and pulleys – Se		n of	Tran	smiss	
	Sprockets. Design of pulleys and sprockets	00000		man	011100	
	SPUR GEARS AND PARALLEL AXIS HELICAL GEARS					9
	nology-Speed ratios and number of teeth-Force analysis -To					
	atigue strength - Factor of safety - Gear materials – Module Ilations based on strength and wear considerations - Paralle					
	ngle in the normal and transverse plane- Equivalent numb					
	stimating the size of the helical gears.			_		
	-				1	
	BEVEL AND WORM GEARS		· .			9
	d spiral bevel gear: Tooth terminology, tooth forces and stresse	s, eq	livale	ent n	umbei	r of
	ating the dimensions of pair of straight and spiral bevel gears. r: Merits and demerits- terminology. Thermal capacity, materia	als-for	200	and	etroce	200
	stimating the size of the worm gear pair.		003	ana	50055	.03,
UNIT IV	DESIGN OF GEAR BOXES		_		ĻΤ	9
	progression - Standard step ratio - Ray diagram, kinematics la				of	
sliding mes	h gear box -Constant mesh gear box. – Design of multi speed	i gear	DOX			
UNIT V	DESIGN OF POWER SCREWS, CLUTCHES AND BRAKES					9
	rew threads used for power screws – Torque requirements –	Stres	ses i	n Po	wer	-
screws, De	sign of Screw Jack.					
	plate clutches - axial clutches - cone clutches - internal ex				utches	s –
Types of bi	akes and their applications – Design of internal and external s					45
			CTL TOR			45 30
		10	TOT			75
Note: (Usa	ge of P.S.G Design Data Book is permitted in the University e	xamin				
TEXT BOC		<u> </u>				
	R. C., Marshek K.M., "Fundamentals of Machine component Third Edition, 2002.	Desi	gn",	– Jo	hn Wi	ley
2 Bhanda 1994.	ri, V.B., "Design of Machine Elements", Tata McGraw-Hill Pu	blishi	ng C	omp	any Li	td.,
REFEREN	CES					
1 Maitra 1985	G.M., Prasad L.V., "Hand book of Mechanical Design", II Edi	tion,	Tata	McG	raw-F	Hill,
2 Shigley Editions	J.E and Mischke C. R., "Mechanical Engineering Design", Mechanical Engineering Design", Mechan	cGrav	v-Hill	Inte	rnatio	nal
	R.L, "Design of Machinery", McGraw-Hill Book co, 2004.					
	k B.J., Jacobson B., Schmid S.R., "Fundamentals of Machir	ne Ele	men	ts", I	AcGra	aw-
HIII BOO	k Co., 1999.					
STANDAR						
Capaci		– Ca	lcula	tion	of Lo	bad
	: 2002, Methods of Load Rating of Worm Gears					
	1: 2002, Belt Drives – Pulleys and V-Ribbed belts for Indus	trial a	pplic	catior	ns – F	PH,
PJ, PK,	Pl and PM Profiles : Dimensions		o r - '		100-	
	: Part 1: 1973, Code of practice for selection, storage, instal ing for power transmission : Part 1 Flat Belt Drives.	ation	and	mair	itenar	ICE
	IN IN DOWEL LIANSINISSION . FAIL I FIAL DELL DI VES.					
IS 2122		ation	and	mair	tenar	ICA
	Part 2: 1991, Code of practice for selection, storage, instal g for power transmission: Part 2 V-Belt Drives.	lation	and	mair	itenar	nce

	AUTOMOBILE ENGINEERING 3 0 0	10	0 3
UNIT I	VEHICLE STRUCTURE AND ENGINES		10
Engine – T Engine – T	Automobiles - Vehicle Construction – Chassis – Frame and Body – Compo Their forms, Functions and Materials - Review of Cooling and Lubrication sy Furbo super Chargers – Engine Emission standards- Emission Control by ontroller – Electronic Engine Management System.	sten	ns in
UNIT II	ENGINE AUXILIARY SYSTEMS		10
point and Maintenand	 basic type and working principle only - Electronic fuel injection system MPFI Systems – Diesel Injection - CRDI System- Construction, Opera ce of Lead Acid Battery - Electrical systems – Generator – Starting Motor ar and Ignition (Magneto Coil and Electronic Type) - Regulators-cut outs. 	tion	and
UNIT III	TRANSMISSION SYSTEMS		10
Simple Flo	ypes and Construction –Clutch Linkages- Gear Boxes, Manual and Auto or Mounted Shift Mechanism – Over Drives – Transfer Box Fluid flywhee – Propeller shaft – Slip Joint – Differential and Rear Axle – Hotchkiss D pe Drive	l-To	rque
UNIT IV	STEERING, BRAKES AND SUSPENSION SYSTEMS		8
Wheels an gear box-	d Tyres – Wheel Alignment Parameters - Steering Geometry and Types of Power Steering – Types of Front Axle – Suspension systems front and re nal and air suspension – Braking Systems – Types and Construction –	ar e	ering end -
Wheels an gear box– Conventior	d Tyres – Wheel Alignment Parameters - Steering Geometry and Types of Power Steering – Types of Front Axle – Suspension systems front and re nal and air suspension – Braking Systems – Types and Construction –	ar e	ering end -
Wheels an gear box– Conventior Braking Sy UNIT V Use of Na	d Tyres – Wheel Alignment Parameters - Steering Geometry and Types of Power Steering – Types of Front Axle – Suspension systems front and re nal and air suspension – Braking Systems – Types and Construction – stem.	ar e Diag	ering end - jonal 7
Wheels an gear box– Conventior Braking Sy UNIT V Use of Na Electric and Note: Pra	d Tyres – Wheel Alignment Parameters - Steering Geometry and Types of Power Steering – Types of Front Axle – Suspension systems front and re nal and air suspension – Braking Systems – Types and Construction – stem. ALTERNATIVE FUEL AND SAFETY DEVICES tural Gas, LPG, Bio-diesel, Alcohol and Hydrogen in Automobiles – Con	ar e Diag cept	ering end - jonal 7 ts of
Wheels an gear box– Conventior Braking Sy UNIT V Use of Na Electric and Note: Pra	d Tyres – Wheel Alignment Parameters - Steering Geometry and Types of Power Steering – Types of Front Axle – Suspension systems front and re- nal and air suspension – Braking Systems – Types and Construction – stem. ALTERNATIVE FUEL AND SAFETY DEVICES tural Gas, LPG, Bio-diesel, Alcohol and Hydrogen in Automobiles – Con d Hybrid Vehicles, Fuel Cells – Antilock Braking System - Airbags - Stabilizer ctical training in dismantling and assembling of Engine parts Transmission	ar e Diag cept	ering end - jonal 7 ts of
Wheels an gear box– Conventior Braking Sy UNIT V Use of Na Electric and Note: Pra	d Tyres – Wheel Alignment Parameters - Steering Geometry and Types of Power Steering – Types of Front Axle – Suspension systems front and re- nal and air suspension – Braking Systems – Types and Construction – stem. ALTERNATIVE FUEL AND SAFETY DEVICES tural Gas, LPG, Bio-diesel, Alcohol and Hydrogen in Automobiles – Con d Hybrid Vehicles, Fuel Cells – Antilock Braking System - Airbags - Stabilizer ctical training in dismantling and assembling of Engine parts Transmission puld be given to the students	ar e Diag cept s	ering end - jonal 7 ts of
Wheels an gear box– Conventior Braking Sy UNIT V Use of Na Electric and Note: Pra	d Tyres – Wheel Alignment Parameters - Steering Geometry and Types of Power Steering – Types of Front Axle – Suspension systems front and re- nal and air suspension – Braking Systems – Types and Construction – stem. ALTERNATIVE FUEL AND SAFETY DEVICES tural Gas, LPG, Bio-diesel, Alcohol and Hydrogen in Automobiles – Con d Hybrid Vehicles, Fuel Cells – Antilock Braking System - Airbags - Stabilizer ctical training in dismantling and assembling of Engine parts Transmission puld be given to the students LECTURE	ar e Diag cept s Sys	ering end - jonal 7 ts of
Wheels an gear box– Conventior Braking Sy UNIT V Use of Na Electric and Note: Pra sho	d Tyres – Wheel Alignment Parameters - Steering Geometry and Types of Power Steering – Types of Front Axle – Suspension systems front and re- nal and air suspension – Braking Systems – Types and Construction – stem. ALTERNATIVE FUEL AND SAFETY DEVICES tural Gas, LPG, Bio-diesel, Alcohol and Hydrogen in Automobiles – Con d Hybrid Vehicles, Fuel Cells – Antilock Braking System - Airbags - Stabilizer ctical training in dismantling and assembling of Engine parts Transmission buld be given to the students LECTURE TUTORIAL TOTAL	ar e Diag cept s Sys :	ering end - jonal 7 ts of stem 45 -
Wheels an gear box– Conventior Braking Sy UNIT V Use of Na Electric and Note: Pra sho	d Tyres – Wheel Alignment Parameters - Steering Geometry and Types of Power Steering – Types of Front Axle – Suspension systems front and re- nal and air suspension – Braking Systems – Types and Construction – stem. ALTERNATIVE FUEL AND SAFETY DEVICES tural Gas, LPG, Bio-diesel, Alcohol and Hydrogen in Automobiles – Con d Hybrid Vehicles, Fuel Cells – Antilock Braking System - Airbags - Stabilizer ctical training in dismantling and assembling of Engine parts Transmission uld be given to the students LECTURE TUTORIAL TOTAL DKS	ar e Diag cept s Sys :	ering end - oonal ts of stem 45 -
Wheels an gear box– Conventior Braking Sy UNIT V Use of Na Electric and Note: Pra sho TEXT BOC 1 Sethi H 2 Newtor	d Tyres – Wheel Alignment Parameters - Steering Geometry and Types of Power Steering – Types of Front Axle – Suspension systems front and re- nal and air suspension – Braking Systems – Types and Construction – stem. ALTERNATIVE FUEL AND SAFETY DEVICES tural Gas, LPG, Bio-diesel, Alcohol and Hydrogen in Automobiles – Con d Hybrid Vehicles, Fuel Cells – Antilock Braking System - Airbags - Stabilizer ctical training in dismantling and assembling of Engine parts Transmission uld be given to the students LECTURE TUTORIAL TOTAL DKS I.M, "Automobile Technology", Tata McGraw-Hill-2003 h, Steeds and Garret, "Motor vehicles", Butterworth Publishers, 1989	ar e Diag cept s Sys :	ering end - oonal 7 ts of stem 45 -
Wheels an gear box– Conventior Braking Sy UNIT V Use of Na Electric and Note: Pra sho TEXT BOC 1 Sethi H 2 Newtor REFEREN	d Tyres – Wheel Alignment Parameters - Steering Geometry and Types of Power Steering – Types of Front Axle – Suspension systems front and re- nal and air suspension – Braking Systems – Types and Construction – stem. ALTERNATIVE FUEL AND SAFETY DEVICES tural Gas, LPG, Bio-diesel, Alcohol and Hydrogen in Automobiles – Con d Hybrid Vehicles, Fuel Cells – Antilock Braking System - Airbags - Stabilizer ctical training in dismantling and assembling of Engine parts Transmission uld be given to the students LECTURE TUTORIAL TOTAL DKS I.M, "Automobile Technology", Tata McGraw-Hill-2003 h, Steeds and Garret, "Motor vehicles", Butterworth Publishers, 1989 CES	ar e Diag cept s Sys :	ering end - onal 7 ts of stem 45 -
Wheels an gear box– Conventior Braking Sy UNIT V Use of Na Electric and Note: Pra sho TEXT BOC 1 Sethi H 2 Newtor REFEREN 1 Crouse	d Tyres – Wheel Alignment Parameters - Steering Geometry and Types of Power Steering – Types of Front Axle – Suspension systems front and re- nal and air suspension – Braking Systems – Types and Construction – stem. ALTERNATIVE FUEL AND SAFETY DEVICES tural Gas, LPG, Bio-diesel, Alcohol and Hydrogen in Automobiles – Con- d Hybrid Vehicles, Fuel Cells – Antilock Braking System - Airbags - Stabilizer ctical training in dismantling and assembling of Engine parts Transmission nuld be given to the students LECTURE TUTORIAL TOTAL DKS I.M, "Automobile Technology", Tata McGraw-Hill-2003 h, Steeds and Garret, "Motor vehicles", Butterworth Publishers, 1989 CES and Anglin "Automotive Mechanism", 9 th Edition. Tata McGraw-Hill, 2003	ar e Diag cept s Sys :	ering end - oonal ts of stem 45 -
Wheels an gear box– Conventior Braking Sy UNIT V Use of Na Electric and Note: Pra sho TEXT BOC 1 Sethi H 2 Newtor REFEREN 1 Crouse 2 Kirpal S	d Tyres – Wheel Alignment Parameters - Steering Geometry and Types of Power Steering – Types of Front Axle – Suspension systems front and re- nal and air suspension – Braking Systems – Types and Construction – stem. ALTERNATIVE FUEL AND SAFETY DEVICES tural Gas, LPG, Bio-diesel, Alcohol and Hydrogen in Automobiles – Con d Hybrid Vehicles, Fuel Cells – Antilock Braking System - Airbags - Stabilizer ctical training in dismantling and assembling of Engine parts Transmission uld be given to the students LECTURE TUTORIAL TOTAL DKS I.M, "Automobile Technology", Tata McGraw-Hill-2003 h, Steeds and Garret, "Motor vehicles", Butterworth Publishers, 1989 CES	ar e Diag cept s Sys :	ering end - oonal 7 ts of stem 45 -

		POWER PLANT ENGINEERING33	0 0	D	100	3
٩U		INTRODUCTION TO POWER PLANTS & BOILERS				9
сус	cles – H	Hydel power plants – Types – Standalone – Pumped Storage. Steam E igh pressure and supercritical boilers – Fluidized bed boilers – Analysis is - Combined power cycles – comparison and selection.				
UN		STEAM POWER PLANT				9
eq	uipment	d types of Steam Power Plants - Fuel and Ash handling systems – com for burning coal – Mechanical stokers – Pulverizers – Electrostatic pre different types, Surface condenser types, Cooling towers, Pollution Co	ecipit	ato		
UN		NUCLEAR POWER PLANTS				9
pre	essurize	hergy - Fission, Fusion reaction - Layout of nuclear power plants - Typ d water reactor - Boiling water reactor - Gas cooled reactor - Fast bro posal and safety.				
		DIESEL AND GAS TURBINE POWER PLANTS				
						9
La ap coi	yout ar plication	DIESEL AND GAS FORBINE FOWER FLANTS and types of Diesel power plants and components, selection of as. Gas Turbine power plant – Layout - Fuels, gas turbine mate and chambers - reheating, regeneration and inter - cooling. POWER PLANT ECONOMICS				pe
Lay app con UN Eco	yout ar plication mbustion IIT V conomics sts-ener	nd types of Diesel power plants and components, selection of ns. Gas Turbine power plant – Layout - Fuels, gas turbine mate n chambers - reheating, regeneration and inter - cooling.	terial and	, t l o	pera	pe of 9 ting
Lay app con UN Eco	yout ar plication mbustion IIT V conomics sts-ener	nd types of Diesel power plants and components, selection of ns. Gas Turbine power plant – Layout - Fuels, gas turbine mate n chambers - reheating, regeneration and inter - cooling. POWER PLANT ECONOMICS s of power plant – Actual load curves-cost of electric energy-fixed rgy rates – Types of Tariffs – Economics of load sharing – variable lo	and oad	, t l o ope	pera	pe of 9 ting
Lay app con UN Eco	yout ar plication mbustion IIT V conomics sts-ener	nd types of Diesel power plants and components, selection of ns. Gas Turbine power plant – Layout - Fuels, gas turbine mate n chambers - reheating, regeneration and inter - cooling. POWER PLANT ECONOMICS s of power plant – Actual load curves-cost of electric energy-fixed rgy rates – Types of Tariffs – Economics of load sharing – variable lo n of economics of various power plants. LEC1 TUT0	and oad TUR	, t l o ope E L	peration	pe o 9 tincon 45 -
La ap coi UN Ec	yout ar plication mbustion IIT V conomics sts-ener	nd types of Diesel power plants and components, selection of ns. Gas Turbine power plant – Layout - Fuels, gas turbine mate n chambers - reheating, regeneration and inter - cooling. POWER PLANT ECONOMICS s of power plant – Actual load curves-cost of electric energy-fixed rgy rates – Types of Tariffs – Economics of load sharing – variable lo n of economics of various power plants. LEC1 TUT0	and oad TUR	, t l o ope E L	peratic	pe o 9 tincon 45 -
	yout ar plication mbustion IIT V conomics sts-ener	nd types of Diesel power plants and components, selection of ns. Gas Turbine power plant – Layout - Fuels, gas turbine mate n chambers - reheating, regeneration and inter - cooling. POWER PLANT ECONOMICS s of power plant – Actual load curves-cost of electric energy-fixed gy rates – Types of Tariffs – Economics of load sharing – variable lo n of economics of various power plants. LECT TUTO TC	and oad TUR	, t l o ope E L	peration	pe o 9 ting on 45 -
	yout ar plication mbustion NIT V conomics sts-ener mpariso	nd types of Diesel power plants and components, selection of ns. Gas Turbine power plant – Layout - Fuels, gas turbine mate n chambers - reheating, regeneration and inter - cooling. POWER PLANT ECONOMICS s of power plant – Actual load curves-cost of electric energy-fixed gy rates – Types of Tariffs – Economics of load sharing – variable lo n of economics of various power plants. LECT TUTO TC	and oad TUR	, t l o ope E L	peration	pe o 9 tincon 45 -
	yout ar plication mbustion NIT V conomics sts-ener mpariso	And types of Diesel power plants and components, selection of as. Gas Turbine power plant – Layout - Fuels, gas turbine mate in chambers - reheating, regeneration and inter - cooling. POWER PLANT ECONOMICS s of power plant – Actual load curves-cost of electric energy-fixed gy rates – Types of Tariffs – Economics of load sharing – variable lo n of economics of various power plants. LEC1 TUTO TC DKS	terial and oad TUR DRIA OTA	, t ope E L	peratic	9 9 45 - 45
Lay ap coi Eco coi TE 1 2	yout ar plication mbustion IIT V conomics sts-ener mpariso EXT BOC El-Wak	And types of Diesel power plants and components, selection of as. Gas Turbine power plant – Layout - Fuels, gas turbine mate an chambers - reheating, regeneration and inter - cooling. POWER PLANT ECONOMICS s of power plant – Actual load curves-cost of electric energy-fixed gy rates – Types of Tariffs – Economics of load sharing – variable lo n of economics of various power plants. LECT TUTO TC DKS kil M.M. ' Power Plant Technology' Mc-Graw Hill 1984	terial and oad TUR DRIA OTA	, t ope E L	peratic	9 9 45 - 45
Lay app con Eccos con TE 1 2 3	yout ar plication mbustion IIT V conomics sts-ener mpariso EXT BOC El-Wak	nd types of Diesel power plants and components, selection of is. Gas Turbine power plant – Layout - Fuels, gas turbine mate in chambers - reheating, regeneration and inter - cooling. POWER PLANT ECONOMICS is of power plant – Actual load curves-cost of electric energy-fixed gy rates – Types of Tariffs – Economics of load sharing – variable loon in of economics of various power plants. LECT TUTO TC DKS kil M.M. ' Power Plant Technology' Mc-Graw Hill 1984 S.C. and Domkundwar.S, 'A Course in Power Plant Engineering', Dhan K., 'Power Plant Engineering', Tata-McGraw Hill, 1998	terial and oad TUR DRIA OTA	, t ope E L	peratic	^{rpe} of 9 45 - 45
Lay app con Eccos con TE 1 2 3	yout ar plication mbustion NIT V conomics sts-ener mparison EXT BOO EI-Wak Arora S Nag P. EFEREN	nd types of Diesel power plants and components, selection of is. Gas Turbine power plant – Layout - Fuels, gas turbine mate in chambers - reheating, regeneration and inter - cooling. POWER PLANT ECONOMICS is of power plant – Actual load curves-cost of electric energy-fixed gy rates – Types of Tariffs – Economics of load sharing – variable loon in of economics of various power plants. LECT TUTO TC DKS kil M.M. ' Power Plant Technology' Mc-Graw Hill 1984 S.C. and Domkundwar.S, 'A Course in Power Plant Engineering', Dhan K., 'Power Plant Engineering', Tata-McGraw Hill, 1998	terial ancoad oad TUR DRIA OTA	, t ope E L L ai,	peratic eratic : : 2001	9 10 45 - 45
La ap coi UN Ec cos coi TE 1 2 3 RE	yout ar plication mbustion NIT V conomics sts-ener mpariso EXT BOO EI-Wak Arora S Nag P. EFEREN Frank I 1993.	And types of Diesel power plants and components, selection of as. Gas Turbine power plant – Layout - Fuels, gas turbine mate in chambers - reheating, regeneration and inter - cooling. POWER PLANT ECONOMICS s of power plant – Actual load curves-cost of electric energy-fixed gy rates – Types of Tariffs – Economics of load sharing – variable lo n of economics of various power plants. LECT TUTO TC DKS kil M.M. ' Power Plant Technology' Mc-Graw Hill 1984 S.C. and Domkundwar.S, 'A Course in Power Plant Engineering', Dhan K., 'Power Plant Engineering', Tata-McGraw Hill, 1998 ICES	terial ancoad oad TUR DRIA OTA	, t ope E L L ai,	peratic eratic : : 2001	9 10 45 - 45
La ap cor Ec cos cor TE 1 2 3 RE 1	yout ar plication mbustion NIT V conomics sts-ener mpariso EXT BOC EI-Wak Arora S Nag P. FEREN Frank I 1993. T.Mors	And types of Diesel power plants and components, selection of is. Gas Turbine power plant – Layout - Fuels, gas turbine mate in chambers - reheating, regeneration and inter - cooling. POWER PLANT ECONOMICS is of power plant – Actual load curves-cost of electric energy-fixed gy rates – Types of Tariffs – Economics of load sharing – variable loon in of economics of various power plants. LEC1 TUT0 TUT0 TUT0 TUT0 CKS kil M.M. ' Power Plant Technology' Mc-Graw Hill 1984 S.C. and Domkundwar.S, 'A Course in Power Plant Engineering', Dhan K., 'Power Plant Engineering', Tata-McGraw Hill, 1998 ICES D.Graham,'Power Plant Engineers Guide', D.B. Taraporevala Sons&Co	terial ancoad oad TUR DRIA OTA	, t ope E L L ai,	peratic eratic : : 2001	9 10 45 - 45

	GAS DYNAMICS AND JET PROPULSION 3 1	0	100	
UNIT I	COMPRESSIBLE FLOW – FUNDAMENTALS			9
Energy ar reference	nd momentum equations for compressible fluid flows, various region velocities, stagnation state, velocity of sound, critical states, mach nu nber, types of waves, Mach cone, Mach angle, effect of Mach	imbe	r, crit	ws, ical
UNIT II	FLOW THROUGH VARIABLE AREA DUCT			ę
ratio as a f	flow through variable area ducts, T-s, h-s diagrams for nozzle and diffuse unction of Mach number, mass flow rate through nozzles and diffusers, e low through nozzles.			rea
UNIT III	FANNO AND RAYLEIGH FLOW			ç
	onstant area ducts with friction (Fanno flow) - Fanno curves and Fan f flow properties, variation of Mach number with duct length.	nno e	equat	on,
transfer (R	flow with friction in constant area ducts – Flow in constant area ducts ayleigh flow), Rayleigh line and Rayleigh flow equation, variation of flo heat transfer.			
density, st	NORMAL SHOCK equations, variation of flow parameters like static pressure, static agnation pressure and entropy across the normal shock, Prandtl-Mey	yer é	equat	on,
Governing density, st impossibili	equations, variation of flow parameters like static pressure, static	yer é e wit	equat h sho	ure, on, ock,
Governing density, st impossibili normal sh	equations, variation of flow parameters like static pressure, static agnation pressure and entropy across the normal shock, Prandtl-Mey ty of shock in subsonic flows, flow in convergent and divergent nozzle	yer é e wit	equat h sho	ure, on, ock,
Governing density, st impossibili normal sh only). UNIT V Aircraft pr engine cor performan	equations, variation of flow parameters like static pressure, static agnation pressure and entropy across the normal shock, Prandtl-Mey ty of shock in subsonic flows, flow in convergent and divergent nozzle ock in Fanno and Rayleigh flows, flows with oblique shock (elementa	yer e e wit ary ti ly of aust	equat h sho reatm turb syste	
Governing density, st impossibili normal sh only). UNIT V Aircraft pr engine cor performan	equations, variation of flow parameters like static pressure, static agnation pressure and entropy across the normal shock, Prandtl-Mey ty of shock in subsonic flows, flow in convergent and divergent nozzle ock in Fanno and Rayleigh flows, flows with oblique shock (elementa PROPULSION opulsion- types of jet engines-energy flow through jet engines, stud mponents-diffuser, compressor, combustion chamber, turbine and exha ce of turbo jet engines-thrust, thrust power, propulsive and overall efficie	yer e e wit ary ti ly of aust s encie	equat h sho reatm turb syste	ire on ck ent ojet
Governing density, st impossibili normal sh only). UNIT V Aircraft pr engine cor performan	equations, variation of flow parameters like static pressure, static agnation pressure and entropy across the normal shock, Prandtl-Mey ty of shock in subsonic flows, flow in convergent and divergent nozzle ock in Fanno and Rayleigh flows, flows with oblique shock (elementa PROPULSION opulsion- types of jet engines-energy flow through jet engines, stud mponents-diffuser, compressor, combustion chamber, turbine and exha ce of turbo jet engines-thrust, thrust power, propulsive and overall efficient ion in turbo jet engines, ram jet and pulse jet engines. LECTU TUTOR	yer e e wit ary tr ly of aust : encie JRE	turb syste s, th	ire on ock ent oje ms us us
Governing density, st impossibili normal sh only). UNIT V Aircraft pr engine cor performan augmentat	equations, variation of flow parameters like static pressure, static agnation pressure and entropy across the normal shock, Prandtl-Mey ty of shock in subsonic flows, flow in convergent and divergent nozzle ock in Fanno and Rayleigh flows, flows with oblique shock (elementa PROPULSION opulsion- types of jet engines-energy flow through jet engines, stud mponents-diffuser, compressor, combustion chamber, turbine and exha ce of turbo jet engines-thrust, thrust power, propulsive and overall efficient ion in turbo jet engines, ram jet and pulse jet engines. LECTU TUTOR	yer e e wit ary tr ly of aust : encie JRE	equat h sho reatm turb syste	on ock en oje ms
Governing density, st impossibili normal sho only). UNIT V Aircraft pre engine cor performane augmentat TEXT BOC 1 Yahya. Delhi, 2	equations, variation of flow parameters like static pressure, static agnation pressure and entropy across the normal shock, Prandtl-Mey ty of shock in subsonic flows, flow in convergent and divergent nozzle ock in Fanno and Rayleigh flows, flows with oblique shock (elementa opulsion- types of jet engines-energy flow through jet engines, stud mponents-diffuser, compressor, combustion chamber, turbine and exha ce of turbo jet engines-thrust, thrust power, propulsive and overall efficient ion in turbo jet engines, ram jet and pulse jet engines. LECTL TUTOR TOT OKS S.M., 'Fundamentals of Compressible flow", New Age International (P) I 1996.	yer e e wit ary the ly of aust s encie	equat h sho reatm turb syste es, th :	on ock en je ms us 45
Governing density, st impossibili normal sh only). UNIT V Aircraft pr engine cor performan augmentat TEXT BO(1 Yahya. Delhi, 2 2 Rathak	equations, variation of flow parameters like static pressure, static agnation pressure and entropy across the normal shock, Prandtl-Mey ty of shock in subsonic flows, flow in convergent and divergent nozzle ock in Fanno and Rayleigh flows, flows with oblique shock (elementa opulsion- types of jet engines-energy flow through jet engines, stud mponents-diffuser, compressor, combustion chamber, turbine and exha ce of turbo jet engines-thrust, thrust power, propulsive and overall efficie ion in turbo jet engines, ram jet and pulse jet engines. LECTU TUTOR S.M., 'Fundamentals of Compressible flow", New Age International (P) I 1996. crishnan.E, " Gas Dynamics", Prentice Hall of India, New Delhi, 2001	yer e e wit ary the ly of aust s encie	equat h sho reatm turb syste es, th :	on ock en oje ms us 45
Governing density, st impossibili normal sho only). UNIT V Aircraft pre engine cor performane augmentat TEXT BOC 1 Yahya. Delhi, 7 2 Rathak	equations, variation of flow parameters like static pressure, static agnation pressure and entropy across the normal shock, Prandtl-Mey ty of shock in subsonic flows, flow in convergent and divergent nozzle ock in Fanno and Rayleigh flows, flows with oblique shock (elementa opulsion- types of jet engines-energy flow through jet engines, stud mponents-diffuser, compressor, combustion chamber, turbine and exha ce of turbo jet engines-thrust, thrust power, propulsive and overall efficie ion in turbo jet engines, ram jet and pulse jet engines. LECTL TUTOR S.M., 'Fundamentals of Compressible flow", New Age International (P) I 1996. trishnan.E, " Gas Dynamics", Prentice Hall of India, New Delhi, 2001 ICES	yer e e wit ary ti ly of aust s encie JRE IAL Ltd.,	equat h sho reatm turb syste es, th : : New	
Governing density, st impossibili normal sho only). UNIT V Aircraft pr engine cor performan augmentat TEXT BOO 1 Yahya. Delhi, ² 2 Rathak REFEREN 1 Patrich	equations, variation of flow parameters like static pressure, static agnation pressure and entropy across the normal shock, Prandtl-Mey ty of shock in subsonic flows, flow in convergent and divergent nozzle ock in Fanno and Rayleigh flows, flows with oblique shock (elementa ock in Fanno and Rayleigh flows, flows with oblique shock (elementa ock in Fanno and Rayleigh flows, flows with oblique shock (elementa ock in Fanno and Rayleigh flows, flows with oblique shock (elementa ock in Fanno and Rayleigh flows, flows with oblique shock (elementa ock in Fanno and Rayleigh flows, flows with oblique shock (elementa ock in Fanno and Rayleigh flows, flows with oblique shock (elementa ock in Fanno and Rayleigh flows, flows with oblique shock (elementa ock in Fanno and Rayleigh flows, flows with oblique shock (elementa ock in Fanno and Rayleigh flows, flows with oblique shock (elementa ock in Fanno and Rayleigh flows, flows with oblique shock (elementa ock in Fanno and Rayleigh flows, flows with oblique shock (elementa ock in Fanno and Rayleigh flows, flows with oblique shock (elementa ce of turbo jet engines, compressor, combustion chamber, turbine and exha ce of turbo jet engines, ram jet and pulse jet engines. LECTU TUTOR S.M., 'Fundamentals of Compressible flow", New Age International (P) I 1996. arishnan.E, "Gas Dynamics", Prentice Hall of India, New Delhi, 2001 ICES H.Oosthvizen, Willam E.Carscallen, "Compressible fluid flow", McGraw-	yer e e wit ary ti dy of aust s encie JRE IAL TAL Ltd., -Hill,	turb syste s, th : New	
Governing density, st impossibili normal sho only). UNIT V Aircraft pre engine cor performane augmentat TEXT BOC 1 Yahya. Delhi, 7 2 Rathak REFEREN 1 Patrich 2 Cohen	equations, variation of flow parameters like static pressure, static agnation pressure and entropy across the normal shock, Prandtl-Mey ty of shock in subsonic flows, flow in convergent and divergent nozzle ock in Fanno and Rayleigh flows, flows with oblique shock (elementa opulsion- types of jet engines-energy flow through jet engines, stud mponents-diffuser, compressor, combustion chamber, turbine and exha ce of turbo jet engines-thrust, thrust power, propulsive and overall efficie ion in turbo jet engines, ram jet and pulse jet engines. LECTL TUTOR S.M., 'Fundamentals of Compressible flow", New Age International (P) I 1996. trishnan.E, " Gas Dynamics", Prentice Hall of India, New Delhi, 2001 ICES	yer e e wit ary ti dy of aust s encie JRE IAL TAL Ltd., -Hill,	turb syste s, th : New	

	ENGINEERING ECONOMICS AND FINANCE	3	0	0	100	3
	(Common to Mechanical and Automobile Engineering)					
UNIT I	INTRODUCTION TO ECONOMICS					8
Engineering economics cost, Break	to Economics- Flow in an economy, Law of supply and o Economics – Engineering efficiency, Economic efficiency, S - Elements of costs, Marginal cost, Marginal Revenue, Su even analysis- V ratio, Elementary economic Analysis – M ign selection for a product, Process planning.	Scop nk c	e of cost	f en , Op	iginee oportu	ring nity
	VALUE ENGINEERING					10
Interest for amount fact Equal paym	v decision, Value engineering – Function, aims, and Value en nulae and their applications –Time value of money, Single or, Single payment present worth factor, Equal payment serie ent series payment Present worth factor- equal payment se rm gradient series annual equivalent factor, Effective interest s.	pay s sir eries	mei nkin cap	nt c g fu pital	ompo nd fao recov	und ctor, /ery
	CASH FLOW		-1			9
flow diagran cash flow di	comparison of alternatives – present worth method (Reven n), Future worth method (Revenue dominated cash flow diag agram), Annual equivalent method (Revenue dominated cas cash flow diagram), rate of return method, Examples in all the	iram sh flo	, co ow c	st d liag	lomina	ated
UNIT IV	REPLACEMENT AND MAINTENANCE ANALYSIS					9
Replacemen problem, de asset – ca	REPLACEMENT AND MAINTENANCE ANALYSIS Int and Maintenance analysis – Types of maintenance, ty Intermination of economic life of an asset, Replacement of a pital recovery with return and concept of challenger an model for items which fail completely.	an a	sse	t wi	th a	nent new
Replacemer problem, de asset – ca probabilistic	nt and Maintenance analysis – Types of maintenance, ty etermination of economic life of an asset, Replacement of a pital recovery with return and concept of challenger an	an a	sse	t wi	th a	nent new
Replacemer problem, de asset – ca probabilistic UNIT V Depreciation depreciation depreciation Evaluation	And Maintenance analysis – Types of maintenance, ty etermination of economic life of an asset, Replacement of a pital recovery with return and concept of challenger an model for items which fail completely. DEPRECIATION n- Introduction, Straight line method of depreciation, declinin of the years digits method of depreciation, sinkin / Annuity method of depreciation, service output meth of public alternatives- introduction, Examples, Inflation a to adjust inflation, Examples on comparison of alternatives a e of asset.	id d id d ig ba ng f od djus and	aland function dete	t wi nde ce r dep de erm	th a r, Sin netho nethoc reciat cision	9 d of ion- s – n of
Replacemen problem, de asset – ca probabilistic UNIT V Depreciation depreciation depreciation Evaluation procedure to	And Maintenance analysis – Types of maintenance, ty etermination of economic life of an asset, Replacement of a pital recovery with return and concept of challenger an model for items which fail completely. DEPRECIATION n- Introduction, Straight line method of depreciation, declinin p-Sum of the years digits method of depreciation, sinkin / Annuity method of depreciation, service output meth of public alternatives- introduction, Examples, Inflation a to adjust inflation, Examples on comparison of alternatives a e of asset.	an a ad d ag ba ng f and djus and	aland func of ted dete	t winden cerr dep de erm	th a r, Sin netho nethoc reciat cision	nent new nple 9 d of l of ion- s –
Replacemen problem, de asset – ca probabilistic UNIT V Depreciation depreciation depreciation Evaluation procedure to	And Maintenance analysis – Types of maintenance, ty etermination of economic life of an asset, Replacement of a pital recovery with return and concept of challenger an model for items which fail completely. DEPRECIATION n- Introduction, Straight line method of depreciation, declinin p-Sum of the years digits method of depreciation, sinkin / Annuity method of depreciation, service output meth of public alternatives- introduction, Examples, Inflation a to adjust inflation, Examples on comparison of alternatives a e of asset.	ing band ing	sse efer daland func of ted dete	t winde nde cerr dep de erm RE	th a r, Sin netho nethoc reciat cision	9 d of l of s – n of 45
Replacemen problem, de asset – ca probabilistic UNIT V Depreciation depreciation depreciation Evaluation procedure to	And Maintenance analysis – Types of maintenance, ty etermination of economic life of an asset, Replacement of a pital recovery with return and concept of challenger an model for items which fail completely. DEPRECIATION n- Introduction, Straight line method of depreciation, declinin p-Sum of the years digits method of depreciation, sinkin / Annuity method of depreciation, service output meth of public alternatives- introduction, Examples, Inflation a to adjust inflation, Examples on comparison of alternatives a e of asset.	ing band ing	aland func of ted dete	t winde nde cerr dep de erm RE	th a r, Sin netho nethoc reciat cision	nent new nple d of l of s – n of
Replacement problem, de asset – ca probabilistic UNIT V Depreciation depreciation depreciation procedure te economic lif Text Book 1. Panneer	And Maintenance analysis – Types of maintenance, ty termination of economic life of an asset, Replacement of a pital recovery with return and concept of challenger an model for items which fail completely. DEPRECIATION n- Introduction, Straight line method of depreciation, declinin n-Sum of the years digits method of depreciation, sinkin // Annuity method of depreciation, service output meth of public alternatives- introduction, Examples, Inflation a to adjust inflation, Examples on comparison of alternatives a e of asset. T Selvam, R, "Engineering Economics", Prentice Hall of India L	g ba ng d djus and LEC T	aland function dete	t winde nde cerr de arm RE AL	netho nethoo necial cision inatio	9 d of ion- s – n of 45
Replacemen problem, de asset – ca probabilistic UNIT V Depreciation depreciation depreciation procedure to economic lif Text Book 1. Panneen REFERENCO	And Maintenance analysis – Types of maintenance, ty termination of economic life of an asset, Replacement of a pital recovery with return and concept of challenger an model for items which fail completely. DEPRECIATION n- Introduction, Straight line method of depreciation, declinin i-Sum of the years digits method of depreciation, sinkin // Annuity method of depreciation, service output meth of public alternatives- introduction, Examples, Inflation a to adjust inflation, Examples on comparison of alternatives a e of asset. T T Selvam, R, "Engineering Economics", Prentice Hall of India L ES:	g ba ng fa od djus and LEC T T	sse efer aland func of ted det TUF DRI OT	t winde cerr dep de erm RE AL <i>V</i> De	netho methoo reciat cision inatio : :	9 d of ion- s – n of 45
Replacemer problem, de asset – ca probabilistic UNIT V Depreciation depreciation depreciation procedure te economic lif Text Book 1. Panneer REFERENC 1. Chan S	And Maintenance analysis – Types of maintenance, ty termination of economic life of an asset, Replacement of a pital recovery with return and concept of challenger an model for items which fail completely. DEPRECIATION n- Introduction, Straight line method of depreciation, declinin h-Sum of the years digits method of depreciation, sinkin / Annuity method of depreciation, service output meth of public alternatives- introduction, Examples, Inflation a to adjust inflation, Examples on comparison of alternatives a e of asset. T T Selvam, R, "Engineering Economics", Prentice Hall of India L ES: Park, "Contemporary Engineering Economics", Prentice Hall	g ba ng fa od djus and LEC UTC T	aland function of ted dete TUF DRI OT	t winden cerr dep de erm RE AL AL VDe	netho nethoc reciat cision inatio : : : : : :	9 d of ion- s – n of 45 01
Replacemer problem, de asset – ca probabilistic UNIT V Depreciation depreciation procedure te economic lif Text Book 1. Panneer REFERENC 1. Chan S. 2. Donald.	And Maintenance analysis – Types of maintenance, ty termination of economic life of an asset, Replacement of a pital recovery with return and concept of challenger an model for items which fail completely. DEPRECIATION n- Introduction, Straight line method of depreciation, declinin h-Sum of the years digits method of depreciation, sinkin / Annuity method of depreciation, service output methon of public alternatives- introduction, Examples, Inflation a to adjust inflation, Examples on comparison of alternatives a e of asset. Selvam, R, "Engineering Economics", Prentice Hall of India L SES: Park, "Contemporary Engineering Economics", Prentice Hall G. Newman, Jerome.P.Lavelle, "Engineering Economics a	g ba ng fa od djus and LEC UTC T	aland function of ted dete TUF DRI OT	t winden cerr dep de erm RE AL AL VDe	netho nethoc reciat cision inatio : : : : : :	9 d of ion- s – n of 45 01
Replacemer problem, de asset – ca probabilistic UNIT V Depreciation depreciation evaluation procedure tr economic life Text Book 1. Panneer REFERENC 1. Chan S. 2. Donald. Press, T 3. Degarm York, 19	An and Maintenance analysis – Types of maintenance, ty termination of economic life of an asset, Replacement of a pital recovery with return and concept of challenger an model for items which fail completely. DEPRECIATION n- Introduction, Straight line method of depreciation, declinin h-Sum of the years digits method of depreciation, sinkii // Annuity method of depreciation, service output meth of public alternatives- introduction, Examples, Inflation a b adjust inflation, Examples on comparison of alternatives a e of asset. T Selvam, R, "Engineering Economics", Prentice Hall of India I SES: Park, "Contemporary Engineering Economics", Prentice Hall G. Newman, Jerome.P.Lavelle, "Engineering Economics a Fexas , 2002 o, E.P., Sullivan, W.G and Canada, J.R, "Engineering Economics Balance Selvan	g ba ng f od djus and <u>LEC</u> T td, I td, I td, I td, I	sse efer func of ted det TUF DRI OT	t winde ce r m dep de erm RE AL 200 alys cmi	th a r, Sin nethoo reciat cision inatio : : Ihi, 20 02 is" Er Ilan, N	9 9 d of ion- s – n of 45 01
Replacemer problem, de asset – ca probabilistic UNIT V Depreciation depreciation procedure to economic lif Text Book 1. Panneer REFERENC 1. Chan S. 2. Donald. Press, T 3. Degarm York, 19 4. Grant.E	A and Maintenance analysis – Types of maintenance, ty termination of economic life of an asset, Replacement of a pital recovery with return and concept of challenger an model for items which fail completely. DEPRECIATION n- Introduction, Straight line method of depreciation, declinin h-Sum of the years digits method of depreciation, sinkii // Annuity method of depreciation, service output meth of public alternatives- introduction, Examples, Inflation a b adjust inflation, Examples on comparison of alternatives a e of asset. T Selvam, R, "Engineering Economics", Prentice Hall of India I SES: Park, "Contemporary Engineering Economics", Prentice Hall G. Newman, Jerome.P.Lavelle, "Engineering Economics a Fexas , 2002 o, E.P., Sullivan, W.G and Canada, J.R, "Engineering Economics	g ba ng f od djus and <u>LEC</u> T td, I td, I td, I td, I	sse efer func of ted det TUF DRI OT	t winde ce r m dep de erm RE AL 200 alys cmi	th a r, Sin nethoo reciat cision inatio : : Ihi, 20 02 is" Er Ilan, N	9 9 d of ion- s – n of 45 01

	SIMULATION AND ANALYSIS LABORATORY	0	0	3	100	
					1	1
LIS	ST OF EXPERIMENTS					
1	Simulation using SOFTWARES LIKE MATLAB, MATHCAD, L	ABVI	EW			
1.	Simulation of Air conditioning system with condenser and evapora to estimate COP	tor te	mpe	ratur	es as	input
2.	Simulation of Hydraulic / Pneumatic cylinder.					
3.	Simulation of cam and follower mechanism.					
4.	Simulation of Spring Mass Damper System Control.					
5.	Simulation of heat exchanger process.					
2	Analysis (Simple Treatment only)					
1.	Stress analysis of rectangular L bracket.					
2.	Stress analysis of beams (Cantilever, Simply supported, Fixed end	s)				
3.	Mode frequency analysis of beams. (Cantilever, Simply supported,	Fixe	d end	ls)		
4.	Harmonic analysis of a 2D component.					
5.	Thermal stress analysis of a 2D component.					
6.	Conductive heat transfer analysis of a 2D component.					
	Total	lo of	peri	ods	:	45

	COMPUTER AIDED MANUFACTURING (CAM) LABORATORY	0	0	3	100)
LIST	OF EXPERIMENTS					
1	Manual part programming (Using G and M Codes) in CNC lathe					
	Part programming for Linear and Circular interpolation, Chamfering Part programming using standard canned cycles for Turning, Facin turning and Thread cutting.			oving	9	
2	Manual part programming (using G and M codes) in CNC milling					
2.1 2.2	Part programming for Linear and Circular interpolation and Con Part programming involving canned cycles for Drilling, Peck dril Boring.			ons.		
3	Exposure to Component Modeling and CL data generation usir like Unigraphics, Pro/E, Edge CAM etc.,	ng C	AD/C	CAM	Softw	vare
	NC code generation using CAD/CAM software-Post processi control like FANUC, SINUMERIC etc.,	ng	for s	tanda	ard C	CNC
	Total No	o of	perio	ods	:	45

	HEAT POWER LABORATORY	0	0	3	100)
LIS	T OF EXPERIMENTS					
1	Heat Transfer					
1.	Thermal conductivity measurements by guarded plate me	ethod				
2.	Thermal conductivity of pipe insulation using lagged pipe	appar	atus.			
3.	Natural convection heat transfer from a vertical cylinder					
4.	Forced convection inside tube.					
5.	Heat Transfer from Pin-fin (Natural & Forced convection	modes	5)			
6.	Determination of Stefan- Boltzman constant					
7.	Determination of Emissivity of a grey surface.					
8.	Effectiveness of parallel/ Counter flow heat Exchanger.					
2	Refrigeration and Air conditioning					
1.	Study of Refrigeration and Air conditioning systems.					
2.	Determination of COP of a Refrigeration system.					
3.	Determination of COP of an air conditioning system.					
	Тс	otal No	o of pe	riods	:	4

COMPREHENSION LABORATORY AND MINI PROJECT

Comprehension Laboratory

The objective of comprehension is to provide opportunity for the student to revise the fundamental knowledge acquired during the earlier semesters and apply to real life problems. The student is expected to take up objective and other types of testing processes and prove his/her understanding of the fundamentals.

Mini Project

Students could join (maximum 3) together, form a small team and execute a simple project in the area of Design, Analysis, Fabrication, and Thermal Engg relevant to Mechanical Engineering field under the guidance of a faculty.

The mini project shall be submitted in a report form and should be presented before a committee constituted by the head of the Institution, which shall evaluate the project work done for 25 marks.

The committee will consist of head of the department, the supervisor of the mini project and two senior faculty member of the department.

	Subject Area	No. of Tests and duration	No. of objective type questions for each test	Mark Weightage	Marks	Total Marks
Comprehension	Design Engineering ^(a)	3 tests each 1½ hr	100	20		
Comprehension	Thermal & Fluid Engineering ^(b)	3 tests each 1½ hr	100	20		
	Materials and Manufacturing Engineering ^(c)	3 tests each 1½ hr	100	20	75	100
	Design, Thermal, Fluid and Manufacturing Engineering	1 test 3 hours	200	15		
Mini Project	On topics rele Engir	evant to Med eering field		25	25	

Evaluation Procedure

(a) Engineering Mechanics, Kinematics and Dynamics of Machines, Mechanics of Materials and Design of machine elements, etc.

(b) Engineering Thermodynamics, Thermal Engineering, Fluid Mechanics and Machinery, etc.

(c) Materials Science, Engineering Metallurgy, Machine Tool Engineering, Production Processes, Metrology and Measurements, Computer Aided manufacturing, etc.

REGULATION 2008: B.E.MECHANICAL ENGINEERING SYLLABUS SEMESTER-7

	BUSINESS CONCEPTS	3	0	0	100	3
	(Common for Mechanical and Automobile Engineering)					
UNIT I	BUSINESS ENVIRONMENT				1	0
objective of scarci	Id purpose of business, classification of business activities: industry of business and essential of successful business, economic enviro ty and choice, allocation of resources ,opportunity cost, nent of size ,International Environment-balance of trade ,the trad	nmen Busin	t –ba ess	asic p grov	orobler vth ai	ns nd

UNIT II BUSINESS STRUCTURE AND ORGANIZATION

payments, role and methods of trade protectionism. Business Ethics,

Historical view of business development forms of business organization: sole proprietorship, partnership, join stock companies, co-operative societies, public enterprise-Definition, Meaning, characteristics, Advantages and Disadvantages, Role of Government in business activity, organization charts.

UNIT III ELEMENTS OF BUSINESS ACTIVITY

Purchasing-choosing suppliers, overview of stock control, production-scale of production, main features of job, mass, and batch production systems, Marketing-concept and role of marketing, marketing mix, channels of distribution, Finance-sources of finance, assessing business performance.

UNIT IV HUMAN RESOURCES

Demographic trends and their impact on business concerns, unemployment-effects and types of unemployment, local trends in employment in various sectors, selection, recruitment, training of workers, motivation, basic knowledge of working age, contract of work, minimum wage, statutory hours of work, statutory benefits.

UNIT V FOREIGN TRADE AND BANKING

Foreign trade-meaning, nature, importance, procedure of export and import, globalization, MNC, MNE, Introductory idea about commercial banks-functions and services, Insurance-meaning, types, principles, benefits.

LECTURE	:	45
TUTORIAL	:	-
TOTAL	:	45

REFERENCES

1	Joel Dean - Managerial Economics, Prentice Hall/Pearson, 2007
2	Rangarajan - Principles of Macro Economics, Tata McGraw Hill
3	Marketing Management - Philip Kotler - Pearson Education- Millennium Edition
4	Gary Dessler, "Human Resource Management", Seventh edition, Prentice-Hall of India P.Ltd., Pearson

7

9

10

9

		I I I I
	DESIGN OF JIGS, FIXTURES, PRESS TOOLS AND MOULDS 3 1 0	100 4
		1
UNIT I	LOCATING AND CLAMPING PRINCIPLES	8
principle clamping	es of tool design- Function and advantages of Jigs and fixtures – Basic eless of location – Locating methods and devices – Redundant Location – Pring – Mechanical actuation – pneumatic and hydraulic actuation Standard parand Jig buttons – Tolerances and materials used.	nciples of
UNIT II	JIGS AND FIXTURES	10
Turnove milling, I	and development of jigs and fixtures for given component- Types of Jigs r, Channel, latch, box, pot, angular post jigs – Indexing jigs – General prir Lathe, boring, broaching and grinding fixtures – Assembly, Inspection and - Modular fixturing systems- Quick change fixtures.	nciples of
UNIT III	PRESS WORKING TERMINOLOGIES & ELEMENTS OF CUTTING DIES	9
Clearance Die Bloc Standarce	ation of press capacity – Strip layout – Material Utilization – Shearing ces – Press Work Materials – Center of pressure- Design of various elements ck – Punch holder, Die set, guide plates – Stops – Strippers – Pilots – Se d parts – Design and preparation of four standard views of simple blanking, and and progressive dies.	of dies – lection of
UNIT IV	BENDING FORMING AND DRAWING DIES	9
Types of pressure inserts – re-drawin	ce between bending, forming and drawing – Blank development for above oper f Bending dies – Press capacity – Spring back – knockouts – direct and is pads – Ejectors – Variables affecting Metal flow in drawing operations – draw beads- ironing – Design and development of bending, forming, drawing ng and combination dies – Blank development for axi- symmetric, rectang arts – Single and double action dies	ndirect – draw die g reverse
	DESIGN OF MOULDS	9
Types of Materials Design	For moulds and dies for various processing methods - Mould and Die Design Cor s. Injection Mould Design - Basics of mould construction - Methodical Mould of Feed System, Ejection System - Venting - Design of Cooling system and concepts and De-moulding Techniques. Moulds with a slide core - Sp	ncept and Design - - Mould
	(Use of Approved Design Data Book is permitted).	
	LECTURE :	45
	TUTORIAL :	-
	TOTAL :	45

ΤE	XT BOOKS
1	Joshi, P.H. "Jigs and Fixtures", Second Edition, Tata McGraw Hill Publishing Co., Ltd., New Delhi, 2004
2	Donaldson, Lecain and Goold "Tool Design", III rd Edition Tata McGraw Hill, 2000
RE	FERENCES
1	K. Venkataraman, "Design of Jigs Fixtures & Press Tools", Tata McGraw Hill, New Delhi, 2005.Kempster, "Jigs and Fixture Design", Hoddes and Stoughton – Third Edition 1974.
2	R.G.W.Pye, Injection Mould Design, SPE Publication, 2000
3	Hoffman "Jigs and Fixture Design" – Thomson Delmar Learning, Singapore, 2004
4	ASTME Fundamentals of Tool Design Prentice Hall of India

		METROLOGY AND MEASUREMENTS 3	0	0	100		3
UNIT	1	CONCEPT OF MEASUREMENT					9
instru	uments	oncept – Generalised measurement system-Units and s - sensitivity, readability, range of accuracy, precision-static and y-systematic and random errors-correction, calibration, interchan	d dy	nam	nic re		
UNIT	. II	LINEAR AND ANGULAR MEASUREMENT					9
meas Com	parator	of metrology-Linear measuring instruments: Vernier, ment, Slip gauges and classification, interferometery, optical rs: Mechanical, pneumatic and electrical types, appents: -Sine bar, optical bevel protractor – Taper measurements.		s, li	mit g	gau	erval ges- gular
UNIT	. III I	FORM MEASUREMENT					9
gears	s-tooth	ent of screw threads-Thread gauges, floating carriage microme thickness-constant chord and base tangent method-Gleason g asurements-surface finish, straightness, flatness and roundness	gear	tes	ting r	nac	hine
UNIT	ı vı	LASER AND ADVANCES IN METROLOGY					9
-							
angu	lar mea	nstruments based on laser-Principles- laser interferometer-a asurements and machine tool metrology					
angu Coor	lar mea dinate						
angu Coor	lar mea dinate ces- cor	asurements and machine tool metrology measuring machine (CMM)- Constructional features – types, a mputer aided inspection. MEASUREMENT OF POWER, FLOW AND TEMPERATURE RI	appl	icati	ions ·		igital
angu Coord devic UNIT	lar mea dinate ces- cor V N F e, torqu uri, orif	asurements and machine tool metrology measuring machine (CMM)- Constructional features – types, a mputer aided inspection.	appl ELA	icati	ions - D easu	- di	igital 9 nent:
angu Coord devic UNIT	lar mea dinate ces- cor V N F e, torqu uri, orif	asurements and machine tool metrology measuring machine (CMM)- Constructional features – types, a mputer aided inspection. MEASUREMENT OF POWER, FLOW AND TEMPERATURE RI PROPERTIES ue, power:-mechanical, pneumatic, hydraulic and electrical type- fice, rotameter, pitot tube –Temperature: bimetallic strip, pres eles, electrical resistance thermister.	ELA -Flov	icati ATE w m e th	ions - D easu ermo	- di	igital 9 nent:
angu Coord devic UNIT	lar mea dinate ces- cor V N F e, torqu uri, orif	asurements and machine tool metrology measuring machine (CMM)- Constructional features – types, a mputer aided inspection. MEASUREMENT OF POWER, FLOW AND TEMPERATURE RI PROPERTIES ue, power:-mechanical, pneumatic, hydraulic and electrical type- fice, rotameter, pitot tube –Temperature: bimetallic strip, pres eles, electrical resistance thermister.	ELA -Flov	NTE W m e th	D easu ermo	- di	igital 9 nent: ters,
angu Coord devic UNIT Force Ventu	lar mea dinate ces- cor V N F e, torqu uri, orif	asurements and machine tool metrology measuring machine (CMM)- Constructional features – types, a mputer aided inspection. MEASUREMENT OF POWER, FLOW AND TEMPERATURE RI PROPERTIES ue, power:-mechanical, pneumatic, hydraulic and electrical type- fice, rotameter, pitot tube –Temperature: bimetallic strip, pres eles, electrical resistance thermister.	ELA -Flov ssure LE(NTE W m e th	D easu ermo	- di rem me	9 9 nent: ters, 45 -
angu Coord devic UNIT Force Ventu therm	lar mea dinate ces- cor V N F e, torqu uri, orif	asurements and machine tool metrology measuring machine (CMM)- Constructional features – types, a mputer aided inspection. MEASUREMENT OF POWER, FLOW AND TEMPERATURE RI PROPERTIES ue, power:-mechanical, pneumatic, hydraulic and electrical type- fice, rotameter, pitot tube –Temperature: bimetallic strip, pres eles, electrical resistance thermister.	ELA -Flov ssure LE(ATE w m e th CTU	D easu ermo	- di rem me	9 9 nent: ters, 45 -
angu Coord devic UNIT Force Ventu therm	Iar mea dinate ces- cor V M F e, torqu uri, orif nocoup	asurements and machine tool metrology measuring machine (CMM)- Constructional features – types, a mputer aided inspection. MEASUREMENT OF POWER, FLOW AND TEMPERATURE RI PROPERTIES ue, power:-mechanical, pneumatic, hydraulic and electrical type- fice, rotameter, pitot tube –Temperature: bimetallic strip, pres eles, electrical resistance thermister.	ELA -Flov ssure	icati ATE w m e th CTL COR	ions - D easu ermo JRE IAL	- di	9 9 nent: ters, 45 -
angu Coord devic UNIT Force Ventu therm	lar mea dinate ces- cor V F e, torqu uri, orif nocoup ERENC Beckw	asurements and machine tool metrology measuring machine (CMM)- Constructional features – types, a mputer aided inspection. MEASUREMENT OF POWER, FLOW AND TEMPERATURE RI PROPERTIES ue, power:-mechanical, pneumatic, hydraulic and electrical type- fice, rotameter, pitot tube –Temperature: bimetallic strip, pres les, electrical resistance thermister.	ELA -Flov ssure	icati ATE w m e th CTL COR	ions - D easu ermo JRE IAL	- di	9 9 nent: ters, 45 - 45
Angu Coord devic UNIT Force Ventu therm REFE	lar mea dinate ces- cor V M F e, torqu uri, orif nocoup ERENC Beckw Jain R	Asurements and machine tool metrology measuring machine (CMM)- Constructional features – types, a mputer aided inspection. MEASUREMENT OF POWER, FLOW AND TEMPERATURE RI PROPERTIES Le, power:-mechanical, pneumatic, hydraulic and electrical type- fice, rotameter, pitot tube –Temperature: bimetallic strip, pres- les, electrical resistance thermister.	ELA -Flov ssure LEC TUT	icati MTEI w m e th CTL CTL CTL CTL CTL	ions - D easu ermo JRE IAL	- di	9 9 nent: ters, 45 -
Angu Coord devic UNIT Force Ventu therm REFE 1. 2.	lar mea dinate ces- cor V M F e, torqu uri, orif nocoup ERENC Beckw Jain R Alan S	Assurements and machine tool metrology measuring machine (CMM)- Constructional features – types, a mputer aided inspection. MEASUREMENT OF POWER, FLOW AND TEMPERATURE RIPROPERTIES Le, power:-mechanical, pneumatic, hydraulic and electrical type- fice, rotameter, pitot tube –Temperature: bimetallic strip, presoles, electrical resistance thermister. CES: with T.G, and N. Lewis Buck, "Mechanical Measurements", Addis R.K., "Engineering Metrology", Khanna Publishers, 1994	ELA -Flov ssure LEC TUT	icati MTEI w m e th CTL CTL CTL CTL CTL	ions - D easu ermo JRE IAL	- di	9 9 nent: ters, 45 -
Angu Coord devic UNIT Force Ventu therm REFE 1. 2. 3.	lar mea dinate ces- cor V M F e, torqu uri, orif nocoup ERENC Beckw Jain R Alan S Gupta	Asurements and machine tool metrology measuring machine (CMM)- Constructional features – types, a mputer aided inspection. MEASUREMENT OF POWER, FLOW AND TEMPERATURE RIPROPERTIES Le, power:-mechanical, pneumatic, hydraulic and electrical type- fice, rotameter, pitot tube –Temperature: bimetallic strip, pres ples, electrical resistance thermister. CES: with T.G, and N. Lewis Buck, "Mechanical Measurements", Addis R.K., "Engineering Metrology", Khanna Publishers, 1994 S. Morris, "The Essence of Measurement", Prentice Hall of India,	ELA -Flov ssure TUT , 199	icati wm e th CTL TOT	ions - D easu ermo JRE IAL Sley, -	- di	9 nent: ters, 45 1

MECHATRONICS 3 0 0 100 3	
------------------------------------	--

UNIT I INTRODUCTION

Evolution, scope, components of mechatronic systems, overview of mechanical, hydraulic & pneumatic actuators. Control Systems: Automatic control, open loop and closed loop control, servomechanism, block diagram algebra, concept of transfer function. Modes of control: on/off, P, PI, PD and PID

UNIT II SENSORS & ACTUATORS

9

Performance, terminology, characteristics, types, binary and analog. Position Sensors: Limit switch, photoelectric switches, proximity sensors, pneumatic limit valves and backpressure sensors, pressure switches, resolvers, incremental & absolute encoders, decoders & relays. Displacement: Potentiometer sensors, LVDT, capacitive displacement sensors. Velocity sensors: Tachogenerator, use of encoders

Actuator types, Specifications and Control, Characteristics of AC Motors: Pulse width modulation to control AC frequency, cycloconvertor for AC frequency control. DC Motors: Brushless DC servomotors, timing motors, SCR (Silicon Controlled Rectifiers) motors, factors for selecting motor, piezoelectric actuators, solenoids, torque motors.

UNIT III PROGRAMMABLE CONTROLERS AND SIGNAL CONDITIONING

9

Review of logic gates, programmable logic controllers (PLC): basic structure, i/o processing, programming, ladder diagrams, logic functions, latching, sequencing, timers, jumps, analog i/o, applications.

Signal conditioning process, clock signal, voltage divider, rectification, Operational Amplifiers: inverting and non-inverting, summing, integrating, differential, logarithmic, comparator. Interfacing input output ports, serial and parallel interfacing requirements, buffers, handshaking, polling and interrupts.

UNIT IV COMPUTER NUMERICAL CONTROL SYSTEMS & MICROCONTROLLER 10

Structure of CNC controller, reference pulse & sampled data type CNC system. (a) Position and velocity control loops for i) Point to Point control: incremental and absolute, open and closed control loops, deceleration diagram in PTP system, loop comparator in absolute systems; ii) Continuous Path Control loop for position and velocity control, two axis contouring system for constant frequency & constant velocity commands. (b) Adaptive Control: Principle, Adaptive control for a machine tool, adaptive control with optimization (ACO) and with constraints (ACC), applications for m/c tools like lathe, grinding etc.

Comparison between microprocessor and micro controller, organization of a microcontroller system, architecture of MCS 51 controller, pin diagram of 8051, addressing modes, instruction types and set - Applications.

UNIT V MEMS AND DESIGN OF MECHATRONIC SYSTEMS

10

Overview of MEMS & Microsystems, Typical MEMS & Micro system products & applications. (i) Micro sensors and micro actuators: Phototransistors, pressure sensors, thermal sensors, micro grippers, micro motors, micro valves, micro pumps. (ii) Micro manufacturing: Bulk manufacturing, surface manufacturing, LIGA Process.

The design process, traditional and mechatronic designs, A few case studies like piece counting system, pick and place manipulator, simple assembly task involving a few parts, part loading / unloading system, automatic tool and pallet changers etc

LECTURE	:	45
TUTORIAL	:	-
TOTAL	:	45

TEX	ТВООК
W. B	Bolton, "Mechatronics', 3/e, Addison Wesley, 1999.
REF	ERENCES:
1.	Ogata k., "Modern Control Engineering" Pearson Education, 2002, ISBN 81-7808-579-8
2.	David. W. Pessen, "Industrial Automation", John Wiley & Sons, ISBN 9971-51-054-5.
3.	S. Brain Morriss, "Automated Manufacturing Systems: Sensors, Actuators", McGraw Hill, 1994
4.	Singh M.D. and Joshi J.G., Mechatronics, PHI Learning Private Limited, 2009
5.	Dan Necsulescu, "Mechatronics", Pearson Education, ISBN 81-7808 -676 – X.
6	Yoram Koren, "Computer Control Of Manufacturing systems" McGraw Hill, ISBN 0-07- 066379-3

METROLOGY AND MEASUREMENT LABORATORY	0	0	3	100
			-	
LIST OF EXPERIMENTS				
1. Calibration of Vernier, Micrometer and Dial Gauge				
2. Checking Linear and angular Dimensions of a part using slip g	gauges / sine	bars		
3. Measurement of Taper Angle using sine bar / bevel protractor				
4. Measurement of cutting tool parameters using tool makers m	icroscope			
5. Measurement of straightness and flatness using auto-collimat	or			
C. Management of thread management are uping. Drafile providentary and				
6. Measurement of thread parameters using Profile projector and micrometer	Floating carr	iage		
		Ū	Pneu	imatic
micrometer7. Checking the limits of dimensional tolerances using comparat	tors (Mechan	Ū	Pneu	imatic
micrometer 7. Checking the limits of dimensional tolerances using comparat / Electrical)	tors (Mechan er	ical / I	Pneu	imatic
 micrometer 7. Checking the limits of dimensional tolerances using comparat / Electrical) 8. Measurement of Temperature using Thermocouple / Pyrometer 	tors (Mechan er	ical / I	Pneu	Imatic
 micrometer 7. Checking the limits of dimensional tolerances using comparat / Electrical) 8. Measurement of Temperature using Thermocouple / Pyrometer 9. Measurement of Displacement using Strain Gauge / LVDT / W 	tors (Mechan er	ical / I	Pneu	imatic
 micrometer 7. Checking the limits of dimensional tolerances using comparat / Electrical) 8. Measurement of Temperature using Thermocouple / Pyrometer 9. Measurement of Displacement using Strain Gauge / LVDT / W 10. Measurement of Force using load cell / proving ring 	tors (Mechan er Vheatstone B	ical / I	Pneu	imatic

MECHATRONICS LABORAT	ORY	0	0	3	100	2
LIST OF EXPERIMENTS						
1. Design and testing of fluid power of	ircuits to control					
2. (i)velocity (ii) direction and (iii) for	ce of single and double acting a	actuat	ors			
3. Design of circuits with logic sequer	nce using Electro pneumatic tra	ainer	kits.			
4. Simulation of basic Hydraulic, Pne	umatic and Electric circuits usir	ng so	ftwar	е		
5. Circuits with multiple cylinder sequ	ences in Electro pneumatic usi	ing Pl	LC.			
6. Servo controller interfacing for ope	n loop					
7. Servo controller interfacing for clos	sed loop					
8. PID controller interfacing						
9. Stepper motor interfacing with 805	1 Micro controller					
10. (i). Full step resolution (ii) Half step	resolution					
11. Modeling and analysis of basic el VIEW	ectrical, hydraulic and pneuma	atic s	yster	ns u	sing L	.AB
12. Computerized data logging syster and temperature	n with control for process varia	ables	like	pres	sure f	low
	Total N	lo of	perio	ods	:	45

TECHNICAL SEMINAR

- * It is mandatory that each student will give individually a seminar on exclusive topic.
- * During the seminar session each student is expected to prepare and present a topic on engineering/ technology, for duration of not less than 30 minutes.
- * Also, the student has to submit a hard copy of the technical topic, in the form of a report consisting of a title page, Introduction, body chapters and a conclusion with references, running to not less than 20 pages; this will be evaluated by the faculty coordinator/guide.
- * In a session of three periods per week, 5 students are expected to present the seminar.
- * In 13 weeks all students of the class would have completed giving the seminar.
- * For every 10 students or for different area of their branch specialization, a faculty guide is to be allotted and he / she will guide and monitor the progress of the student and maintain attendance also.
- * Students are encouraged to use various teaching aids such as over head projectors, power point presentation and demonstrative models.
- * This will enable them to gain confidence in technical presentation skills and to face the placement interviews.

PROJECT PHASE - I

- 1. The students are expected to get formed into a team of convenient groups of not more than 4 members on a project.
- Every project team shall have a guide who is the member of the faculty of the institution. Identification of student group and their faculty guide has to be completed within the first two weeks from the day of beginning of 7th semester.
- 3. The group has to identify and select the problem to be addressed as their project work; make through literature survey and finalize a comprehensive aim and scope of their work to be done.
- 25% of the total work to be done for the project work has to be completed by end of 7th semester.
- 5. A mini project report (of the phase-I) to this effect has to be submitted by each student group.
- 6. One mid semester review and another end semester review of the progress of the project work have to be conducted by a team of faculty (minimum 3 and a maximum of 5) along with their faculty guide as a member of the faculty team.
- 7. The same team of faculty will evaluate the project phase-I report. This evaluation will form 50% of the internal assessment mark. The remaining 50% of the internal assessment mark will be given at the end of the 8th semester, at the time of completing the project work.

ELECTIVE SUBJECTS – SEMSTER - 7

		OPTIMIZATION TECHNIQUES 3 1 0	10	0
				40
UNITI				10
classif	fications ization -	o optimum design - General principles of optimization – Problem formulati - Single variable and multivariable optimization, Techniques of unco - Golden section, Random, pattern and gradient search methods – Into - Into and States - Into a section, Random, pattern and gradient search methods - Into a section, Random, pattern and gradient search methods - Into a section, Random, pattern and gradient search methods - Into a section, Random, pattern and gradient search methods - Into a section, section, Random, pattern and gradient search methods - Into a section, sec	onstra	aineo
	II	CONSTRAINED OPTIMIZATION TECHNIQUES		9
		vith equality and inequality constraints - Direct methods – Indirect meth ns, Lagrange multipliers - Geometric programming.	ods	usinę
	111	DYNAMIC PROGRAMMING		7
	stage o zation,	optimization – dynamic programming; stochastic programming; Multi	obje	ctive
	IV	UNCONVENTIONAL OPTIMIZATION TECHNIQUES		12
		hms, Simulated Annealing and Ant Colony techniques; Neural network & F otimization	uzzy	logio
UNIT	v	APPLICATIONS		7
axial,	transver	lications – Design of simple truss members - Design applications – Desigr se loaded members for minimum cost, weight – Design of shafts and ers – Design of springs.		
		LECTURE	:	45
		TUTORIAL	:	15
		TOTAL	:	60
REFE	RENCE	8		
1		amoy Deb, "Optimization for Engineering design algorithms and Examples India Pvt. Ltd. 2006.	', Pre	entice
1	Doo S		erna	tiona
2		ingaresu, S., "Engineering Optimization – Theory & Practice", New Age Intited, New Delhi, 2000.		
2 3	(P) Lim).

		COMPUTATIONAL FLUID DYNAMICS 3	1	0	100) 4
		GOVERNING EQUATIONS AND BOUNDARY CONDITIONS				8
Mo Tir	omentum an me-averageo	nputational fluid dynamics – Governing equations of fluid dyna d Energy equations – Chemical species transport – Physical bou l equations for Turbulent Flow – Turbulent–Kinetic Ene behaviour of PDEs on CFD - Elliptic, Parabolic and Hyperbolic equ	ındar ərgy	y cor Equ		is –
٩U		FINITE DIFFERENCE METHOD				9
oro so	der accuracy lution Metho	nite difference equations – Simple Methods – General Methods f / – solution methods for finite difference equations – Elliptic ec ds – Parabolic equations – Explicit and Implicit schemes – Exa abolic equations.	Juatio	ons –	Itera	tive
٩U		FINITE VOLUME METHOD (FVM) FOR DIFFUSION				9
		formulation for steady state One and Two dimensional diffusion is the steady heat conduction through Explicit, Crank – Nicolson and ful				One nes
٩U		FINITE VOLUME METHOD FOR CONVECTION DIFFUSION				10
		mensional convection and diffusion – Central, upwind diffe iscretization schemes – Conservativeness, Boundedness, Trasnp				
	•	IICK Schemes	Ortiv	enes	5, пу	<u>, na</u>
Po	•		ortiv	eness	з, пу	9
Po UN Re Mo SII	NIT V Presentation Differentia	CALCULATION FLOW FIELD BY FVM of the pressure gradient term and continuity equation –	Stag	gere	d grid	9 d – ion,
Po UN Re Mo SII	NIT V Presentation Differentia	CALCULATION FLOW FIELD BY FVM of the pressure gradient term and continuity equation – puations – Pressure and Velocity corrections – Pressure Co thm and its variants. Turbulence models, mixing length model, and low Reynolds number models	Stag orrec two	gere	d grid equat ion (I	9 d – ion,
Po UN Re Mc SII	NIT V Presentation Differentia	CALCULATION FLOW FIELD BY FVM a of the pressure gradient term and continuity equation – puations – Pressure and Velocity corrections – Pressure Co thm and its variants. Turbulence models, mixing length model, and low Reynolds number models	Stag prrec two	igered tion equat	d grid equat ion (I	9 d − ion, (-€) 45
Po UN Re Mc SII	NIT V Presentation Differentia	CALCULATION FLOW FIELD BY FVM a of the pressure gradient term and continuity equation – puations – Pressure and Velocity corrections – Pressure Co thm and its variants. Turbulence models, mixing length model, and low Reynolds number models	Stag orrec two .ECT	igered tion equat	d grid equat ion (l	9 d ion, (-€) 45 15
Po UN Re Mc SII mc	NIT V epresentation omentum ec MPLE algori odels – High	CALCULATION FLOW FIELD BY FVM n of the pressure gradient term and continuity equation – juations – Pressure and Velocity corrections – Pressure Co thm and its variants. Turbulence models, mixing length model, and low Reynolds number models L T S:	Stag orrec two ECT UTO TC	igered tion equat	d grid equat ion (l	9 d ion, (-€) 45 15
Po UN Re Mc SII mc TE 1	NIT V Presentation presentation presentation MPLE algorid Ddels – High EXT BOOK T.J. Chung	IICK Schemes CALCULATION FLOW FIELD BY FVM n of the pressure gradient term and continuity equation – juations – Pressure and Velocity corrections – Pressure Conthm and its variants. Turbulence models, mixing length model, and low Reynolds number models L S: , Computational Fluid Dynamics, Cambridge University, Press, 20	Stag orrect two of .ECT UTO TC	igered tion equat URE RIAL	d grid equation (I	9 d - ion, (-C) 45 15 60
Po UN Re Mc SII mc	NIT V Presentation presentation pmentum ec MPLE algori pdels – High EXT BOOK T.J. Chung Versteeg, I	CALCULATION FLOW FIELD BY FVM n of the pressure gradient term and continuity equation – juations – Pressure and Velocity corrections – Pressure Co thm and its variants. Turbulence models, mixing length model, and low Reynolds number models L T S:	Stag orrect two of .ECT UTO TC	igered tion equat URE RIAL	d grid equation (I	9 ion, (-C) 45 15 60
Po UN Re Mc SII mc TE 1 2	NIT V Presentation presentation pmentum ec MPLE algori pdels – High EXT BOOK T.J. Chung Versteeg, I	IICK Schemes CALCULATION FLOW FIELD BY FVM n of the pressure gradient term and continuity equation – juations – Pressure and Velocity corrections – Pressure Color thm and its variants. Turbulence models, mixing length model, and low Reynolds number models L S: , Computational Fluid Dynamics, Cambridge University, Press, 20 H.K., and Malalasekera, W., An Introduction to Computational Fluid Press	Stag orrect two of .ECT UTO TC	igered tion equat URE RIAL	d grid equation (I	9 d - ion, (-C) 45 15 60
Po UN Re Mc SII mc TE 1 2	NIT V Presentation presentation pmentum ec MPLE algori pdels – High EXT BOOK T.J. Chung Versteeg, I finite volum FERENCES	IICK Schemes CALCULATION FLOW FIELD BY FVM n of the pressure gradient term and continuity equation – juations – Pressure and Velocity corrections – Pressure Color thm and its variants. Turbulence models, mixing length model, and low Reynolds number models L S: , Computational Fluid Dynamics, Cambridge University, Press, 20 H.K., and Malalasekera, W., An Introduction to Computational Fluid Press	Staç Drrec two o ECT UTO TC D02 id D	igered tion equat URE RIAL DTAL	d grid equat ion (I : : :	9 ion, (-C) 45 15 60 The
Po UN Re Mc SII mc TE 1 2 RE	NIT V Presentation presentation presentation MPLE algorid MPLE algorid MPLE algorid MPLE algorid MPLE algorid MPLE algorid METERENCES Patankar, 3 2004 Muralidhar	IICK Schemes CALCULATION FLOW FIELD BY FVM n of the pressure gradient term and continuity equation – puations – Pressure and Velocity corrections – Pressure Context thm and its variants. Turbulence models, mixing length model, and low Reynolds number models L S: , Computational Fluid Dynamics, Cambridge University, Press, 20 H.K., and Malalasekera, W., An Introduction to Computational Fluid Dynamics Bethod, Longman, 1998	Stag prrec two EC1 UTO TC 002 iid D	igered tion equat URE RIAL DTAL ynam	d grid equat ion (l : : : :	9 ion, (-E) 45 15 60 The
Po UN Re Mc SII mc TE 1 2 RE 1	NIT V Presentation Depresentation Depresentation Depresentation MPLE algorid Depresentation MPLE algorid Depresentation MPLE algorid MPLE algorid MURE Patankar, 2004 Muralidhar Publishing Ghoshdast	CALCULATION FLOW FIELD BY FVM for of the pressure gradient term and continuity equation – fuations – Pressure and Velocity corrections – Pressure Co thm and its variants. Turbulence models, mixing length model, and low Reynolds number models L S: Computational Fluid Dynamics, Cambridge University, Press, 20 H.K., and Malalasekera, W., An Introduction to Computational Fluid Elements S: S.V. Numerical Heat Transfer and Fluid Flow, Hemisphere Public K., and Sundararajan, T., computational Fluid Flow and Heat	Stag prrec two of ECT UTO TC 002 id D	igered tion equat URE RIAL DTAL ynam	d grid equat ion (I : : : : : : : : : : : : : : : : : : :	9 d – ion, (-E) 45 15 60 The ion, osa
Po UN Re Mc SII mc TE 1 2 RE 1 2 RE 1 2	NIT V Presentation Depresentation Depresentation Depresentation Depresentation MPLE algorid Defense - High EXT BOOK T.J. Chung Versteeg, I finite volum FERENCES Patankar, 2 2004 Muralidhar Publishing Ghoshdast Publishing	CALCULATION FLOW FIELD BY FVM of the pressure gradient term and continuity equation – puations – Pressure and Velocity corrections – Pressure Co thm and its variants. Turbulence models, mixing length model, and low Reynolds number models L S: Computational Fluid Dynamics, Cambridge University, Press, 20 H.K., and Malalasekera, W., An Introduction to Computational Fluid Method, Longman, 1998 S: S.V. Numerical Heat Transfer and Fluid Flow, Hemisphere Public K., and Sundararajan, T., computationsl Fluid Flow and Heat House, NewDelhi, 1995. Idar , P.S., computer Simulation of flow and heat transfer,	Stac prrec two ECT UTO TC 002 nid D shin t Tra Tata	igered tion equat URE RIAL DTAL ynam g Col nsfer McC	d grid equat ion (I : : : : : : : : : : : : : : : : : : :	9 d – ion, 45 15 60 The ion, ion, Hill

	REFRIGERATION AND AIR CONDITIONING310	10	0
UNIT I	REFRIGERATION CYCLE		9
Vapour compressions - case	rmodynamic principles of refrigeration. Concept of Aircraft refrigeration ession refrigeration cycle - use of P-H charts - multistage and multiple ex cade system - COP comparison. Vapor absorption refrigeration system. / um Bromide water systems. Steam jet refrigeration system.	/apo	rator
UNIT II	REFRIGERANTS AND SYSTEM COMPONENTS		9
towers. Refrig Refrigeration p components. A	reciprocating & rotary (elementary treatment.) - condensers - evaporators erants - properties - selection of refrigerants – Eco Friendly refrigolant controls - testing and charging of refrigeration units. Balancing o upplications to refrigeration systems - ice plant - food storage plants - milk rated cargo transports.	erar f sy	nts - stem
	PSYCHROMETRY		9
Psychrometric - bypass facto	processes- use of psychrometric charts Grand and Room Sensible Heater - requirements of comfort air conditioning - comfort charts - factors give temperature, recommended design conditions and ventilation standards.	ove	
UNIT IV	COOLING LOAD CALCULATIONS		9
infiltration - inte	 design of space cooling load - heat transmission through building. Solar rater arnal heat sources (sensible and latent) - outside air and fresh air load - estin nestic, commercial and industrial systems - central air conditioning systems 		
	AIR CONDITIONING		9
condenser - c		strib ores,	ution and
	LECTURE	:	45 15
	TOTORIAL		60
 2 Arora. C.P. REFERENCES 1 Roy.J Doss 2 Jordon and 	rasad, "Refrigeration and Air Conditioning", Wiley Eastern Ltd., 1983 , "Refrigeration and Air Conditioning", Tata McGraw-Hill New Delhi, 1988 Sat, "Principles of Refrigeration", Pearson Education 1997. I Prister, "Refrigeration and Air Conditioning", Prentice Hall of India PVT L		
4 W.F.Stocke	, "Refrigeration and Air Conditioning", PHI Learning Private Ltd, 2009. er and J.W.Jones, "Refrigeration and Air Conditioning", McGraw-Hill, 1985. meen "Refrigeration and Air Conditioning", Prentice Hall of India Pvt. Ltd. 20	07.	

		INTERNAL COMBUSTION ENGINES 3	1	0	100	
UN	NIT I	SPARK IGNITION ENGINES				9
reo sta	quirements - ages of co	thermodynamic Analysis of S.I.engine combustion spark ignition- carburetors and fuel injection systems – Single point and multi mbustion – normal and abnormal combustion – Factors a of knock – Anti knock agent – types of combustion chambers.	ti poi	int i	njecti	on –
U١		COMPRESSION IGNITION ENGINES				9
En	igine – Direc	thermodynamic analysis of C.I. engine combustion – States of or and indirect injection systems – Combustion Chambers – Fuel e, spray penetration and evaporation – Air motion				
٩U		ALTERNATIVE FUELS				9
		anol, Hydrogen, Natural gas, Biogas, Bio diesel, Liquefied tability, Engine Modifications, Merits and Demerits as fuels.	petro	oleu	m ga	as –
U١		RECENT TRENDS				9
-0		unes – stratined Charge engines – gasoline direct injection engine	e – r	າom	Uyen	
ch	arge compre	gines – stratified Charge engines – gasoline direct injection engine ession ignition - plasma ignition – Zero emission vehicle, Variable charged engines				
cha en	arge compre	ession ignition - plasma ignition - Zero emission vehicle, Variable				
cha en UN Po Mc co	arge compre gines, turbo NIT V Illutant – So pnoxide Form	ession ignition - plasma ignition – Zero emission vehicle, Variable charged engines POLLUTANT FORMATION CONTROL urces and types – formation of Nox – Hydrocarbon Emission Me nation – Particulate emissions – Effect of pollutant, emission stand issions – Catalytic converters and Particulate Traps - Method of the statemeters	com	pres nism – N	– ca	ratio 9 Irbon
cha en UN Po Mc co	arge compre gines, turbo NIT V ollutant – So onoxide Forn ntrolling Emi	POLLUTANT FORMATION CONTROL urces and types – formation of Nox – Hydrocarbon Emission Menation – Particulate emissions – Effect of pollutant, emission stand issions – Catalytic converters and Particulate Traps - Method of	com	nism – N sure	– ca	ratio 9 rbon ds of
cha en UN Po Mc co	arge compre gines, turbo NIT V ollutant – So onoxide Forn ntrolling Emi	ession ignition - plasma ignition – Zero emission vehicle, Variable charged engines POLLUTANT FORMATION CONTROL urces and types – formation of Nox – Hydrocarbon Emission Me nation – Particulate emissions – Effect of pollutant, emission stand issions – Catalytic converters and Particulate Traps - Method of LEC	com chan lards meas	pres nism – N sure RE	– ca	ratio 9 Irbon ds of and
cha en UN Po Mc co	arge compre gines, turbo NIT V ollutant – So onoxide Forn ntrolling Emi	ession ignition - plasma ignition – Zero emission vehicle, Variable charged engines POLLUTANT FORMATION CONTROL urces and types – formation of Nox – Hydrocarbon Emission Me nation – Particulate emissions – Effect of pollutant, emission stand issions – Catalytic converters and Particulate Traps - Method of LEC TUT	com chan lards meas CTUI	pres nism – N sure RE AL	– ca	ratio 9 Irbon ds of and 45
chi en UN Po Mc coi Dri	arge compre gines, turbo NIT V ollutant – So onoxide Forn ntrolling Emi	POLLUTANT FORMATION CONTROL urces and types – formation of Nox – Hydrocarbon Emission Me nation – Particulate emissions – Effect of pollutant, emission stand issions – Catalytic converters and Particulate Traps - Method of LEC	com echan lards meas CTUI	pres nism – N sure RE AL	– ca	9 rbon ds of and 45 15
chi en UN Po Mc coi Dri	arge compre gines, turbo NIT V ollutant – So onoxide Forn ntrolling Emi iving cycles.	POLLUTANT FORMATION CONTROL urces and types – formation of Nox – Hydrocarbon Emission Me nation – Particulate emissions – Effect of pollutant, emission stand issions – Catalytic converters and Particulate Traps - Method of LEC	com echan lards meas CTUI CTUI	nism – M sure RE AL AL	- ca lethoo ment : :	9 rbon ds of and 45 15
cha en Po Mc Col Dri	arge compre gines, turbo VIT V MILT V MILTAN – So proxide Form ntrolling Emi iving cycles.	POLLUTANT FORMATION CONTROL urces and types – formation of Nox – Hydrocarbon Emission Me nation – Particulate emissions – Effect of pollutant, emission stand issions – Catalytic converters and Particulate Traps - Method of LEC	com echan lards meas CTUI TOTA	nism – M sure RE AL AL	- ca lethoo ment : :	9 rbon ds of and 45 15
cha en Po Mc co Dri TE 1 2	arge compre gines, turbo VIT V MILT V MILTAN – So proxide Form ntrolling Emi iving cycles.	A session ignition - plasma ignition – Zero emission vehicle, Variable charged engines POLLUTANT FORMATION CONTROL urces and types – formation of Nox – Hydrocarbon Emission Me nation – Particulate emissions – Effect of pollutant, emission stand issions – Catalytic converters and Particulate Traps - Method of LEC TUT a, Internal combustion Engines, 3 rd edn., Tata McGraw Hill Pub. Co. I., "Internal Combustion Engines, PHI Learning Private Limited, 200	com echan lards meas CTUI TOTA	nism – M sure RE AL AL	- ca lethoo ment : :	9 rbon ds of and 45 15
cha en Po Mc co Dri TE 1 2	arge compre gines, turbo NIT V ollutant – So onoxide Forn ntrolling Emi iving cycles. XT BOOKS V.Ganesan Gupta H. N FFERENCES Willard W.	A session ignition - plasma ignition – Zero emission vehicle, Variable charged engines POLLUTANT FORMATION CONTROL urces and types – formation of Nox – Hydrocarbon Emission Me nation – Particulate emissions – Effect of pollutant, emission stand issions – Catalytic converters and Particulate Traps - Method of LEC TUT a, Internal combustion Engines, 3 rd edn., Tata McGraw Hill Pub. Co. I., "Internal Combustion Engines, PHI Learning Private Limited, 200	com echan lards meas CTUI CTUI TORIA	nism – M sure RE AL AL	- ca lethoo ment : : : 07	9 rbon ds of and 45 15 60
cha en Po Mc co Dri TE 1 2 RE	arge compre gines, turbo NIT V ollutant – So onoxide Form ntrolling Emi iving cycles. XT BOOKS V.Ganesan Gupta H. N EFERENCES Willard W. Learning P	POLLUTANT FORMATION CONTROL urces and types – formation of Nox – Hydrocarbon Emission Me nation – Particulate emissions – Effect of pollutant, emission stand issions – Catalytic converters and Particulate Traps - Method of LEC TUT I, Internal combustion Engines, 3 rd edn., Tata McGraw Hill Pub. Co. I., "Internal Combustion Engines, PHI Learning Private Limited, 200 Pulkrabek. Engineering Fundamentals of the Internal Combust	com echan lards meas CTUI CTUI TORIA TOTA	nism – M sure RE AL AL	- ca lethoo ment : : : 07	9 rbon ds of and 45 15 60
cha en Po Mc co Dri TE 1 2 RE 1	arge compre gines, turbo NIT V ollutant – So onoxide Form ntrolling Emi iving cycles. XT BOOKS V.Ganesan Gupta H. N FERENCES Willard W. Learning P John B.Hey	POLLUTANT FORMATION CONTROL urces and types – formation of Nox – Hydrocarbon Emission Me nation – Particulate emissions – Effect of pollutant, emission stand issions – Catalytic converters and Particulate Traps - Method of LEC TUT a, Internal combustion Engines, 3 rd edn., Tata McGraw Hill Pub. Co. I., "Internal Combustion Engines, PHI Learning Private Limited, 200 Pulkrabek. Engineering Fundamentals of the Internal Combus rivate Limited, 2008	com echan lards meas CTUI CTUI TORIA TOTA	nism – M sure RE AL AL	- ca lethoo ment : : : 07	9 rbon ds of and 45 15 60
cha en Po Mo co Dri TE 1 2 RE 1 2	arge compre gines, turbo NIT V ollutant – So onoxide Forn ntrolling Emi iving cycles. XT BOOKS V.Ganesan Gupta H. N FERENCES Willard W. Learning P John B.Hey R.B. Mathu	POLLUTANT FORMATION CONTROL urces and types – formation of Nox – Hydrocarbon Emission Me nation – Particulate emissions – Effect of pollutant, emission stand issions – Catalytic converters and Particulate Traps - Method of LEC TUT a, Internal combustion Engines, 3 rd edn., Tata McGraw Hill Pub. Co. I., "Internal Combustion Engines, PHI Learning Private Limited, 200 Pulkrabek. Engineering Fundamentals of the Internal Combus rivate Limited, 2008 ywood, Internal combustion Engines Fundamentals, McGraw Hill, 1 Ir and R.P. Sharmal, Internal combustion engines .Benson and N.D.Whitehouse, Internal combustion Engines, Vol.I	com chan lards meas CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CT	nism – N sure AL AL ., 20 En	- ca lethoo ment : : 07 gine,	ratio 9 rbon ds of and 45 15 60 PHI
cha en Po Mc co Dri 1 2 RE 1 2 3	arge compre gines, turbo NIT V ollutant – So onoxide Forn ntrolling Emi iving cycles. V.Ganesan Gupta H. N FERENCES Willard W. Learning P John B.Hey R.B. Mathu Rowland S press, 1983	POLLUTANT FORMATION CONTROL urces and types – formation of Nox – Hydrocarbon Emission Me nation – Particulate emissions – Effect of pollutant, emission stand issions – Catalytic converters and Particulate Traps - Method of LEC TUT a, Internal combustion Engines, 3 rd edn., Tata McGraw Hill Pub. Co. I., "Internal Combustion Engines, PHI Learning Private Limited, 200 Pulkrabek. Engineering Fundamentals of the Internal Combus rivate Limited, 2008 ywood, Internal combustion Engines Fundamentals, McGraw Hill, 1 Ir and R.P. Sharmal, Internal combustion engines .Benson and N.D.Whitehouse, Internal combustion Engines, Vol.I	com chan lards meas CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CTUI CT	nism – N sure AL AL ., 20 En	- ca lethoo ment : : 07 gine,	9 rbonds of and 45 15 60

		TURBO MACHINERY310	100	4
UN	I TIN	PRINCIPLES		9
		ransfer between fluid and rotor-classification of fluid machinery - Euler's nless parameters - specific speed – applications - velocity triangles - work and		
UN	NIT II	CENTRIFUGAL FANS AND BLOWERS		9
		stage and design parameters - flow analysis in impeller blades - volute and naracteristic curves and selection, fan drives and fan noise.	d diffus	sers,
UN		CENTRIFUGAL COMPRESSOR		9
	onstruc rves	ion details, impeller flow losses, slip factor, diffuser analysis, losses and pe	erforma	ance
UN		AXIAL FLOW COMPRESSOR		9
		ocity diagrams, enthalpy - entropy diagrams, stage losses and efficiency, wo ge design - problems and performance characteristics	rk done	e in
UN	V TIV	AXIAL AND RADIAL FLOW TURBINES		1
				9
un	d perfo	ocity diagrams, reaction stages, losses and coefficients, blade design princip rmance characteristics.	les, tes	-
un	d perfo		les, tes	-
	d perfo	rmance characteristics.		sting
	d perfo	rmance characteristics.	:	sting
	d perfo	rmance characteristics. LECTURE TUTORIAL TOTAL	:	45 15
	EXT BC	rmance characteristics. LECTURE TUTORIAL TOTAL	:	45 15 60
TE	EXT BC	rmance characteristics. LECTURE TUTORIAL TOTAL OKS	: : : ny, 199	45 15 60
TE 1 2	EXT BC	rmance characteristics. LECTURE TUTORIAL TOTAL OKS a, S.H., Turbines, Compressor and Fans, Tata McGraw Hill Publishing Compar anna B.K., Fundamentals of Turbo-machinery, PHI Learning Private Limited, 20	: : : ny, 199	45 15 60
TE 1 2	EXT BC Yahya Venka	rmance characteristics. LECTURE TUTORIAL TOTAL OKS a, S.H., Turbines, Compressor and Fans, Tata McGraw Hill Publishing Compar anna B.K., Fundamentals of Turbo-machinery, PHI Learning Private Limited, 20	: : : ny, 199	45 15 60
TE 1 2 RE	Yahya Venka FERE Earl L	rmance characteristics. LECTURE TUTORIAL TOTAL OKS a, S.H., Turbines, Compressor and Fans, Tata McGraw Hill Publishing Compar anna B.K., Fundamentals of Turbo-machinery, PHI Learning Private Limited, 20 NCES	: : ny, 199 009.	45 15 60 6.
TE 1 2 RE 1	Yahya Venka FERE Earl L Dixon	rmance characteristics. LECTURE TUTORIAL TOTAL OKS a, S.H., Turbines, Compressor and Fans, Tata McGraw Hill Publishing Compar anna B.K., Fundamentals of Turbo-machinery, PHI Learning Private Limited, 20 NCES ogan, Jr., Hand book of Turbomachinery, Marcel Dekker Inc., 1992.	: : ny, 199 009.	45 15 60 6.
TE 1 2 RE 1 2	EXT BC Yahya Venka EFERE Earl L Dixon Shepl	rmance characteristics. LECTURE TUTORIAL TOTAL OKS a, S.H., Turbines, Compressor and Fans, Tata McGraw Hill Publishing Compar anna B.K., Fundamentals of Turbo-machinery, PHI Learning Private Limited, 20 NCES ogan, Jr., Hand book of Turbomachinery, Marcel Dekker Inc., 1992. , S.I., Fluid Mechanics and Thermodynamics of Turbomachinery, Pergamon P	: : ny, 199 009.	45 15 60 6.

UNIT I SURFACES AND FRICTION Topography of Engineering surfaces- Contact between surfaces - Sources of sliding Fricti Adhesion – Ploughing - Energy dissipation mechanisms Friction Characteristics of met Friction of non metals. Friction of lamellar solids - friction of Ceramic materials and polym Rolling Friction - Source of Rolling Friction – Stick slip motion - Measurement of Friction.	
Topography of Engineering surfaces- Contact between surfaces - Sources of sliding Fricti Adhesion – Ploughing - Energy dissipation mechanisms Friction Characteristics of met Friction of non metals. Friction of lamellar solids - friction of Ceramic materials and polym	
Adhesion – Ploughing - Energy dissipation mechanisms Friction Characteristics of met Friction of non metals. Friction of lamellar solids - friction of Ceramic materials and polym	9
	als -
UNIT II WEAR	9
Types of wear - Simple theory of Sliding Wear Mechanism of sliding wear of metals - Abra wear – Materials for Adhesive and Abrasive wear situations - Corrosive wear - Surface Fa wear situations - Brittle Fracture - wear - Wear of Ceramics and Polymers - Wear Measureme	tigue
UNIT III LUBRICANTS AND LUBRICATION TYPES	9
Types and properties of Lubricants - Testing methods – Concepts of Hydrodynamic, Hydros	-
Elasto-hydrodynamic, and Boundary Lubrication. Thin film and thick film lubrication – Metho Iubrication – Semi solid and Solid Lubrication.	
UNIT IV FILM LUBRICATION THEORY	9
variation Reynolds Equation for film Lubrication - High speed unloaded journal bearings - Lo journal bearings - Reaction torque on the bearings - Virtual Co-efficient of friction - Sommerfeld diagram.	
UNIT V SURFACE ENGINEERING AND MATERIALS FOR BEARINGS	9
Surface modifications - Transformation Hardening, surface fusion - Thermo chemical process Surface coatings - Plating and anodizing - Fusion Processes - Vapour Phase process Materials for rolling Element bearings - Materials for fluid film bearings - Materials for marginubricated and dry bearings.	ses – ses – inally
Surface modifications - Transformation Hardening, surface fusion - Thermo chemical process Surface coatings - Plating and anodizing - Fusion Processes - Vapour Phase process Materials for rolling Element bearings - Materials for fluid film bearings - Materials for marginubricated and dry bearings. LECTURE :	ses – ses - inally 45
Surface modifications - Transformation Hardening, surface fusion - Thermo chemical process Surface coatings - Plating and anodizing - Fusion Processes - Vapour Phase process Materials for rolling Element bearings - Materials for fluid film bearings - Materials for marginubricated and dry bearings. LECTURE TUTORIAL	ses – ses – inally 45 15
Surface modifications - Transformation Hardening, surface fusion - Thermo chemical process Surface coatings - Plating and anodizing - Fusion Processes - Vapour Phase process Materials for rolling Element bearings - Materials for fluid film bearings - Materials for marginal LECTURE Image: the structure of the struc	ses – ses - inally 45
Surface modifications - Transformation Hardening, surface fusion - Thermo chemical process Surface coatings - Plating and anodizing - Fusion Processes - Vapour Phase process Materials for rolling Element bearings - Materials for fluid film bearings - Materials for margi- lubricated and dry bearings. LECTURE : TUTORIAL : TOTAL :	ses – ses – inally 45 15
Surface modifications - Transformation Hardening, surface fusion - Thermo chemical process Surface coatings - Plating and anodizing - Fusion Processes - Vapour Phase process Materials for rolling Element bearings - Materials for fluid film bearings - Materials for margi- lubricated and dry bearings. LECTURE : TUTORIAL : TOTAL :	ses – ses – inally 45 15
Surface modifications - Transformation Hardening, surface fusion - Thermo chemical process Surface coatings - Plating and anodizing - Fusion Processes - Vapour Phase process Materials for rolling Element bearings - Materials for fluid film bearings - Materials for marginal Image: LECTURE	ses – ses – inally 45 15
Surface modifications - Transformation Hardening, surface fusion - Thermo chemical process Surface coatings - Plating and anodizing - Fusion Processes - Vapour Phase process Materials for rolling Element bearings - Materials for fluid film bearings - Materials for marginal Image: I	ses – ses – inally 45 15
Surface modifications - Transformation Hardening, surface fusion - Thermo chemical process Surface coatings - Plating and anodizing - Fusion Processes - Vapour Phase process Materials for rolling Element bearings - Materials for fluid film bearings - Materials for margi lubricated and dry bearings. LECTURE : TUTORIAL : TOTAL : TEXT BOOKS 1 A.Harnoy " Bearing Design in Machinery "Marcel Dekker Inc, New York, 2003 2 Basu S.K. et. Al., "Fundamentals of Tribology" PHI Learning Private Limited, 2009. REFERENCES	45 15 60
Surface modifications - Transformation Hardening, surface fusion - Thermo chemical process Surface coatings - Plating and anodizing - Fusion Processes - Vapour Phase process Materials for rolling Element bearings - Materials for fluid film bearings - Materials for marg lubricated and dry bearings. LECTURE : TUTORIAL : TOTAL : TEXT BOOKS 1 A.Harnoy " Bearing Design in Machinery "Marcel Dekker Inc, New York, 2003 2 Basu S.K. et. Al., "Fundamentals of Tribology" PHI Learning Private Limited, 2009. REFERENCES 1 M.M.Khonsari & E.R.Booser, " Applied Tribology", John Willey & Sons, New York, 2001 2 E.P.Bowden and Tabor.D., " Friction and Lubrication ", Heinemann EducationalBooks	45 15 60

DESIGN FOR MANUFACTURING AND ASSEMBLY 3 1 0 100 4 UNIT I SELECTION OF MATERIALS AND PROCESSES 9 Phases of design - General requirements for material and process selection, effect of material properties and manufacturing process on design - DFM approach - DFM Guidelines - Product design for manual assembly, automatic assembly and robotic assembly - Computer aided DFMA. UNIT II **TOLERANCE ANALYSIS** 9 Process capability – metrics – costs aspects – Feature tolerance – geometric tolerance – surface finish, review of relationship between attainable tolerance grades and difference machining process - Cumulative effect of tolerances; sure fit law, normal law and truncated normal law. Tolerance charting technique: Tolerance worksheets and centrality analysis, examples - Computer aided tolerance charting UNIT III SELECTIVE ASSEMBLY AND DATUM SYSTEMS 9 Interchangeable selective assembly - Control and axial play; introducing secondary machining operations, laminated shims, examples. Datum systems : Degrees of freedom, grouped datum systems different types, two and three mutually perpendicular grouped datum planes; Grouped datum system with spigot and recess pair and tongue - slot pair - computation of translational and rotational accuracy, geometric analyses and applications. 9 UNIT IV TRUE POSITION THEORY Comparison between co-ordinate and convention method of feature location, tolerancing and true position tolerancing, virtual size concept, floating and fixed fasteners, projected tolerance zone, assembly with gasket, zero true position tolerance, functional gauges, paper layout gauging, compound assembly, examples. UNIT V **DESIGN FOR MACHINING** 9 Design features to facilitate machining – Functional and manufacturing datum features, component design, machining considerations, redesign for manufacture, examples. Form design: Form design of castings and weldments - Redesign of castings based on parting line considerations, minimizing core requirements - redesigning case members using weldments. LECTURE : 45 TUTORIAL 2 15 TOTAL 5 60 REFERENCES Boothroyd, G, 1980 Design for Assembly Automation and Product Design. New York, 1 Marcel Dekker. 2 Bralla, Design for Manufacture handbook, McGraw hill, 1999. 3 Boothroyd, G, Heartz and Nike, Product Design for Manufacture, Marcel Dekker, 1994. Dickson, John. R, and Corroda Poly, Engineering Design and Design for Manufacture and 4 Structural Approach, Field Stone Publisher, USA, 1995.

	TOOL DESIGN30	100	3
UNIT I	TOOLING MATERIALS AND HEAT TREATMENT		9
Properti Steel – Single-p	Assification of Tools-Cutting tools, Dies, Holding and Measuring tools Intro es of Materials – Ferrous Tooling Materials – Tool steels – Cast Iron – Mild, or le Nonmetallic Tooling Materials – Nonferrous Tooling Materials – Metal cuttin point cutting tools – Milling cutters – Drills and Drilling – Reamer classification ssification- the selection of carbide cutting tools – Determining the insert this pools	ow-car g Too – Tap	bon Is – os –
UNIT II	DESIGN OF CUTTING TOOLS:		9
point to and spe	oint and multi-pint cutting tools. Classification, Nomenclature, geometry, design Is for lathes, shapers, planers etc. Chip breakers and their design. Tools : Cla cification, nomenclature, Design of drills, milling cutters, broaches, taps etc. I bols: Flat and circular form tools, their design and application.	assifica	tion
	DESIGN OF DIES		9
and Ro	ation of dies, Design of Dies for Bulk metal Deformation-Wire Drawing, Extrusio ing; Design of Dies for Sheet metal: Blanking and Piercing, Bending and Dee f Dies used for Casting and Moulding, Powder Metallurgy die design;		
LINUT DA			
UNIT IV	DESIGN OF JIGS AND FIXTURES		9
Classific Location	DESIGN OF JIGS AND FIXTURES ation of Jigs and Fixtures, Fundamental Principles of design of Jigs and and Clamping in Jigs and fixtures, Simple design for drilling Jigs, Milling fix Jigs and fixtures.		res,
Classific Location	ation of Jigs and Fixtures, Fundamental Principles of design of Jigs and and Clamping in Jigs and fixtures, Simple design for drilling Jigs, Milling fix	ktures	res,
Classific Location Indexing UNIT V Introduc Numeric – Cuttin change	ation of Jigs and Fixtures, Fundamental Principles of design of Jigs and and Clamping in Jigs and fixtures, Simple design for drilling Jigs, Milling fix Jigs and fixtures.	ine too	res, etc. 9 ols tool
Classific Location Indexing UNIT V Introduc Numeric – Cuttin change	ation of Jigs and Fixtures, Fundamental Principles of design of Jigs and and Clamping in Jigs and fixtures, Simple design for drilling Jigs, Milling fix Jigs and fixtures. TOOL DESIGN FOR NUMERICALLY CONTROLLED MACHINE TOOLS tion – The need for numerical control – A basic explanation of numeric control – al control systems in use today – Fixture design for numerically controlled mach tools for numerical control – Tool holding methods for numerical control – Auto s and tool positioners – Tool presetting – Introduction – General explanation of t	ine too	res, etc. 9 ols tool
Classific Location Indexing UNIT V Introduc Numeric – Cuttin change	ation of Jigs and Fixtures, Fundamental Principles of design of Jigs and and Clamping in Jigs and fixtures, Simple design for drilling Jigs, Milling fix Jigs and fixtures. TOOL DESIGN FOR NUMERICALLY CONTROLLED MACHINE TOOLS tion – The need for numerical control – A basic explanation of numeric control – al control systems in use today – Fixture design for numerically controlled mach tools for numerical control – Tool holding methods for numerical control – Autor s and tool positioners – Tool presetting – Introduction – General explanation of to p machine – tooling for Automatic screw machines	ine too	res, etc. 9 ols tool
Classific Location Indexing UNIT V Introduc Numeric – Cuttin change	ation of Jigs and Fixtures, Fundamental Principles of design of Jigs and and Clamping in Jigs and fixtures, Simple design for drilling Jigs, Milling fix Jigs and fixtures. TOOL DESIGN FOR NUMERICALLY CONTROLLED MACHINE TOOLS tion – The need for numerical control – A basic explanation of numeric control – al control systems in use today – Fixture design for numerically controlled mach tools for numerical control – Tool holding methods for numerical control – Autor s and tool positioners – Tool presetting – Introduction – General explanation of to p machine – tooling for Automatic screw machines LECTURE	ine too	res, etc. 9 ols tool
Classific Location Indexing UNIT V Introduc Numeric – Cuttin change	ation of Jigs and Fixtures, Fundamental Principles of design of Jigs and and Clamping in Jigs and fixtures, Simple design for drilling Jigs, Milling fix Jigs and fixtures. TOOL DESIGN FOR NUMERICALLY CONTROLLED MACHINE TOOLS tion – The need for numerical control – A basic explanation of numeric control – al control systems in use today – Fixture design for numerically controlled mach g tools for numerical control – Tool holding methods for numerical control – Autor s and tool positioners – Tool presetting – Introduction – General explanation of to p machine – tooling for Automatic screw machines LECTURE TUTORIAL TOTAL	ine too	9 bls tool own 45 -
Classific Location Indexing UNIT V Introduc Numeric – Cuttin changer and sha REFER 1. C	ation of Jigs and Fixtures, Fundamental Principles of design of Jigs and and Clamping in Jigs and fixtures, Simple design for drilling Jigs, Milling fix Jigs and fixtures. TOOL DESIGN FOR NUMERICALLY CONTROLLED MACHINE TOOLS tion – The need for numerical control – A basic explanation of numeric control – al control systems in use today – Fixture design for numerically controlled mach g tools for numerical control – Tool holding methods for numerical control – Autor s and tool positioners – Tool presetting – Introduction – General explanation of to p machine – tooling for Automatic screw machines LECTURE TUTORIAL TOTAL	ine too matic he Bro	9 9 bls tool own 45 45
Classific Location Indexing UNIT V Introduc Numeric – Cuttin change and sha REFER 1. C	ation of Jigs and Fixtures, Fundamental Principles of design of Jigs and and Clamping in Jigs and fixtures, Simple design for drilling Jigs, Milling fix Jigs and fixtures. TOOL DESIGN FOR NUMERICALLY CONTROLLED MACHINE TOOLS tion – The need for numerical control – A basic explanation of numeric control – al control systems in use today – Fixture design for numerically controlled mach tools for numerical control – Tool holding methods for numerical control – Autor and tool positioners – Tool presetting – Introduction – General explanation of to p machine – tooling for Automatic screw machines LECTURE TUTORIAL TOTAL ENCES: rrll Donaldson, George H.LeCain, V.C. Goold, "Tool Design", Tata McGraw Hill	ine too matic he Bro	9 9 bls tool own 45 45
Classific Location Indexing UNIT V Introduc Numeric – Cuttin change and sha REFER 1. C C 2. P	ation of Jigs and Fixtures, Fundamental Principles of design of Jigs and and Clamping in Jigs and fixtures, Simple design for drilling Jigs, Milling fix Jigs and fixtures. TOOL DESIGN FOR NUMERICALLY CONTROLLED MACHINE TOOLS ion – The need for numerical control – A basic explanation of numeric control – al control systems in use today – Fixture design for numerically controlled mach g tools for numerical control – Tool holding methods for numerical control – Autor s and tool positioners – Tool presetting – Introduction – General explanation of to p machine – tooling for Automatic screw machines LECTURE TUTORIAL TOTAL ENCES: rrll Donaldson, George H.LeCain, V.C. Goold, "Tool Design", Tata McGraw Hill pmpany Ltd., 2000.	ine too matic he Bro	9 9 0 1 5 1 5 1 5 1 5 1 1 5 1 1 1 1 1 1 1 1

		MANAGEMENT INFORMATION SYSTEMS 3	0	0	10	0 3
UNIT	.1	INTRODUCTION				9
control sy coordinati	ystem - ing, Di	nd structure – Role and impact of MIS – Functions of a manager. N – Management by exception – Process of management – Plan recting, Controlling – Role of information system- Organisation em activities – Types of Information systems- Basics of MIS.	ning	, Or	gani	sing,
UNIT	11	DECISION MAKING:				9
Organisat	tional o	hods, tools and procedures – Behavioral concepts in dec decision making – Information – concepts, Classification, value and information collection. System – System analysis and design	e of	info	orma	ation,
UNIT	111	MANAGING INFORMATION TECHNOLOGY				9
managem managem	nent – nent ar	mation resources and technologies – Information System a Centralised, Decentralised and Distributed Electronic Data Input nd Global information technology management. Ethics for Info ocietal challenges for information technology – cyber crime.	ıt — \$	Supp	oly d	chain
UNIT		TECHNOLOGY OF INFORMATION SYSTEM				9
Database Independe concepts, Query lar	e - Tern lence – , princij nguage		onal I nalisa Objeo	Data ation	n mo i, typ	Data del - bes -
Database Independe concepts, Query lar	e - Tern lence – , princij nguage - Busin	TECHNOLOGY OF INFORMATION SYSTEM ninologies - Entities and attributes - Data models, schema and su ER Diagram - Hierarchical model - Network approach - Relatio ples, keys, relational operations - functional dependence - Norm s- MIS and RDBMS – Object oriented technology concepts – C	onal I nalisa Objeo	Data ation	n mo i, typ	Data del - bes -
Database Independe concepts, Query lar analysis – UNIT Production managem Expert Sy (ERP) – E	e - Tern ence – nguage - Busin V on mana nent – ystem (ERP fe	TECHNOLOGY OF INFORMATION SYSTEM ninologies - Entities and attributes - Data models, schema and su - ER Diagram - Hierarchical model - Network approach - Relatio ples, keys, relational operations - functional dependence - Norm es- MIS and RDBMS – Object oriented technology concepts – C ess Process Re-engineering (BPR) – Data warehouse – e-Busines	onal nalisa Objec ss. ial a (now esou	Data ation cted nd n vledg rce	n mo n, typ orie nark ge ba	Data del - Des - ented 9 eting ased nning
Database Independe concepts, Query lar analysis – UNIT Production managem Expert Sy (ERP) – E	e - Tern ence – nguage - Busin V on mana nent – ystem (ERP fe	TECHNOLOGY OF INFORMATION SYSTEM minologies - Entities and attributes - Data models, schema and su ER Diagram - Hierarchical model - Network approach - Relatio ples, keys, relational operations - functional dependence - Norm es- MIS and RDBMS - Object oriented technology concepts - C ess Process Re-engineering (BPR) - Data warehouse - e-Busines APPLICATION OF MIS: agement, Personnel management, Financial management, Materi Decision Support System (DSS) - Artificial Intelligence (AI) - K (KBES)- Enterprise Management System (EMS) - Enterprise Resetures, selection, benefits, implementation - EMS and MIS - Ov	ial al valisa objec ss. ial al know esou vervio	Data ation cted nd n /ledg rce ew c	n mo n, typ orie nark ge ba	Data del - Des - ented 9 eting ased nning
Database Independe concepts, Query lar analysis – UNIT Production managem Expert Sy (ERP) – E	e - Tern ence – nguage - Busin V on mana nent – ystem (ERP fe	TECHNOLOGY OF INFORMATION SYSTEM minologies - Entities and attributes - Data models, schema and su - ER Diagram - Hierarchical model - Network approach - Relatio ples, keys, relational operations - functional dependence - Norm s- MIS and RDBMS – Object oriented technology concepts – C ess Process Re-engineering (BPR) – Data warehouse – e-Busines APPLICATION OF MIS: agement, Personnel management, Financial management, Materi Decision Support System (DSS) – Artificial Intelligence (AI) – K (KBES)- Enterprise Management System (EMS) – Enterprise Restures, selection, benefits, implementation – EMS and MIS – Ov logic, genetic algorithms.	ial a vervie TUR	Data ation cted nd n /ledg rce ew c	n mo n, typ orie narko ge ba Plar of ne	Data del - bes - ented 9 eting ased aning eutral
Database Independe concepts, Query lar analysis – UNIT Production managem Expert Sy (ERP) – E	e - Tern ence – nguage - Busin V on mana nent – ystem (ERP fe	TECHNOLOGY OF INFORMATION SYSTEM ninologies - Entities and attributes - Data models, schema and su - ER Diagram - Hierarchical model - Network approach - Relatio ples, keys, relational operations - functional dependence - Norm es- MIS and RDBMS - Object oriented technology concepts - C ess Process Re-engineering (BPR) - Data warehouse - e-Busines APPLICATION OF MIS: agement, Personnel management, Financial management, Materi Decision Support System (DSS) - Artificial Intelligence (AI) - K (KBES)- Enterprise Management System (EMS) - Enterprise Resetures, selection, benefits, implementation - EMS and MIS - Ov logic, genetic algorithms. LECT TUTO	ial a vervie TUR	Data ation cted nd n rce ew c ES LS	n mo n, typ orie narko ge ba Plar of ne	Data del - bes - ented 9 eting ased aning eutral
Database Independe concepts, Query lar analysis – UNIT Production managem Expert Sy (ERP) – E networks,	e - Tern lence – nguage - Busin V on mana nent – ystem (ERP fe , fuzzy l	TECHNOLOGY OF INFORMATION SYSTEM ninologies - Entities and attributes - Data models, schema and su - ER Diagram - Hierarchical model - Network approach - Relatio ples, keys, relational operations - functional dependence - Norm es- MIS and RDBMS - Object oriented technology concepts - C ess Process Re-engineering (BPR) - Data warehouse - e-Busines APPLICATION OF MIS: agement, Personnel management, Financial management, Materi Decision Support System (DSS) - Artificial Intelligence (AI) - K (KBES)- Enterprise Management System (EMS) - Enterprise Resetures, selection, benefits, implementation - EMS and MIS - Ov logic, genetic algorithms. LECT TUTO	ial a constant ial a constant i constanti i constanti i constanti constanti i constant	Data ation cted nd n rce ew c ES LS	n mo n, typ orie nark ge bo Plar of ne	Data del - bes - ented 9 eting ased aning eutral 45 -
Database Independe concepts, Query lar analysis – UNIT Production managem Expert Sy (ERP) – E networks, REFEREI 1 Ja	e - Tern ence – nguage - Busin V on mana nent – ystem (ERP fe , fuzzy	TECHNOLOGY OF INFORMATION SYSTEM ninologies - Entities and attributes - Data models, schema and su - ER Diagram - Hierarchical model - Network approach - Relatio ples, keys, relational operations - functional dependence - Norm es- MIS and RDBMS - Object oriented technology concepts - C ess Process Re-engineering (BPR) - Data warehouse - e-Busines APPLICATION OF MIS: agement, Personnel management, Financial management, Materi Decision Support System (DSS) - Artificial Intelligence (AI) - K (KBES)- Enterprise Management System (EMS) - Enterprise Resetures, selection, benefits, implementation - EMS and MIS - Ov logic, genetic algorithms. LECT TUTO	ial an vervio TUR DRIA TOT	Data ation cted nd n <i>r</i> ledg rce ew c ES LS AL	n mo n, typ orie nark ge bo Plar of ne	Data del - bes - ented 9 eting ased aning eutral 45 -
Database Independe concepts, Query lar analysis – UNIT Productio managem Expert Sy (ERP) – E networks, REFEREI 1 Ja	e - Tern lence – nguage - Busin V on mana nent – ystem (ERP fe , fuzzy NCES ames A	Or of the second structure TECHNOLOGY OF INFORMATION SYSTEM ninologies - Entities and attributes - Data models, schema and structure CER Diagram - Hierarchical model - Network approach - Relation ples, keys, relational operations - functional dependence - Norm sector of the sector of	ial al constant ial al constant ial al constant	Data ation cted nd n rce ew c ES LS AL	n mo n, typ orie nark ge bo Plar of ne	Data del - bes - ented 9 eting ased aning eutral 45 -
Database Independe concepts, Query lar analysis – UNIT Production managem Expert Sy (ERP) – E networks, REFEREI 1 Ja 2 Eff 3 Wi	e - Tern lence – , princip nguage - Busin V on mana nent – ystem (ERP fe , fuzzy l NCES ames A ify Oz, '	TECHNOLOGY OF INFORMATION SYSTEM ninologies - Entities and attributes - Data models, schema and su ER Diagram - Hierarchical model - Network approach - Relatio ples, keys, relational operations - functional dependence - Norm s- MIS and RDBMS – Object oriented technology concepts – C ess Process Re-engineering (BPR) – Data warehouse – e-Busines APPLICATION OF MIS: agement, Personnel management, Financial management, Materi Decision Support System (DSS) – Artificial Intelligence (AI) – K (KBES)- Enterprise Management System (EMS) – Enterprise Resources, selection, benefits, implementation – EMS and MIS – Ov IDOGic, genetic algorithms. LECT O'Brien, "Management Information Systems", Sixth Edition, TMH, "Management Information Systems". Vikas Publishing, 2003 Third S. Jawadekar, "Management info Systems" TMH publishing co. Thi	ial and constant of the second constant of th	Data ation cted nd n rce ew c ES LS AL 04. ion.	n mon n, typ orie orie Plar of ne : : : :	Data del - Des - ented 9 eting ased aning eutral 45 - 45
Database Independe concepts, Query lar analysis – UNIT Production managem Expert Sy (ERP) – E networks, REFEREI 1 Ja 2 Eff 3 Wi A O'	e - Tern lence – nguage - Busin V n mana hent – ystem (ERP fe fuzzy NCES ames A fy Oz, ' 'illiam S	TECHNOLOGY OF INFORMATION SYSTEM minologies - Entities and attributes - Data models, schema and su - ER Diagram - Hierarchical model - Network approach - Relatio ples, keys, relational operations - functional dependence - Norm - S- MIS and RDBMS – Object oriented technology concepts – C ess Process Re-engineering (BPR) – Data warehouse – e-Busines APPLICATION OF MIS: agement, Personnel management, Financial management, Materi Decision Support System (DSS) – Artificial Intelligence (AI) – K (KBES)- Enterprise Management System (EMS) – Enterprise Re- eatures, selection, benefits, implementation – EMS and MIS – Ov logic, genetic algorithms. LECT . O'Brien, "Management Information Systems", Sixth Edition, TMH, "Management Information Systems". Vikas Publishing, 2003 Third	ial and constant of the second constant of th	Data ation cted nd n rce ew c ES LS AL 04. ion.	n mon n, typ orie orie Plar of ne : : : :	Data del - Des - ented 9 eting ased aning eutral 45 - 45

			SOFTWA	RE ENGINI	EERING		:	3 0	0	100	3	
	IT I											9
The Ma Ma Mo Mo	e Evolvi A gener turity M dels. F dels – I	ic view lodel li Product ncreme Model	of process ntegration and Proce ental Model	e – Software – A layered (CMMI) – ss. Process – The RAI ncurrent De	d Technolog Process As Models – D Model – E	gy – A Pro- ssessment The Water Evolutionary	cess Fra – Pers fall Moo y Proces	amewo onal Iel – ss Mo	ork - and Incre dels	- The Tean menta – Pro	Capab n Proc al Proc ototypin	are ility ess ess g –
UN												9
Cor tas Use	nstructio ks – Ini e cases	on Prac itiating – Build	ctice –Dep the require ling the Ana	e – commu loyment. R ements Eng alysis Mode Validating R	equirements ineering Pr Is – Elemer	s Engineer ocess- Elic its of the A	ring - F siting Re	tequir quire	eme men	nts E ts – E	ngineeı Develop	ring bing
												9
orie	ented Ar	nalysis		nalysis Moo based moo								
		1										
												9
Tes	sting sti	ategies	s- strategie	n process s Issues fo of debugging	or convention	onal and o	bject or					n –
Tes tes	sting sti	ategies	s- strategie	s Issues fo	or convention	onal and o	bject or					n –
Tes tes UN Sof Pro	sting str ting –sy IT V tware e sject a	volutior	s- strategie esting –Art c	s Issues fo of debugging on and Vali	or convention g – Project	onal and o manageme cal System	bject or ent s Valida	tion –	d so - Met	ftware	-validat	n – tion 9
Tes tes UN Sof Pro	sting str ting –sy IT V tware e sject a	volutior	s- strategie esting –Art c	s Issues fo of debugging on and Vali	or convention g – Project dation -Criti	onal and o manageme cal System	bject or ent s Valida proveme	tion –	d so Met Risk	ftware	-validat	n – tion 9
Tes tes UN Sof Pro	sting str ting –sy IT V tware e sject a	volutior	s- strategie esting –Art c	s Issues fo of debugging on and Vali	or convention g – Project dation -Criti	onal and o manageme cal System	bject or ent s Valida proveme	tion – ent – ECTU	· Met Risk	ftware rics fo Mai	-validat	n – tion 9 ess, ent- 45
Tes tes UN Sof Pro Coi	sting str ting –sy IT V itware e nject an nfigurati	volutior nd Pro on Mar	s- strategie esting –Art c	s Issues fo of debugging on and Vali	or convention g – Project dation -Criti	onal and o manageme cal System	bject or ent s Valida proveme	tion – ent –	· Met Risk	ftware rics fo Mai	-validat	n – tion 9 ess, ent-
Tes tes UN Sof Pro Coi	ting str ting –sy IT V itware e oject au nfigurati XT BOC Roger	volutior nd Pro on Mar	s- strategie esting –Art of n - Verificatio oduct-Qualio nagement	s Issues fo of debugging on and Vali	or convention g – Project dation -Criti ement -Pro	cal System	bject or ent s Valida proveme LI TU	tion – ent – ECTU TORI TOT	- Met Risk RE AL	ftware rics fo Mai :	-validat or Proce nageme	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Tes tes UN Sof Pro Coi	sting string international string string international string international string international string international string internation international string internation inte	volutior nd Pro on Mar DKS: S.Pre	s- strategie esting – Art of n - Verificatio oduct-Qualio agement	s İssues fo of debugging on and Vali ty Manage oftware Er	dation -Criti ement -Project	cal System cal System ccess Imp	bject or ent s Valida proveme LI TU ioner's	tion – ent – ECTU TORI TOT	· Met Risk RE AL oach	ftware rics fo Mai : : ; , Mc	or Proce	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Tes tess UN Sof Pro Con TE	sting string international string string international string international string international string international string internation international string internation inte	volutior nd Pro on Mar DKS: S.Pre ational e Mall, Fu	s- strategie esting – Art of n - Verificatio oduct-Qualio agement	s İssues fo <u>f debugging</u> on and Vali ty Manage oftware Er h edition, 20	dation -Criti ement -Project	cal System cal System ccess Imp	bject or ent s Valida proveme LI TU ioner's	tion – ent – ECTU TORI TOT	· Met Risk RE AL oach	ftware rics fo Mai : : ; , Mc	or Proce	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Tes tess UN Sof Pro Con TE	ting sti ting –sy IT V itware e bject an figurati Mager interna Rajib I FEREN	volutior nd Pro on Mar DKS: S.Pre ational e Vall, Fu CES:	s- strategie esting – Art o n - Verificati oduct-Quali nagement essman, S edition, Sixt indamentals	s İssues fo <u>f debugging</u> on and Vali ty Manage oftware Er h edition, 20	or conventic g – Project dation -Criti ement -Pro ngineering: 005. e Engineeri	A Practit	bject or ent s Valida proveme LI TU ioner's arning P	tion – ent – ECTU TORI TOT	· Met Risk RE AL oach	ftware rics fo Mai : : ; , Mc	or Proce	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Test test UN Sof Pro Col TE2 1 2 RE	ting sti ting –sy IT V itware e oject au nfigurati XT BOC Roger interna Rajib I FEREN Stepha	volutior nd Pro on Mar DKS: S.Pre ational e Mall, Fu CES: an Scha	s- strategie esting – Art of n - Verificatio oduct-Qualio agement essman, S edition, Sixt indamentals ach, Softwa	s İssues fo of debugging on and Vali ty Manage oftware Er h edition, 20 s of Softwar	or convention g – Project dation -Criti ement -Pro ngineering: 005. e Engineeri ing, Tata M	A Practit	bject or ent s Valida proveme LI TU ioner's arning F 2007	tion – ent – ECTU TORI TORI Appro	• Met Risk RE AL • Lim	ftware rics fo Mai : : ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Graw	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Testess UN Sof Pro Cor TE 1 2 RE 1.	sting sti ting –sy IT V itware e bject an figurati xT BOC Roger interna Rajib I FEREN Stepha Ian So Pfleeg	volutior nd Pro on Mar DKS: S.Pre ational e Vall, Fu CES: an Scha mmerv er and	s- strategie esting – Art of n - Verificati oduct-Quali nagement essman, S edition, Sixt undamentals ach, Softwa ille, Softwa	s İssues fo of debugging on and Vali ty Manage oftware Er h edition, 20 s of Softwar re Engineei	or conventic g – Project dation -Criti ement -Pro ngineering: 005. e Engineeri ing, Tata M ing, 8th Edit	A Practit	bject or ent s Valida proveme LI TU ioner's arning F 2007 on Educ	tion – ent – ECTU TORI TOT Appro	Met Risk RE AL AL 200	ftware rics fo Mai : Mai : ited, 2 8, (UN	Graw	n – tion 9 ess, ent- 45

	UNCONVENTIONAL MACHINING PROCESSES 3 0	0	100	3
UNIT I	INTRODUCTION			9
consideration of the proc	on-traditional machining methods-Classification of modern ma ons in process selection. Materials. Applications. Ultrasonic m ess, mechanics of metal removal process parameters, econ and limitations, recent development	nachi	ning -	- Elements
UNIT II	MECHANICAL PROCESSES			9
equipments Ultrasonic	machining, Water jet machining and abrasive water jet machin , process variables, mechanics of metal removal, MRR, applic Machining. (AJM, WJM and USM). Working Principles – equipr – MRR-Variation in techniques used – Applications	atior	n and	limitations.
UNIT III	ELECTRO – CHEMICAL PROCESSES			9
honing and accuracy e	tals of electro chemical machining, electrochemical grindir deburring process, metal removal rate in ECM, Tool desigr conomic aspects of ECM – Simple problems for estimation of als of chemical, machining, advantages and applications.	η, Sι	urface	finish and
UNIT IV	THERMAL METAL REMOVAL PROCESSES -I			9
				Discharge
metal remo methods su	d electric discharge wire cutting processes – Power circuits for val in EDM, Process parameters, selection of tool electrode inface finish and machining accuracy, characteristics of spark of selection. Wire EDM, principle, applications.	r ED and	M, Me dieleo	ctric fluids,
metal remo methods su	val in EDM, Process parameters, selection of tool electrode inface finish and machining accuracy, characteristics of spark	r ED and	M, Me dieleo	echanics of ctric fluids,
metal remo methods su machine to UNIT V Generation comparison beam mach for machini and other a	val in EDM, Process parameters, selection of tool electrode inface finish and machining accuracy, characteristics of spark of selection. Wire EDM, principle, applications. THERMAL METAL REMOVAL PROCESSES -II and control of electron beam for machining, theory of electron of thermal and non-thermal processes –General Principle and ining – thermal features, cutting speed and accuracy of cut. A ng, metal removal mechanism, process parameters, accurace applications of plasma in manufacturing industries. Chemical etchants- applications. Magnetic abrasive finishing, Abrasive finishing	r ED and eroo d ap Applicy ar mac ow fil	M, Me dieled ded su plication cation nd sur chining	9 machining, on of laser of plasma face finish g-principle- g.
metal remo methods su machine to UNIT V Generation comparison beam mach for machini and other a	val in EDM, Process parameters, selection of tool electrode inface finish and machining accuracy, characteristics of spark of selection. Wire EDM, principle, applications. THERMAL METAL REMOVAL PROCESSES -II and control of electron beam for machining, theory of electron of thermal and non-thermal processes –General Principle and ining – thermal features, cutting speed and accuracy of cut. A ng, metal removal mechanism, process parameters, accurace applications of plasma in manufacturing industries. Chemical etchants- applications. Magnetic abrasive finishing, Abrasive floc LECTU	r ED and eroo d ap Applie y ar mac ow fin	M, Me dieled ded su plication cation nd sur chining	9 machining, on of laser of plasma face finish g-principle-
metal remo methods su machine to UNIT V Generation comparison beam mach for machini and other a	val in EDM, Process parameters, selection of tool electrode inface finish and machining accuracy, characteristics of spark of selection. Wire EDM, principle, applications. THERMAL METAL REMOVAL PROCESSES -II and control of electron beam for machining, theory of electron of thermal and non-thermal processes –General Principle and ining – thermal features, cutting speed and accuracy of cut. A ng, metal removal mechanism, process parameters, accurace applications of plasma in manufacturing industries. Chemical etchants- applications. Magnetic abrasive finishing, Abrasive floc LECTU	r ED and ero d ap Appli cy ar mac ow fir JRE	M, Me dieled ded su plication cation nd sur chining	9 machining, on of laser of plasma face finish g-principle- g.
metal remo methods su machine to UNIT V Generation comparison beam mach for machini and other a	val in EDM, Process parameters, selection of tool electrode inface finish and machining accuracy, characteristics of spark of selection. Wire EDM, principle, applications. THERMAL METAL REMOVAL PROCESSES -II and control of electron beam for machining, theory of electron of thermal and non-thermal processes –General Principle and ining – thermal features, cutting speed and accuracy of cut. A ng, metal removal mechanism, process parameters, accurace applications of plasma in manufacturing industries. Chemical etchants- applications. Magnetic abrasive finishing, Abrasive floc LECTU TUTOR	r ED and ero d ap Appli cy ar mac ow fir JRE	M, Me dieled ded su peam u plication cation nd sur chining nishing :	9 machining, on of laser of plasma face finish g-principle- g. 45 -
metal remo methods su machine to UNIT V Generation comparison beam mach for machini and other a maskants – REFERENC 1. Vijay.K	val in EDM, Process parameters, selection of tool electrode inface finish and machining accuracy, characteristics of spark of selection. Wire EDM, principle, applications. THERMAL METAL REMOVAL PROCESSES -II and control of electron beam for machining, theory of electron of thermal and non-thermal processes –General Principle and ining – thermal features, cutting speed and accuracy of cut. A ng, metal removal mechanism, process parameters, accurace applications of plasma in manufacturing industries. Chemical etchants- applications. Magnetic abrasive finishing, Abrasive floc LECTU TUTOR	r ED and eroo on b d ap Appli- cy ar mac ow fii JRE IAL	M, Me dieled ded su peam i plication ad sur chining nishing : :	9 machining, on of laser of plasma face finish g-principle- g. 45 - 45
metal remo methods su machine too UNIT V Generation comparison beam mach for machini and other a maskants – REFERENC 1. Vijay.K (2002)	val in EDM, Process parameters, selection of tool electrode inface finish and machining accuracy, characteristics of spark of selection. Wire EDM, principle, applications. THERMAL METAL REMOVAL PROCESSES -II and control of electron beam for machining, theory of electri- of thermal and non-thermal processes –General Principle and ining – thermal features, cutting speed and accuracy of cut. A ng, metal removal mechanism, process parameters, accurace applications of plasma in manufacturing industries. Chemical etchants- applications. Magnetic abrasive finishing, Abrasive floc LECTL TUTOR TOT CES: Jain "Advanced Machining Processes" Allied Publishers F	r ED and eroo on b d ap Applicy ar mac ow fii JRE IAL FAL	M, Me dieled ded su peam i plication cation nishing : : : Ltd., I	9 machining, on of laser of plasma face finish g-principle- g. 45 - 45 New Delhi
metal remo methods su machine too UNIT V Generation comparison beam mach for machini and other a maskants – REFERENC 1. Vijay.K (2002) 2. Benedi (1987)	val in EDM, Process parameters, selection of tool electrode inface finish and machining accuracy, characteristics of spark of selection. Wire EDM, principle, applications. THERMAL METAL REMOVAL PROCESSES -II and control of electron beam for machining, theory of electron of thermal and non-thermal processes –General Principle and ining – thermal features, cutting speed and accuracy of cut. A ng, metal removal mechanism, process parameters, accurace applications of plasma in manufacturing industries. Chemical etchants- applications. Magnetic abrasive finishing, Abrasive floc LECTU TUTOR TOT CES: Jain "Advanced Machining Processes" Allied Publishers F SBN 81-7764-294-4.	r ED and a ero on b d ap Applicy ar mac ow fin JRE IAL FAL	M, Me dieled ded su peam i plication cation nd sur chining nishing : : : : Ltd., I	9 machining, on of laser of plasma face finish g-principle- g. 45 - 45 New Delhi New York

INDUSTRIAL ROBOTICS	3	0	0	100	3	

UNIT I FUNDAMENTALS OF ROBOT

Robot – Definition – Robot Anatomy – Co-ordinate Systems, Work Envelope, types and classification – Specifications – Pitch, Yaw, Roll, Joint Notations, Speed of Motion, Pay Load – Robot Parts and Their Functions – Need for Robots – Different Applications

UNIT II ROBOT DRIVE SYSTEMS AND END EFFECTORS

10

10

10

8

7

Pneumatic Drives – Hydraulic Drives – Mechanical Drives – Electrical Drives – D.C. Servo Motors, Stepper Motor, A.C. Servo Motors – Salient Features, Applications and Comparison of all these Drives.

End Effectors – Grippers – Mechanical Grippers, Pneumatic and Hydraulic Grippers, Magnetic Grippers, Vacuum Grippers; Two Fingered and Three Fingered Grippers; Internal Grippers and External Grippers; Selection and Design Considerations

UNIT III SENSORS AND MACHINE VISION

Requirements of a sensor, Principles and Applications of the following types of sensors – Position of sensors (Piezo Electric Sensor, LVDT, Resolvers, Optical Encoders, Pneumatic Position Sensors), Range Sensors (Triangulation Principle, Structured, Lighting Approach, Time of Flight Range Finders, Laser Range Meters), Proximity Sensors (Inductive, Hall Effect, Capacitive, Ultrasonic and Optical Proximity Sensors), Touch Sensors, (Binary Sensors, Analog Sensors), Wrist Sensors, Compliance Sensors, Slip Sensors

Camera, Frame Grabber, Sensing and Digitizing Image Data – Signal Conversion, Image Storage, Lighting Techniques. Image Processing and Analysis – Data Reduction, Segmentation, Feature Extraction, Object Recognition, Other Algorithms. Applications – Inspection, Identification, Visual Serving and Navigation.

UNIT IV ROBOT KINEMATICS AND ROBOT PROGRAMMING

Forward Kinematics, Inverse Kinematics and Differences –Forward Kinematics and Reverse Kinematics of Manipulators with Two, Three Degrees of Freedom (In 2 Dimensional), Four Degrees of Freedom (In 3 Dimensional) – DH matrices - Deviations and Problems.

Teach Pendant Programming, Lead through programming, Robot programming Languages – VAL Programming – Motion Commands, Sensor Commands, End effecter commands, and Simple programs

RGV, AGV; Implementation of Robots in Industries – Various Steps; Safety Considerations for Robot Operations; Economic Analysis of Robots – Pay back Method, EUAC Method, Rate of Return Method

LE	CTURE :	45
ти	TORIAL :	-
	TOTAL :	45

ТЕХ	T BOOKS
1	M.P.Groover, "Industrial Robotics – Technology, Programming and Applications", McGraw-Hill, 2001
REF	ERENCES
1	Fu.K.S. Gonzalz.R.C., and Lee C.S.G., "Robotics Control, Sensing, Vision and Intelligence", McGraw-Hill Book Co., 1987
2	Yoram Koren, "Robotics for Engineers", McGraw-Hill Book Co., 1992
3	Janakiraman.P.A., "Robotics and Image Processing", Tata McGraw-Hill, 1995

	MICRO ELECTRO MECHANICAL SYSTEM 3 0 0	10	0
UNIT I	INTRODUCTION TO MICROSYSTEMS		7
technolo	of microelectronics manufacture and introduction to MEMS Overview of Micr gy. Laws of scaling. The multi disciplinary nature of MEMS. Survey of materia engineering. Applications of MEMS in various industries.		
UNIT II	MICRO MANUFACTURING TECHNIQUES		10
	nography, Film deposition, Etching processes, Bulk micro machining, silicon surfang, LIGA process, Rapid micro product development.	ace i	nicr
UNIT III	MICRO SENSORS AND MICRO ACTUATORS		10
	conversion and force generation, Electromagnetic Actuators, Reluctance ctric actuators, bi-metal-actuator Friction and wear.	m	otors
	cer principles, Signal detection and signal processing, Mechanical and physical ation sensor, pressure sensor, Sensor arrays.	sen	sors
UNIT IV	INTRODUCTION TO MICRO / NANO FLUIDS		10
Fundam	entals of micro fluidics, Micro pump – introduction – Types – Mechanical Micro		
Fundam Non Mee simulatic	entals of micro fluidics, Micro pump – introduction – Types – Mechanical Micro chanical micro pumps, Actuating Principles, Design rules for micro pump – mod on, Verification and testing – Applications.		an
Fundam Non Mee simulatic UNIT V Design ousing in	entals of micro fluidics, Micro pump – introduction – Types – Mechanical Micro chanical micro pumps, Actuating Principles, Design rules for micro pump – mod	eling	an 8 nent
Fundam Non Mee simulatic UNIT V Design ousing in	entals of micro fluidics, Micro pump – introduction – Types – Mechanical Micro chanical micro pumps, Actuating Principles, Design rules for micro pump – mod on, Verification and testing – Applications. MICROSYSTEMS DESIGN AND PACKAGING considerations, Mechanical Design, Process design, Realization of MEMS cor tellisuite. Micro system packaging, Packing Technologies, Assembly of Micro	npor	an 8 nent
Fundam Non Mee simulatic UNIT V Design ousing in	entals of micro fluidics, Micro pump – introduction – Types – Mechanical Micro chanical micro pumps, Actuating Principles, Design rules for micro pump – mod on, Verification and testing – Applications. MICROSYSTEMS DESIGN AND PACKAGING considerations, Mechanical Design, Process design, Realization of MEMS cor tellisuite. Micro system packaging, Packing Technologies, Assembly of Micro cy in MEMS	npor	8 nent ems
Fundam Non Mee simulatic UNIT V Design ousing in	entals of micro fluidics, Micro pump – introduction – Types – Mechanical Micro chanical micro pumps, Actuating Principles, Design rules for micro pump – mod on, Verification and testing – Applications. MICROSYSTEMS DESIGN AND PACKAGING considerations, Mechanical Design, Process design, Realization of MEMS cor tellisuite. Micro system packaging, Packing Technologies, Assembly of Micro y in MEMS	npor	8 nent ems
Fundam Non Med simulatic UNIT V Design o using in Reliabilit	entals of micro fluidics, Micro pump – introduction – Types – Mechanical Micro chanical micro pumps, Actuating Principles, Design rules for micro pump – mod on, Verification and testing – Applications. MICROSYSTEMS DESIGN AND PACKAGING considerations, Mechanical Design, Process design, Realization of MEMS cor tellisuite. Micro system packaging, Packing Technologies, Assembly of Micro ry in MEMS LECTURE TUTORIAL	npor	8 nent ems
Fundam Non Med simulatic UNIT V Design d using in Reliabilit	entals of micro fluidics, Micro pump – introduction – Types – Mechanical Micro chanical micro pumps, Actuating Principles, Design rules for micro pump – mod on, Verification and testing – Applications. MICROSYSTEMS DESIGN AND PACKAGING considerations, Mechanical Design, Process design, Realization of MEMS cor tellisuite. Micro system packaging, Packing Technologies, Assembly of Micro ry in MEMS LECTURE TUTORIAL	npor	8 nent ems
Fundam Non Med simulatic UNIT V Design d using in Reliabilit TEXT Bo 1 Mor 2 Rai- Lim	entals of micro fluidics, Micro pump – introduction – Types – Mechanical Micro chanical micro pumps, Actuating Principles, Design rules for micro pump – mod on, Verification and testing – Applications. MICROSYSTEMS DESIGN AND PACKAGING considerations, Mechanical Design, Process design, Realization of MEMS cor tellisuite. Micro system packaging, Packing Technologies, Assembly of Micro y in MEMS LECTURE TUTORIAL TOTAL OOKS named Gad – el – Hak , MEMS Handbook, CRC Press, 2002 -Choudhury P. MEMS and MOEMS Technology and Applications, PHI Learning F ited, 2009.	npor syst	8 ment ems 4
Fundam Non Mee simulatic UNIT V Design o using in Reliabilit TEXT Be 1 Mor 2 Rai- Lim REFERE	entals of micro fluidics, Micro pump – introduction – Types – Mechanical Micro chanical micro pumps, Actuating Principles, Design rules for micro pump – mod on, Verification and testing – Applications. MICROSYSTEMS DESIGN AND PACKAGING considerations, Mechanical Design, Process design, Realization of MEMS cor tellisuite. Micro system packaging, Packing Technologies, Assembly of Micro y in MEMS LECTURE TUTORIAL TOTAL OOKS named Gad – el – Hak , MEMS Handbook, CRC Press, 2002 -Choudhury P. MEMS and MOEMS Technology and Applications, PHI Learning F ited, 2009. ENCES	npor syst	8 ment ems 4
Fundam Non Med simulatic UNIT V Design d using in Reliabilit TEXT Bo 1 Mot 2 Rai- Lim REFERE 1 Sab	entals of micro fluidics, Micro pump – introduction – Types – Mechanical Micro chanical micro pumps, Actuating Principles, Design rules for micro pump – mod on, Verification and testing – Applications. MICROSYSTEMS DESIGN AND PACKAGING considerations, Mechanical Design, Process design, Realization of MEMS cor tellisuite. Micro system packaging, Packing Technologies, Assembly of Micro y in MEMS LECTURE TUTORIAL TOTAL OOKS named Gad – el – Hak , MEMS Handbook, CRC Press, 2002 -Choudhury P. MEMS and MOEMS Technology and Applications, PHI Learning F ited, 2009. ENCES rie Solomon, Sensors Handbook, Mc Graw Hill, 1998	npor syst	8 ment ems 4
Fundam Non Mee simulatic UNIT V Design in Reliabilit TEXT Be 1 Mor 2 Rai- Lim REFERE 1 Sab 2 Mar	entals of micro fluidics, Micro pump – introduction – Types – Mechanical Micro chanical micro pumps, Actuating Principles, Design rules for micro pump – mod on, Verification and testing – Applications. MICROSYSTEMS DESIGN AND PACKAGING considerations, Mechanical Design, Process design, Realization of MEMS cor tellisuite. Micro system packaging, Packing Technologies, Assembly of Micro y in MEMS LECTURE TUTORIAL TOTAL OOKS named Gad – el – Hak , MEMS Handbook, CRC Press, 2002 -Choudhury P. MEMS and MOEMS Technology and Applications, PHI Learning F ited, 2009. ENCES	npor syst : :	8 nent ems 4. 4.
Fundam Non Med simulatic UNIT V Design d using in Reliabilit TEXT Bo 1 Mor 2 Rai- Lim REFERE 1 Sab 2 Mar 3 Frai Nev	entals of micro fluidics, Micro pump – introduction – Types – Mechanical Micro chanical micro pumps, Actuating Principles, Design rules for micro pump – mod on, Verification and testing – Applications. MICROSYSTEMS DESIGN AND PACKAGING considerations, Mechanical Design, Process design, Realization of MEMS cor tellisuite. Micro system packaging, Packing Technologies, Assembly of Micro y in MEMS LECTURE TUTORIAL TOTAL OOKS named Gad – el – Hak , MEMS Handbook, CRC Press, 2002 -Choudhury P. MEMS and MOEMS Technology and Applications, PHI Learning F ited, 2009. ENCES rrie Solomon, Sensors Handbook, Mc Graw Hill, 1998 c F Madou, Fundamentals of Micro Fabrication, CRC Press, 2 nd Edition, 2002 ncis E.H. Tay and W.O.Choong , Micro fluidics and Bio mems application, IEl v York, 1997.	npor syst : :	8 nent ems 4. 4.
Fundam Non Med simulatic UNIT V Design d using in Reliabilit TEXT Bo 1 Mot 2 Rai- Lim REFERE 1 Sab 2 Mar 3 Frai Nev 4 Trin	entals of micro fluidics, Micro pump – introduction – Types – Mechanical Micro chanical micro pumps, Actuating Principles, Design rules for micro pump – mod on, Verification and testing – Applications. MICROSYSTEMS DESIGN AND PACKAGING considerations, Mechanical Design, Process design, Realization of MEMS con tellisuite. Micro system packaging, Packing Technologies, Assembly of Micro y in MEMS LECTURE TUTORIAL TOTAL OOKS named Gad – el – Hak , MEMS Handbook, CRC Press, 2002 -Choudhury P. MEMS and MOEMS Technology and Applications, PHI Learning F ited, 2009. ENCES rrie Solomon, Sensors Handbook, Mc Graw Hill, 1998 c F Madou, Fundamentals of Micro Fabrication, CRC Press, 2 nd Edition, 2002 ncis E.H. Tay and W.O.Choong , Micro fluidics and Bio mems application, IE	rivat	an 8 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	FACILITIES PLANNING AND LAYOUT DESIGN300	100	3
UNIT	FACILITY LOCATION AND ANALYSIS		9
	on decisions - Qualitative and Quantitative factors, Simple models in single facilit	ty and i	-
facility	problems		
UNIT	I LAYOUT DESIGN		9
	es requirement, need for layout study – types of layout; Design cycle – SLP p hms – ALDEP, CORELAP, CRAFT	procedu	re –
UNIT	III CELLULAR LAYOUT		9
	technology – Production Flow analysis (PFA), ROC (Rank Order Clustering) - alancing	- Assei	nbly
UNIT	IV INTRODUCTION TO MATERIAL HANDLING		9
	bles, unit load concept, material handling system design, handling equipment type becification, containers and packaging.	es, seleo	ctior
UNIT	V WAREHOUSE DESIGN		9
Recei	uction – Measuring & Benchmarking warehouse performance – Warehouse ving and put away principles, Pallet Storage and Retrieval system - Case Picking nouse layout – Computerizing warehouse operations.		
	LECTURE	:	45
	LECTURE	:	45
		:	
REFE	TUTORIAL	:	
REFE	TUTORIAL	:	
	TUTORIAL TOTAL	:	
1.	TUTORIAL TOTAL RENCES: Tompkins, J.A. and J.A.White, "Facilities planning", John Wiley, 2003 Richard Francis.L. and John A.White, "Facilities Layout and location - An analytica	:	
1. 2.	TUTORIAL TOTAL RENCES: Tompkins, J.A. and J.A.White, "Facilities planning", John Wiley, 2003 Richard Francis.L. and John A.White, "Facilities Layout and location - An analytica approach, Prentice Hall of India Pvt. Ltd. 2006.	:	45

	VIBRATION AND NOISE CONTROL310	1	00	4
				1
UNIT I	BASICS OF VIBRATION			g
and non linea	classification of vibration: free and forced vibration, undamped and dampe ar vibration, response of damped and undamped systems under harmonic e and two degree of freedom systems, torsional vibration, determin	force	e, ana	lysis of
UNIT II	VIBRATION OF CONTINUOUS SYSTEMS			9
vibration of rewaves, appre	continuous systems: exact methods, boundary value problem, eigen valu ods, transverse vibration of beams, response of system by modal analysis oximate methods to analyse system, different methods like Rayleigh's c method, Dunkerleys method.	s, ge	eneral	elastic
	CONTROL TECHNIQUES			9
		onto	000	
Vibration isc dynamic forc mass elastic	lation, tuned absorbers, untuned viscous dampers, damping treatmers generated by IC engines, engine isolation, crank shaft damping, moda model shock absorbers.			lication of the
Vibration isc dynamic forc mass elastic	plation, tuned absorbers, untuned viscous dampers, damping treatme es generated by IC engines, engine isolation, crank shaft damping, moda			lication of the
Vibration isc dynamic forc mass elastic UNIT IV Introduction, averaging de environment	lation, tuned absorbers, untuned viscous dampers, damping treatmers generated by IC engines, engine isolation, crank shaft damping, moda model shock absorbers.	al an	alysis tractioneasu	ication of the 9 on and rement
Vibration iso dynamic forc mass elastic UNIT IV Introduction, averaging de environment analysis.	Interview of the second and the sec	al an sub se, m	alysis tractioneasu	lication of the s of the g on and rement quality
Vibration iso dynamic forc mass elastic UNIT IV Introduction, averaging de environment analysis. UNIT V Noise Chara assessment contributed n Methods for treatments a	Interview of the end of	sub se, m sou	traction nd ustion le acc sis, pa	ication of the gon and rement quality 9 noise, essory
Vibration iso dynamic forc mass elastic UNIT IV Introduction, averaging de environment analysis. UNIT V Noise Chara assessment contributed n Methods for treatments a	Industrial contraction Initial contrecontractinte Initial	sub se, m sou ombu engin	traction nd ustion le acc sis, pa	ication of the g on and rement quality 9 noise, essory
Vibration iso dynamic forc mass elastic UNIT IV Introduction, averaging de environment analysis. UNIT V Noise Chara assessment contributed n Methods for treatments a	Interview of the construction Initial construction	al an sub se, m sou engin analys es, so	traction nd ustion le acc sis, pa	iication of the gon and rement quality g noise, essory alliative energy

TEXT	BOOKS
1.	Ambekar A.G. "Mechanical Vibrations and Noise Engineering" Prentice Hall of India Pvt. Ltd, 2008
2.	Singiresu S.Rao - "Mechanical Vibrations" - Pearson Education, ISBM –81-297-0179-0 - 2004.
REFE	RENCES:
1	Rao V. Dukkipati & Srinivas J. "Mechanical Vibrations" - Prentice Hall of India Pvt. Ltd, 2008
2	Kewal Pujara "Vibrations and Noise for Engineers, Dhanpat Rai & Sons, 1992.
3	Theory of Vibrations with applications – W. T. Thomson, CBS Publishers
4	Rao, J.S., & Gupta, K. – "Ind. Course on Theory and Practice Mechanical Vibration", New Age International (P) Ltd., 1984.

		DESIGN OF PLASTIC COMPONENTS 3 0)	10)
U		SELECTION OF PLASTICS			9
Frictio Short Pseuc	onal Prope term test do-Elastic	pperties- Material Selection for Strength – Degradation - Wear Resis erties- Special Properties - Processing - Costs. Mechanical Behavior of ting -Long term testing -Design Methods for Plastics using deformat design method for plastics-Thermal stresses and Strains Time Te Fracture behavior - Creep behavior - Impact behavior.	of F ior	Plas i da	tics- ta -
U		DESIGN OF INJECTION MOULD COMPONENTS			9
Coolin	ng and So	Considerations - Mold Filling Considerations - Weld line-Shrinkage and olidification - Structural design Considerations - Structural Members- essing Limitations in Product Design.			
UNIT		INTRODUCTION TO MOULD DESIGN			g
Materi Desigi	ials. Inject n of Feed	s and dies for various processing methods - Mould and Die Design Conce ion Mould Design - Basics of mould construction - Methodical Mould Desi System, Ejection System - Venting - Design of Cooling system - Mould al e-moulding Techniques.	gn	-	
UNIT	IV	COMPRESSION AND TRANSFER MOULD DESIGN			9
				-	1.121
		d construction - Mould design -Positive moulds- Positive moulds with La vith individual, common Loading Chamber - Moulds with a slide core -			
mould	ls.				
mould UNIT Materi Diame Should	ls. V ials Select eter Calcul der Design	vith individual, common Loading Chamber - Moulds with a slide core -	Spl	lit ca arise	avity g
mould UNIT Materi Diame Should	ls. V ials Select eter Calcul der Design	with individual, common Loading Chamber - Moulds with a slide core - BLOW MOULD DESIGN tion, Mould Cooling, Clamping Force, Venting, Pinch-off, Head die design lation, Wall Thickness, Vertical-load strength, Blow ratio, Base pushup, N n, Thread and beads, Bottom Design. Extrusion Die Design - Die geomet	Sp P ecł y,	lit ca arise	avity g
mould UNIT Materi Diame Should	ls. V ials Select eter Calcul der Design	with individual, common Loading Chamber - Moulds with a slide core - BLOW MOULD DESIGN tion, Mould Cooling, Clamping Force, Venting, Pinch-off, Head die design lation, Wall Thickness, Vertical-load strength, Blow ratio, Base pushup, N n, Thread and beads, Bottom Design. Extrusion Die Design - Die geometr Is and Classification. LECTURE TUTORIAL	Sp Peck y, S	lit ca ariso (an Die	avity on d
mould UNIT Materi Diame Should Design	ls. V ials Select eter Calcul der Desigr n, Materia	with individual, common Loading Chamber - Moulds with a slide core - BLOW MOULD DESIGN tion, Mould Cooling, Clamping Force, Venting, Pinch-off, Head die design lation, Wall Thickness, Vertical-load strength, Blow ratio, Base pushup, N n, Thread and beads, Bottom Design. Extrusion Die Design - Die geometr Is and Classification.	Sp Peck y, S	lit ca arise (an Die :	on d 45
mould UNIT Diame Should Design	ls. V ials Select eter Calcul der Desigr n, Materia BOOKS	with individual, common Loading Chamber - Moulds with a slide core - BLOW MOULD DESIGN tion, Mould Cooling, Clamping Force, Venting, Pinch-off, Head die design lation, Wall Thickness, Vertical-load strength, Blow ratio, Base pushup, N n, Thread and beads, Bottom Design. Extrusion Die Design - Die geometr Is and Classification. LECTURE TUTORIAL	Sp Peck y, S	ariso (an Die :	avity on d 45 -
mould UNIT Materi Diame Should Design TEXT	ls. V ials Select eter Calcul der Design n, Materia BOOKS R.G.W.F	with individual, common Loading Chamber - Moulds with a slide core - BLOW MOULD DESIGN tion, Mould Cooling, Clamping Force, Venting, Pinch-off, Head die design lation, Wall Thickness, Vertical-load strength, Blow ratio, Base pushup, N n, Thread and beads, Bottom Design. Extrusion Die Design - Die geometr Is and Classification. LECTURE TUTORIAL	Sp Peck y, S	ariso (an Die :	avity on d 45 -
mould UNIT Materi Diame Should Design TEXT	Is. V ials Select eter Calcul der Design n, Materia BOOKS R.G.W.F RENCES P.S.Crac	vith individual, common Loading Chamber - Moulds with a slide core - BLOW MOULD DESIGN tion, Mould Cooling, Clamping Force, Venting, Pinch-off, Head die design lation, Wall Thickness, Vertical-load strength, Blow ratio, Base pushup, N n, Thread and beads, Bottom Design. Extrusion Die Design - Die geometri Is and Classification. LECTURE TUTORIAL Pye, Injection Mould Design, SPE Publication, 2000 cknell and R.W Dyson, Handbook of Thermoplastics - Injection Mould Design	Sp Peck y, S S L	aris (an Die : :	avity on d 45 -
mould UNIT Diame Should Design TEXT 1. REFE	Is. V ials Select eter Calcul der Design n, Materia BOOKS R.G.W.F RENCES P.S.Crac Chapma Laszlo S	with individual, common Loading Chamber - Moulds with a slide core - BLOW MOULD DESIGN tion, Mould Cooling, Clamping Force, Venting, Pinch-off, Head die design lation, Wall Thickness, Vertical-load strength, Blow ratio, Base pushup, N n, Thread and beads, Bottom Design. Extrusion Die Design - Die geometr Is and Classification. LECTURE TUTORIAL TOTA Pye, Injection Mould Design, SPE Publication, 2000	Sp Peck y, S S L	aris aris an Die	45 - 45
mould UNIT Diame Should Design TEXT 1. REFE 1	Is. V ials Select eter Calcul der Design n, Materia BOOKS R.G.W.F RENCES P.S.Crac Chapma Laszlo S 1989.	vith individual, common Loading Chamber - Moulds with a slide core - BLOW MOULD DESIGN tion, Mould Cooling, Clamping Force, Venting, Pinch-off, Head die design lation, Wall Thickness, Vertical-load strength, Blow ratio, Base pushup, N n, Thread and beads, Bottom Design. Extrusion Die Design - Die geometri Is and Classification. LECTURE TUTORIAL Pye, Injection Mould Design, SPE Publication, 2000 cknell and R.W Dyson, Handbook of Thermoplastics - Injection Mould Design n & Hall, 1993.	Sp Peck y, S S L	aris aris an Die	45 - 45

REGULATION 2008: B.E.MECHANICAL ENGINEERING SYLLABUS SEMESTER-8

	SEMESTER-8					
	TOTAL QUALITY MANAGEMENT	3	0	0	100	
						1
UNIT I	INTRODUCTION					9
manufact	on - Need for quality - Evolution of quality - Definition of uring and service quality - Basic concepts of TQM - De rk - Contributions of Deming, Juran and Crosby – Barriers to T	finiti				
UNIT II	TQM PRINCIPLES					9
orientatio involvem Performa	ip – Strategic quality planning, Quality statements - Customer n, Customer satisfaction, Customer complaints, Customer rete ent – Motivation, Empowerment, Team and Teamwork, Recog nce appraisal - Continuous process improvement – PDSA cycl ip – Partnering, Supplier selection, Supplier Rating.	ntior nitior	i - Er i and	nploy Rev	∕ee vard,	olier
UNIT III	TQM TOOLS & TECHNIQUES I					9
	en traditional tools of quality – New management tools				0.57	•
	ogy, applications to manufacturing, service sector including b bench mark, Bench marking process – FMEA – Stages, Type		– B	ench	mark	ing –
UNIT VI	TQM TOOLS & TECHNIQUES II					9
	rcles – Quality Function Deployment (QFD) – Taguchi quali , improvement needs – Cost of Quality – Performance measur		ss fu	Inctio	on – T	PM –
UNIT V	QUALITY SYSTEMS					9
auditing-	ISO 9000- ISO 9000-2000 Quality System – Elements, QS 9000 – ISO 14000 – Concepts, Requirements and Benefit tation in manufacturing and service sectors including IT.					
			Т	otal		45
TEXT BO	OK:					
	H.Besterfiled, et al., "Total Quality Management", Pearson Edunt , 2006.	ucatio	on As	sia, I	ll Ed, l	ndian
REFERE						
	s R. Evans and William M. Lindsay, "The Management and Co n), South-Western (Thomson Learning), 2005.	ontro	l of (Quali	ty",	(6 th
2 Oakla 2003.	nd, J.S. "TQM – Text with Cases", Butterworth – Heinemann I	_td.,	Oxfo	rd, T	hird E	dition,
3 Subb	araj R., "Total Quality Management", Tata McGraw-Hill Educat	ion P	rivat	e Ltc	l, 2005	5
4 Suga 2006.	nthi,L and Anand Samuel, "Total Quality Management", Pren	tice	Hall	(India	a) Pvt	Ltd.,
	iraman, B and Gopal, R.K, "Total Quality Management – Text) Pvt. Ltd., 2006.	and	Case	es", F	Prentic	e Hall

PROJECT WORK - Phase - II

- 8. The students are expected to get formed into a team of convenient groups of not more than 4 members on a project.
- Every project team shall have a guide who is the member of the faculty of the institution. Identification of student group and their faculty guide has to be completed within the first two weeks from the day of beginning of the semester.
- 10. The group has to identify and select the problem to be addressed as their project work; make through literature survey and finalize a comprehensive aim and scope of their work to be done.
- 11. No change of guide or team members will be permitted after one month (unless the faculty or student has left the college). Head of the department is made responsible to ensure this.
- 12. Six periods per week shall be allotted in the time table and this time shall be utilized by the students to receive the directions from the guide, for library reading, laboratory work, computer analysis or field work as assigned by the guide and also to present in periodical seminars on the progress made in the project.
- 13. The progress of the project is to be evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department.
- 14. Each student shall finally produce a comprehensive report covering background information, literature survey, problem statement, project work details and conclusion. This final report shall be typewritten form as specified in the guidelines of university.
- 15. The project work is evaluated jointly by external and internal examiners constituted by the University based on oral presentation and the project report.

		ALTERNATIVE ENERGY SOURCES300	100	3
1		SOLAR ENERGY		9
So Fla	lar Radi at Plate	ation – Measurements of solar Radiation and sunshine – Solar Thermal Col and Concentrating Collectors – Solar Applications – fundamentals of phot n – solar Cells – PV Systems – PV Applications.		S –
U	INIT II	WIND ENERGY		ģ
		and Energy Estimation – wind Energy Conversion Systems – Wind Energy and its performance – Wind Energy Storage – Applications – Hybrid system	s	
U	NIT III	BIO - ENERGY		ç
— E		Biogas, Source, Composition, Technology for utilization – Biomass direct con gasifier – Biogas plant – Digesters – Ethanol production – Bio diesel produc		
U	NIT VI	OTEC, TIDAL, GEOTHERMAL AND HYDEL ENERGY		ç
		gy – Wave energy – Data, Technology options – Open and closed OTEC o, turbines – Geothermal energy sources, power plant and environmental iss		s –
U	NIT V	NEW ENERGY SOURCES		ç
		- generation, storage, transport and utilization – Applications - power ge Fuel cells – technologies, types – economics and the power generation.	neratio	on,
		Total		45
ТЕ	хт вос	DK:		
1.	G.D. Ra	i, Non Conventional Energy Sources, Khanna Publishers, New Delhi, 1999.		
2.		D.P. et. al., Renewable Energy Sources and Emerging Technologies, Prer Pvt. Ltd. 2008	ntice H	lall
RE	FEREN	CES:		
1		y Boyle, Renewable Energy, Power for a Sustainable Future, Oxford L U.K., 1996.	Jnivers	sity
	Twidell	LVV & Wain A. Denewahle Freezew Courses FFN Creek Ltd. LVC 4000		
2		, J.W. & Weir, A., Renewable Energy Sources, EFN Spon Ltd., UK, 1986		
2 3		iwari, solar Energy – Fundamentals Design, Modelling & applications, ing House, New Delhi, 2002.	Narc	sa
	Publish	ïwari, solar Energy – Fundamentals Design, Modelling & applications,	Narc	sa

	CRYOGENIC ENGINEERING 3 0 0	100	3
UNITI	INTRODUCTION		8
Temperatu	Cryogenics, Properties of Cryogenic fluids, Material properties at Cryores. Applications of cryogenics in space, Food Processing, super Conductive, Biology, Medicine, Electronics and Cutting Tool Industry.		
UNIT II	LIQUEFACTION CYCLES	1	0
Thomson I Cycle, He	uefaction Cycle, F.O.M. and Yield of Liquefaction Cycles. Inversion Curve - Effect. Linde Hampson Cycle, Precooled Linde Hampson Cycle, Claudes Cyc elium Refrigerated Hydrogen Liquefaction Systems. Critical Compone n Systems.	le Du	Ja
UNIT III	SEPARATION OF CRYOGENIC GASES		9
	ktures, T-C and H-C Diagrams, Principle of Rectification, Rectification (McCabe Thiele Method. Adsorption Systems for purification.	Colur	nr
UNIT VI	CRYOGENIC REFRIGERATORS		8
	mson Cryocoolers, Stirling Cycle Refrigerators, G.M.Cryocoolers, Pulse ors. Regenerators used in Cryogenic Refrigerators, Magnetic Refrigerators.	e Tu	be
UNIT V	STORAGE, INSULATION AND INSTRUMENTATION	1	10
	Storage vessels, Transportation, and Transfer Lines., Thermal insulation ar ce at cryogenic temperatures, Super Insulations, Vacuum insulation, I		eiı
	and Cryo-pumping. Instrumentation to measure Pressure, Flow, Leve		lei
insulation	and Cryo-pumping. Instrumentation to measure Pressure, Flow, Leve	el a	lei nc
insulation	and Cryo-pumping. Instrumentation to measure Pressure, Flow, Lever	el a	lei nc
insulation Temperatu TEXT BOC	and Cryo-pumping. Instrumentation to measure Pressure, Flow, Leve re Total OKS	el a	lei
insulation Temperatu TEXT BOC	and Cryo-pumping. Instrumentation to measure Pressure, Flow, Leve re Total	el a	lei nc
insulation Temperatu TEXT BOC	and Cryo-pumping. Instrumentation to measure Pressure, Flow, Lever Total Total F. Barron, Cryogenic Systems, McGraw-Hill, 1985	el a	lei nc
TEXT BOC 1. Randali REFEREN 1 Klaus	and Cryo-pumping. Instrumentation to measure Pressure, Flow, Lever Total Total F. Barron, Cryogenic Systems, McGraw-Hill, 1985	el a	45

	NUCLEAR ENGINEERING 3	0	0	10	0 3
UNIT I	NUCLEAR PHYSICS				7
	nodel of an atom-Equivalence of mass and energy-binding- radio teractions-cross sections.	o ac	tivity-	half	life-
UNIT II	NUCLEAR REACTIONS AND REACTION MATERIALS				9
compositio	n of nuclear fission and fusion- radio activity- chain reactions- on-nuclear fuel cycles and its characteristics-uranium production thorium, beryllium.				
UNIT III	REPROCESSING				9
	sing: nuclear fuel cycles-spent fuel characteristics-role of solv ng-solvent extraction equipment	rent	extra	actior	n in
UNIT VI	NUCLEAR REACTOR				11
	eactors: types of fast breeding reactors-design and construction eat transfer techniques in nuclear reactors- reactor shielding. Fusior				ding
		Tiea	clors		
UNIT V	SAFETY AND DISPOSAL	Tiea	CIOIS	•	9
Safety and accident-c		cons	seque	ence	s of
Safety and accident-c	SAFETY AND DISPOSAL d disposal: Nuclear plant safety - safety systems-changes and riteria for safety-nuclear waste-types of waste and its disposal-radi	cons ation	seque haza	ence	s of and
Safety and accident-c	SAFETY AND DISPOSAL d disposal: Nuclear plant safety - safety systems-changes and riteria for safety-nuclear waste-types of waste and its disposal-radi	cons ation	seque	ence	s of
Safety and accident-c	SAFETY AND DISPOSAL d disposal: Nuclear plant safety - safety systems-changes and riteria for safety-nuclear waste-types of waste and its disposal-radi ention-weapons proliferation.	cons ation	seque haza	ence	s of and
Safety and accident-ci their preve	SAFETY AND DISPOSAL d disposal: Nuclear plant safety - safety systems-changes and riteria for safety-nuclear waste-types of waste and its disposal-radi ention-weapons proliferation.	cons ation	seque haza	ence	s of and
Safety and accident-ci their preve	SAFETY AND DISPOSAL d disposal: Nuclear plant safety - safety systems-changes and riteria for safety-nuclear waste-types of waste and its disposal-radi ention-weapons proliferation.	cons ation	seque haza	ence	s of and
Safety and accident-ci their preve	SAFETY AND DISPOSAL d disposal: Nuclear plant safety - safety systems-changes and riteria for safety-nuclear waste-types of waste and its disposal-radiention-weapons proliferation. DK: ag, Power plant Engineering - stream & nuclear, Tata Mc Graw Hill	cons ation	seque haza	ence	s of and
Safety and accident-ci their preve TEXT BOO 1. P. K. Na REFEREN	SAFETY AND DISPOSAL d disposal: Nuclear plant safety - safety systems-changes and riteria for safety-nuclear waste-types of waste and its disposal-radiention-weapons proliferation. DK: ag, Power plant Engineering - stream & nuclear, Tata Mc Graw Hill ICES: J.G., and Hewitt G.F, "Introduction to Nuclear power", Hemisphere	cons ation T	otal		45
Safety and accident-ci their preve TEXT BOO 1. P. K. Na REFEREN 1 Collier York. 1	SAFETY AND DISPOSAL d disposal: Nuclear plant safety - safety systems-changes and riteria for safety-nuclear waste-types of waste and its disposal-radiention-weapons proliferation. DK: ag, Power plant Engineering - stream & nuclear, Tata Mc Graw Hill ICES: J.G., and Hewitt G.F, "Introduction to Nuclear power", Hemisphere	cons ation T	otal		45
Safety and accident-ci their preve TEXT BOO 1. P. K. Na REFEREN 1 Collier York. 1 2 Wakil N	SAFETY AND DISPOSAL d disposal: Nuclear plant safety - safety systems-changes and riteria for safety-nuclear waste-types of waste and its disposal-radiention-weapons proliferation. DK: ag, Power plant Engineering - stream & nuclear, Tata Mc Graw Hill ICES: J.G., and Hewitt G.F, "Introduction to Nuclear power", Hemisphere 987	cons ation T publi 4.	otal	ence ards	45

		1	
	ENERGY CONSERVATION AND MANAGEMENT300	10	0 3
UNIT I	IMPORTANCE OF ENERGY CONSERVATION AND MANAGEMENT		8
	ional Energy consumption – environmental aspects – Energy prices, p diting: methodology, analysis, energy accounting – Measurements – The		
UNIT II	ELECTRICAL SYSTEMS		12
drives : m lighting lev	urrent systems, Demand control, power factor correction, load management otor efficiency testing, energy efficient motors, motor speed control – L vels, efficient options, day lighting, timers, Energy efficient windows – systems – Transformers – Power quality – harmonic distortion.	ighti	ng :
UNIT III	THERMAL SYSTEMS		10
condensate	efficiency testing, excess air control, Steam distribution & use – stea e recovery, flash steam utilization, Thermal Insulation. Heat exchanger netw pinch, target settling, problem table approach		
UNIT VI	ENERGY CONSERVATION		8
Refrigeratio	nservation in Pumps, Fans (flow control) and blowers, Compressed Air s on and air conditioning systems – Waste heat recovery recuperators, hea heat pumps.		
UNIT V	ENERGY MANAGEMENT, ECONOMICS		7
energy ma	source management – Energy Management information systems – Component – Energy economics – discount rate, payback period, interna cycle costing – Financing energy conservation Projects.	outer I rat	ized e of
	Total		45
TEXT BOO	DK:		
	itte, P.S. Schmidt, D.R. Brown, "Industrial Energy Management and U e Publ, Washington, 1988.	tilisa	tion"
2. O. Calla Oxford, 198	aghn, P.W. "Design and Management for Energy Conservation", Pergamo 31.	n Pr	ess,
REFEREN	CES:		
1 I.G.C. I	Dryden, "The Efficient Use of Energy" Butterworths, London, 1982		
2 W.C. tu	Irner, "Energy Management Hand book" Wiley, New York, 1982.		

	PRODUCT DESIGN, DEVELOPMENT AND LIFE CYCLE MANAGEMENT	3	0	0	100) 3
UNIT I	INTRODUCTION					9
Interpret ra Product life models- cre	evelopment process – Product development organizations w data- organize the needs into a hierarchy – Relative imp e cycle management - concepts, benefits, value addition to eation of projects and roles, users and project management, trol and its use in life cycle.	oortar	nce o stome	of the er. Li	e neo fe c	eds. ycle
UNIT II	PRODUCT SPECIFICATIONS					9
	g the product specifications– Target specifications – Refining s Clarify the problem – Search internally – Search externally – E					
UNIT III	PRODUCT ARCHITECTURE					9
	election- Screening – scoring, Product architecture – Implica g the architecture – Related system level design issues.	ation	of a	rchit	ectui	re –
UNIT VI	INDUSTRIAL DESIGN					9
Manageme	industrial design – Impact of industrial design – Industr nt of industrial design process – Assessing the quality of indus ing- cost considerations, Impact of DFM decisions on other fac	strial	desi			
UNIT V	PRINCIPLES OF PROTOTYPING AND ECONOMIC ANALY	/SIS				9
Elements of	of prototyping – Planning for prototypes, economics of product f economic analysis – Base – Case financial model – Sensitiv titative factors.					
			т	otal		45
TEXT BOC	К:					
	T.Ulrich steven D.Eppinger, Product Design and Develo tional Editions, 2003	opme	nt, I	ИсGr	aw	Hill,
REFEREN	CES:					
1 S.Rose	nthal, Effective Product Design and Development, Irwin, 1992	2.				
2 Charles Editions	Gevirtz Developing New products with TQM, McGraw Hill Inte s, 1994.	ernati	onal			

		ENTREPRENEURSHIP DEVELOPMENT	3	0	0	100	3
UNI	T 1	ENTREPRENEURSHIP					9
				and	المغر		
		ur – Types of Entrepreneurs – Difference between Entrepre urship in Economic Growth, Factors Affecting Entrepreneurial			Intra	aprene	eur
UNI	TII	MOTIVATION					ç
skills	- Se	ves Influencing an Entrepreneur – Achievement Motivation Tra- If Rating, Business Game, Thematic Appreciation Test – urship Development Programs – Need, Objectives.					
UNIT	r III	BUSINESS					ę
Formu oppor Prepa	ulation tunity aratior	rprises – Definition, Classification – Characteristics, Ownersh – Steps involved in setting up a Business – identifying, sele , Market Survey and Research, Techno Economic Fea- of Preliminary Project Reports – Project Appraisal – Sou on of Needs and Agencies.	cting sibility	a Go y As	ood E ssess	Busine sment	ess –
UNIT	r vi	FINANCING AND ACCOUNTING					ę
of wo	rking	urces of Finance, Term Loans, Capital Structure, Financial In Capital, Costing, Break Even Analysis, Network Analysis 1 ation – Income Tax, Excise Duty – Sales Tax.					
UNI	гν	SUPPORT TO ENTREPRENEURS					ę
Measu	ures	n small Business – Concept, Magnitude, Causes and Con – Government Policy for Small Scale Enterprises – Grow Expansion, Diversification, Joint Venture, Merger and Sub Con	th St	rateg			
				Т	otal		45
	BOO	К:		Т	otal		45
TEXT		K: ka "Entrepreneurial Development" S.Chand & Co. Ltd. Ram N	lagar				
TEXT 1.S.S. 2.Kura	.Khan ahko	ka "Entrepreneurial Development" S.Chand & Co. Ltd. Ram N & Hodgetts, " Enterprenuership – Theory, process and practic	•	New	[,] Dell	ni, 199	99
TEXT 1.S.S. 2.Kura 6 th ec	.Khan ahko dition.	ka "Entrepreneurial Development" S.Chand & Co. Ltd. Ram N & Hodgetts, " Enterprenuership – Theory, process and practic	•	New	[,] Dell	ni, 199	99
TEXT 1.S.S. 2.Kura 6 th ec REFE	.Khan ahko dition.	ka "Entrepreneurial Development" S.Chand & Co. Ltd. Ram N & Hodgetts, " Enterprenuership – Theory, process and practic	ces",	New Thon	[,] Dell	ni, 199	99
TEXT 1.S.S. 2.Kura 6 th 61 1 1 2 1	.Khan ahko dition. REN isrich athew	ka "Entrepreneurial Development" S.Chand & Co. Ltd. Ram N & Hodgetts, " Enterprenuership – Theory, process and practic CES:	ces", ⁻ raw-F	New Thon Iill, 2	⁷ Dell nson 002.	learn	99 ing
TEXT 1.S.S. 2.Kura 6 th REFE 1 4 2 Ma Dr 3	.Khan ahko dition. REN isrich athew ream athew	ka "Entrepreneurial Development" S.Chand & Co. Ltd. Ram N & Hodgetts, " Enterprenuership – Theory, process and practic CES: R D and Peters M P, "Entrepreneurship" 5 th Edition Tata McGr J Manimala," Enterprenuership theory at cross roads: p	raw-H	New Thon Iill, 2	⁷ Dell nson 002. and	learn)9 ing

	ENTERPRISE RESOURCE PLANNING	3	0	0	100	3
					,	10
Principle Re-Engi	 – ERP framework – Business Blue Print – Business Engineering neering – Tools – Languages – Value chain – Supply and Dema nain management – Dynamic Models –Process Models 				proce	ess
UNIT II	TECHNOLOGY				1	10
	rver architecture – Technology choices – Internet direction – Eval RM pricing – chain safety – Evaluation framework.	luatio	on fra	ame	work -	-
UNIT II	ARCHITECTURE				,	10
as sales	 Architecture – AIM – applications I– Integration of different ER force automation – Integration of ERP and Internet – ERP Impler tional and social issues. 					
UNIT iV SAP, Pe		ons	- Bef	fore a	and af	7 fter
SAP, Pe Y2K – c	APPLICATIONS ople soft, Baan and Oracle – Comparison – Oracle SCM application itical issues – Training on various modules of IBCS ERP Packar , including ERP on the NET					fter
SAP, Pe Y2K – c MAXIMC UNIT V	pple soft, Baan and Oracle – Comparison – Oracle SCM application itical issues – Training on various modules of IBCS ERP Packa , including ERP on the NET PROCUREMENT ISSUES	ige -	Ora	cle E	ERP a	fter and
SAP, Pe Y2K – c MAXIMC UNIT V Market 1	pple soft, Baan and Oracle – Comparison – Oracle SCM application itical issues – Training on various modules of IBCS ERP Packa , including ERP on the NET	ige -	Ora	cle E	ERP a	fter and
SAP, Pe Y2K – c MAXIMC UNIT V Market 1	pple soft, Baan and Oracle – Comparison – Oracle SCM application itical issues – Training on various modules of IBCS ERP Packa , including ERP on the NET PROCUREMENT ISSUES irends – Outsourcing ERP – Economics – Hidden Cost Issues	ige -	Ora	cle E	ERP a	fter and
SAP, Pe Y2K – c MAXIMC UNIT V Market T cases fro	pple soft, Baan and Oracle – Comparison – Oracle SCM application itical issues – Training on various modules of IBCS ERP Packar , including ERP on the NET PROCUREMENT ISSUES Trends – Outsourcing ERP – Economics – Hidden Cost Issues m five Indian Companies	ige -	Ora	cle E – An	ERP a	fter and 8 ; of
SAP, Pe Y2K – c MAXIMC UNIT V Market T cases fro text Be 1. Vinod	pple soft, Baan and Oracle – Comparison – Oracle SCM application itical issues – Training on various modules of IBCS ERP Packar , including ERP on the NET PROCUREMENT ISSUES Trends – Outsourcing ERP – Economics – Hidden Cost Issues m five Indian Companies	ige -	Ora	cle E - An otal	ERP a	8 3 of 45
SAP, Pe Y2K – c MAXIMC UNIT V Market T cases fro text Be 1. Vinod	pople soft, Baan and Oracle – Comparison – Oracle SCM application itical issues – Training on various modules of IBCS ERP Packar , including ERP on the NET PROCUREMENT ISSUES rends – Outsourcing ERP – Economics – Hidden Cost Issues m five Indian Companies DOKS Kumar Garg and Venkitakrishnan N.K. "Enterprise Resource Plar , Prentice Hall of India Pvt. Ltd. 2008.	ige -	Ora	cle E - An otal	ERP a	- fter and 8 5 of 45
SAP, Pe Y2K – c MAXIMC UNIT V Market T cases fro 1. Vinod Practice	pople soft, Baan and Oracle – Comparison – Oracle SCM application itical issues – Training on various modules of IBCS ERP Packar , including ERP on the NET PROCUREMENT ISSUES rends – Outsourcing ERP – Economics – Hidden Cost Issues m five Indian Companies DOKS Kumar Garg and Venkitakrishnan N.K. "Enterprise Resource Plar , Prentice Hall of India Pvt. Ltd. 2008.	nning	Ora	cle E - An otal	ERP a	8 3 of 45
SAP, Pe Y2K – c MAXIMO UNIT V Market T cases fro tases >tases fro tas tases fro tases fro tases fro tases fro	pipe soft, Baan and Oracle – Comparison – Oracle SCM application pipe soft, Baan and Oracle – Comparison – Oracle SCM application itical issues – Training on various modules of IBCS ERP Packar, including ERP on the NET PROCUREMENT ISSUES Trends – Outsourcing ERP – Economics – Hidden Cost Issues m five Indian Companies DOKS Kumar Garg and Venkitakrishnan N.K. "Enterprise Resource Plar, Prentice Hall of India Pvt. Ltd. 2008. NCES:	nning 9.	Ora	cle E - An otal	ERP a	8 6 of 45
SAP, Pe Y2K – c MAXIMO UNIT V Market T cases fro tases fro TEXT Bo 1. Vinod Practice' REFERE 1 Sada 2 Jose	pople soft, Baan and Oracle – Comparison – Oracle SCM application itical issues – Training on various modules of IBCS ERP Packar , including ERP on the NET PROCUREMENT ISSUES rends – Outsourcing ERP – Economics – Hidden Cost Issues m five Indian Companies DOKS Kumar Garg and Venkitakrishnan N.K. "Enterprise Resource Plar , Prentice Hall of India Pvt. Ltd. 2008. NCES: gopan.S , ERP-A Managerial Perspective, Tata Mcgraw Hill, 1999	ige - F	Ora	cle E - An otal	ERP a	8 5 of 45
SAP, Pe Y2K – c MAXIMC UNIT V Market T cases fro tases fro tases fro tases tas tases tases tases tases tas tas tases tas tases tas tas tases tases tas tases tas tas tases tas tas tas tas tas tas tas tas tas ta	Image: constraint of the second se	nning 9. 998	Ora	cle F - An otal Conc	ERP a	8 3 of 45 and 999.

		PRODUCTION PLANNING AND COST ESTIMATION 3		0	0	100) 3
U	JNIT I	PRODUCTION PLANNING AND CONTROL					9
agg pla	gregate inning;	orecasting – time series forecasting models – Delphi meth production planning, master scheduling, bill of materials and m order control and flow control, routing, scheduling and priorit JLL systems	nate	erial	requ	uiren	nent
U	NIT II	ESTIMATING AND COSTING					5
ain	ns of Co	e and aims of Cost estimation – Functions of estimation – Costing sting – Difference between costing and estimation – Importance o on procedure.					
U		ELEMENT OF COST					12
Dir Ana Me	ect Lab alysis of thods c	n – Material Cost – Determination of Material Cost Labour Cost our Cost – Expenses – Cost of Product (Ladder of cost) – Illu f overhead expenses – Factory expenses – Depreciation – Cause of depreciation – Administrative expenses – Selling and Distri of overhead expenses.	ustr es c	ativ of de	e ex epre	ciatio	les. on –
U	NIT VI	PRODUCT COST ESTIMATION					10
Est in v	timation welding	PRODUCT COST ESTIMATION in forging shop – Losses in forging – Forging cost – Illustrative ex shop – Gas cutting – Electric welding – illustrative examples. Es imation of pattern cost and casting cost – Illustrative examples					tion
Est in v sho	timation welding	in forging shop – Losses in forging – Forging cost – Illustrative ex shop – Gas cutting – Electric welding – illustrative examples. Es					tion
Est in v sho U Est	timation welding op – Est NIT V timation	in forging shop – Losses in forging – Forging cost – Illustrative ex shop – Gas cutting – Electric welding – illustrative examples. Es imation of pattern cost and casting cost – Illustrative examples	stim	time	on in	four	tion ndry 9
Est in v sho U Est	timation welding op – Est NIT V timation	in forging shop – Losses in forging – Forging cost – Illustrative ex shop – Gas cutting – Electric welding – illustrative examples. Es imation of pattern cost and casting cost – Illustrative examples ESTIMATION OF MACHINING TIME of machining time for Lathe operations – Estimation of machini	stim	times.	on in	four	tion ndry 9
U Est bor TE 1. I	timation welding op – Est NIT V timation ring, sha XT BOC M. Adith A.K. Ch	in forging shop – Losses in forging – Forging cost – Illustrative examples. Estimation of pattern cost and casting cost – Illustrative examples ESTIMATION OF MACHINING TIME of machining time for Lathe operations – Estimation of machining aping, planning, milling and grinding operations – Illustrative examples	ing ples	timo s. Ltd.	e for otal	four drill 39.	9 ing, 45
Estibor TE 1. I 199	timation welding op – Est NIT V timation ring, sha XT BOC M. Adith A.K. Ch 97.	in forging shop – Losses in forging – Forging cost – Illustrative examples. Estimation of pattern cost and casting cost – Illustrative examples. Estimation of pattern cost and casting cost – Illustrative examples ESTIMATION OF MACHINING TIME of machining time for Lathe operations – Estimation of machinia aping, planning, milling and grinding operations – Illustrative examples OK: an and B.S. Pabla, "Estimating and Costing", Konark Publishers F itale and R.C. Gupta, "Product Design and Manufacturing", Pres	ing ples	timo s. Ltd.	e for otal	four drill 39.	9 ing, 45
Estibor TE 1. I 199	timation welding pp – Est NIT V timation ring, sha XT BOC M. Adith A.K. Ch 97. FEREN Nanua	in forging shop – Losses in forging – Forging cost – Illustrative examples. Estimation of pattern cost and casting cost – Illustrative examples. Estimation of pattern cost and casting cost – Illustrative examples ESTIMATION OF MACHINING TIME of machining time for Lathe operations – Estimation of machinia aping, planning, milling and grinding operations – Illustrative examples OK: an and B.S. Pabla, "Estimating and Costing", Konark Publishers F itale and R.C. Gupta, "Product Design and Manufacturing", Pred CES: Singh, "System approach to Computer Integrated Design and M	stim ing ples Pvt. ntic	time s. Ltd.	on in e for otal . 198	four drill 39.	9 ing, 45
Est in v sho Est bor TE 1. I 2 199 RE	timation welding op – Est NIT V timation ring, sha XT BOC M. Adith A.K. Ch 97. FEREN Nanua Wiley a Joseph	in forging shop – Losses in forging – Forging cost – Illustrative examples. Estimation of pattern cost and casting cost – Illustrative examples. ESTIMATION OF MACHINING TIME of machining time for Lathe operations – Estimation of machinia aping, planning, milling and grinding operations – Illustrative examples DK: tan and B.S. Pabla, "Estimating and Costing", Konark Publishers F itale and R.C. Gupta, "Product Design and Manufacturing", Prese ICES:	ing ples vt. ntic	timo s. Tc Ltd. ve H	on in e for otal . 198 all F	four - drill 39. - vt. I - g", J	9 ing, 45 .td.,
Est in v sho Est bor 1. I 199 RE 1	timation welding op – Est NIT V timation ring, sha XT BOC M. Adith A.K. Ch 97. FEREN Nanua Wiley a Joseph Compa	in forging shop – Losses in forging – Forging cost – Illustrative examples. Estimation of pattern cost and casting cost – Illustrative examples. Estimation of pattern cost and casting cost – Illustrative examples ESTIMATION OF MACHINING TIME of machining time for Lathe operations – Estimation of machinia aping, planning, milling and grinding operations – Illustrative examples OK: an and B.S. Pabla, "Estimating and Costing", Konark Publishers F itale and R.C. Gupta, "Product Design and Manufacturing", Pres CES: Singh, "System approach to Computer Integrated Design and M and Sons, Inc., 1996 G. Monks, "Operations Management, Theory & Problems",	ing ples Pvt. ntic	time s. Ltd. e H ufac	on in e for otal . 198 lall F	four - drill 39. - vt. I - g", J	9 ing, 45 .td.,
Est in v sho Est bor TE 1. I 199 RE 1 2	timation welding op – Est NIT V timation ring, sha XT BOC M. Adith A.K. Ch 97. FEREN Nanua Wiley a Joseph Compa S.N. Cl Adam a	in forging shop – Losses in forging – Forging cost – Illustrative examples. Estimation of pattern cost and casting cost – Illustrative examples ESTIMATION OF MACHINING TIME of machining time for Lathe operations – Estimation of machinia aping, planning, milling and grinding operations – Illustrative examples DK: an and B.S. Pabla, "Estimating and Costing", Konark Publishers F itale and R.C. Gupta, "Product Design and Manufacturing", Pred ICES: Singh, "System approach to Computer Integrated Design and M and Sons, Inc., 1996 n G. Monks, "Operations Management, Theory & Problems", any, 1982.	stim ing ples Pvt. ntic lanu I, 19	timo s. Ttd. Ltd. ufac Gra 994 Indi	on in e for otal . 198 dall F turin a, 11	four - drill 39. Pvt. I g", J lill E 995.	9 ing, 45

		MAINTENANCE ENGINEERING 3 0 0	100	3
U	NIT I	PRINCIPLES AND PRACTICES OF MAINTENANCE PLANNING		10
acti ava	ivity – I ilability	Siples of maintenance planning – Objectives and principles of planned main mportance and benefits of sound Maintenance systems – Reliability and r – MTBF, MTTR and MWT – Factors of availability – Maintenance organiz ce economics.	nach	ine
U	NIT II	MAINTENANCE POLICIES – PREVENTIVE MAINTENANCE		9
		ce categories – Comparative merits of each category – Preventive maintice schedules, repairs cycle - Principles and methods of lubrication – TPM.	enan	ce,
UN		CONDITION MONITORING		9
test	ting – M	Monitoring – Cost comparison with and without CM – On-load testing and ethods and instruments for CM – Temperature sensitive tapes – Pistol thermores analysis		
UN		REPAIR METHODS FOR BASIC MACHINE ELEMENTS		10
ana		thods for beds, slideways, spindles, gears, lead screws and bearings – Failures and their development – Logical fault location methods – Sequen		
U		REPAIR METHODS FOR MATERIAL HANDLING EQUIPMENT		8
		hods for Material handling equipment - Equipment records – Job order syster rs in maintenance.	ns -l	Jse
		Total		45
TE)	хт вос	DK:		
1.S	rivastav	a S.K., "Industrial Maintenance Management", - S. Chand and Co., 1981		
	hattach	arya S.N., "Installation, Servicing and Maintenance", S. Chand and Co., 1995		
2.B	FEREN	CES.		
RE		E.N., "Maintenance Planning", I Documentation, Gower Press, 1979.		
RE 1 2	White E Mishra		Hal	l of
RE 1 2	White E Mishra India P	E.N., "Maintenance Planning", I Documentation, Gower Press, 1979. R.C. and Pathak K. "Maintenance Engineering and Management" Prentice	Hal	l of
REI 1 2 3	White E Mishra India P Garg M	E.N., "Maintenance Planning", I Documentation, Gower Press, 1979. R.C. and Pathak K. "Maintenance Engineering and Management" Prentice vt. Ltd. 2007.	Hal	l of
REI 1 2 3 4	White E Mishra India P Garg M Higgins	E.N., "Maintenance Planning", I Documentation, Gower Press, 1979. R.C. and Pathak K. "Maintenance Engineering and Management" Prentice vt. Ltd. 2007. I.R., "Industrial Maintenance", S. Chand & Co., 1986.	Hal	l of

	INDUSTRIAL SAFETY	3	0	0	100	
UNIT I	BASICS OF SAFETY ENGINEERING & ACTS					9
reporting – inspecting 1986 – Ai	of modern safety concept – safety audit – Concept of an acc safety performance monitoring. Acts – factories act – 1948 – staff – Tamilnadu Factories Rules 1950 under Safety and heal r act 1981, water act 1974 – other acts. Safety in indust nachine guarding, hazards in metal removing process, welding pocess.	Statu Ith – e tries	utory envir - Ge	auth onme enera	noritie ent ac al saf	s - ct - et
UNIT II	OCCUPATIONAL HEALTH AND INDUSTRIAL HYGIENE (Basic concepts, related hazards and exposure limits)					1(
gases. Bio spectrum employmer levels of procedure, Preliminary	azards – Noise, heat, recognition of chemical hazards-dust, fu logical and Ergonomical Hazards-Basic concepts. Occupation of health – functional units and activities of occupational nt and post-employment medical examinations – occupation prevention of diseases, notifiable occupational diseases. methodology; safety audit, checklist analysis, what-if an Hazard Analysis (PHA), human error analysis, hazard operal ning systems.	ial He heal onal i Haza nalysis	alth- th s relate ard s, sa	Conc ervic ed d asse afety	cept a es, p liseas essme revie	an ore es en ev
UNIT III	FIRE ENGINEERING AND EXPLOSIVE CONTROL					8
Fire proper	l tion of polid liquid and goods firs triangle principles of firs					
and passiv extinguishe Hazards –	ties of solid, liquid and gases – fire triangle – principles of fire e fie protection systems – various classes of fires – A, B, C ers – Principles of explosion – Explosion Protection – Elect Primary and Secondary hazards – concept of earthing – prote kers and over load relays – first aid.	C, D, trical	Ē – Safe	type ety. E	es of Electri	fir ica
and passiv extinguishe Hazards –	e fie protection systems – various classes of fires – A, B, C ers – Principles of explosion – Explosion Protection – Elect Primary and Secondary hazards – concept of earthing – prote	C, D, trical	Ē – Safe	type ety. E	es of Electri	fir ica
and passiv extinguishe Hazards – circuit brea UNIT VI Introduction the work ergonomics basic body posture ad behavioura uses in erg factors eng	e fie protection systems – various classes of fires – A, B, C ers – Principles of explosion – Explosion Protection – Elect Primary and Secondary hazards – concept of earthing – prote kers and over load relays – first aid.	C, D, trical action action s area nanize ody M re, pos rders Anthr Appli	E – Safe syst	appli appli ork, anice station ork anice ork anice ork anice ork anice ork anice ork	es of Electri – fus catior modu s: So pility a prkpla v and f hum	fir ica ses 9 n ii er man it na
and passiv extinguishe Hazards – circuit brea UNIT VI Introduction the work ergonomics basic body posture ad behavioura uses in erg factors eng vs Machine	e fie protection systems – various classes of fires – A, B, C ers – Principles of explosion – Explosion Protection – Elect Primary and Secondary hazards – concept of earthing – prote kers and over load relays – first aid. ERGONOMICS In to ergonomics: The focus of ergonomics, ergonomics and its system, a brief history of ergonomics, attempts to hun s, future directions for ergonomics. Anatomy, Posture and B mechanics, anatomy of the sprine and pelvis related to postur aptation, low back pain, risk factors for musculoskeletal disor I aspects of posture, effectiveness and cost effectiveness. ponomics, principles of applied anthropometry in ergonomics.	C, D, trical action action s area nanize ody M re, pos rders Anthr Appli	E – Safe syst	appli appli ork, anice station ork anice ork anice ork anice ork anice ork anice ork	es of Electri – fus catior modu s: So pility a prkpla v and f hum	fir ica ica g n i g n i g n i
and passiv extinguishe Hazards – circuit brea UNIT VI Introduction the work ergonomics basic body posture ad behavioura uses in erg factors eng vs Machine UNIT V Importance seminars, communica – creating	e fie protection systems – various classes of fires – A, B, G ers – Principles of explosion – Explosion Protection – Elect Primary and Secondary hazards – concept of earthing – prote kers and over load relays – first aid. ERGONOMICS In to ergonomics: The focus of ergonomics, ergonomics and its system, a brief history of ergonomics, attempts to hun s, future directions for ergonomics. Anatomy, Posture and B mechanics, anatomy of the sprine and pelvis related to postur aptation, low back pain, risk factors for musculoskeletal disor I aspects of posture, effectiveness and cost effectiveness. ponomics, principles of applied anthropometry in ergonomics.	C, D, trical ection ect	E - Safe Safe syst s of S e w Mech sture in th opor catic C C on S - I S - I	type ety. E appli ork, antica e state ork netry ons o trolle	es of Electri – fus catior catior catior s: So pility a prkpla v and f hum er – N ramm vatior v train	firiciae g n i erman in and in an in an in in in in in in in in in i

TE	XT BOOK:
1.	Krishnan N.V., "Safety Management in Industry", Jaico Publishing House, Bombay, 1997.
2.	Hand book of "Occupational Safety and Health", National Safety Council, Chicago, 1982.
RE	FERENCES:
1	The factories Act 1948, Madras Book Agency, Chennai, 2000
2	Water (Prevention and control of pollution) act 1974, Commercial Law publishers (India) Pvt. Ltd., New Delhi.
3	Air (Prevention and control of pollution) act 1981, Commercial Law Publishers (India) Pvt. Ltd., New Delhi
4	Guidelines for Hazard Evaluation Procedures, Centre for Chemical Process Safety, AICHE 1992
5	Introduction to Ergonomics, R.S. Bridger, Taylor & Francis
6	Derek, James, "Fire Prevention Hand Book", Butter Worths and Company, London, 1986.
7	Fordham Cooper, W., "Electrical Safety Engineering", Butter Worths and Company, London, 1986

UNIT II	Kohlberg's theory - Gilligan's theory - consensus and controversy – Model - theories about right action - Self-interest - customs and religion - uses of IEERING AS SOCIAL EXPERIMENTATION Derimentation - engineers as responsible experimenters - codes of ethics n law - the challenger case study. TY, RESPONSIBILITIES AND RIGHTS assessment of safety and risk - risk benefit analysis and reducing risk - alty - respect for authority - collective bargaining - confidentiality - conflict anal crime - professional rights - employee rights - Intellectual Property Rigion AL ISSUES parations - Environmental ethics - computer ethics - weapons development agers-consulting engineers-engineers as expert witnesses and adviso
moral autor	Engineering Ethics' - variety of moral issued - types of inquiry - moral dilemmas - nomy - Kohlberg's theory - Gilligan's theory - consensus and controversy – Model
ethical theo	
UNIT III	ENGINEERING AS SOCIAL EXPERIMENTATION
	g as experimentation - engineers as responsible experimenters - codes of ethics utlook on law - the challenger case study.
UNIT VI	SAFETY, RESPONSIBILITIES AND RIGHTS
three mile i Collegiality	risk - assessment of safety and risk - risk benefit analysis and reducing risk - sland and chernobyl case studies. and loyalty - respect for authority - collective bargaining - confidentiality - conflict ccupational crime - professional rights - employee rights - Intellectual Property Rig crimination
UNIT V	GLOBAL ISSUES
engineers moral lead (India), Ir	al corporations - Environmental ethics - computer ethics - weapons developme as managers-consulting engineers-engineers as expert witnesses and adviso ership-sample code of Ethics like ASME, ASCE, IEEE, Institution of Engine adian Institute of Materials Management, Institution of electronics nication engineers (IETE), India, etc.
	Total
ТЕХТ ВОС	
1. Mike M	DK: Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New York 19
 Mike M Govinc India, I 	MARTIN AND ROLAND Schinzinger, "Ethics in Engineering", McGraw-Hill, New York 19 Jarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Ha New Delhi, 2009.
1. Mike M 2. Govino India, I REFEREN	Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New York 19 Jarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Ha New Delhi, 2009. CES:
1. Mike M 2. Govino India, I REFEREN 1 Charles Jersey,	Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New York 19 Jarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Ha New Delhi, 2009. CES: 5 D. Fleddermann, "Engineering Ethics", Pearson Education / Prentice Hall, N 2004 (Indian Reprint now available)
1. Mike M 2. Govino India, I REFEREN 1 Charles Jersey, 2 Concep now av	PK: Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New York 19 Marajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Ha New Delhi, 2009. CES: S D. Fleddermann, "Engineering Ethics", Pearson Education / Prentice Hall, N 2004 (Indian Reprint now available) S E Harris, Michael S. Protchard and Michael J Rabins, "Engineering Ethics and Cases", Wadsworth Thompson Leatning, United States, 2000 (Indian Repailable)
1. Mike M 2. Govinc India, I REFEREN 1 Charles Jersey, 2 Concep now av 3 John R 2003.	Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New York 19 Marajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Ha New Delhi, 2009. CES: as D. Fleddermann, "Engineering Ethics", Pearson Education / Prentice Hall, N 2004 (Indian Reprint now available) as E Harris, Michael S. Protchard and Michael J Rabins, "Engineering Ethics bits and Cases", Wadsworth Thompson Leatning, United States, 2000 (Indian Repailable) Boatright, "Ethics and the Conduct of Business", Pearson Education, New Detection
1. Mike M 2. Govinc India, I REFEREN 1 Charles Jersey, 2 Concep now av 3 John R 2003. 4 Edmun	PK: Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New York 19 Marajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Ha New Delhi, 2009. CES: S D. Fleddermann, "Engineering Ethics", Pearson Education / Prentice Hall, N 2004 (Indian Reprint now available) S E Harris, Michael S. Protchard and Michael J Rabins, "Engineering Ethics and Cases", Wadsworth Thompson Leatning, United States, 2000 (Indian Repailable)

PROFESSIONAL ETHICS AND HUMAN VALUES 3 0 0 100 3

UNIT I HUMAN VALUES

Morals, Values and Ethics – Integrity – Work Ethic – Service Learning – Civic Virtue – Respect for Others - Living Peacefully - caring - Sharing - Honesty - Courage - Valuing Time - Cooperation - Commitment - Empathy - Self-Confidence - Character - Spirituality

U

U

U

- 1. 996.
- 2. all of

RE

New 1 ics – 2 eprint Delhi, 3 and 4

9

9

10

9

8

- 45

	RAPID PROTOTYPING, TOOLING AND RE-ENGINEERING		3	0	0	10	0
UNIT							7
	Development of RP systems – RP process chain - In on Product Development – Benefits- Applications ping						
UNIT	II LIQUID BASED AND SOLID BASED RAPID PROT SYSTEMS	ΤΟΤΥΡΙΝ	G				10
three of	ithography Apparatus, Fused deposition Modeling, La dimensional printing: Working Principles, details of p ages, limitations and applications - Case studies.						
UNIT	III POWDER BASED RAPID PROTOTYPING SYSTE	MS					10
Engine	ve Laser Sintering, Direct Metal Laser Sintering, Three ered Net Shaping, Selective Laser Melting, Electror als, products, advantages, applications and limitations – C	n Beam	Melt				
			lies.				
UNIT							10
Basic of Prototy Wire fra support		ING In – Data geometric interfacin	Proo moo g, Pa	deling art or	tec ienta	hniq ition	apic lues anc
Basic of Prototy Wire fra support	VI REVERSE ENGINEERING AND CAD MODELI concept- Digitization techniques – Model Reconstruction ping: CAD model preparation, Data Requirements – g ame, surface and solid modeling – data formats - Data t generation, Support structure design, Model Slicing and adaptive slicing, Tool path generation	ING In – Data geometric interfacin	Proo moo g, Pa	deling art or	tec ienta	hniq ition	apic lues anc
Basic of Prototy Wire fra support direct a UNIT Classifi	VI REVERSE ENGINEERING AND CAD MODELI concept- Digitization techniques – Model Reconstruction ping: CAD model preparation, Data Requirements – g ame, surface and solid modeling – data formats - Data t generation, Support structure design, Model Slicing and adaptive slicing, Tool path generation	ING on – Data geometric interfacin and cont direct and	Proc moc g, Pa our c	leling art or data	j tec ienta orga – Fa	hniq ition niza	apic jues and ition
Basic of Prototy Wire fra support direct a UNIT Classifi	VI REVERSE ENGINEERING AND CAD MODELI concept- Digitization techniques – Model Reconstruction ping: CAD model preparation, Data Requirements – g ame, surface and solid modeling – data formats - Data t t generation, Support structure design, Model Slicing and adaptive slicing, Tool path generation V RAPID TOOLING cation: Soft tooling, Production tooling, Bridge tooling; compared tooling	ING on – Data geometric interfacin and cont direct and	Proc moc g, Pa our c	deling art or data rect - indu	j tec ienta orga – Fa	hniq niza brica	apic jues and ition
Basic of Prototy Wire fra support direct a UNIT Classifi	VI REVERSE ENGINEERING AND CAD MODELI concept- Digitization techniques – Model Reconstruction ping: CAD model preparation, Data Requirements – g ame, surface and solid modeling – data formats - Data t t generation, Support structure design, Model Slicing and adaptive slicing, Tool path generation V RAPID TOOLING cation: Soft tooling, Production tooling, Bridge tooling; compared tooling	ING on – Data geometric interfacin and cont direct and	Proc moc g, Pa our c	deling art or data rect - indu	y tec ienta orga – Fa stries	hniq niza brica	apic jues and ation
Basic of Prototy Wire fra support direct a UNIT Classifi process	VI REVERSE ENGINEERING AND CAD MODELI concept- Digitization techniques – Model Reconstruction ping: CAD model preparation, Data Requirements – grame, surface and solid modeling – data formats - Data t generation, Support structure design, Model Slicing and adaptive slicing, Tool path generation V RAPID TOOLING cation: Soft tooling, Production tooling, Bridge tooling; cases, Applications. Case studies - automotive, aerospace adaptive	ING on – Data geometric interfacin and cont direct and	Proc moc g, Pa our c	deling art or data rect - indu	y tec ienta orga – Fa stries	hniq niza brica	apic jues and ation 8 atior
Basic of Prototy Wire fra support direct a UNIT Classifi process TEXT E	VI REVERSE ENGINEERING AND CAD MODELI concept- Digitization techniques – Model Reconstruction ping: CAD model preparation, Data Requirements – grame, surface and solid modeling – data formats - Data t generation, Support structure design, Model Slicing and adaptive slicing, Tool path generation V RAPID TOOLING cation: Soft tooling, Production tooling, Bridge tooling; cases, Applications. Case studies - automotive, aerospace adaptive	ING on – Data geometric interfacin and cont direct and and elect	Proc moc g, Pa our c	teling art or data rect indu	y tec ienta orga – Fa stries otal	hniq tion niza brica	anc anc tion 8 atior 45
Basic of Prototy Wire fra support direct a UNIT Classifi process TEXT E 1.Rapio Lim C.S 2. Rapi	VI REVERSE ENGINEERING AND CAD MODELI concept- Digitization techniques – Model Reconstruction ping: CAD model preparation, Data Requirements – grame, surface and solid modeling – data formats - Data t generation, Support structure design, Model Slicing and adaptive slicing, Tool path generation V RAPID TOOLING cation: Soft tooling, Production tooling, Bridge tooling; cases, Applications. Case studies - automotive, aerospace adaptive, aerosp	ING on – Data geometric interfacin and cont direct and and elect	Proo moc g, Pa our c d indi ronic	rect indu	orga – Fa stries otal	hniq tion niza brica s	anc anc anc tion 8 atior 45 anc
Basic of Prototy Wire fra support direct a UNIT Classifi process TEXT E 1.Rapic Lim C.S 2. Rapi F.Jacob	VI REVERSE ENGINEERING AND CAD MODELI concept- Digitization techniques – Model Reconstruction ping: CAD model preparation, Data Requirements – g ame, surface and solid modeling – data formats - Data t t generation, Support structure design, Model Slicing and adaptive slicing, Tool path generation V RAPID TOOLING cation: Soft tooling, Production tooling, Bridge tooling; c ses, Applications. Case studies - automotive, aerospace a BOOK: Applications, Principles and applications, second edition S., World Scientific Publishers, 2003 Model Splications, Peters	ING on – Data geometric interfacin and cont direct and and elect	Proo moc g, Pa our c d indi ronic	rect indu	orga – Fa stries otal	hniq tion niza brica s	anc anc anc tion 8 atior 45 anc
Basic of Prototy Wire fra support direct a UNIT Classifi process TEXT E 1.Rapic Lim C.S 2. Rapi F.Jacob	VI REVERSE ENGINEERING AND CAD MODELI concept- Digitization techniques – Model Reconstruction ping: CAD model preparation, Data Requirements – grame, surface and solid modeling – data formats - Data t generation, Support structure design, Model Slicing and adaptive slicing, Tool path generation V RAPID TOOLING reation: Soft tooling, Production tooling, Bridge tooling; coses, Applications. Case studies - automotive, aerospace and solid studies - automotive, aerospace and solid studies - automotive, aerospace and solid scientific Publishers, 2003 BOOK: d Tooling: Technologies and Industrial Applications, Pet ps, CRC press, 2000.	ING on – Data geometric interfacin and cont direct and and elect on, Chua ter D.Hilto	Prod moc g, Pa our c d indi ronic C.K.	rect indu	orga – Fa stries otal	hniq tion niza brica s	and tion 8 atior 45 and
Basic of Prototy Wire fra support direct a UNIT Classifi process TEXT E 1.Rapic Lim C.S 2. Rapi F.Jacot REFER 1 Rap 2 Rap	VI REVERSE ENGINEERING AND CAD MODELI concept- Digitization techniques – Model Reconstruction ping: CAD model preparation, Data Requirements – g ame, surface and solid modeling – data formats - Data t t generation, Support structure design, Model Slicing ind adaptive slicing, Tool path generation V RAPID TOOLING cation: Soft tooling, Production tooling, Bridge tooling; c ses, Applications. Case studies - automotive, aerospace a BOOK: Applications, Principles and applications, second edition Sock: Application; Technologies and Industrial Applications, Pet ps, CRC press, 2000. RENCES: State	ING In – Data geometric interfacin and cont direct and and elect on, Chua ter D.Hilto blications	Proc moc g, Pa our c d indi ronic C.K., on, H	teling art or data rect - indu T , Leo ilton/	orga – Fa stries otal	hniq tion niza bricas	and ation 8 ation 45 Pau

3 Rapid Prototyping: Theory and practice, Ali K. Kamrani, Emad Abouel Nasr, Springer, 2006

	SIX SIGMA AND LEAN MANUFACTURING 3 0 0	100	3
UNIT I	LEAN MANUFACTURING AND SIX SIGMA – OVERVIEW		2
Business	of Lean; Traditional versus Lean Manufacturing; Business of Survival and Model Transformation; Ford Production System; Job Shop Concepts Cor ota's foray in Lean;		
UNIT II	DESIGN - VALUE STREAM MANAGEMENT	1	12
Process B Map;Value Demand	VSM Types;Product Family Selection; Value Stream Manager;Current Sta ox; Value Stream Icons; 3 Ms - Muda, Mura, Muri - 7 Types of Muda; Futu e Stream Plan; Process Stability - Loss Reduction 7 Major Losses Reduction. Stage :Market Dynamics; Customer Demand;PQ Analysis; PR Analysis; TAK shed Goods Stock; Cycle Stock; Buffer Stock; Safety Stock.	re Sta	ate
UNIT III	SYSTEM IMPLEMENTATION	1	12
Analysis; S Industrial ; and Prac Single Min Line ; Con Time Base through Au	nge : Continuous Flow; Cell Layout; Line Balancing; Macro and Micro Standardised Work; Concept of Kaizen; Steps involved in Kaizen Depl Engineering - Concepts and Fundamentals; Kanban Concepts ; Types of k tical Application ; Concept of Pull; Changeover Time Reduction - External & nute Exchange of Die; Quick Die Change; Quality-Vendor, In Process and C incept of PPM; Pokayoke; Prevention & Detection Types; Maintenance - Pre- ed and Condition Based; Human Development for Lean (Training and Invo utonomous Maintenance) Leveling Stage of Lean Implementation : Pro- Leveling Box; Concept of Water Spider	Kanba Interr ustom eventiv	ns nal ner /e, ent
UNIT VI	LEAN METRICS AND LEAN SUSTENANCE		7
Identify Le	 ean Metrics; Steps involved in Goal Setting; Corporate Goals; Kaizer		
Targets an	on in VSM ; Lean Assessment. Cultural Change; Reviews; Recognition; In ad Benchmarks;		ud
	on in VSM; Lean Assessment. Cultural Change; Reviews; Recognition; In	nprovi	ud ng
UNIT V Project cha KANO Mo sampling p cause &	on in VSM ; Lean Assessment. Cultural Change; Reviews; Recognition; In ad Benchmarks; SIX SIGMA AND DMAIC TOOLS arter, stakeholder analysis, SIPOC, Voice of the customer, Rolled throughp dels, CTQ Tree, Process Mapping Data collection, measurement system a blans, process capability, cost of poor quality (COPQ), FMEA Regression A effect diagram, Hypothesis testing, Design of experiments, Response gy, Poka-yoke, Quality Control, Control charts.	nprovi	ld, is, is, ce
UNIT V Project cha KANO Mo sampling p cause &	on in VSM ; Lean Assessment. Cultural Change; Reviews; Recognition; In ad Benchmarks; SIX SIGMA AND DMAIC TOOLS arter, stakeholder analysis, SIPOC, Voice of the customer, Rolled throughp dels, CTQ Tree, Process Mapping Data collection, measurement system a blans, process capability, cost of poor quality (COPQ), FMEA Regression A effect diagram, Hypothesis testing, Design of experiments, Response	nprovi	ld, is, is,
UNIT V Project cha KANO Mo sampling p cause & methodolo REFEREN	on in VSM ; Lean Assessment. Cultural Change; Reviews; Recognition; In ad Benchmarks; SIX SIGMA AND DMAIC TOOLS arter, stakeholder analysis, SIPOC, Voice of the customer, Rolled throughp dels, CTQ Tree, Process Mapping Data collection, measurement system a blans, process capability, cost of poor quality (COPQ), FMEA Regression A effect diagram, Hypothesis testing, Design of experiments, Response gy, Poka-yoke, Quality Control, Control charts. Total	nprovi	ld, is, is, ce
UNIT V Project cha KANO Mo sampling p cause & methodolo REFEREN 1 Keki R	on in VSM ; Lean Assessment. Cultural Change; Reviews; Recognition; In ad Benchmarks; SIX SIGMA AND DMAIC TOOLS arter, stakeholder analysis, SIPOC, Voice of the customer, Rolled throughp dels, CTQ Tree, Process Mapping Data collection, measurement system a blans, process capability, cost of poor quality (COPQ), FMEA Regression A effect diagram, Hypothesis testing, Design of experiments, Response gy, Poka-yoke, Quality Control, Control charts. Total ICES: . Bhote, "The ultimate six sigma", Prentice hall India	nprovi	ld, is, is, ce
UNIT V Project cha KANO Mo sampling p cause & methodolo REFEREN 1 Keki R 2 Rath &	on in VSM ; Lean Assessment. Cultural Change; Reviews; Recognition; In ad Benchmarks; SIX SIGMA AND DMAIC TOOLS arter, stakeholder analysis, SIPOC, Voice of the customer, Rolled throughp dels, CTQ Tree, Process Mapping Data collection, measurement system a blans, process capability, cost of poor quality (COPQ), FMEA Regression A effect diagram, Hypothesis testing, Design of experiments, Response gy, Poka-yoke, Quality Control, Control charts. Total ICES: . Bhote, "The ultimate six sigma", Prentice hall India . Strong's Six sigma pocket guide.	nprovi 1 ut yie analys Analys Surfa	ud ng I2 Id, iis, ce 45
UNIT V Project cha KANO Mo sampling p cause & methodolo REFEREN 1 Keki R 2 Rath & 3 Don Ta Press,	SIX SIGMA AND DMAIC TOOLS arter, stakeholder analysis, SIPOC, Voice of the customer, Rolled throughp dels, CTQ Tree, Process Mapping Data collection, measurement system a olans, process capability, cost of poor quality (COPQ), FMEA Regression A effect diagram, Hypothesis testing, Design of experiments, Response gy, Poka-yoke, Quality Control, Control charts. ICES: . Bhote, "The ultimate six sigma", Prentice hall India Strong's Six sigma pocket guide. apping, Tom Luyster and Tom Shuker,"Value Stream Management" Pro 2002.	1 ut yie analys Analys Surfa	ud ng I2 Id, iis, ce 45
UNIT V Project cha KANO Mo sampling p cause & methodolo REFEREN 1 Keki R 2 Rath & 3 Don Ta Press, 4 Tom Lu Seeing 5 Mike F	SIX SIGMA AND DMAIC TOOLS arter, stakeholder analysis, SIPOC, Voice of the customer, Rolled throughp dels, CTQ Tree, Process Mapping Data collection, measurement system a olans, process capability, cost of poor quality (COPQ), FMEA Regression A effect diagram, Hypothesis testing, Design of experiments, Response gy, Poka-yoke, Quality Control, Control charts. Total ICES: Bhote, "The ultimate six sigma", Prentice hall India Strong's Six sigma pocket guide. apping, Tom Luyster and Tom Shuker,"Value Stream Management" Pro 2002. uyster and Don Tapping, "Creating Your Lean Future State: How to Move from to Doing", Productivity Press, 2006.	nprovi 1 ut yie analys Analys Surfa ductiv	I 2 Id, iis, iis, ce 45

	PROJECT MANAGEMENT3001	00 3
UNIT I	STRATEGIC MANAGEMENT AND PROJECT SELECTION	9
	election models, Project portfolio process, Analysis under uncertainty, P on, Matrix organization	roject
UNIT II	PROJECT PLANNING	9
	akdown structure, Systems integration, Interface coordination, Project life d negotiation	cycle,
UNIT III	PROJECT IMPLEMENTATION	9
	Project Budgets, Process of cost estimation, Scheduling: Network Techniques Risk analysis using simulation, CPM - crashing a project, Resource loading, lev tion	
UNIT IV	MONITORING AND INFORMATION SYSTEMS	9 alvsis.
Informatio Planning -	MONITORING AND INFORMATION SYSTEMS n needs and the reporting process, computerized PMIS, Earned value and Monitoring - Controlling cycle, Project control: types of control processes, des items, control of change and scope	alysis,
Informatio Planning -	n needs and the reporting process, computerized PMIS, Earned value and Monitoring - Controlling cycle, Project control: types of control processes, des	alysis,
Informatio Planning - control sys UNIT V Constructi	n needs and the reporting process, computerized PMIS, Earned value and Monitoring - Controlling cycle, Project control: types of control processes, des tems, control of change and scope	alysis, ign of 9 tion,
Informatio Planning - control sys UNIT V Constructi	n needs and the reporting process, computerized PMIS, Earned value and Monitoring - Controlling cycle, Project control: types of control processes, des stems, control of change and scope PROJECT AUDITING on and use of audit report, Project audit life cycle, Essentials of audit and evalua	alysis, ign of 9 tion,
Informatio Planning - control sys UNIT V Constructi Varieties c	n needs and the reporting process, computerized PMIS, Earned value and Monitoring - Controlling cycle, Project control: types of control processes, des terms, control of change and scope PROJECT AUDITING on and use of audit report, Project audit life cycle, Essentials of audit and evalua f project termination, the termination process, The Final Report – A project histo TOTAL	alysis, ign of 9 tion, ry
Informatio Planning - control sys UNIT V Constructi Varieties c	n needs and the reporting process, computerized PMIS, Earned value and Monitoring - Controlling cycle, Project control: types of control processes, des items, control of change and scope PROJECT AUDITING on and use of audit report, Project audit life cycle, Essentials of audit and evalua f project termination, the termination process, The Final Report – A project histo TOTAL	9 tion, ry 45
Informatio Planning - control sys UNIT V Constructi Varieties c	n needs and the reporting process, computerized PMIS, Earned value and Monitoring - Controlling cycle, Project control: types of control processes, des terms, control of change and scope PROJECT AUDITING on and use of audit report, Project audit life cycle, Essentials of audit and evalua f project termination, the termination process, The Final Report – A project histo TOTAL	9 tion, ry 45
Informatio Planning - control sys UNIT V Constructi Varieties c TEXT BOO 1. Pannee	An needs and the reporting process, computerized PMIS, Earned value and Monitoring - Controlling cycle, Project control: types of control processes, des atems, control of change and scope PROJECT AUDITING on and use of audit report, Project audit life cycle, Essentials of audit and evalua f project termination, the termination process, The Final Report – A project histo TOTAL OKS rselvam R. and Senthilkumar P., "Project Management" PHI Learning Private Lir	9 tion, ry 45
Informatio Planning - control sys UNIT V Constructi Varieties c 1. Pannee 2009. REFEREN 1 Jack	An needs and the reporting process, computerized PMIS, Earned value and Monitoring - Controlling cycle, Project control: types of control processes, des atems, control of change and scope PROJECT AUDITING on and use of audit report, Project audit life cycle, Essentials of audit and evalua f project termination, the termination process, The Final Report – A project histo TOTAL OKS rselvam R. and Senthilkumar P., "Project Management" PHI Learning Private Lir	9 tion, ry 45 nited,
Informatio Planning - control sys UNIT V Constructi Varieties of 1. Pannee 2009. REFEREN 1 Jack Approa 2 Harold	PROJECT AUDITING On and use of audit report, Project audit life cycle, Essentials of audit and evalua f project termination, the termination process, The Final Report – A project histo TOTAL OKS rselvam R. and Senthilkumar P., "Project Management" PHI Learning Private Lir ICES: R. Meredith, and Samuel J. Mantel Jr., "Project Management – A Mana	9 tion, ry 45 nited, gerial

	LOGISTICS AND SUPPLY CHAIN MANAGEMENT	3	0	0	10	0 3
UNIT I	LOGISTICS AND CUSTOMER SERVICE DIMENSION					9
Setting cu	f logistics management, logistics environment, Customer s istomer service priorities and service standards. Measuring customer profitability analysis		ce a gistic			
UNIT II	STRATEGIC FRAMEWORK AND SUPPLY CHAIN NETW	ORK	S			9
metrics. D Models for	decision phases, process views, examples, strategic fit, su Distribution networks, Facility networks and design options facility location and capacity allocation, Transportation networ network design decisions	s, Fa	ctors	infl	uenc	, ing
UNIT III	MANAGING DEMAND AND SUPPLY IN A SUPPLY CHAIN	1				9
Cycle and	e variability in a supply chain, Economies of scale and uncerta I safety Inventory, Optimum level of product availability, F /cle inventory					
UNIT IV	SOURCING AND PRICING IN A SUPPLY CHAIN					9
	nctional drivers, Role of sourcing in a supply chain, Logistics p Supplier selection, Design collaboration, Role of Pricing and Re					nent
Cross-Fun process, S	nctional drivers, Role of sourcing in a supply chain, Logistics p Supplier selection, Design collaboration, Role of Pricing and Re	evenu				nent
Cross-Fun process, S a supply cl UNIT V The role of Manageme supply cha	Interview of the sourcing in a supply chain, Logistics provide the selection, Design collaboration, Role of Pricing and Research the selection of the selection	A Custo y cha	omer	Rela 	ation	nent nt in 9 ship
Cross-Fun process, S a supply cl UNIT V The role of Manageme supply cha	INFORMATION TECHNOLOGY AND COORDINATION IN A Supplier selection, Design collaboration, Role of Pricing and Re hain INFORMATION TECHNOLOGY AND COORDINATION IN A SUPPLY CHAIN of IT in supply chain, The supply chain IT frame work, C ent, Supplier relationship management, Future of IT in supply ain, Bullwhip effect – Effect of lack of co-ordination in supply chain	A Custo y cha	omer	Rela -Bus ding	ation	nent nt in 9 ship
Cross-Fun process, S a supply cl UNIT V The role of Manageme supply cha	INFORMATION TECHNOLOGY AND COORDINATION IN A Supplier selection, Design collaboration, Role of Pricing and Re hain INFORMATION TECHNOLOGY AND COORDINATION IN A SUPPLY CHAIN of IT in supply chain, The supply chain IT frame work, C ent, Supplier relationship management, Future of IT in supply ain, Bullwhip effect – Effect of lack of co-ordination in supply chain	A Custo y cha	omer ain, E Build	Rela -Bus ding	ation	nent nt ir 9 ship ss ir egic
Cross-Fun process, S a supply cl UNIT V The role o Manageme supply cha partnership	INFORMATION TECHNOLOGY AND COORDINATION IN A Supplier selection, Design collaboration, Role of Pricing and Re hain INFORMATION TECHNOLOGY AND COORDINATION IN A SUPPLY CHAIN of IT in supply chain, The supply chain IT frame work, C ent, Supplier relationship management, Future of IT in supply ain, Bullwhip effect – Effect of lack of co-ordination in supply ch ps, CPFR	A Custo y cha	omer ain, E Build	Rela -Bus ding	ation	nen nt ir 9 ship ss ir egio
Cross-Fun process, S a supply cl UNIT V The role of Manageme supply cha partnership TEXT BOO 1. Sunil Ch operatio	Instantion of the source of	A Custo y cha hain,	omer ain, E Build TOI	Rela E-Bus ding	ation sines strat	nent nt ir 9 ship ss ir egic
Cross-Fun process, S a supply cl UNIT V The role of Manageme supply cha partnership TEXT BOO 1. Sunil Ch operatio	INFORMATION TECHNOLOGY AND COORDINATION IN A Supplier selection, Design collaboration, Role of Pricing and Rehain INFORMATION TECHNOLOGY AND COORDINATION IN A SUPPLY CHAIN of IT in supply chain, The supply chain IT frame work, Cent, Supplier relationship management, Future of IT in supply ain, Bullwhip effect – Effect of lack of co-ordination in supply ch ps, CPFR	A Custo y cha hain,	omer ain, E Build TOT	Rela E-Bus ding	ation sines strat	nent nt in 9 ship ss in egic
Cross-Fun process, S a supply cl UNIT V The role of Manageme supply cha partnership TEXT BOO 1. Sunil Ch operatio	Interventional drivers, Role of sourcing in a supply chain, Logistics properties and the supplier selection, Design collaboration, Role of Pricing and Remain INFORMATION TECHNOLOGY AND COORDINATION IN A SUPPLY CHAIN of IT in supply chain, The supply chain IT frame work, Cent, Supplier relationship management, Future of IT in supply chain, Bullwhip effect – Effect of lack of co-ordination in supply chain, Bullwhip effect – Effect of lack of co-ordination in supply chain, Bullwhip effect – Effect of lack of co-ordination in supply chain, Supply Chain, The supply Chain Management, Strategy on", PHI, Third edition,2007. Christopher, "Logistics and supply chain management", Pearson	A Custo y cha hain,	omer ain, E Build TOT	Rela E-Bus ding	ation sines strat	nent nt ir 9 ship ss ir egic
Cross-Fun process, S a supply cl UNIT V The role of Manageme supply cha partnership TEXT BOO 1. Sunil Ch operatio 2. Martin C	Interventional drivers, Role of sourcing in a supply chain, Logistics properties and the supplier selection, Design collaboration, Role of Pricing and Remain INFORMATION TECHNOLOGY AND COORDINATION IN A SUPPLY CHAIN of IT in supply chain, The supply chain IT frame work, Cent, Supplier relationship management, Future of IT in supply chain, Bullwhip effect – Effect of lack of co-ordination in supply chain, Bullwhip effect – Effect of lack of co-ordination in supply chain, Bullwhip effect – Effect of lack of co-ordination in supply chain, Supply Chain, The supply Chain Management, Strategy on", PHI, Third edition,2007. Christopher, "Logistics and supply chain management", Pearson	A Custo y cha hain,	omer ain, E Build TOT	Rela E-Bus ding	ation sines strat	nent nt ir 9 ship ss ir egic
Cross-Fun process, S a supply cl UNIT V The role of Manageme supply cha partnership TEXT BOO 1. Sunil Ch operatio 2. Martin C REFEREN 1 Jeremy	Intervention Intervention Intervention Design collaboration, Role of Pricing and Reservention Intervention Intervention Intervention	A Custo y cha hain, y Plai n Edu	omer ain, E Build TOT	Rela -Bus -Bus -Bus -Rela 	ation sines strat	nent nt ir 9 ship ss ir egic