MATHEMATICS				
1.	Three non-zero complex numbers z_1 , z_2 , z_3 $ z_1 ^2 + z_2 ^2 + z_3 ^2 = z_1z_2 + z_2z_3 + z_3z_1 $ lie (A) (0, 0)	on a circle with centre (B) (1, 1)		
	(C) (i, i)	(D) none of these		
2.	Number of values of $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, which satisfy the satisfies the set of the satisfiest of the satisfies	itisfies the equation		
	$\sin\left(\frac{\pi}{2\sqrt{2}}\cos\theta\right) = \cos\left(\frac{\pi}{2\sqrt{2}}\sin\theta\right) \text{ is equal to}$			
	(A) 0 (C) 2	(B) 1 (D) 4		
3.	Im(z) is equal to			
	(A) $\frac{1}{2}(z+\bar{z})i$	(B) $\frac{1}{2}(z-\bar{z})$		
	(C) $\frac{1}{2}(\bar{z}-z)i$	(D) none of these		
4.	The value of $(i^8 + i)^3 + (i^8 - i)^6$ is	(B) -2 + 10i = 0		
	(A) 1 + i (C) 1 + 3i	(B) -2 + 10i (D) 1 – i		
5.	If $abc = 8$ and a , b , $c > 0$, then the minimum value of $(2 + a) (2 + b) (2 + c)$ is			
	(A) 32 (C) 8	(B) 64 (D) 10		
6.	The sum of 19 terms of an A.P., whose n th t			
	(A) 390 (C) 499	(B) 399 (D) none of these		
7.	If the first term of a G.P. is 1 and the sum of common ratio if G.P. is	f the third and fifth terms is 90. Then the		
	(A) ± 1 (C) ± 3	(B) ± 2 (D) ± 4		
0		want		
8.	The total number of real roots of the equation (A) 4	on $2x^4 + 5x^2 + 3 = 0$ is (B) 0 (D) 3		
	(C) 2			
9.	Let α , β , γ , δ are the roots of equation $x^4 + x^2 + 1 = 0$ then the equation chose roots are α^2 β^2 , γ^2 , δ^2 is			
	(A) $(x^2 - x + 1)^2 = 0$ (C) $x^4 - x^2 + 1 = 0$	(B) $(x^2 + x + 1)^2 = 0$ (D) $x^2 + x + 1 = 0$		
10.	The number of real roots of the equation 3 ²	$x^{2}-7x+7} = 9$ is		
	(A) 0 (C) 1	(B) 2 (D) 4		
	· /	· ·		

11.	If α , β are the roots of equation ax ² + bx + I	b = 0, then the value of $\sqrt{\frac{\alpha}{\alpha}} + \sqrt{\frac{\beta}{\beta}} + \sqrt{\frac{b}{\beta}}$ is	
	(A) 0	(B) 1	
	(C) 2	(D) $2\sqrt{\frac{b}{a}}$	
12.	$^{n-1}C_3 + {n-1 \choose 4} > {}^nC_3$, then value of 'n' can be (A) 4 (C) 7	(B) 6 (D) 8	
13.	The number of ways of arranging the letter AAAAA BBB CCC D EE F in a row when no two C's are together is		
	(A) $\frac{15!}{5!(3!)2!} - 3!$	(B) $\frac{12!}{5!3!2!} \times \frac{{}^{13}P_4}{4!}$	
	(C) $\frac{12!}{5!3!2!} \times^{13} P_3$	(D) none of these	
14.	The number of committees of 3 members $(A) {}^{6}C_{5}$ (C) 252	can be formed from 6 gentlemen and 4 ladies (B) $^{10}P_5$ (D) 120	
15.	The number of all possible selections of one or more questions from 8 given questions, each question having an alternative is		
	(A) $2^8 - 1$ (C) $4^8 - 1$	(B) 3 ⁸ – 1 (D) none of these	
16.	The coefficient of x^4 in the expansion of (1+ (A) ⁿ C ₄ (C) ⁿ C ₄ + ⁿ C ₁ + ⁿ C ₄ ⁿ C ₂	x+x ² +x ³) ⁿ is (B) ${}^{n}C_{4}$ + ${}^{n}C_{2}$ (D) ${}^{n}C_{4}$ + ${}^{n}C_{2}$ + ${}^{n}C_{1}$ ${}^{n}C_{2}$	
17.	Value of $\sum_{r=0}^{n} (2r+1)^{n}C_{r}$ is equal to		
	(A) n.2 ⁿ (C) (2n + 1)2 ⁿ	(B) (n + 1)2 ⁿ (D) none of these.	
18.	The value of $\frac{1}{81^n} - \frac{10}{81^n} {}^{2n}C_1 + \frac{10^2}{81^n} {}^{2n}C_2 - \frac{10}{81^n}$ (A) 2 (C) 1/2	$\frac{10^{3}}{81^{n}} \stackrel{2n}{\sim} C_{3} + \dots + \frac{10^{2n}}{81^{n}} $ is (B) 0 (D) 1	
19.	The square roots of $1 + 2x + 3x^2 + 4x^3 + .$ (A) $1 - x + x^2 - x^3 + \infty$	∞ is (B) 1 + x ² + x ⁴ +	

	$(C)\begin{bmatrix} -5 & -4\\ -4 & 5 \end{bmatrix}$	(D) None of these
28.	If A, B and C be the three square matrices (A) det B + det C (C) det C	such that A = B + C, then det A is equal to (B) det B (D) none of these
29.	If $\frac{2\sin\alpha}{1+\cos\alpha+\sin\alpha} = x$, then $\frac{1-\cos\alpha+\sin\alpha}{1+\sin\alpha}$ (A) $\frac{1}{x}$	— = (B) x
30.	(A) $\tan \theta$ (C) $\cos \theta$	 (D) 1 + x ation a (b - c)x² + b(c - a)x + c(a - b) = 0 is (B) sec θ (D) sin θ
31.	If A, B, C are acute positive angles then $(A) < 8$ (C) 2	$\frac{\sin A + \sin B \sin B + \sin C \sin C + \sin A}{\sin A \sin B \sin C}$ (B) ≥ 8 (D) none of these
32.	The value of $\cos \frac{\pi}{n} + \cos \frac{2\pi}{n} + \cos \frac{3\pi}{n} + \dots + \cos$ (A) 0	$\frac{\oint -1\pi}{n}$ (B) $\frac{\pi}{n}$
	(C) n	(D) none of these
33.		pondition sinx + sin 5x = sin 3x in the interval [0, π]
	is (A) 6 (C) 10	(B) 2 (D) 0
34.	If $2\cos x + 2\cos 3x = \cos y$, $2\sin x + 2\sin x$ (A) $-\frac{7}{8}$ (C) $-\frac{1}{8}$	3x = sin y, then the value of cos 2x is (B) $\frac{1}{8}$ (D) $\frac{7}{8}$
35.	If $\alpha = \sin^2 \theta + \cos^4 \theta$, then for all real values (A) $3/4 \le \alpha \le 4/3$ (C) $3/4 \le \alpha \le 1$	of θ (B) 4/3 $\leq \alpha \leq 2$ (D) 1 $\leq \alpha \leq 2$
36.	If $\cos \alpha + \cos \beta = a$, $\sin \alpha + \sin \beta = b$, then (A) $\frac{2ab}{a^2 + b^2}$	cos (α + β) is equal to (B) $\frac{a^2 + b^2}{a^2 - b^2}$

45.	The points P(a, b + c), Q(b, c + a) and R(c, (A) a, b, c are in A.P. (C) a, b, c are in H.P.	a + b) are such that PQ = QR if (B) a, b, c are in G.P. (D) None of these
46.	The points A(2, 3); B(3, 5), C(7, 7) and D (4 (A) ABCD is a parallelogram (C) D lies inside the triangle ABC	4, 5) are such that (B) A, B, C, D are collinear (D) D lies on the boundary of the triangle ABC
47.	Q, R and S are the point on the line joining PQ = QR = RS = ST, then $\left[\frac{5a+3b}{8}, \frac{5x+3}{8}\right]$ (A) PQ (C) RS	
48		rams are the points (3, -4) and (-6, 5). If third fourth vertex are (B) (-1, 0) (D) none of these
49.	If one end of diameter of the circle $2x^2 + 2y$ (A) (2, 3) (C) (2, -1)	² –4x– 8y +2 = 0 is (3,2), the other end is (B) (4, -2) (D) (-1, 2)
50.	Locus of the centre of the circle which a and $(a, 0)$ is (A) x = 1 (C) x + y = 2a	always passes through the fixed points (-a, 0) (B) $x + y = 6$ (D) $x = 0$
51.	The equation $x^2 + y^2 + 4x + 6y + 13 = 0$ rep (A) a circle (C) a pair of coincident straight lines	oresents (B) a pair of two distinct straight lines (D) a point
52.	The line joining (5, 0) to (10 $\cos\theta$, 12 $\sin\theta$) varies, then the locus of P is (A) a pair of straight line (C) a straight line	is divided internally in the ratio 2 : 3 at P. If θ (B) a circle (D) none of these
53.	The curve described parametrically by x = t (A) a pair of straight line (C) a parabola	t ² + t + 1, y = t ² – t + 1 represents (B) an ellipse (D) a hyperbola
54.	If $2x + y + \lambda = 0$, is a normal to the parabola (A) 12 (C) 24	a $y^2 = -8x$, then $\lambda =$ (B) -12 (D) -24
55.	The angle between the tangents drawn from $(A) 90^{\circ}$	m the origin to the parabola $y^2 = 4a(x - a)$ is (B) 30^0
	(C) $\tan^{-1} \left \frac{1}{2} \right $	(D) 45 [°]
50	The line of a star sector to the	h = 1 = . 2 A =

56. The line y = mx + 1 is a tangent to the parabola $y^2 = 4x$ if

77. If cos (x − y), cos x and cos (x + y) are in H.P., then
$$\left| \cos x \sec \frac{y}{2} \right|$$
 equals
(a) 1 (b) 2 (c) $\sqrt{2}$ (d) none of these
78. If $\cos \alpha = \frac{1}{2} \left(x + \frac{1}{x} \right) \cos \beta = \frac{1}{2} \left(y + \frac{1}{y} \right)$, then $\cos (\alpha - \beta)$ is equal to
(a) $\frac{x}{y} + \frac{y}{x}$ (b) $xy + \frac{1}{xy}$ (c) $\frac{1}{2} \left(\frac{x}{x} + \frac{y}{x} \right)$ (d) none of these
79. The number of solutions of $\sin^2 \theta + 3\cos \theta = 3$ in $[-\pi, \pi]$ is
(a) 4 (b) 2 (c) 0 (d) none of these
80. The principal value of $\cos^{-1} \left\{ \frac{1}{\sqrt{2}} \left(\cos \frac{9\pi}{10} - \sin \frac{9\pi}{10} \right) \right\}$ is
(a) $\frac{3\pi}{20}$ (b) $\frac{7\pi}{20}$ (c) $\frac{7\pi}{10}$ (d) none of these
81. The solution set of $\log_2 |4 - 5x| > 2$ is
(a) $\left(\frac{8}{5}, \infty \right)$ (d) none of these
82. In a ΔABC, (c + a + b) (a + b - c) = ab, then the measure of ∠C is
(a) $\frac{\pi}{3}$ (b) $\frac{\pi}{6}$ (c) $\frac{2\pi}{3}$ (d) none of these
83. A vertical lampost, 6 m high, stands at a distance of 2 m from a wall, 4 m high. A 1.5 m tall man starts to walk away from the wall on the other side of the wall, in line with the lampost. The maximum distance to which the man can walk remaining in the shadow is
(a) $\frac{5}{2}$ m (b) $\frac{3}{2}$ m (c) 4 m (d) none of these
84. The equation of the straight line which bisects the intercepts made by the axes on the lines $x + y = 2$ and $2x + 3y = 6$ is
(a) $2x = 3$ (b) $y = 1$ (c) $2y = 3$ (d) $x = 1$
85. If the lines $y - x = 5$, $3x + 4y = 1$ and $y = mx + 3$ are concurrent, then the value of m is
(a) $\frac{19}{5}$ (b) 1 (c) $\frac{5}{19}$ (d) none of these

- 86. A point on the line y = x whose perpendicular distance from the line $\frac{x}{4} + \frac{y}{3} = 1$ is 4, has the co-ordinates
 - (a) $\left(\frac{8}{7}, \frac{8}{7}\right)$ (b) $\left(\frac{32}{7}, \frac{32}{7}\right)$ (c) $\left(\frac{3}{2}, \frac{3}{2}\right)$ (d) none of these If $2(x^2 + y^2) + 4\lambda x + \lambda^2 = 0$ represents a circle of meaningful radius then the range of real

87. If $2(x^2 + y^2) + 4\lambda x + \lambda^2 = 0$ represents a circle of meaningful radius then the range of real values of λ is (a) R (b) $(0, \infty)$ (c) $(-\infty, 0)$ (d) none of these

88. If the line $\lambda x + \mu y = 1$ is a normal to the circle $2x^2 + 2y^2 - 5x + 6y - 1 = 0$, then (a) $5\lambda - 6\mu = 2$ (b) $4 + 5\mu = 6\lambda$ (c) $4 + 6\mu = 5\lambda$ (d) none of these

89. If (2, -8) is an end of a focal chord of the parabola $y^2 = 32x$, then the coordinates of other end of the chord is (a) (32, 32) (b) (32, -32) (c) (-2, 8) (d) none of these

90. The triangle formed by the tangents to a parabola $y^2 = 4ax$ at the ends of the latus rectum and the double ordinate through the focus is

- (a) equilateral
- (b) isosceles
- (c) right-angled isosceles
- (d) dependent on the value of a for its classification

91. If two foci of an ellipse be (-2, 0) and (2, 0) and its eccentricity is $\frac{2}{3}$, then the ellipse has the equation

(b) $9x^2 + 5y^2 = 45$

(d) $9x^2 + 5y^2 = 90$

- (a) $5x^2 + 9y^2 = 4$
- (c) $5x^2 + 9y^2 = 90$

92. The foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide, then the value of b^2 is

(a) 5 (b) 7 (c) 9 (d) 1

93. The domain of the function $f(x) = \sin^{-1}(x+[x])$, where [.] denotes the greatest integer function, is (a) [0, 1) (b) [-1, 1] (c) (-1, 0) (d) none of these

94. Let $f(x) = x + n - [x+n] + \tan \frac{\pi x}{2}$, where [x] is the greatest integer $\leq x$ and $n \in N$, then $f \notin \hat{f}$ is (a) a periodic function with period 1 (b) a periodic function with period 4 (c) not a periodic function

(d) a periodic function with period 2

