I B.Tech(ccc) Regular Examinations, December 2007 MATHEMATICS-I
(Common to Civil Engineering, Electrical \& Electronic Engineering, Mechanical Engineering, Electronics \& Communication Engineering and Computer Science \& Engineering)
Time: 3 hours
Max Marks:100

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Test the following series for convergence or divergence.

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left[\sqrt{n^{2}+n+1}-\sqrt{n^{2}-n+1}\right] \tag{6}
\end{equation*}
$$

(b) Test whether the following series is absolutely convergent.

$$
\sum_{n=1}^{\infty} \frac{\operatorname{Cos} n \pi}{n^{2}+1}
$$

(c) State Rolle's theorem and verify Rolle's theorem for the following function $\frac{\operatorname{Sinx}}{e^{x}}$ in $(0, \pi)$
2. (a) If $\mathrm{U}=\operatorname{Sin}^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}(\mathrm{y} / \mathrm{x})$ show that $x \frac{\partial \mu}{\partial x}+y \frac{\partial \mu}{\partial y}=0$
(b) Find the radius of curvature at any point on the curve $\mathrm{y}=\mathrm{c} \cosh \frac{x}{C}$
3. (a) Trace the Cissoid of Diocles: $y^{2}(2 a-x)=x^{3}$.
(b) Find the entire perimeter of the cardiod $\mathrm{r}=\mathrm{a}(1+\cos \theta)$. $\quad[10+10]$
4. (a) Solve the differential equation: $\mathrm{x} \frac{d y}{d x}+\mathrm{y}=\mathrm{x}^{3} \mathrm{y}^{6}$.
(b) Solve the differential equation: $\left(D^{2}+4\right) y=\sin t+1 / 3 \sin 3 \mathrm{t}+1 / 5 \sin 5 \mathrm{t}$, $\mathrm{y}(0)=1, \mathrm{y}^{\prime}(0)=3 / 35$.
5. (a) Find the Laplace Transformations of the following functions: $\mathrm{t}^{-t} \sin 2 \mathrm{t}$. [6]
(b) Evaluate $\iint \frac{r d r d \theta}{\sqrt{a^{2}+r^{2}}}$ over one loop of the lemniscate $\mathrm{r}^{2}=\mathrm{a}^{2} \operatorname{Cos} 2 \theta$. [8]
(c) Evaluate $\int_{0}^{5} \int_{0}^{x^{2}} x\left(x^{2}+y^{2}\right) d x d y$
6. (a) Prove that $\operatorname{div}(\mathbf{A x B})=\mathbf{B} \cdot \operatorname{curl} \mathbf{A}-\mathbf{A} \cdot \operatorname{curl} \mathbf{B}$.
(b) Find the directional derivative of $\phi(x, y, z)=4 x y^{2}+2 x^{2} y z$ at the point $A(1$, $2,3)$ in the direction of the line AB where $\mathrm{B}=(5,0,4)$.
[10+10]
7. (a) Find the rank of the matrix by reducing it to the normal form.
[10]

$$
\left[\begin{array}{cccc}
0 & 1 & -3 & -1 \\
1 & 0 & 1 & 1 \\
3 & 1 & 0 & 2 \\
1 & 1 & -2 & 0
\end{array}\right]
$$

(b) Find whether the following set of equations are consistent if so, solve them.
[10]

$$
3 x+7 y+5 z=4 ; \quad 26 x+2 y+3 z=9 ; \quad 2 x+10 y+7 z=5
$$

8. Diagonalize the matrix $A=\left[\begin{array}{ccc}8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1\end{array}\right]$
