MATHEMATICS

1. The real value of α for which the expression $\frac{1-i \sin \alpha}{1+2 i \sin \alpha}$ is purely real is
(A) $(\mathrm{n}+1) \frac{\pi}{2}$
(B) $(2 n+1) \frac{\pi}{2}$
(C) $n \pi$
(D) none of these
2. If $e^{i \theta}=\cos \theta+i \sin \theta$, then for the triangle $A B C, e^{i A} \cdot e^{i B} \cdot e^{i C}$ is
(A) -i
(B) -1
(C) 1
(D) none of these

3 The value of $\sum_{r=1}^{16}\left(\sin \frac{2 r \pi}{17}+i \cos \frac{2 r \pi}{17}\right)$ is
(A) 1
(B) i
(C) -i
(D) -1
4. If $z=\frac{(\cos \theta+i \sin \theta)^{n}(\sin \theta+i \cos \theta)^{m}}{(\sin \theta-i \cos \theta)^{k}}$, then $|z|$ is
(A) 0
(B) 1
(C) 2
(D) none of these
5. If $x=\cos 2 \alpha+i \sin 2 \alpha, y=\cos 2 \beta+i \sin 2 \beta, z=\cos 2 \gamma+i \sin 2 \gamma$, then $\sqrt{x y z}+\frac{1}{\sqrt{x y z}}$ is
(A) $2 \cos (\alpha+\beta+\gamma)$
(B) $2 \mathrm{i} \sin (\alpha+\beta+\gamma)$
(C) $e^{i(\alpha+\beta+\gamma)}$
(D) None of these
6. A square matrix A is invertible iff $\operatorname{det} A$ is equal to
(A) 0
(B) 1
(C) non zero
(D) -1
7. Which of the following is not true
(A) Every skew-symmetric matrix of odd order is non-singular
(B) If determinant of a square matrix is non-zero, then it is non-singular
(C) Adjoint of a symmetric matrix is symmetric
(D) Adjoint of a diagonal matrix is diagonal
8. If for $A X=B, B=\left[\begin{array}{c}9 \\ 52 \\ 0\end{array}\right]$ and $A^{-1}=\left[\begin{array}{ccc}3 & -\frac{1}{2} & -\frac{1}{2} \\ -4 & \frac{3}{4} & \frac{5}{4} \\ 2 & -\frac{1}{4} & -\frac{3}{4}\end{array}\right]$
the X is equal to
(9) (A) $\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]$
(B) $\left[\begin{array}{r}-\frac{1}{2} \\ -\frac{1}{2} \\ 2\end{array}\right]$
(C) $\left[\begin{array}{c}-4 \\ 2 \\ 3\end{array}\right]$
(D) $\left[\begin{array}{c}3 \\ \frac{3}{4} \\ -\frac{3}{4}\end{array}\right]$
9. $\quad\left|\begin{array}{ccc}a+b & a+2 b & a+3 b \\ a+2 b & a+3 b & a+4 b \\ a+4 b & a+5 b & a+6 b\end{array}\right|=$
(A) $a^{2}+b^{2}+c^{2}-3 a b c$
(B) 3 ab
(C) $3 a+5 b$
(D) 0 .
10. If the system of equations $k x+3 y-4 z=0, x-k y+z=0,5 x+4 y-3 z=0$ has a non - zero solution, then $\mathrm{k}=$
(A) $-2,6$
(B) $1,-5$
(C) $-1,5$
(D) none of these.
11. The value of x for which $\left|\begin{array}{lll}x & 2 & 2 \\ 3 & x & 2 \\ 3 & 3 & x\end{array}\right|+\left|\begin{array}{ccc}1-x & 2 & 4 \\ 2 & 4-x & 8 \\ 4 & 8 & 16-x\end{array}\right|>33$ are
(A) $0<x<1$
(B) $-\frac{1}{2}<x<\frac{1}{2}$
(C) $x<-\frac{1}{7}$ or $x>1$
(D) none of these.
12. If the roots of equations $a x^{2}+b x+c=0$ are of the form $\frac{\alpha}{\alpha-1}$ and $\frac{\alpha+1}{\alpha}$, then the value of $(a+b+c)^{2}$ is
(A) $b^{2}-4 a c$
(B) $b^{2}-2 a c$
(C) $2 b^{2}-a c$
(D) $4 b^{2}-2 a c$
13. The quadratic equation $8 \sec ^{2} x-6 \sec x+1=0$ has
(A) infinitely many roots
(B) exactly two roots
(C) exactly four roots
(D) no root.
14. If the equation $a x^{2}+2 b x-3 c=0$ has no real root and $\frac{3 c}{4}<a+b$, then
(A) $\mathrm{c}<0$
(B) $\mathrm{c}>0$
(C) $c \geq 0$
(D) $\mathrm{c}=0$
15. If $\frac{x^{2}-b x}{a x-c}=\frac{\lambda-1}{\lambda+1}$ has roots equal in magnitude and opposite in sign, then the value of λ is
(A) $\frac{a-b}{a+b}$
(B) $\frac{a+b}{a-b}$
(C) c
(D) $1 / \mathrm{c}$
16. If $(x+1)$ is a factor of $x^{4}+(p-3) x^{3}-(3 p-5) x^{2}+(2 p-9) x+6$, then the value of P is
(A) -4
(B) 0
(C) 4
(D) 2
17. The number of diagonals that can be drawn by joining the vertices of an octagon is
(A) 28
(B) 48
(C) 20
(D) none
18. There are 10 roads to a village from a town. The number of different ways in which a villager can go to a town and return back is
(A) 25
(B) 20
(C) 10
(D) 100
19. The number of ways in which 8 men can use 8 pens, no pen remain unused is
(A) ${ }^{8} \mathrm{P}_{8}$
(B) ${ }^{8} \mathrm{C}_{8}$
(C) ${ }^{8} \mathrm{C}_{8}$
(D) 8
20. The number of ways in which four letters can be selected from the word 'APSARA'
(A) 2
(B) 7
(C) 5
(D) 10
21. Number of ways of selecting 7 players out of 12 players when 2 of them are always included
(A) ${ }^{10} \mathrm{C}_{6}$
(B) ${ }^{10} \mathrm{C}_{5}$
(C) ${ }^{12} \mathrm{C}_{7}$
(D) ${ }^{10} \mathrm{C}_{7}$

22 The coefficient of x^{5} in the expansion of $(1+x)^{21}+(1+x)^{22}+\ldots \ldots \ldots+(1+x)^{30}$ is
(A) ${ }^{51} \mathrm{C}_{5}$
(B) ${ }^{9} \mathrm{C}_{5}$
(C) ${ }^{31} \mathrm{C}_{6}-{ }^{21} \mathrm{C}_{6}$
(D) ${ }^{30} \mathrm{C}_{5}+{ }^{20} \mathrm{C}_{5}$.
23. If the coefficients of x^{7} and x^{8} in $\left(2+\frac{x}{3}\right)^{n}$ are equal then n is
(A) 56
(B) 55
(C) 45
(D) 15 .
24. The sum of all the coefficients in the binomial expansion of $\left(x^{2}+x-3\right)^{319}$ is
(A) 1
(B) 2
(C) -1
(D) 0 .
25. The smallest positive integer n , for which $\mathrm{n}!<\left(\frac{\mathrm{n}+1}{2}\right)^{n}$ holds, is
(A) 1
(B) 3
(C) 2
(D) 4
26. If $x^{a}=x^{b / 2} z^{b / 2}=z^{c}$, then a, b, c are in
(A) A.P.
(B) G.P.
(C) H.P.
(D) none of these
27. If $x^{18}=y^{21}=z^{28}$, then $3,3 \log _{y} x, 3 \log _{z} y, 7 \log _{x} z$ are in
(A) A.P.
(B) G.P.
(C) H.P.
(D) none of these
28. The least value of 'a' for which $5^{1+\mathrm{x}}+5^{1-\mathrm{x}}, \frac{\mathrm{a}}{2}, 25^{\mathrm{x}}+25^{-\mathrm{x}}$ are three consecutive terms of an A.P. is
(A) 10
(B) 5
(C) 12
(D) none of these
29. If $A=1+r^{a}+r^{2 a}+r^{3 a}+\ldots \ldots \infty$ and $B=1+r^{b}+r^{2 b}+r^{3 b}+\ldots \infty$, then a / b is equal to
(A) $\log _{1-B}(1-A)$
(B) $\log _{\frac{B-1}{B}}\left(\frac{A-1}{A}\right)$
(C) $\log _{B} A$
(D) none of these
30. If $a_{1}, a_{2}, a_{3}, \ldots \ldots$ is an A.P. such that $a_{1}+a_{5}+a_{10}+a_{15}+a_{20}+a_{24}=225$ then $a_{1}+a_{2}+$ $a_{3}+\ldots .+a_{23}+a_{24}$ is equal to
(A) 909
(B) 75
(C) 750
(D) 900
31. The vector $\vec{a}=3 \widehat{j}+4 \widehat{k}$ is the sum of two vectors \vec{a}_{1} and $\vec{a}_{2} \cdot \vec{a}_{1}$ is parallel to the vector $\vec{b}=\hat{i}+\hat{j}$ and \vec{a}_{2} is perpendicular to \vec{b}. Vector \vec{a}_{1} is equal to
(A) $\frac{3}{2}(\hat{i}+\hat{j})$
(B) $\frac{1}{2}(\hat{i}+\hat{j})$
(C) $\frac{2}{3}(\hat{i}+\hat{j})$
(D) $\frac{1}{3}(\hat{\mathrm{i}}+\hat{\mathrm{j}})$
32. If $\vec{a}+\vec{b}$ is at right angles to \vec{b} and $2 \vec{b}+\vec{a}$ is at right angles to \vec{a}, then
(A) $a=\sqrt{2 b}$
(B) $a=2 b$
(C) $a=b$
(D) $2 a=b$
33. A parallelogram is constructed with \vec{a} and \vec{b} as adjacent sides that $|\vec{a}|=a$ and $|\vec{b}|=b$. The vector which coincides with the altitude of the parallelogram and is perpendicular to vector $\overrightarrow{\mathrm{a}}$ is
(A) $\vec{b}-\frac{\sqrt{b} \vec{a}}{a^{2}}$
(B) $\vec{a}-\frac{\sqrt{\mathrm{a}} \stackrel{\rightharpoonup}{b}}{\mathrm{~b}^{2}}$
(C) $\vec{a}-\frac{G \cdot \vec{b} \vec{b}}{a^{2}}$
(D) $\vec{b}-\frac{6 \cdot \vec{a}}{b^{2}}$
34. $\times \vec{b} \times \times \vec{c} \cdot \bar{d}$ equals
(A) $\overline{\mathrm{b}} \overline{\mathrm{c}}=$
(B) $\overline{\mathrm{b}} \overline{\mathrm{c}}{ }_{-}^{-} \cdot \overline{\mathrm{d}}$
(C) $\overline{\mathrm{b}} \overline{\mathrm{c}} \overline{\mathrm{C}}^{\mathrm{d}} \overline{\mathrm{d}}$
(D) None of these
35. $\overrightarrow{\mathrm{a}} \times \times \overrightarrow{\mathrm{b}} \times$ equals
(A) $\cdot \overline{\mathrm{a}} \times \overline{\mathrm{b}}$
B) $(. \bar{a}) \times \bar{a}=$
(C) $\bar{b} \times \bar{b}^{-}$
D) $(\bar{b}) \times \vec{a}$,
36. The probability that a card drawn out of a pack of 52 cards is a spade is
(A) $\frac{1}{2}$
(B) $\frac{1}{4}$
(C) $\frac{1}{13}$
(D) $\frac{2}{13}$
37. In a class of 10 students 4 are boys and rest are girls. The probability that a student selected will be girl is
(A) $\frac{1}{5}$
(B) $\frac{2}{3}$
(C) $\frac{3}{5}$
(D) $\frac{4}{5}$
38. If $P(E)$ denotes the probability of an event E, then
(A) $\mathrm{P}(\mathrm{E}) \leq 0$
(B) $P(E) \geq 1$
(C) $0 \leq P(E) \leq 1$
(D) $-1 \leq P(E) \leq 1$
39. From a group of 7 men and 7 ladies, a committee of 6 person is formed, x probability that the committee will consist of exactly 2 ladies is
(A) $\frac{4}{11}$
(B) $\frac{3}{11}$
(C) $\frac{2}{11}$
(D) $\frac{5}{11}$
40. Sf 6 boys and 6 girls sit in a row randomly then the probability that all the 6 girls sit together is
(A) $\frac{1}{61}$
(B) $\frac{3}{61}$
(C) $\frac{1}{132}$
(D) $\frac{3}{132}$
41. The join of the points $(-3,-4)$ and $(1,-2)$ is divided by y-axis in the ratio
(A) $1: 3$
(B) $2: 3$
(C) $3: 1$
(D) $3: 2$

42 If the vertices of a triangle are $(0,0),(a, 0)$ and $(a / 2, \sqrt{3} a / 2)$, the coordinates of the incentre of the triangle are
(A) $\left(\frac{a}{3}, \frac{a}{2 \sqrt{3}}\right)$
(B) $\left(\frac{a}{2}, \frac{a \sqrt{3}}{6}\right)$
(C) $\left(\frac{a}{6}, \frac{a \sqrt{3}}{2}\right)$
(D) $\left(\frac{3 a}{4}, \frac{\sqrt{3} a}{4}\right)$
43. The line $\frac{x}{3}+\frac{y}{4}=1$ meets the axis of y and axis of x at A and B respectively. A square $A B C D$ is constructed on the line segment $A B$ away from the origin, the coordinates of the vertex of the square farthest from the origin are
(A) $(7,3)$
(B) $(4,7)$
(C) $(6,4)$
(D) $(3,8)$
44. Through the point $(13,31)$ a straight line is drawn to meet the axes of x and y at Q and S respectively. If the rectangle OQRS is completed, the coordinates of R satisfy the equation
(A) $\frac{13}{x}+\frac{31}{y}=1$
(B) $\frac{31}{x}+\frac{13}{y}=1$
(C) $\frac{13}{x}-\frac{31}{y}=1$
(D) $\frac{31}{x}-\frac{13}{y}=1$
45. Area of the rhombus enclosed by the lines ax $\pm \mathrm{by} \pm \mathrm{c}=0$ is
(A) $\frac{2 a^{2}}{b c}$
(B) $\frac{2 b^{2}}{c a}$
(C) $\frac{2 c^{2}}{a b}$
(D) none of these
46. If $(x, 3)$ and $(3,5)$ are the extremities of a diameter of a circle with centre at $(2, y)$, then the values of x and y are
(A) $x=1, y=4$
(B) $x=4, y=1$
(C) $x=8, y=2$
(D) none of these
47. Circles are drawn through the point $(2,0)$ to cut intercept of length 5 units on the x - axis. If their centers lie in the first quadrant, then their equation is
(A) $x^{2}+y^{2}-9 x+2 f y+14=0$
(B) $3 x^{2}+3 y^{2}+27 x-2 f y+42=0$
(C) $x^{2}+y^{2}-9 x-2 f y+14=0$
(D) $x^{2}+y^{2}-2 f x-9 y+14=0$
48. The equation of the circle which touches both the axes and the straight line $4 x+3 y=6$ in
the first quadrant and lies below it is
(A) $4 x^{2}+4 y^{2}-4 x-4 y+1=0$
(B) $x^{2}+y^{2}-6 x-6 y+9=0$
(C) $x^{2}+y^{2}-6 x-y+9=0$
(D) $4\left(x^{2}+y^{2}-x-6 y\right)+1=0$
49. To which of the following circles, the line $y-x+3=0$ is normal at the point $\left(3+\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$
(A) $x^{2}+y^{2}-6 x+4 y+8=0$
(B) $x^{2}+y^{2}-4 x+7=0$
(C) $x^{2}+y^{2}-4 x-6 y+8=0$
(D) none of these
50. The slope of the tangent at the point (h, h) of the circle $x^{2}+y^{2}=a^{2}$ is
(A) 0
(B) 1
(C) -1
(D) depends on h.
51. If a tangent to the parabola $y^{2}=a x$ makes an angle 45° with x-axis, its point of contact will be
(A) $\left(\frac{a}{2}, \frac{a}{4}\right)$
(B) $\left(-\frac{a}{2}, \frac{a}{4}\right)$
(C) $\left(\frac{a}{4}, \frac{a}{2}\right)$
(D) $\left(\frac{-a}{4}, \frac{a}{2}\right)$
52. The slope of the normal at the point ($a t^{2}, 2 a t$) of the parabola $y^{2}=4 a x$ is
(A) $\frac{1}{t}$
(B) t
(C) $-t$
(D) $-\frac{1}{t}$
53. The length of sub-normal to the parabola $y^{2}=4 a x$ at any point is equal to
(A) $a \sqrt{2}$
(B) $2 \sqrt{2} a$
(C) $\frac{a}{\sqrt{2}}$
(D) 2 a
54. The normal drawn at a point $\left(a t_{1}^{2}, 2 a t_{1}\right)$ of the parabola $y^{2}=4 a x$ meets it again in the point (at ${ }_{2}^{2}$, 2at ${ }_{2}$, then
(A) $t_{1}=2 t_{2}$
(B) $t_{1}^{2}=2 t_{2}$
(C) $t_{1} t_{2}=-1$
(D) $t_{2}=-t_{1}-\frac{2}{t_{1}} 55$. The focus of the parabola x^{2}
$-4 x-8 y-4=0$ are
(A) $(0,2)$
(B) $(2,1)$
(C) $(1,2)$
(D) $(-2,-1)$
56. The equation of an ellipse whose focus is $(-1,1)$, whose directrix is $x-y+3=0$ and whose $e=\frac{1}{2}$ is
(A) $7 x^{2}+7 y^{2}+2 x y+10 x-10 y+7=0$
(B) $7 x^{2}-2 x y+7 y^{2}-10 x+10 y+7=0$
(C) $7 x^{2}-2 x y+7 y^{2}-10 x-10 y-7=0$
(D) $7 x^{2}-2 x y+7 y^{2}+10 x+10 y-7=0$.
57. The foci of the ellipse $25(x+1)^{2}+9(y+2)^{2}=225$ are at
(A) $(-1,2)$ and $(-1,-6)$
(B) $(-1,2)$ and $(6,1)$
(C) $(1,-2)$ and $(1,6)$
(D) $(-1,-2)$ and $(1,6)$
58. The equations of the tangents of the ellipse $9 x^{2}+16 y^{2}=144$ which passes through the point $(2,3)$ is
(A) $y=3, x+y=5$
(B) $y=-3, x-y=5$
(C) $y=4, x+y=3$
(D) $y=-4, x-y=3$.
59. Equation of ellipse with foci $(5,0)$ and $(-5,0)$ and $5 x-36=0$ as one directrix, is
(A) $11 x^{2}+36 y^{2}=196$
(B) $11 x^{2}+18 y^{2}=396$
(C) $11 x^{2}+18 y^{2}=198$
(D) $11 x^{2}+36 y^{2}=396$
60. Centre of the hyperbola $x^{2}+4 y^{2}+6 x y+8 x-2 y+7=0$ is
(A) $(1,1)$
(B) $(0,2)$
(C) $(2,0)$
(D) none of these.
61. If ' e ' is the eccentricity of $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and ' θ ' be the angle between the asymptotes, then $\cos \left(\frac{\theta}{2}\right)$ is equal to
(A) $\frac{1}{2}$
(B) $\frac{1}{e}$
(C) $\frac{1}{e^{2}}$
(D) none of these.
62. The reciprocal of the eccentricity of a rectangular hyperbola is
(A) 2
(B) $\frac{1}{2}$
(C) $\sqrt{2}$
(D) $\frac{1}{\sqrt{2}}$.
63. The value of $\sum_{\mathrm{K}=1}^{6}\left(\sin \frac{2 \pi \mathrm{~K}}{7}-\mathrm{i} \cos \frac{2 \pi \mathrm{~K}}{7}\right)$ is
(A) -1
(B) 0
(C) -i
(D) i
64. The value of $4 \cos 20^{\circ}-\sqrt{3} \cot 20^{\circ}$ is
(A) 1
(B) -1
(C) $-\frac{1}{2}$
(D) none of these
65. The value of the expression $\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}$
(A) 2
(B) $\frac{2 \sin 20^{\circ}}{\sin 40^{\circ}}$
(C) 4
(D) $\frac{4 \sin 20^{\circ}}{\sin 40^{\circ}}$
66. The value of $\cos \frac{\pi}{7}+\cos \frac{3 \pi}{7}+\cos \frac{5 \pi}{7}$ is equal to
(A) $-\frac{1}{2}$
(B) $\frac{1}{2}$
(C) 1
(D) none of these
67. The maximum value of $12 \sin \theta-9 \sin ^{2} \theta$ is
(A) 3
(B) 4
(C) 5
(D) none of these
68. $\quad \sin x+\sin ^{2} x+\sin ^{3} x=1$, then $\cos ^{6} x-4 \cos ^{4} x+8 \cos ^{2} x$ is
(A) 3
(B) 4
(C) 2
(D) 1
69. If $\tan \theta \tan (\pi / 3+\theta) \tan (\pi / 3-\theta)=\mathrm{k} \tan 3 \theta$, then k is
(A) 1
(B) $1 / 3$
(C) 3
(D) none of these
70. General solution of $\tan 5 \theta=\cot 2 \theta$ is
(A) $\theta=n \pi / 7+\pi / 2$
(B) $\theta=\mathrm{n} \pi / 3$
(C) $\theta=n \pi / 7+\pi / 14$
(D) $\theta=\frac{n \pi}{7}-\frac{\pi}{14}$
71. The shortest distance between the line $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-2}{1}$ and $\frac{x-4}{-2}=\frac{y-4}{0}=\frac{z-5}{3}$ is
(A) $5 / 2$
(B) zero
(C) $4 / 3$
(D) none of these
72. $a=2, b=3, c=5$ in triangle $A B C$, then $\angle C=$
(A) $\pi / 6$
(B) $\pi / 3$
(C) $\pi / 2$
(D) none of these
73. If $\frac{r}{r_{1}}=\frac{r_{2}}{r_{3}}$ then
(A) $\mathrm{A}=90^{\circ}$
(B) $\mathrm{B}=90^{\circ}$
(C) $\mathrm{C}=90^{\circ}$
(D) none of these
74. In any triangle; $b^{2} \sin 2 C+c^{2} \sin 2 B=$
(A) Δ
(B) 2Δ
(C) 3Δ
(D) 4Δ
75. If $\log x \geq 0$, then which is true
(A) $x \in[1, \infty)$
(B) $x \in(1 / 2, \infty)$
(C) $x \in(2,7)$
(D) none of these
76. Let R be the relation over the set of integers such that $m R n$ if and only if m is a multiple of n, then R is
(a) reflexive and transitive
(b) symmetric
(c) an equivalence relation
(d) none of these
77. A cricket ball of mass 200 grams moving with a velocity of 20 metres $/ \mathrm{sec}$. is brought to rest by a player in 0.1 sec . The average force applied by the player is
(a) 4×10^{3} dynes
(b) 4×10^{4} dynes
(c) 4×10^{5} dynes
(d) 4×10^{6} dynes
78. The constraints $-x_{1}+x_{2} \leq 1,-x_{1}+3 x_{2} \leq 9, x_{1} \geq 0, x_{2} \geq 0$ define
(a) a bounded feasible region
(b) unbounded feasible region
(c) both bounded and unbounded region
(d) none of these
79. The coefficient of correlation between x and y is $0.6 . u$ and v are two variables defined as $u=\frac{x-3}{2}, v=\frac{y-2}{3}$, then coefficient of correlation between u and v is
(a) 0.2
(b) 0.3
(c) 0.6
(d) 1
80. Simplified value of Boolean expression $x(x+y)+\left[\left(y^{\prime}+x\right) y\right]$ ' is
(a) 0
(b) x
(c) y
(d) 1
81. The slope of the tangent to the curve $y=\sqrt{4-x^{2}}$ at the point where the ordinate and the abscissa are equal, is
(a) -1
(b) 1
(c) 0
(d) none of these
82. On the curve $x^{3}=12 y$ the abscissa changes at a faster rate than the ordinate. Then x belongs to the interval
(a) $(-2,2)$
(b) $(-1,1)$
(c) $(0,2)$
(d) none of these
83. If $a>b>0$, the minimum value of $a \sec \theta-b \tan \theta$ is
(a) $b-a$
(b) $\sqrt{a^{2}+b^{2}}$
(c) $\sqrt{a^{2}-b^{2}}$
(d) $2 \sqrt{a^{2}-b^{2}}$
84. The maximum value of $\left(\frac{1}{x}\right)^{2 x^{2}}$ is
(a) e
(b) $\sqrt[e]{e}$
(c) 1
(d) none of these
85. $\lim _{n \rightarrow \infty} \frac{2^{k}+4^{k}+6^{k}+\ldots . .+(2 n)^{k}}{n^{k+1}}, k \neq-1$, is equal to
(a) 2^{k}
(b) $\frac{2^{k}}{k+1}$
(c) $\frac{1}{k+1}$
(d) none of these
86. If $a f(x)+b f\left(\frac{1}{x}\right)=\frac{1}{x}-5, x \neq 0, a \neq b$, then $\int_{1}^{2} f(x) d x$ equals
(a) $\frac{(\log 2-5) a+\frac{13}{2} b}{a^{2}-b^{2}}$
(b) $\frac{(\log 2-5) a+\frac{7 b}{2}}{a^{2}-b^{2}}$
(c) $\frac{(5-\log 2) a+\frac{7 b}{2}}{a^{2}-b^{2}}$
(d) none of these
87. The degree of the differential equation $\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=x^{2}$ is
(a) one
(b) two
(c) half
(d) four
88. The solution of $(x+\log y) d y+y d x=0$ when $y(0)=1$ is
(a) $y(x-1)+y \log y=0$
(b) $y(x-1+\log y)+1=0$
(c) $x y+y \log y+1=0$
(d) none of these
89. Let $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{c}=\lambda \hat{i}+\hat{j}+(2 \lambda-1) \hat{k}$. If \vec{c} is parallel to the plane of the vectors \vec{a} and \vec{b} then λ is
(a) 1
(b) 0
(c) -1
(d) 2
90. If $\overrightarrow{A B}=\vec{b}$ and $\overrightarrow{A C}=\vec{c}$ then the length of the perpendicular from A to the line $B C$ is
(a) $\frac{|\vec{b} \times \vec{c}|}{|\vec{b}+\vec{c}|}$
(b) $\frac{|\vec{b} \times \vec{c}|}{|\vec{b}-\vec{c}|}$
(c) $\frac{1}{2} \frac{|\vec{b} \times \vec{c}|}{|\vec{b}-\vec{c}|}$
(d) none of these
91. Three dice are thrown simultaneously. The probability of getting a sum of 15 is
(a) $\frac{1}{72}$
(b) $\frac{5}{36}$
(c) $\frac{5}{72}$
(d) none of these
92. The probability that out of 10 persons, all born in April, at least two have the same birthday is
(a) $\frac{{ }^{30} C_{10}}{(30)^{10}}$
(b) $1-\frac{{ }^{30} C_{10}}{30!}$
(c) $\frac{(30)^{10}-{ }^{30} C_{10}}{(30)^{10}}$
(d) none of these
93. The equation of the straight line passing through the origin and perpendicular to the lines $\frac{x+1}{-3}=\frac{y-2}{2}=\frac{z}{1}$ and $\frac{x-1}{1}=\frac{y}{-3}=\frac{z+1}{2}$ has the equation
(a) $x=y=z$
(b) $\frac{x}{4}=\frac{y}{3}=\frac{z}{6}$
(c) $\frac{x}{3}=\frac{y}{1}=\frac{z}{0}$
(d) none of these
94. The distance between the lines $\frac{x-4}{2}=\frac{y+1}{-3}=\frac{z}{6}$ and $\frac{x}{-1}=\frac{y-1}{3 / 2}=\frac{z+1}{-3}$ is
(a) $\sqrt{\frac{629}{7}}$
(b) $\sqrt{\frac{39}{7}}$
(c) $\frac{\sqrt{629}}{7}$
(d) none of these
95. Which of the following planes intersects the planes $x-y+2 z=3$ and $4 x+3 y-z=1$ along the same line?
(a) $11 x+10 y-5 z=0$
(b) $7 x+7 y-4 z=0$
(c) $5 x+2 y+z=2$
(d) none of these
96. Two finite sets A and B having m and n elements. The total number of relations A to B is 64, then possible values of m and n are :
(a) 2 and 4
(b) 2 and 3
(c) 2 and 1
(d) 64 and 1
97. If $A=\left\{x: x^{2}-3 x+2=0\right\}$, and R is a universal relation on A, then R is :
(a) $\{(1,1),(2,2)\}$
(b) $\{(1,1)\}$
(c) $\{\phi\}$
(d) $\{(1,1),(1,2),(2,1),(2,2)\}$
98. If the line of action of the resultant of two forces P and Q divides the angle between them in the ratio $1: 2$, then the magnitude of resultant is :
(a) $\frac{P^{2}+Q^{2}}{P}$
(b) $\frac{P^{2}+Q^{2}}{Q}$
(c) $\frac{P^{2}-Q^{2}}{P}$
(d) $\frac{P^{2}-Q^{2}}{Q}$
99. Two stones are projected from the top of a cliff h metres high with the same speed u so as to hit the ground at the same spot. If one of the stones is projected horizontally and the other is projected at an angle α to the horizontal, then $\tan \theta$ is equal to
(a) $u \sqrt{\frac{2}{g h}}$
(b) $\sqrt{\frac{2 u}{g h}}$
(c) $2 g \sqrt{\frac{u}{h}}$
(d) $2 h \sqrt{\frac{u}{g}}$
100. Which two of the following three circuits are equivalent?
(i)

(ii)

(iii)

(a) (i) \& (iii)
(b) (i) \& (ii)
(c) (ii) \& (iii)
(d) none of these

