Register Number:

Same of the Candidate :

5083

M.Sc. DEGREE EXAMINATION, 2011

(MATHEMATICS)

(FIRST YEAR)

(PAPER - I)

110. ALGEBRA

[Time: 3 Hours

[ybM

Maximum : 100 Marks

 $(0 \neq \varsigma \times 8)$ V - NOILDES

Answer any EIGHT questions. Each question carries FIVE marks.

- 1. Show that HK is a subgroup of G if and only if, HK = KH.
- 2. Show that the number of conjugate classes in S_n is P(n), the number of partitions of n.
- 3. Show that if F is a field, its only ideals are {0} and F itself.

abla

- 15. (a) Show that $T \in A_F(v)$ is unitary if and only if, it takes an orthonormal basis of V into orthonormal basis of V.
- (b) Show that the multiplication group of nonzero elements of a finite field is cyclic.

 If f(x), g(x) are non-zero elements in F(x) then, show that

- 5. Show that every abelian group G is a module over the ring of integers.
- 6. Show that $a \in K$ is a root of $p(x) \in F(x)$, where $F \subset K$, then K(x), (x-a) | p(x).
- 7. Show that homomorphic image of a solvable group is solvable.
- 8. State and prove Bessel's inequality.
- 9. If S, T are nilpotent linear transformations which commute, prove that ST, S+T are nilpotent linear transformations.
- 10. For every prime numbers p and every positive integer m, show that there exists a field having p^m elements.

SECTION - B $(3 \times 20 = 60)$

Answer any THREE questions. Each question carries TWENTY marks.

11. (a) Let ϕ ; $G \rightarrow \overline{G}$ be a onto homomorphism with kernal K. Show that

$$\frac{\mathbf{G}}{\mathbf{K}} \cong \overline{\mathbf{G}}.$$

- (b) State and prove First Sylow's theorem.
- 12. State and prove second isomorphism theorem for ring theory.
- 13. (a) Show that if

 $\dim_F V = m$, then $\dim_F Hom(V,V) = m^2$.

- (b) Show that if V is a finite dimensional inner product space and W a subspace of V then,
 V = W ⊕ W⁺.
- 14. (a) Show that $a \in K$ is algebraic over F if and only if, F(a) is a finite extension of F.
 - (b) Show that K is a normal extension of F if and only if, K is the splitting field of some polynomial over F.

Turn Over

deg [f(x)g(x)] = deg f(x) + deg g(x).