MATHEMATICS

This section contains 8 multiple choice questions numbered 1 to 8. Each question has 4 choices (a), (b), (c) and (d), out of which **ONLY ONE** choice is correct.

If every pair of equation among the equations $x^2 + px + qr = 0$, $x^2 + qx + rp = 0$ and 1. $x^2 + rx + pq = 0$ has a common root then the sum of the three common roots is

(a) $-\frac{1}{2}$

(b) 0

(c) -1

(d) 1

The number of integral solutions of x + y + z = 0, where $x \ge -5$, $y \ge -5$, $z \ge -5$ is 2.

(a) 135

(b) 136

(c) 455

(d) 105

A triangle with vertices represented by complex numbers z_0, z_1, z_2 has opposite side lengths **3.** in ratio $2:\sqrt{6}:\sqrt{3}-1$ respectively. Then

(a) $(z_2 - z_0)^4 = -9(7 + 4\sqrt{3})(z_1 - z_0)^4$ (b) $(z_2 - z_0)^4 = 9(7 + 4\sqrt{3})(z_1 - z_0)^4$

(c) $(z_2 - z_0)^4 = (7 + 4\sqrt{3})(z_1 - z_0)^4$ (d) none of these

Let the function f(x) be defined as follows: 4.

 $f = \begin{cases} x^{3} + x^{2} - 10x & , & -1 \le x < 0 \\ \cos x & , & 0 \le x < \frac{\pi}{2} \text{ . Then } f(x) \text{ has} \\ 1 + \sin x & , & \frac{\pi}{2} \le x \le \pi \end{cases}$

(a) a local minimum at $x = \frac{\pi}{2}$ (b) a local maximum at $x = \frac{\pi}{2}$

(c) absolute minimum at x = -1

(d) absolute maximum at $x = \pi$

If $f(x) = \begin{cases} [x], & \text{if } -3 \le x < 0 \\ 2x + 1, & \text{if } 0 \le x \le 2 \end{cases}$ and g(x) = f(|x|) + |f(x)|, then in [-3, 2](a) $\lim_{x \to 0^{+}} g(x) = 2$ (b) $\lim_{x \to 0^{-}} g(x) = 0$

(c) g(x) is discontinuous at three points (d) none of these

(c) g(x) is discontinuous at three points (d) none of these

Let f(x) be a continuous function for all x, such that $(f(x))^2 = \int_0^x f(t) \cdot \frac{2\sec^2 t}{4+\tan t} dt$ 6. and f(0) = 0, then

(a) $f\left(\frac{\pi}{4}\right) = \log \frac{5}{4}$

(b) $f\left(\frac{\pi}{4}\right) = \frac{3}{4}$

(c)
$$f\left(\frac{\pi}{2}\right) = 2$$

(d) none of these

7. The equation of the smallest circle passing through the intersection of line x + y = 1 and the circle $x^2 + y^2 = 9$ is

(a)
$$x^2 + y^2 + x + y - 8 = 0$$

(b)
$$x^2 + y^2 - x - y - 8 = 0$$

(c)
$$x^2 + y^2 - x + y - 8 = 0$$

(d) none of these

8. If $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b) and $x^2 - y^2 = c^2$ cut each other at right angles, then

(a)
$$a^2 + b^2 = 2c^2$$

(c) $a^2 - b^2 = 2c^2$

(b)
$$b^2 - a^2 = 2c^2$$

(c)
$$a^2 - b^2 = 2c^2$$

(d)
$$a^2b^2 = 2c^2$$

Passage-I

A(3, 7) and B(6, 5) are two points. $C: x^2 + y^2 - 4x - 6y - 3 = 0$ is a circle.

The chords in which the circle C cuts the members of the family S of circle passing through A 9. and B are concurrent at

(b)
$$\left(2, \frac{23}{3}\right)$$
 (d) $(3, 2)$

(c)
$$\left(3, \frac{23}{2}\right)$$

Equation of the member of the family of circles S that bisects the circumference of C is

(a)
$$x^2 + y^2 - 5x - 1 = 0$$

(b)
$$x^2 + y^2 - 5x + 6y - 1 = 0$$

(c)
$$x^2 + y^2 - 5x - 6y - 1 = 0$$

(d)
$$x^2 + y^2 + 5x - 6y - 1 = 0$$

If O is the origin and P is the center of C, then difference of the squares of the lengths of the tangents from A and B to the circle C is equal to

(a)
$$(AB)^2$$

(b)
$$(OP)^2$$

(c)
$$\left| (AP)^2 - (BP)^2 \right|$$

Passage-II

In a parallelogram *OABC*, vectors $\vec{a}, \vec{b}, \vec{c}$ are respectively the position vectors of vertices A, B, C with reference to O as origin. A point E is taken on the side BC which divides it in the

ratio of 2:1. Also, the line segment AE intersects the line bisecting the angle O internally in point P. If CP, when extended meets AB in point F. Then

- 12. The position vector of point *P* is
 - (a) $\frac{3|\vec{a}||\vec{c}|}{3|\vec{c}|+2|\vec{a}|} \left\{ \frac{\vec{a}}{|\vec{a}|} + \frac{\vec{c}}{|\vec{c}|} \right\}$
- (b) $\frac{|\vec{a}||\vec{c}|}{3|\vec{c}|+2|\vec{a}|} \left\{ \frac{\vec{a}}{|\vec{a}|} + \frac{\vec{c}}{|\vec{c}|} \right\}$
- (c) $\frac{2|\vec{a}||\vec{c}|}{3|\vec{c}|+2|\vec{a}|} \left\{ \frac{\vec{a}}{|\vec{a}|} + \frac{\vec{c}}{|\vec{c}|} \right\}$
- (d) none of these
- **13.** The position vector of point *F* is
 - (a) $\vec{a} + \frac{1}{3} \frac{|\vec{a}|}{|\vec{c}|} \vec{c}$

(b) $\vec{a} + \frac{2|\vec{a}|}{|\vec{c}|}\vec{c}$

(c) $\vec{a} + \frac{1}{2} \frac{|\vec{a}|}{|\vec{c}|} \vec{c}$

- (d) $\vec{a} + \frac{|\vec{a}|}{|\vec{c}|} \vec{c}$
- The vector \overrightarrow{AF} is given by **14.**
 - (a) $\frac{1}{3} \frac{|\vec{a}|}{|\vec{c}|} \vec{c}$

(b) $\frac{|\vec{a}|}{|\vec{c}|}\vec{c}$

(c) $\frac{2|\vec{a}|}{|\vec{c}|}\vec{c}$

- (d) $-\frac{|\vec{a}|}{|\vec{c}|}\vec{c}$
- The period of the function $f(x) = \cos(\sin|x| + \cos|x|)$ is **15.**
 - (a) $\frac{\pi}{2}$

- (d) none of these
- $\lim_{x\to 0^+} [1+[x]]^{\frac{2}{x}}$, where $[\cdot]$ is greatest integer function, is equal to **16.**

- (b) 1
- (c) e^{2}
- (d) does not exist
- $P(A) = \frac{3}{7}, P(B') = \frac{1}{2}, P(A' \cap B') = \frac{1}{14}$ then $P(A \cap B)$ is equal to (where A', B' are complement of A, B)
 - (a) $\frac{1}{14}$
- (b) $\frac{3}{8}$
- (c) 0
- (d) none of these
- If the medians AD and BE of a $\triangle ABC$ intersect at right angles then $(a^2 + b^2)$ is equal to **18.**
 - (a) $5c^2$
- (b) $4c^2$
- (c) $3c^2$
- (d) $2c^2$

(b) $g \not\in g \not\in g$ (d) none of these

function and g being a decreasing function, then

(a) f **g**(**c**) } f **g**(**0**) } f **g**(**0**) }

27. If f(x) is a polynomial function satisfying the condition $f(x) = f(\frac{1}{x}) = f(\frac{1}{x})$ and f(x) = 0,

(a) 2f = 3f (b) 14f = f (c) 9f = 2f (d) f = f

Let $f = e^{[\sin x - \cos x + 1]}$, where [.] denotes greatest integer function, then

(a) least value of $f (\cdot)$ is e^{-1}

(b) greatest value of $f(\mathbf{k})$ is e^{-1}

(c) $f\left(\frac{\pi^{-}}{2}\right)$ is e

(d) f (takes only four values

 $\lim_{n\to\infty} {}^{n}C_{x} \left(\frac{m}{n}\right)^{x} \left(1-\frac{m}{n}\right)^{n-x} \text{ equals to}$ 29.

(a) $\frac{m^{x}}{x!} \cdot e^{-m}$ (b) $\frac{m^{x}}{x!} \cdot e^{m}$

Given the function $f = \frac{1}{1-x}$, the points of discontinuity of the composite function 30.

 $y = f^{3n}$ where f^n = fof..... of (n times) are

(a) 0

(d) 2

SUBJECTIVE 3

- 1. n has 4 digits, which are consecutive integers in decreasing order (from left to right). Find the sum of the possible remainders when n is divided by 37.
- 2. The set A consists of m consecutive integers with sum 2m. The set B consists of 2m consecutive integers with sum m. The difference between the largest elements of A and B is 99. Find m.
- 3. P is a convex polyhedron with 26 vertices, 60 edges and 36 faces. 24 of the faces are triangular and 12 are quadrilaterals. A space diagonal is a line segment connecting two vertices which do not belong to the same face. How many space diagonals does P have?
- **4.** A square X has side 2. S is the set of all segments length 2 with endpoints on adjacent sides of X. The midpoints of the segments in S enclose a region with area A. Find 100A to the nearest whole number.
- 5. A and B took part in a two-day maths contest. At the end both had attempted questions worth 500 points. A scored 160 out of 300 attempted on the first day and 140 out of 200 attempted on the second day, so his two-day success ratio was 300/500 = 3/5. B's attempted figures were different from A's (but with the same two-day total). B had a positive integer score on each day. For each day B's success ratio was less than A's. What is the largest possible two-day success ratio that B could have achieved?

- **6.** An integer is *snakelike* if its decimal digits $d_1d_2...d_k$ satisfy $d_i < d_{i+1}$ for i odd and $d_i > d_{i+1}$ for i even. How many snakelike integers between 1000 and 9999 have four distinct digits?
- 7. Find the coefficient of x^2 in the polynomial (1-x)(1+2x)(1-3x)...(1+14x)(1-15x).
- **8.** A regular n-star is the union of n equal line segments P_1P_2 , P_2P_3 , ..., P_nP_1 in the plane such that the angles at P_i are all equal and the path $P_1P_2...P_nP_1$ turns counterclockwise through an angle less than 180° at each vertex. There are no regular 3-stars, 4-stars or 6-stars, but there are two non-similar regular 7-stars. How many non-similar regular 1000-stars are there?
- **9.** ABC is a triangle with sides 3, 4, 5 and DEFG is a 6 x 7 rectangle. A line divides ABC into a triangle T_1 and a trapezoid R_1 . Another line divides the rectangle into a triangle T_2 and a trapezoid R_2 , so that T_1 and T_2 are similar, and R_1 and R_2 are similar. Find the smallest possible value of area T_1 .
- **10.** A circle radius 1 is randomly placed so that it lies entirely inside a 15 x 36 rectangle ABCD. Find the probability that it does not meet the diagonal AC.

Entrance

Entrance

Entrance

Entrance