MATHEMATICS

This section contains 8 multiple choice questions numbered 1 to 8 . Each question has 4 choices (a), (b), (c) and (d), out of which ONLY ONE choice is correct.

1. If every pair of equation among the equations $x^{2}+p x+q r=0, x^{2}+q x+r p=0$ and $x^{2}+r x+p q=0$ has a common root then the sum of the three common roots is
(a) $-\frac{1}{2}$
(b) 0
(c) -1
(d) 1
2. The number of integral solutions of $x+y+z=0$, where $x \geq-5, y \geq-5, z \geq-5$ is
(a) 135
(b) 136
(c) 455
(d) 105
3. A triangle with vertices represented by complex numbers z_{0}, z_{1}, z_{2} has opposite side lengths in ratio $2: \sqrt{6}: \sqrt{3}-1$ respectively. Then
(a) $\left(z_{2}-z_{0}\right)^{4}=-9(7+4 \sqrt{3})\left(z_{1}-z_{0}\right)^{4}$
(b) $\left(z_{2}-z_{0}\right)^{4}=9(7+4 \sqrt{3})\left(z_{1}-z_{0}\right)^{4}$
(c) $\left(z_{2}-z_{0}\right)^{4}=(7+4 \sqrt{3})\left(z_{1}-z_{0}\right)^{4}$
(d) none of these
4. Let the function $f(x)$ be defined as follows:
$f=\left\{\begin{array}{cll}x^{3}+x^{2}-10 x & ,-1 \leq x<0 \\ \cos x & , 0 \leq x<\frac{\pi}{2} . \\ 1+\sin x & , \frac{\pi}{2} \leq x \leq \pi\end{array}\right.$ Then $f(x)$ has
(a) a local minimum at $x=\frac{\pi}{2}$
(b) a local maximum at $x=\frac{\pi}{2}$
(c) absolute minimum at $x=-1$
(d) absolute maximum at $x=\pi$
5. If $f(x)=\left\{\begin{array}{ll}{[x],} & \text { if }-3 \leq x<0 \\ 2 x+1, & \text { if } 0 \leq \mathrm{x} \leq 2\end{array}\right.$ and $g(x)=f(|x|)+|f(x)|$, then in [-3, 2]
(a) $\lim _{x \rightarrow 0^{+}} g(x)=2$
(b) $\lim _{x \rightarrow 0^{-}} g(x)=0$
(c) $g(x)$ is discontinuous at three points
(d) none of these
6. Let $f(x)$ be a continuous function for all x, such that $(f(x))^{2}=\int_{0}^{x} f(t) \cdot \frac{2 \sec ^{2} t}{4+\tan t} d t$ and $f(0)=0$, then
(a) $f\left(\frac{\pi}{4}\right)=\log \frac{5}{4}$
(b) $f\left(\frac{\pi}{4}\right)=\frac{3}{4}$
(c) $f\left(\frac{\pi}{2}\right)=2$
(d) none of these
7. The equation of the smallest circle passing through the intersection of line $x+y=1$ and the circle $x^{2}+y^{2}=9$ is
(a) $x^{2}+y^{2}+x+y-8=0$
(b) $x^{2}+y^{2}-x-y-8=0$
(c) $x^{2}+y^{2}-x+y-8=0$
(d) none of these
8. If $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)$ and $x^{2}-y^{2}=c^{2}$ cut each other at right angles, then
(a) $a^{2}+b^{2}=2 c^{2}$
(b) $b^{2}-a^{2}=2 c^{2}$
(c) $a^{2}-b^{2}=2 c^{2}$
(d) $a^{2} b^{2}=2 c^{2}$

Passage-I

$A(3,7)$ and $B(6,5)$ are two points. $C: x^{2}+y^{2}-4 x-6 y-3=0$ is a circle.
9. The chords in which the circle C cuts the members of the family S of circle passing through A and B are concurrent at
(a) $(2,3)$
(b) $\left(2, \frac{23}{3}\right)$
(c) $\left(3, \frac{23}{2}\right)$
(d) $(3,2)$
10. Equation of the member of the family of circles S that bisects the circumference of C is
(a) $x^{2}+y^{2}-5 x-1=0$
(b) $x^{2}+y^{2}-5 x+6 y-1=0$
(c) $x^{2}+y^{2}-5 x-6 y-1=0$
(d) $x^{2}+y^{2}+5 x-6 y-1=0$
11. If O is the origin and P is the center of C, then difference of the squares of the lengths of the tangents from A and B to the circle C is equal to
(a) $(A B)^{2}$
(b) $(O P)^{2}$
(c) $\left|(A P)^{2}-(B P)^{2}\right|$
(d) none of these

Passage-II

In a parallelogram $O A B C$, vectors $\vec{a}, \vec{b}, \vec{c}$ are respectively the position vectors of vertices A, B, C with reference to O as origin. A point E is taken on the side $B C$ which divides it in the
ratio of 2:1. Also, the line segment $A E$ intersects the line bisecting the angle O internally in point P. If $C P$, when extended meets $A B$ in point F. Then
12. The position vector of point P is
(a) $\frac{3|\vec{a}||\vec{c}|}{3|\vec{c}|+2|\vec{a}|}\left\{\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{c}}{|\vec{c}|}\right\}$
(b) $\frac{|\vec{a}||\vec{c}|}{3|\vec{c}|+2|\vec{a}|}\left\{\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{c}}{|\vec{c}|}\right\}$
(c) $\frac{2|\vec{a}||\vec{c}|}{3|\vec{c}|+2|\vec{a}|}\left\{\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{c}}{|\vec{c}|}\right\}$
(d) none of these
13. The position vector of point F is
(a) $\vec{a}+\frac{1}{3} \frac{|\vec{a}|}{|\vec{c}|} \vec{c}$
(b) $\vec{a}+\frac{2|\vec{a}|}{|\vec{c}|} \vec{c}$
(c) $\vec{a}+\frac{1}{2} \frac{|\vec{a}|}{|\vec{c}|} \vec{c}$
(d) $\vec{a}+\frac{|\vec{a}|}{|\vec{c}|} \vec{c}$
14. The vector $\overrightarrow{A F}$ is given by
(a) $\frac{1}{3} \frac{|\vec{a}|}{|\vec{c}|} \vec{c}$
(b) $\frac{|\vec{a}|}{|\vec{c}|} \vec{c}$
(c) $\frac{2|\vec{a}|}{|\vec{c}|} \vec{c}$
(d) $-\frac{|\vec{a}|}{|\vec{c}|} \vec{c}$
15. The period of the function $f(x)=\cos (\sin |x|+\cos |x|)$ is
(a) $\frac{\pi}{2}$
(b) π
(c) 1
(d) none of these
16. $\lim _{x \rightarrow 0^{+}}[1+[x]]^{\frac{2}{x}}$, where $[\cdot]$ is greatest integer function, is equal to
(a) 0
(b) 1
(c) e^{2}
(d) does not exist
17. $P(A)=\frac{3}{7}, P\left(B^{\prime}\right)=\frac{1}{2}, P\left(A^{\prime} \cap B^{\prime}\right)=\frac{1}{14}$ then $P(A \cap B)$ is equal to (where A^{\prime}, B^{\prime} are complement of A, B)
(a) $\frac{1}{14}$
(b) $\frac{3}{8}$
(c) 0
(d) none of these
18. If the medians $A D$ and $B E$ of a $\triangle A B C$ intersect at right angles then $\left(a^{2}+b^{2}\right)$ is equal to
(a) $5 c^{2}$
(b) $4 c^{2}$
(c) $3 c^{2}$
(d) $2 c^{2}$
19. $\lim _{x \rightarrow I^{-}} \frac{e^{\{x\}}-\{x\}-1}{\{x\}^{2}}$ equals, where $\{\cdot\}$ is fractional part function and I is an integer
(a) $\frac{1}{2}$
(b) $e-2$
(c) I
(d) does not exist
20. The differential equation of the system of circles touching the x-axis at origin is
(a) $\left(x^{2}-y^{2}\right) \frac{d y}{d x}+2 x y=0$
(b) $\left(x^{2}-y^{2}\right) \frac{d y}{d x}-2 x y=0$
(c) $\left(x^{2}+y^{2}\right) \frac{d y}{d x}+2 x y=0$
(d) a second order differential equation

MORE THAN ONE

21. Let $g<=[1+|x|], x \in<1,0 〕, 1$, then the range of $\ln [\mid g<]$, (where [.] denotes the greatest integer function) is
(a) finite set
(b) R
(c) natural number
(d) $\{0\}$
22. Let $f: R \rightarrow R ; f=[x]^{2}+[x+1]-3$, (where [.] denotes the greatest integer function), then
(a) f is many-one-into
(b) f for infinite $x \in R$
(c) $f(=0$ for only two real values
(d) $f=0$ for only finite real values
23. The function $f: R \rightarrow<1,1$, defined by $f=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$, then
(a) $f($ is a non-bijective function
(b) f is a bijective function
(c) $f^{-1}=\frac{1}{2} \log \left(\frac{1+x}{1-x}\right)$
(d) f is many-one-onto function
24. Let $f=\cos \sqrt{p x}$, where $p=[a]$, ([.] denotes the greatest integer function), is a periodic function with period π, then
(a) $a=\frac{9}{2}$
(b) $a=4$
(c) $a=2$
(d) $a=\frac{5}{2}$
25. If $f=\sin |\cos x|, g=\cos |\sin y|$, then
(a) least value of $f+g$ is $\cos 1$
(b) greatest value of $f+g$ is $\sin 1$
(c) period of g is $\frac{\pi}{2}$
(d) greatest value of g is 1
26. Let f and g be functions from the interval $[0, \infty)$ to the interval $[0, \infty), f$ being an increasing function and g being a decreasing function, then

(c) $f \in \mathbb{C}\}$
(d) none of these
27. If f is a polynomial function satisfying the condition $f<f\left(\frac{1}{x}\right)=f<f\left(\frac{1}{x}\right)$ and $f e_{=}$, then
(a) $2 f\left(=3 f{ }_{6}^{-}\right.$
(b) $14 f=f$
(c) $9 f=2 f{ }^{-}$
(d) $f(0)=f\left(1^{-}\right.$.
28. Let $f\left(e^{[\sin x-\cos x+1]}\right.$, where [.] denotes greatest integer function, then
(a) least value of f is e^{-1}
(b) greatest value of f is e^{-1}
(c) $f\left(\frac{\pi^{-}}{2}\right)$ is e
(d) f takes only four values
29. $\lim _{n \rightarrow \infty}{ }^{n} C_{x}\left(\frac{m}{n}\right)^{x}\left(1-\frac{m}{n}\right)^{n-x}$ equals to
(a) $\frac{m^{x}}{x!} \cdot e^{-m}$
(b) $\frac{m^{x}}{x!} \cdot e^{m}$
(c) e^{0}
(d) $\frac{m^{x+1}}{m e^{m} x!}$
30. Given the function $f\left(\frac{1}{(-x}\right.$, the points of discontinuity of the composite function $y=f^{3 n}$, where $f^{n}=f o f \ldots .$. of (n times) are
(a) 0
(b) 1
(c) $3 n$
(d) 2

SUBJECTIVE

1. n has 4 digits, which are consecutive integers in decreasing order (from left to right). Find the sum of the possible remainders when n is divided by 37 .
2. The set A consists of m consecutive integers with sum $2 m$. The set B consists of 2 m consecutive integers with sum m . The difference between the largest elements of A and B is 99 . Find m .
3. P is a convex polyhedron with 26 vertices, 60 edges and 36 faces. 24 of the faces are triangular and 12 are quadrilaterals. A space diagonal is a line segment connecting two vertices which do not belong to the same face. How many space diagonals does P have?
4. A square X has side $2 . S$ is the set of all segments length 2 with endpoints on adjacent sides of X. The midpoints of the segments in S enclose a region with area A. Find 100A to the nearest whole number.
5. A and B took part in a two-day maths contest. At the end both had attempted questions worth 500 points. A scored 160 out of 300 attempted on the first day and 140 out of 200 attempted on the second day, so his two-day success ratio was $300 / 500=3 / 5$. B's attempted figures were different from A's (but with the same two-day total). B had a positive integer score on each day. For each day B's success ratio was less than A's. What is the largest possible two-day success ratio that B could have achieved?
6. An integer is snakelike if its decimal digits $\mathrm{d}_{1} \mathrm{~d}_{2} \ldots \mathrm{~d}_{\mathrm{k}}$ satisfy $\mathrm{d}_{\mathrm{i}}<\mathrm{d}_{\mathrm{i}+1}$ for i odd and $\mathrm{d}_{\mathrm{i}}>\mathrm{d}_{\mathrm{i}+1}$ for i even. How many snakelike integers between 1000 and 9999 have four distinct digits?
7. Find the coefficient of x^{2} in the polynomial $(1-x)(1+2 x)(1-3 x) \ldots(1+14 x)(1-15 x)$.
8. A regular n-star is the union of n equal line segments $\mathrm{P}_{1} \mathrm{P}_{2}, \mathrm{P}_{2} \mathrm{P}_{3}, \ldots, \mathrm{P}_{\mathrm{n}} \mathrm{P}_{1}$ in the plane such that the angles at P_{i} are all equal and the path $\mathrm{P}_{1} \mathrm{P}_{2} \ldots \mathrm{P}_{\mathrm{n}} \mathrm{P}_{1}$ turns counterclockwise through an angle less than 180° at each vertex. There are no regular 3 -stars, 4 -stars or 6 -stars, but there are two nonsimilar regular 7 -stars. How many non-similar regular 1000-stars are there?
9. ABC is a triangle with sides $3,4,5$ and DEFG is a 6×7 rectangle. A line divides ABC into a triangle T_{1} and a trapezoid R_{1}. Another line divides the rectangle into a triangle T_{2} and a trapezoid R_{2}, so that T_{1} and T_{2} are similar, and R_{1} and R_{2} are similar. Find the smallest possible value of area T_{1}.
10. A circle radius 1 is randomly placed so that it lies entirely inside a 15×36 rectangle $A B C D$. Find the probability that it does not meet the diagonal AC.
