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Chapter 1

Counting and Permutations

The following notations will be used:

1. The sets N, W, Z, Q and R, respectively, denote the set of natural numbers, whole numbers,

integers, rational numbers and real numbers.

2. If A is a finite set then |A| denotes the number of elements in the set A. All the sets

in these notes are supposed to be finite unless stated otherwise.

3. For a positive integer n, the set {1, 2, . . . , n} is denoted by An.

Axioms:

1. Let A and B be two non-empty finite disjoint subsets of a set S. Then

|A ∪ B| = |A| + |B|.

2. If A × B = {(a, b) : a ∈ A, b ∈ B} then |A × B| = |A| · |B|.
That is, if one work can be done in m = |A| ways and a second work can be done in

n = |B| ways (independent of how the first work is done) then the total work (consisting

of the above two) can be done in mn ways.

3. If there exists a one-to-one and onto function f : A−→B then |A| = |B|.

Exercise 1.0.1 1. In a class there are 30 boys and 20 girls. Then what is the total number

of students in the class?

2. A fast food chain at Rave uses three types of bread, two types of cheese and three types of

toppings. Then what is the maximum number of menu items can it have?
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6 CHAPTER 1. COUNTING AND PERMUTATIONS

3. How many ways are there to make a 4 letter words with a consonant as the first letter and

a vowel as the second letter?

4. How many 5-letter words using only A’s, B’s, C’s, and D’s are there that do not contain

the word “CAD”?

1 Principles of Basic Counting

Example 1.1.1 If |M | = m and |N | = n then what is the total number of functions f :

M−→N?

Solution: Let M = {a1, a2, . . . , am} and N = {b1, b2, . . . , bn} and let f : M−→N be any

function. we know that a function is determined as soon as we know the value of f(ai) for

1 ≤ i ≤ m. That is, a function f : M−→N has the form

f ↔
(

a1 a2 · · · am

f(a1) f(a2) · · · f(am)

)

,

where f(ai) ∈ {b1, b2, . . . , bn} for 1 ≤ i ≤ m. As there is no restriction on the function f ,

f(a1) can be any one of the bj ’s (n choices), f(a2) can be any one of the bj ’s and this choice

is independent of what f(a1) is (n choices), and so on. Thus, the total number of functions

f : M−→N is

n · n · · · · · n
︸ ︷︷ ︸

m times

= nm.

Remark 1.1.2 The question “If |M | = m and |N | = n then what is the total number of

functions f : M−→N?” is same as the following question:

In how many ways can m distinguishable balls by put into n distinguishable boxes.

Exercise 1.1.3 1. How many ways are there to make a 3 letter word?

2. How many possible sequence of outcomes are there if k dice are tossed?

Example 1.1.4 If |M | = m and |N | = n then what is the total number of one-to-one functions

f : M−→N?

Solution: Observe that the condition

f is one-to-one ⇔ whenever f(x) = f(y), we must have x = y

⇔ if x 6= y then f(x) 6= f(y).
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Therefore, if m > n, then the number such functions is 0.

So, let us assume that m ≤ n. Thus, once f(a1) is chosen (n choices), there are only n− 1 inde-

pendent choices for f(a2) (f(a2) has to be chosen from the set {b1, b2, . . . , bn} − {f(a1)}),
there are only n − 2 independent choices for f(a3) (f(a3) has to be chosen from the set

{b1, b2, . . . , bn} − {f(a1), f(a2)}), and so on. Thus, the required number is

n · (n − 1) · (n − 2) · · · · · (n − m + 1) =
n!

(n − m)!
denoted n(m),

called the falling factorial of n. We also call it by saying “ number of m-permutations of n

distinguishable objects”.

Exercise 1.1.5 1. How many possible ways are there to make 3 letter words if the letters

must be different?

2. How many possible ways are there for 3 persons to sit in 5 chairs that are in a row?

3. How many possible ways are there to arrange the 5 letters of the word ABCDE?

4. How many possible ways are there to arrange the 5 letters of the word A1 A2 A3 E4 E5?

5. How many possible ways can 8 persons, including Ram and Shyam, sit in a row with Ram

and Shyam sitting next to each other?

The proof of the next corollary is immediate from the above example and hence the proof is

omitted.

Corollary 1.1.6 Note that if m = n, we get the number of permutations or the number of

one-to-one, onto functions f : M−→M . Therefore, the number of permutations of the set

{a1, a2, . . . , am} is m!, called “m-factorial”.

Corollary 1.1.7 Let N be a finite set consisting of n elements. Then what is the number of

distinct subsets of size 0 ≤ k ≤ n of N .

Solution: Fix a subset K of N of size k. Then there are k! functions f : {1, 2, . . . , k}−→K

that are one-to-one. Also, any one-to-one function f : {1, 2, . . . , k}−→N gives rise to the set

Im(f) = f
(
{1, 2, . . . , k}

)
, which is a subset of N of size k. Thus, we have the following:

n · (n − 1) · · · (n − k + 1) = Number of one-to-one functions f : {1, 2, . . . , k}−→N

= k! × Number of subsets of size k of N.

Hence,

Number of subsets of size k of N =
n · (n − 1) · · · (n − k + 1)

k!
, denoted

(
n

k

)

.
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Remark 1.1.8 1. The number
(
n
k

)
=

n!

k! (n − k)!
is a positive integer as this equals “Number

of subsets of size k of a set consisting of n elements”.

2. The numbers
(
n
k

)
are called Binomial Coefficients as they appear in the expansion of

(x + y)n which equals
n∑

k=0

(
n
k

)
xkyn−k.

3. As soon as we have obtained a subset K of N with |K| = k, we have also obtained the

subset K̄(complement of the set K as a subset of N) of N of size n − k and hence
(

n

k

)

=

(
n

n − k

)

.

Exercise 1.1.9 1. How many ways are there to pick 5 girls from 6 girls?

2. How many ways are there to pick 2 students from 5 boys and 3 girls?

3. How many ways are there to pick 7 students from a class having 7 girls and 8 boys?

4. How many ways are there to select a committee of 5 from 11 teachers?

5. How many ways are there to pick a Calculus book, a Geometry book and an Algebra book

from 3 Calculus books, 4 Geometry books and 5 Algebra books? The books are distinguish-

able.

6. How many ways are there to arrange the 5 letters of the word ABCDD?

7. How many ways are there to arrange the 5 letters of the word AAADD?

8. How many ways are there to arrange the letters of the word MATHEMATICS?

9. How many ways are there to arrange the letters of the word MISSISSIPPIMISSOURI?

10. How many ways are there for John to invite some of his 10 friends to dinner, if at least 1

of the friends is invited? Hint: Has it got to do with all subsets of 10?

Example 1.1.10 If |M | = m and |N | = n then what is the total number of onto functions

f : M−→N?

Solution: Observe that the condition

f is onto ⇔ For all y ∈ N there exists x ∈ M such that f(x) = y.

Therefore, if m < n, then the number such functions is 0. So, let us assume that m ≥ n. Also,

if m = n, then every onto function is also one-to-one and hence the number of such fuctions is

m! = n!. Therefore, we assume that m > n.
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Before we proceed with the solution, we need to digress a little to what is called a partition

of a set.

Definition 1.1.11 A partition of a finite set A into m-parts is a family of non-empty subsets

A1, A2, . . . , Am of A such that

1. Ai ∩ Aj = for all 1 ≤ i 6= j ≤ m, and

2.
m⋃

i=1
Ai = A.

Example 1.1.12 The partitions of the set A = {a, b, c, d} into 2-parts are

a| bcd, b| acd, c| abd, d| abc, a, b| c, d, a, c| b, d and a, d| b, c,

where the term c| a, b, d represents the partition A1 = {c} and A2 = {a, b, d}.

Definition 1.1.13 Let |A| = m. Then the number of partitions of the set A into n-parts is

denoted by S(m, n), and is called the Stirling number of the second kind.

Remark 1.1.14 Consider the following problem:

In how many ways can m distinguishable balls by put into n indistinguishable boxes with

the restriction that no box is empty?

Note that the restriction “that no box is empty” forces us to look at the partition of a set con-

sisting of m elements (as balls are distinguishable) into n parts (the boxes are indistinguishable).

So, the answer to this question is just S(m, n).

An inductive method to calculate the Stirling numbers of second kind is given in Eq. (1.1.2).

Now, let us come back to the study of “onto functions”. Consider the following example.

Example 1.1.15 Let f : {a, b, c, d}−→{1, 2} be an onto function given by

f(a) = f(b) = f(c) = 1 and f(d) = 2.

Then this onto function, gives a partition A1 = {a, b, c} and A2 = {d} of the set {a, b, c, d} into

2-parts. Also, given a partition A1 = {a, d}, A2 = {b, c} of {a, b, c, d} into 2-parts, we get the

two onto functions f, g : {a, b, c, d}−→{1, 2} given by

f(a) = f(d) = 1, f(b) = f(c) = 2 and g(a) = g(d) = 2, g(b) = g(c) = 1.

Thus, we observe the following:

any onto function f : M−→N gives a partition and a one-to-one function from the parti-

tion (as a single element set) to N = {b1, b2, . . . , bn}. That is, for 1 ≤ j ≤ n, the sets
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f−1(bj) = {ai ∈ M : f(ai) = bj} give a partition of M and each element of f−1(bℓ) is

mapped to bℓ, for ℓ = 1, 2, . . . , n.

Conversely, each onto function f : M−→N is completely determined by

• a partition of M into n = |N | parts, and

• a one-to-one function from the partition (as a single element set) to the set N .

Hence, the answer to the question raised in Example 1.1.10 is

Number of onto functions f : M−→N

= Number of one-to-one functionsf : K−→N

× Number of partitions of the set M into n-parts

= n! S(m, n). (1.1.1)

Remark 1.1.16 Note that the question If |M | = m and |N | = n then what is the total number

of onto functions f : M−→N? is same as the following question:

In how many ways can m distinguishable balls by put into n distinguishable boxes with the

restriction that no box is empty.

The following conventions are in order

0! = 0(0) = 1, 00 = 1, n(0) = 1 for all n ≥ 1, 0(m) = 0 for m 6= 0,

S(n, 0) = 0 for all n ≥ 1, S(0, 0) = 1, S(n, m) = 0 whenever n < m and
(

n

k

)

= 0 whenever k > n.

We end this section with the following exercises.

Exercise 1.1.17 1. For n ≥ r, prove the following results about Binomial coefficients.

(a) Pascal’s Idenity:
(
n
r

)
=
(
n−1

r

)
+
(
n−1
r−1

)
.

(b) k
(
n
k

)
= n

(
n−1
k−1

)
.

(c)
(
k
ℓ

)(
n
k

)
=
(
n
ℓ

)(
n−ℓ
k−ℓ

)
.

(d)
n∑

k=ℓ

(
k
ℓ

)(
n
k

)
=
(
n
ℓ

)
2n−ℓ.

(e)
(
n+r+1

r

)
=

r∑

ℓ=0

(
n+ℓ

ℓ

)
.

(f)
(
n+1
r+1

)
=

n∑

ℓ=r

(
ℓ
r

)
.
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2. Let X be a non-empty set. Suppose Xo and Xe, repectively, denote the set of all even and

odd subsets of X. Describe a bijection to prove that |Xo| = |Xe|.

3. In how many ways can m distinguishable balls by put into n indistinguishable boxes?

4. Count the number of total functions f : M−→N in two ways to prove that

nm =
m∑

k=0

(
n

k

)

k!S(m, k). (1.1.2)

The Eq. (1.1.2) can be used recursively to calculate the values of S(m, k). Use this to show

S(5, 1) = 1, S(5, 2) = 15, S(5, 3) = 25, ; S(5, 4) = 10, S(5, 5) = 1. Can you think of a

recurrence relation to get the values of S(n, k)’s?

5. For a positive integer n, let b(n) denote the number of partitions of the set {1, 2, . . . , n}.
Then b(n) is called the nth Bell number. So, by definition, it follows that b(n) =

n∑

m=0
S(n, m).

Find a recurrsive method for calculating the values of Bell numbers.

6. Count the number of functions f : M−→N with |M | = m and |N | = n + 1 in two ways to

obtain

(n + 1)m =
m∑

k=0

(
m

k

)

nk.

7. Suppose 13 people get on the lift at level 0. suppose the lift stops at the levels 1,2,3,4 and

5. If all the people get down at some level, calculate the number of ways they can get down

so that at least one person gets down at each level.

8. A function f : N−→N is said to be idempotent if f
(
f(x)

)
= f(x) for all x ∈ N . If

|N | = n, prove that the number of such functions equals
n∑

k=1

kn−k
(
n
k

)
.

9. How many 7-letter words have 3 A’s and 4 B’s?

10. How many n-letter words have r A’s and n − r B’s?

11. In how many ways can we arrange 3 girls and 4 boys?

12. In how many ways can we arrange 7 persons?

13. In how many ways can we arrange n persons?

14. In how many ways can we select r persons from n persons?

15. In how many ways can we select r distinguishable objects from n distinguishable objects

when n ≥ r?
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16. How many ways are there to distribute 20 distinguishable toys among 4 children so that

each children gets the same number of toys?

17. In how many ways can we partition 18 persons into study groups of 5, 6, and 7?

18. Let X = {1, 2, . . . , n}. A function f : X−→X is said to be k-injective (1 ≤ k ≤ n), if

there exists S ⊆ X with |S| = k, such that the function restricted with domain as S is

injective. For example, the permutations on the set X are the functions that are n-injective.

Determine the number of functions that are exactly k-injective.

2 Indistinguishable Objects

Example 1.2.1 1. How many words are possible using 3 A’s and 6 B’s?

Solution: We have already seen this problem and the answer is
(
9
3

)
.

2. How many sequences can be obtained that has 3 +’s and 6 1’s?

Solution: Note that this problem is same as Example 1.2.1.1, except that A has been

replaced by + and B has been replaced by 1. So, the answer remains the same.

3. How many solutions are there to the equation x1 + x2 + x3 + x4 = 6, where each xi ∈ Z

and 0 ≤ xi ≤ 6.

Solution: We will show that this problem is same as Example 1.2.1.1.

Take a sequence, say +111 + 1 + 11 of 3 +’s and 6 1’s. Then this sequence can be written

as 0 + 3 + 1 + 2 and therefore gives rise to the solution x1 = 0, x2 = 3, x3 = 1 and x4 = 2

for the given equation.

In the same way, a solution, say x1 = 5, x2 = 0, x3 = 0 and x4 = 1 of the given equation

gives rise to a sequence 11111 + + + 1 of 3 +’s and 6 1’s.

Thus the total number of solutions is

(
9

3

)

=

(
9

6

)

=

(
6 + (4 − 1)

6

)

.

We now generalize this example to a general case.

Example 1.2.2 1. How many words are possible using n − 1 A’s and m B’s?

Solution: We have already seen this problem and the answer is
(
n−1+m

m

)
.

2. How many sequences can be obtained that has n − 1 +’s and m 1’s?

Solution: Note that this problem is same as Example 1.2.2.1, except that A has been

replaced by + and B has been replaced by 1. So, the answer remains the same.
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3. How many solutions are there to the equation x1 + x2 + · · · + xn = m, where each xi ∈ Z

and 0 ≤ xi ≤ m.

Solution: As the Example 1.2.1.3 shows, this problem is same as Example 1.2.2.1.

Thus the total number of solutions is
(

n − 1 + m

m

)

=

(
n − 1 + m

n − 1

)

=

(
m +

(
(n) − 1

)

m

)

.

Remark 1.2.3 1. Observe that a solution of the equation x1 +x2 + · · ·+xn = m in nonneg-

ative integers is same as the following problem:

“Suppose there are n boxes, numbered 1, 2, . . . , n and each of them contains m or more

indistinguishable balls. Then find the number of ways of selecting m balls from the n

boxes.”

Here the m 1’s are playing the role of the m indistinguishable balls and the xi’s for

1 ≤ i ≤ n are playing the role of the n distinguishable boxes. So, the answer to this

problem is also
(
n−1+m

m

)
.

2. The above problem is also same as the problem

“In how many ways can m indistinguishable balls be put into n distinguishable boxes.”

Exercise 1.2.4 1. How many 4-letter words (with repetition) are there with the letters in

alphabetical order?

2. In how many ways can m indistinguishable balls be put into n distinguishable boxes

with the restriction that no box is empty.

3. How many 26-letter permutations of the alphabet have no 2 vowels together?

4. How many 26-letter permutations of the alphabet have at least two consonants between any

two vowels?

5. How many ways can 10 men and 7 women be seated in a row with no 2 women next to

each other?

6. How many ways can 8 persons, including Ram and Shyam, sit in a row with Ram and

Shyam not sitting next to each other?

7. How many arrangements of the letters of RECURRENCERELATION have no 2 vowels

adjacent?

8. How many arrangements of the letters of RECURRENCERELATION have the vowels in

alphabetical order?
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9. How many nonnegative integer solutions are there to the equation

x1 + x2 + · · · + x5 = 67?

10. How many positive integer solutions are there to the equation

x1 + x2 + · · · + x5 = 67?

11. How many nonnegative integer solutions are there to the inequality

x1 + x2 + · · · + x5 < 68?

12. With repetition not allowed and order counting, how many ways are there to select r things

from n distinguishable things?

13. With repetition allowed and order counting, how many ways are there to select r things

from n distinguishable things?

14. With repetition not allowed and order not counting, how many ways are there to select r

things from n distinguishable things?

15. With repetition allowed and order not counting, how many ways are there to select r things

from n distinguishable things?

2.A Partitions

In the first chapter, we looked at the partition of a set consisting of m elements into n parts.

We will now study the partition of a number m into n parts.

Definition 1.2.5 1. A partition of a positive integer m into n parts, is a collection of positive

numbers x1 ≥ x2 ≥ · · · ≥ xn ≥ 1 such that
n∑

k=1

xk = m.

The number of partitions of a positive integer m into n parts is denoted by Π(m, n).

2. A partition of a positive integer m is a collection of positive integers x1 ≥ x2 ≥ · · · ≥
xk ≥ 1, 1 ≤ k ≤ m such that

k∑

i=1
xi = m. This number is denoted by Π(m). So,

Π(m) =
m∑

k=1

Π(m, k).

Now suppose that we have got 2m indistinguishable balls and we need to put all of them

in exactly m indistinguishable boxes with no box empty. As defined above, this number is

Π(2m, m). We can solve the same problem as follows:



2. INDISTINGUISHABLE OBJECTS 15

As a first step, we put exactly one ball into all the m boxes. At this stage, we are left with

m balls and we just need to put them in any number of boxes (all the boxes are already

non-empty). This number is Π(m) So, we see that Π(m) = Π(2m, m).

For example, partitions of 7 into 4 parts are given by

4 + 1 + 1 + 1, 3 + 2 + 1 + 1, 2 + 2 + 2 + 1.

So, Π(7, 4) = 3. It can be checked that Π(7, 1) = 1, Π(7, 2) = 3, Π(7, 3) = 4 and so on and

therefore, Π(7) = 15. Note that the calculation of number of partitions of a positive integer m

into n parts is equivalent to the following problem about balls.

Example 1.2.6 1. In how many ways can m indistinguishable balls be put into n indis-

tinguishable boxes with the restriction that no box is empty?

Solution: As we are talking about indistinguishable balls, we are just looking at the num-

ber of balls in each box with no box empty. Also, each box is indistinguishable and hence we

can arrange the balls into non-increasing order. Hence, we have the answer as Π(m, n).

2. In how many ways can m indistinguishable balls be put into n indistinguishable boxes?

Solution: Just put exactly one ball in each box. Then the given questin is same as “In how

many ways can m + n indistinguishable balls be put into n indistinguishable boxes?”

So, the answer is Π(m + n, n).

2.B Miscellaneous Exercises

1. How many ways are there to arrange the letters in ABRACADABRAARCADA with the

first A preceding the first B?

2. How many ways are there to arrange the letters in ABRACADABRAARCADA with the

first A preceding the first B and with the first D preceding the first C?

3. How many ways are there to distribute 60 balls to 5 persons if Ram and Shyam together

get no more than 30 and Mohan gets at least 10?

4. How many ways can we pick 20 letters from 10 A’s, 15 B’s and 15 C’s?

5. How many ways are there to select 7 integers from the set {1, 2, 3, . . . , 50} such that the

positive difference between any two of the 7 integers is at least 3?

6. How many 10-element subsets of the alphabet have a pair of consecutive letters?

7. Prove that there exists a bijection between any two of the following sets.
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(a) The set of words of length n on an alphabet consisting of m letters.

(b) The set of maps of an n-set into a m-set.

(c) The set of distributions of n distinct objects into m distinct boxes.

(d) The set of n-tuples on m letters.

8. Prove that there exists a bijection between any two of the following sets.

(a) The set of n letter words with distinct letters out of an alphabet consisting of m

letters.

(b) The set of one-one functions from an n-set into a m-set.

(c) The set of distributions of n distinct objects into m distinct boxes, subject to “if an

object is put in a box, no other object can be put in the same box”.

(d) The set of n-tuples on m letters, without repetition.

(e) The set of permutations of m symbols taken n at a time.

9. Prove that there exists a bijection between any two of the following sets.

(a) The set of increasing words of length n on m ordered letters.

(b) The set of distributions on n non-distinct objects into m distinct boxes.

(c) The set of combinations of m symbols taken n at a time with repetitions permitted.

10. Determine the number of ways of distributing n distinct objects into m distinct boxes so

that objects in each box are arranged in a definite order.

3 Round Table Configurations

We now differentiate between arrangements in a row and arrangements at a round table. The

basic difference is:

If there are 4 chairs at a round table then the arrangements ABCD and the arrangement BCDA

are the same. So, to get distinct arrangements at a round table, we fix an object and asign it

the number 1 position and study the distinct arrangement of the other n − 1 objects.

Example 1.3.1 1. How many ways can 8 persons be seated at a round table?

Solution: Method 1: Note that among the 8 people, say P1, the first person is assigned

the number 1 position and the rest 7 persons can be arranged in 7! ways. So, the total

number of arrangements is 7!.
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Method 1: The total number of arrangements of 8 persons if they are to be seated in a row

is 8!. Since the cyclic arrangement A1A2 . . . A8 is same as the arrangement A8A1A2 . . . A7

and so on, we need to divide the number 8! by 8 to get the actual number as 7!.

2. How many ways can 8 couples be seated in a row if each couple is seated together?

Solution: A couple can be thought of as one cohesive group (they are to be seated together)

to get 8! arrangements. But a couple can sit either as “wife and husband” or “husband

and wife”. So, the total number of arrangements is 28 8!.

3. How many ways can 8 couples be seated in a round table if each couple is seated together?

Solution: Use Examples 1.3.1.1 and 1.3.1.2 to get the answer as 287!.

1. How many ways can 5 men and 7 women be seated at a round table with no 2 men next

to each other?

2. How many ways can 10 men and 7 women sit at a round table so that no 2 women are

next to each other?

3. How many ways can 8 persons, including Ram and Shyam, sit at a round table with Ram

and Shyam not sitting next to each other?

4. How amny ways are there to select 6 men from 25 men sitting at a round table if no

adjacent men are chosen?

4 Lattice Paths

Consider a lattice of integer lines in the plane. Let (m, n), m, n ∈ N be a fixed point on this

lattice. Define an increasing path from the point (0, 0) to (m, n) to be an ordered set of edges

e1, e2, . . . , ek from the lattice having the following properties:

1. ei has a vertex common with ei−1, 2 ≤ i ≤ k,

2. if the edge ei is formed with the coordinates (a1, b1) and (a2, b2), then

(a) either a1 = a2 and b2 = b1 + 1

(b) or b1 = b2 and a2 = a1 + 1.

That is, the movement on the lattice is either to the RIGHT or UP (see Figure 1.1). The

question is the following:
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Example 1.4.1 1. How many distinct increasing paths are there from the point (0, 0) to

(m, n).

Solution: Note that each path must increase in its X-coordinate m times and must in-

crease in Y -coordinate exactly n times. That is, each path is a sequence of m R’s (for

RIGHT) and n U ’s (for UP). So, we need to find m places for the R’s among the m + n

places (R and U together). Thus the answer is
(
m+n

m

)
.

2. Interpret the following result about Binomial Coefficients:

m∑

ℓ=0

(
n + ℓ

ℓ

)

=

(
n + m + 1

m

)

.

Solution: Consider the points (0, n+1), (1, n+1), (2, n+1), . . . , (m, n+1). As soon as a

path reaches one of these poinhts, its route to the point (m, n+1) is completely determined.

That is, in counting the number of paths from (0, 0) to (m, n + 1), the number of paths

from (0, 0) to (ℓ, n + 1) for 0 ≤ ℓ ≤ m− 1 get counted again. So, we should not look at the

paths from (0, 0) to (ℓ, n+1). In place of that, we need to look at paths from (0, 0) to (ℓ, n)

for 0 ≤ ℓ ≤ m and then take an upward movement as the next move and then go right to

end at the point (m, n + 1). This will give us all distinct required paths. Also, the number

of paths from (0, 0) to (ℓ, n) for 0 ≤ ℓ ≤ m is
(
n+ℓ

ℓ

)
. Hence we get the required answer.

3. Find the number of paths from (0, 0) to (n, n) that do not cross the line Y = X (see

Figure 1.2).

Solution: As we are not allowed to cross the line Y = X, the first move has to be along

the X-axis. So, we are basically looking at all paths from (1, 0) to (n, n) that does not cross

the line Y = X.

But from Example 1, we know that the total number of paths from (1, 0) to (n, n) is
(
2n−1

n

)
.

So, we need to subtract the number of those paths, from (1, 0) to (n, n), that cross the line

Y = X.
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Figure 1.2:

Suppose P is a path from (1, 0) to (n, n) that crosses the line Y = X at the point (k, k)

for the first time, 1 ≤ k ≤ n − 1. Then we make the following claim.

Claim: For each such path P , from (1, 0) to (n, n) that crosses the line Y = X, there is

an increasing path from (0, 1) to (n + 1, n − 1) and vice-versa.

As the path P crosses the line Y = X at the point (k, k) for the first time, we get a sequence

of (k − 1) R’s and (k + 1) U ’s corresponding to the path P till the first (2k)th stage and

in the remaining portion, the sequence has (n − k) R’s and (n − k − 1) U ’s. Also, this

sequence till the (2k)th stage has the following property:

• (the number of R’s till the (2k − 1)th stage) ≥ (the number of U ’s); and

• at the (2k)th stage the sequence has a U .

This sequence can be related with another sequence of (k + 1) R’s and (k − 1) U ’s by

interchanging the R’s and U ’s till the first (2k)th stage in path P . After this replacement,

the path P changes to an increasing path from (0, 1) to (n + 1, n − 1), as now the number

of U ’s and R’s are (n − 2) and (n + 1), respectively.

Also, each path from (0, 1) to (n + 1, n − 1) has (n + 1) R’s and (n − 2) U ’s. So, in any

such sequence a stage comes where the number of R’s exceeds the number of U ’s by 2. Let

at the (2k)th, the number of R’s exceed the number of U ’s by 2 for the first time (k ≥ 1).

Then there are (k + 1) R’s and (k − 1) U ’s till the first (2k)th stage and (n− k) R’s and

(n − 1 − k) U ’s in the remaining portion of the sequence. We can replace the occurrence

of the R’s and U ’s in the first (2k)th stage to get a sequence of (n − 1) R’s and n U ’s

which corresponds to an increasing path from (1, 0) to (n, n) that crosses the line Y = X.

This completes the proof of the claim.
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But the number of increasing paths from (0, 1) to (n + 1, n− 1) is
(
2n−1
n+1

)
. Hence, we need

to subtract this number from
(
2n−1

n

)
Hence, the number of increasing paths from (0, 0) to

(n, n) that do not cross the line Y + X is

(
2n − 1

n

)

−
(

2n − 1

n + 1

)

=
1

n + 1

(
2n

n

)

.

This number is popularly known as the n − 1th Catalan Number.

Remark 1.4.2 Catalan numbers appear at lots of combinatorial places. For example, look at

the following problems:

1. Suppose in an election two candidates A and B get equal number of votes, say n+1. It was

found that during the counting of votes the candidate A was always ahead of the candidate

B. Find the number of ways in which such an instance can arise.

2. Suppose, we need to add n+1 given numbers, say a1, a2, . . . , an+1. In how many ways can

this addition be performed?

3. In how many ways can a convex n-gon be divided into triangles by its diagonals such that

no two diagonals intersect inside the n-gon?

4. Determine the number of binary trees on 2n + 1 vertices.

5. Determine the number of rooted trees on n + 1 vertices.

6. Determine the number of Dyck paths from the vertex (0, 0) to (2n, 0) (A Dyck path is a

movement on an integer lattice where each step is (1, 1)-North East or (1,−1)-South East).

7. Determine the number of n nonintersecting chords joining 2n points on the circumference

of a circle.

8. How many ways are there to connect 2n points in the plane lying on a horizontal line by

n nonintersecting arcs, each arc connecting two of the points and lying above the points.

9. How many sequences of integers exist that satisfy 1 ≤ a1 ≤ a2 ≤ · · · ≤ an, ai ≤ i for

1 ≤ i ≤ n.

10. How many sequences a1, a2, . . . , an of integers exist such that ai ≥ −1, all partial sums are

nonnegative and a1 + a2 + · · · + an = 0.

For more literature on Catalan Numbers, see the exercises on Catalan and Related Numbers,

in the book [7] by Stanley.
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The following article has been taken from Paper [1].

Let An denote the set of all lattice paths from (0, 0) to (n, n) and let Bn ⊂ An denote the set of

all lattice paths from (0, 0) to (n, n) that does not cross the line Y = X. Then we have observed

that (n + 1) · |Bn| = |An|. The question arises:

can we find a partition of the set An into (n+1)-parts, say S0, S1, S2, . . . , Sn such that S0 = Bn

and |Si| = |S0| for 1 ≤ i ≤ n.

The answer is in affirmative. Observe that any path from (0, 0) to (n, n) has n right moves.

So, the path is specified as soon as we know the successive right moves R1, R2, . . . , Rn, where

Ri equals ℓ if and only if R − i lies on the line Y = ℓ. For example, in Figure 1.2,

R1 = 0, R2 = 0, R3 = 1, R4 = 2, . . . .

These Ri’s satisfy

0 ≤ R1 ≤ R2 ≤ · · · ≤ Rn ≤ n. (1.4.1)

That is, any element of An can be represented by an ordered n-tuple (R1, R2, . . . , Rn) satisfying

Equation (1.4.1). Conversely, any ordered n-tuple (R1, R2, . . . , Rn) satisfying Equation (1.4.1)

corresponds to a lattice path from (0, 0) to (n, n). Note that among the above n-tuples, the

tuples that satisfy

Ri ≤ i − 1, for 1 ≤ i ≤ n (1.4.2)

are elements of Bn and vice-versa. Now, for 0 ≤ k ≤ n, we consider the following n + 1 maps

fk : Bn−→An given by

fk

(
(R1, R2, . . . , Rn)

)
= (t1, t2, . . . , tn)

where (t1, t2, . . . , tn) is an increasing ordering of the n-tuple

(R1 ⊕n+1 k, R2 ⊕n+1 k, . . . , Rn ⊕n+1 k) with ⊕n+1 denoting the addition modulo n + 1.

For each fixed k, 0 ≤ k ≤ n, let Sk denote the image of the function fk. Then the readers

are requested to prove the following exercise. These exercises imply that we have obtained the

required partition of the set An.

Exercise 1.4.3 1. For k 6= 0, Sk is distinct from Bn.

2. Not only the sets S0, S1, S2, . . . , Sn are distinct but they are also disjoint.

3. For any two n-tuples R and R′ in Bn, the n-tuples fk(R) 6= fk(R
′) for 0 ≤ k ≤ n.

4. Given any path P ∈ An, there exists a positive integer k, 0 ≤ k ≤ n and a path R ∈ Bn

such that fk(R) = P .
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5. Describe a bijection to explain the equivalence fo the following two statements:

(a) The number of solutions in non-negative integers to the system

x0 + x1 + x2 + · · · + xk = n is

(
n + k

k

)

.

(b) The number of lattice paths from (0, 0) to (n, k) is
(
n+k

k

)
.

6. Let X be a finite set. A function f : X −→ W is called a multiset if f(x) is finite for all

x ∈ X. The number f(x) is called the size of X and
∑

x∈X

f(x) is the size of the multiset.

For example, if X = a, b, c and f(a) = 2, f(b) = 3, f(c) = 1, then the corresponding

multiset is {a, a, b, b, b, c} and its size is 6.

If |X| = n, determine the number of multisets of size k.

7. Fix a positive integer n. A composition of n is an expression of n as a sum of positive

integers. For example, if n = 4, then the distinct compositions are

4, 3 + 1, 1 + 3, 2 + 2, 2 + 1 + 1, 1 + 1 + 2, 1 + 2 + 1, 1 + 1 + 1 + 1.

Let Sk(n) denote the number of compositions of n into k parts. Then S1(4) = 1, S2(4) =

3, S3(4) = 3 and S4(4) = 1. Determine the number Sk(n) for 1 ≤ k ≤ n.

8. Construct a proof of
(
n
0

)
+
(
n
1

)
+ · · · +

(
n
n

)
= 2n using lattice paths.

9. Determine a closed form expression for
∑

ℓ≥0

(
n
ℓ

)
S(ℓ, k), where S(n, k)’s are the Stirling

Numbers of second kind.

10. Let S = {1, 2, . . . , n}. Let s(n, k) be the number of permutations of the set S into k

disjoint cycles. Determine a recurrence relation that the numbers s(n, k) satisfy. Also

compute
∑

k≥0

s(n, k)xk.

5 Some Generalizations

1. Let n, k be non-negative integers with 0 ≤ k ≤ n. Then the binomial coefficients,
(
n
k

)
, are

defined as the number of ways of choosing a subset of size k from a set consisting of n

elements. Also,
(

n

k

)

=
n!

k!(n − k)!
=

n · (n − 1) · · · (n − k + 1)

k!
.
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We are now ready to generalize the numbers
(
n
k

)
even when k > n and n itself need not

be a non-negative integer. Also, we do it only when k is a non-negative integer. To do so,

we define
(

n

k

)

=







0 if k < 0
n · (n − 1) · · · (n − k + 1)

k!
if k ∈ Z, k ≥ 0

(1.5.3)

For example, using (1.5.3), we have

(1
2

k

)

=

1

2
·
(

1

2
− 1

)

· · ·
(

1

2
− k + 1

)

k!
=

1 · (−1) · (−3) · · · (3 − 2k)

2kk!
=

(−1)k−1(2k − 2)!

22k(k − 1)!k!
.

2. Let n, m ∈ N. Recall the identity nm =
m∑

k=0

(
n
k

)
k!S(m, k) =

n∑

k=0

(
n
k

)
k!S(m, k) that was

given in Exercise 1.1.17.4 (see Equation 1.1.2). We note that the above identity is same

as the matrix product X = AY , where

X =















0m

1m

2m

3m

...

nm















, A =















(
0
0

) (
0
1

) (
0
2

) (
0
3

)
· · ·

(
0
n

)

(
1
0

) (
1
1

) (
1
2

) (
1
3

)
· · ·

(
1
n

)

(
2
0

) (
2
1

) (
2
2

) (
2
3

)
· · ·

(
2
n

)

(
3
0

) (
3
1

) (
3
2

) (
3
3

)
· · ·

(
3
n

)

...
...

...
. . . · · · ...

(
n
0

) (
n
1

) (
n
2

)(
n
3

)
· · ·

(
n
n

)















, and Y =












0!S(m, 0)

1!S(m, 1)

2!S(m, 2)
...

n!S(m, n)












.

Hence, if we know the inverse of the matrix A, we can write Y = A−1X. Check that

A−1 =















(
0
0

) (
0
1

) (
0
2

) (
0
3

)
· · ·

(
0
n

)

−
(
1
0

) (
1
1

) (
1
2

) (
1
3

)
· · ·

(
1
n

)

(
2
0

)
−
(
2
1

) (
2
2

) (
2
3

)
· · ·

(
2
n

)

−
(
3
0

) (
3
1

)
−
(
3
2

) (
3
3

)
· · ·

(
3
n

)

...
...

...
. . . · · · ...

(−1)n+1
(
n
0

)
(−1)n+2

(
n
1

)
(−1)n+2

(
n
2

)
(−1)n+3

(
n
3

)
· · ·

(
n
n

)















.

This gives us a way to calculate the Stirling numbers of second kind as a function of

binomial coefficients.

3. The above principle also implies that whenever we have a(n) =
∑

k≥0

(
n
k

)
b(k), we can write

b(n) =
∑

k≥0

(−1)k
(
n
k

)
a(k).

4. We end this chapter with an example which has a history (see [3]) of being solved by many

mathematicians such as Montmort, N. Bernoulli and de Moivre. The ideas we use here

was proposed by Euler.



24 CHAPTER 1. COUNTING AND PERMUTATIONS

Example 1.5.4 On a rainy day, n students leave their umbrellas (which are indistinguish-

able) outside their examination room. What is the probability that no student collects the

correct umbrella when they finish the examination? This problem is generally known by

the Derangement problem.

Solution: Let the students be numbered 1, 2, . . . , n and suppose that the ith student has

the umbrella numbered i, 1 ≤ i ≤ n. So, we are interested in the number of permutations

of the set {1, 2, . . . , n} such that the number i is not at the ith position. Let Dn represent

the number of derangements. Then it can be checked that D2 = 1 and D3 = 2. They

correspond the permutations 21 for n = 2 and 231, 312 for n = 3. We will try to find a

relationship of Dn with Di, for 1 ≤ i ≤ n − 1.

Let us have a close look at the required permutations. We note that n should not be

placed at the nth position. So, n has to appear some where between 1 and n − 1. That

is, for some i, 1 ≤ i ≤ n − 1

(a) n appears at the ith position and i appears at the nth position, or

(b) n appears at the ith position and i does not appear at the nth position.

Case (4a): For 1 ≤ i ≤ n − 1, the position of n and i is fixed and the remaining numbers

j for j = 1, 2, . . . , i − 1, i + 1, . . . , n − 1 should not appear at the jth place. So, for the

remaining numbers, we need to look at the derangement of n − 2 numbers. That is, the

first case gives us (n − 1)Dn−2 (Dn−2 for the derangement of n − 2 numbers and (n − 1)

because we have (n − 1) choices for the number i).

Case (4b): For 1 ≤ i ≤ n − 1, the position of n is at the ith place but i is not placed at

the nth position. So, we need to look at the following problem.

Consider the numbers 1, 2, . . . , n − 1. We have to arrange these numbers at the places

1, 2, . . . , i− 1, i + 1, . . . , n such that for j 6= i, j is not to be placed at the jth position and

the number i is not to be placed at the nth position. So, if we rename the numbers and

position properly then we have to look at the permutation of the numbers a1, a2, . . . , an−1

with the condition that ai does not appear at the ith position. Thus, this case leads us to

the number (n − 1)Dn−1.

Hence, Dn = (n − 1)Dn−1 + (n − 1)Dn−2. Or equivalently,

Dn − nDn−1 = −
(
Dn−1 − (n − 1)Dn−2

)
= (−1)2

(
Dn−2 − (n − 2)Dn−3

)
= · · · = (−1)n.
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Therefore, using D2 = 1, we have

Dn = nDn−1 + (−1)n = n
(
(n − 1)Dn−2 + (−1)n−1

)
+ (−1)n

= n(n − 1)Dn−2 + n(−1)n−1 + (−1)n

...

= n(n − 1) · · · 4 · 3 D2 + n(n − 1) · · · 4(−1)3 + · · · + n(−1)n−1 + (−1)n

= n!

(

1 +
−1

1!
+

(−1)2

2!
+ · · · + (−1)n−1

(n − 1)!
+

(−1)n

n!

)

.

Notes: Most of the ideas for this chapter have come from the books [2], [4] and [5].
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Chapter 2

Advanced Counting

1 Principle of Mathematical Induction

Axiom:[Well Ordering Principle]

Every non-empty subset of positive integers contains a least element.

Theorem 2.1.5 (Principle of Mathematical Induction: Weak Form) Let P (n) be a state-

ment about a positive integer n such that

1. P (1) is true,

2. If P (k) is true then P (k + 1) is true.

Then P (n) is true for all positive integer n.

Proof. On the contrary assume that there exists n0 ∈ N such that P (n0) is false. Define a set

S = {m ∈ N : P (m) is false }.

Then n0 ∈ S and therefore S 6= ∅. So, by Well-Ordering Principle, S must have a least element,

say N . By assumption N 6= 1 as P (1) is true. Thus, N ≥ 2, N − 1 ∈ N. As N − 1 < N , the

minimality of N gives, P (N − 1) holds true. So, by the given Hypothesis 2, the truth of the

statement P (N − 1) impies that P (N) is true. A contradiction. �

Example 2.1.6 Let n ∈ N and suppose we are given real numbers a1 ≥ a2 ≥ · · · ≥ an ≥ 0.

Then

Arithmetic Mean (AM) :=
a1 + a2 + · · · + an

n
≥ n

√
a1 · a2 · · · · · an =: (GM) Geometric Mean.

27
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Solution: The result is clearly true for n = 1, 2. So, we assume the result holds for any collection

of n − 1 non-negative real numbers.

The given condition implies that a1 − A, A − an ≥ 0. So, (a1 − A)(A − an) ≥ 0. That is,

A(a1 + an) − A2 ≥ a1an. Thus,

(a1 + an − A)A ≥ a1an. (2.1.1)

Now consider the n − 1 numbers a2, a3, . . . , an−1, a1 + an − A. Then

AM =
a2 + a3 + · · · + an−1 + (a1 + an − A)

n − 1
=

(a1 + a2 + · · · + an) − A

n − 1
=

nA − A

n − 1
= A

and

GM = n−1
√

a2 · a3 · · · · · an−1 · (a1 + an − A).

Now by induction hypothesis,

A =
a2 + a3 + · · · + an−1 + (a1 + an − A)

n − 1
≥ n−1

√

a2 · a3 · · · · · an−1 · (a1 + an − A).

Hence, An−1 ≥ a2 · a3 · · · · · an−1 · (a1 + an − A). Or equivalently,

An ≥ a2 · a3 · · · · · an−1 · (a1 + an − A)A.

Therefore, by using (2.1.1), the result follows.

Exercise 2.1.7 1. Prove that 1 + 2 + 3 + · · · + n =
n(n + 1)

2
.

2. Prove that 1 + 3 + 5 + · · · + (2n − 1) = n2.

3. Prove that 12 + 22 + 32 + · · · + n2 =
n(n + 1)(2n + 1)

6
.

4. Determine 14 + 24 + 34 + · · · + n4.

5. Determine 1 · 2 + 2 · 3 + 3 · 4 + · · · + (n − 1) · n.

6. Determine 1 ·
(
n
1

)
+ 2 ·

(
n
2

)
+ 3 ·

(
n
3

)
+ · · · + n ·

(
n
n

)
.

7. Determine 1 · 2 · 3 + 2 · 3 · 4 + 3 · 4 · 5 + · · · + (n − 2) · (n − 1) · n.

8. Prove that n(n + 1) is even for all n ∈ N.

9. Prove that 6 divides n3 − n for all n ∈ N.

10. Let S be a finite set consisting of n elements, n ≥ 0. Prove that S has exactly 2n subsets.

11. Prove that
(
n
0

)
+
(
n
2

)
+ · · · +

(
n
n

)
= 2n for all n ∈ N.
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12. Prove that
∑

k≥0

(
n
2k

)
=
∑

k≥0

(
n

2k+1

)
for all n ∈ N.

13. Let w 6= 1 be a cube root of unity. Determine
∑

k≥0

(
n
3k

)
for all n ∈ N.

Theorem 2.1.8 (Principle of Mathematical Induction: Strong Form) Let P (n) be a state-

ment about a positive integer n such that

1. P (1) is true,

2. If P (m) is true for all m, 1 ≤ m < k then P (k) is true.

Then P (n) is true for all positive integer n.

Proof. Let Q(n) be the statement that P (k) holds for all positive integers k with 1 ≤ k ≤ n.

We prove that Q(n) holds for all positive integers n by weak-form of mathematical induction.

This will give the required result as the statement Q(n) holds true clearly implies that P (n) also

holds true.

As a first step, we see that Q(1) is true follows from the first hypothesis (P (1) is true). So,

the first hypothesis of the weak-form of mathematical induction holds true. So, let us assume

that Q(k) holds true. We need to prove that Q(k + 1) holds true. This is equivalent to showing

that P (m) holds true for all m, 1 ≤ m ≤ k + 1.

The truth of the statement P (m) holds true for all m, 1 ≤ m ≤ k follows from the assumption

that Q(k) holds true. So, by Hypothesis 2, P (k + 1) holds true.That is, we have shown that

P (m) holds true for all m, 1 ≤ m ≤ k + 1. Hence the result follows. �

We state a corollary of the Theorem 2.1.8 without proof.

Corollary 2.1.9 (Principle of Mathematical Induction) Let P (n) be a statement about a

positive integer n such that for some fixed positive integer n0,

1. P (n0) is true,

2. if P (m) is true for all m, n0 ≤ m < k then P (k) is true.

Then P (n) is true for all positive integer n ≥ n0.

Remark 2.1.10 (Pitfall) Find the error in the following arguments:

1. If a set of n balls contains a green ball then all the balls in the set are green.

Solution: If n = 1, we are done. So, let the result be true for any collection of n = k

balls in which there is a green ball. We will prove the result for n = k + 1.
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From the k+1 balls, choose a collection of k balls that contains one green ball. By induction

hypothesis, this collection has all green balls. Now remove one ball from this collection

(observe that the ball removed is green as all balls are green by induction hypothesis) and

put the ball which was left out. Now, in this new collection at least one ball was green and

hence again by induction hypothesis, all the balls in this new collection are green. So, all

the k + 1 balls are green. Hence the result follows by induction hypothesis.

2. In any collection of n lines in a plane, no two of which are parallel, all the lines pass

through a common point.

Solution: If n = 1, 2 then the result is easily seen to be true. So, let the result be true for

any collection of n = k lines no two of which are parallel. We will prove the result for a

collection of n = k + 1 lines in which no two lines are parallel.

Let the k+1 lines in the plane be ℓ1, ℓ2, . . . , ℓk+1. From this collection of lines, let us choose

the subset ℓ1, ℓ2, . . . , ℓk, consisting of k lines. By induction hypothesis, all the lines in this

collection passes through the same point, say p, the point of intersection of the lines ℓ1 and

ℓ2. has all green balls. Now consider the collection ℓ1, ℓ2, . . . , ℓk−1, ℓk+1. This collection

again consists of k lines and hence by induction hypothesis, all the lines pass through a

common point. This common point is P itself, as P is the point of intersection of the

lines ℓ1 and ℓ2. Thus, by principle of mathematical induction the proof of our statement

is complete.

3. Consider the polynomial f(x) = x2 − x + 41. Check that for 1 ≤ n ≤ 40, f(n) is a prime

number. Does this necessarily imply that f(n) is prime for all positive integers n?

2 Pigeonhole Principle

The pigeonhole principle states that if there are n + 1 pigeons and n holes (boxes), then there

is at least one hole (box) that contains two or more pigeons. It can be easily verified that the

pigeonhole principle is equivalent to the following statements:

1. If m pigeons are put into m pigeonholes, there is an empty hole if and only if there’s a

hole with more than one pigeon.

2. If n pigeons are put into m pigeonholes, where n > m, then there is a hole with more than

one pigeon.

3. Let |A| denote the number of elements in a finite set A. For two finite sets A and B, there

exists a one to one and onto function f : A −→ B if and only if |A| = |B|.
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Remark 2.2.1 1. In some books, the pigeonhole principle is stated as follows: if there are n

pigeons and m holes with n > m, then there is at least one hole that contains ⌈ n

m
⌉ pigeons

(recall that the expression ⌈x⌉ stands for the smallest integer m such that m ≥ x).

2. Dirichlet was the one who popularised this principle.

Example 2.2.2 1. Let a be an irrational number. Then there exist infinitely many rational

numbers s =
p

q
such that |a − s| <

1

q2
.

Proof. Let N ∈ N. Without loss of generality, we assume that a > 0. By {α}, we denote

the fractional part of α. That is, {α} = α − ⌊α⌋.
Now, consider the fractional parts {0}, {a}, {2a}, . . . , {Na} of the first (N + 1) multiples

of a. By the pigeonhole principle, two of these must fall into one of the N subintervals

[0,
1

N
), [

1

N
,

2

N
), . . . , [

N − 1

N
, 1)

of [0, 1). That is, there exist integers u, v and w such that:

{ua} ∈ [
w

N
,
w + 1

N
) and {va} ∈ [

w

N
,
w + 1

N
).

Let q = |u − v|. Then for some p ∈ Z, we obtain |qa − p| < 1
N . Dividing by q we get

|a − p

q
| <

1

Nq
≤ 1

q2
as 0 < q ≤ N.

So, we have found one. We now show that the number of such pairs (p, q) is infinite.

On the contrary, assume that there are only a finite number of rational numbers

ri =
pi

qi
, for i = 1, . . . , M, with |a − ri| <

1

q2
i

.

Since a is an irrational number, none of the differences, |a − ri| for i = 1, 2, . . . , M , will

be exactly 0. Therefore, there exists an integer Q such that

|a − ri| >
1

Q
for all i = 1, ..., M.

We now, apply our earlier argument to this Q to get a rational number

r =
p

q
such that |a − r| <

1

Qq
≤ 1

Q
.

Hence r can’t be one of the ri, for i = 1, ..., M. On the other hand, we also have, |a−r| <
1

q2

contradicting the assumption that the fractions ri, for i = 1, ..., M , were all the fractions

with this property. �

The readers should look at the proof more clearly and find out for themselves, the line

where the irrationality of a was used?
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2. Given any sequence of distinct mn+1 real numbers, some subsequence of (m+1) numbers

is strictly increasing or some subsequence of (n + 1) numbers is strictly decreasing.

Before we give the proof of the statement, check that the statement fails if we have exactly

mn numbers. For example, consider the sequence 4, 3, 2, 1, 8, 7, 6, 5, 12, 11, 10, 9 of 12 =

3× 4 distinct numbers. This sequence neither has an increasing subsequence of 4 numbers

nor a decreasing subsequence of 5 numbers.

Proof. Let T = {aj : j = 1, 2, . . . , nm + 1} be the given sequence and consider the set

S = {ℓ1, ℓ2, . . . , ℓmn+1}, where ℓi is the length of the largest increasing subsequence of T

starting with ai.

If one of the ℓi ≥ m+1, then we have obtained an increasing subsequence of length m+1.

If each ℓi ≤ m, then we have mn + 1 numbers ℓi’s and each of them lies between 1 and m.

Hence there are at least n + 1, ℓi’s which take the same value. So, suppose that

ℓi1 = ℓi2 = · · · = ℓin+1
. (2.2.1)

We claim that ai1 > ai2 > · · · > ain+1
.

We will show that ai1 > ai2 . The same argument will give the other inequalities. On the

contrary, let if possible ai1 < ai2 (equality is not allowed as the numbers are distinct).

Then consider the largest increasing subseqence {αi}ℓi2

i=1 of T that has length ℓi2. Then

α1 = ai2 and we have an increasing subsequence

ai1 < ai2 = α1 < α2 < · · · < αℓi2

of T of length ℓi2 + 1. So, by definition and Eq. (2.2.1), ℓi1 ≥ ℓi2 + 1 = ℓi1 + 1. A

contradiction. Hence the proof of the problem is complete. �

3. Consider a chess board with two of the diagonally opposite corners removed. Is it possible

to cover the board with pieces of domino whose size is exactly two board squares?

Solution: No, it is not possible. The reason being: Two diagonally opposite squares on a

chess board are of the same color. So, the removal leads to a situation where the number

of squares of one color exceeds by 2 the number of squares of another color. However,

every placement of domino pieces establishes an one to one and onto function between the

set of white squares and the set of black squares. If the two sets have different number

of elements, then, by the Pigeonhole Principle, we cannot have a one to one and onto

function between the two sets.

4. Prove that however one selects 55 integers 1 ≤ x1 < x2 < x3 < · · · < x55 ≤ 100, there will

be some two that differ by 9, some two that differ by 10, a pair that differ by 12, and a
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pair that differ by 13. Surprisingly, there need not be a pair of numbers that differ by 11.

Hint: Given a run of 2n consecutive integers: a + 1, a + 2, ..., a + 2n− 1, a + 2n, there are

n pairs of numbers that differ by n : (a + 1, a + n + 1), (a + 2, a + n + 2), ..., (a + n, a + 2n).

Therefore, by the Pigeonhole Principle, if one selects more than n numbers from the set,

two are liable to belong to the same pair that differ by n.

Exercise 2.2.3 1. Prove that if n is odd then for any permutation p of the set {1, 2, ..., n}
the product P (p) = (1 − p(1))(2 − p(2))...(n − p(n)) is necessarily even.

2. At a party of n people, some pair of people are friends with the same number of people at

the party. We assume that each person is friendly to at least one person at the party.

3. Prove that among any five points selected inside an equilateral triangle with side equal to

1, there always exists a pair at the distance not greater than .5.

4. Five points are chosen at the nodes of a square lattice (grid). Why is it certain that at

least one mid-point of a line joining a pair of chosen points, is also a lattice point?

5. Suppose f(x) is a polynomial with integral coefficients. If f(x) = 4 for three distinct

integers a, b, and c, prove that, for no integer, f(x) can be equal to 5.

6. Prove that there exist two powers of 3 whose difference is divisible by 2005.

7. Prove that there exists a power of three that ends with 0001.

8. Does there exist a multiple of 2007 that has all its digits 2? Explain your answer.

9. If 9 people are seated in a row of 12 chairs, then some consecutive set of 3 chairs are filled

with people.

10. Given any sequence of n integers, positive or negative, not necessarily all different, some

consecutive subsequence has the property that the sum of the members of the subsequence

is a multiple of n.

11. Given any 1004 integers, some two of them differ by, or sum to, a multiple of 2005.

12. Mr. Fastfood takes at least one pizza a day for 15 days. If he takes 25 pizzas altogether,

show that in some sequence of consecutive days he takes exactly 4 pizzas.

13. During the year 2005, a book store, which was open 7 days a week, sold at least one book

each day, and a total of 600 books over the entire year. Show that there must have been a

period of consecutive days when exactly 129 books were sold.
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14. Given any 6 integers from 1 to 10, some two of them have an odd sum.

15. Suppose you are given a set A of nine different integers from the set T = {1, 2, ..., 65}.
Prove that you can always find two disjoint non-empty subsets, S and T of A, such that

the sum of elements in S equals the sum of elements in T.

16. Suppose one is given a set A = {x1, x2, . . . , x6} consisting of 6 distinct integers from the

set {1, 2, . . . , 13}. Does there exist two distinct disjoint subsets B and C of A such that

their elements sum to the same number?

17. Show that if we select a subset of n+1 numbers from the set {1, 2, . . . , 2n} then some pair

of numbers in the subset are relatively prime.

18. Show that the pigeonhole principle is the same as saying that at least one of the numbers

a1, a2, . . . , an is greater than or equal to their average
a1 + a2 + · · · + an

n
.

19. Consider two discs A and B, each having 2n equal sectors. Suppose each sector is painted

either yellow or green. On disc A exactly n sectors are coloured yellow and exactly n are

coloured green. For disc B there are no constrains. Show that there is a way of putting

the two discs, one above the other, so that at least n corresponding regions have the same

colours.

20. Let n be an odd positive number. Show that there exists ℓ ∈ N such that n divides 2ℓ − 1.

21. There are 7 distinct real numbers. Is it possible to select two of them, say x and y such

that 0 <
x − y

1 + xy
<

1√
3
?

22. Given any sequence of n integers, positive or negative, not necessarily all different, prove

that there exists a consecutive subsequence that has the property that the sum of the mem-

bers of this subsequence is a multiple of n.

23. Colour the plane with two colours, say yellow and green. Then prove the following:

(a) there exist two points at a distance of 1 unit which have been coloured with the same

colour.

(b) there is an equilateral traingle all of whose vertices have the same color.

(c) there is a rectangle all of whose vertices have the same color.

24. Show that in any group of six people there are either three mutual friends or three mutual

strangers.
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25. Let m and n be two coprime integers. Prove that there exists integers x, y such that

mx + ny = 1.

26. Let m and n be two coprime positive integers. Also, let a, b ∈ Z. Then prove that the

system of congruences

x ≡ a (mod m) and x ≡ b (mod n).

has a solution.

27. Does there exist a number of the form 777 · · · 7 which is a multiple of 2007.

3 Principle of Inclusion and Exclusion

The following result is well known and hence we omit the proof.

Theorem 2.3.1 Let U be a finite set. Suppose A and B are distinct proper subsets of U . Then

the number of elements of U that are neither in A nor in B are

|U | −
(
|A| + |B| − |A ∩ B|

)
.

A slight generalisation of this to three distinct proper sets A, B and C is also well known. To

get a result that generalises the above theorem for n distinct proper subsets A1, A2, . . . , An, we

need the following notations:

S1 =
n∑

i=1

|Ai|, S2 =
∑

1≤i<j≤n

|Ai∩Aj |, S3 =
∑

1≤i<j<k≤n

|Ai∩Aj∩Ak|, · · · , Sn = |A1∩A2 · · ·∩An|.

With the notations as defined above, we have the following theorem.

Theorem 2.3.2 Let U be a finite set. Suppose A1, A2, . . . , An are distinct proper subsets of U .

Then the number of elements of U that are in none of A1, A2, . . . , An is given by

|U | − S1 + S2 − S3 + · · · + (−1)nSn. (2.3.1)

Proof. We show that if an element x ∈ U belongs to exactly k of the subsets A1, A2, . . . , An

for some k ≥ 1 then its contribution in (2.3.1) is zero. Suppose x belongs to exactly k subsets

Ai1 , Ai2 , . . . , Aik . Then we observe the following:

1. The contribution of x in |U | is 1.

2. The contribution of x in S1 is k as x ∈ Aij , 1 ≤ j ≤ k.
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3. The contribution of x in S2 is
(
k
2

)
as x ∈ Aij ∩ Ail , 1 ≤ j < l ≤ k.

4. The contribution of x in S3 is
(
k
3

)
as x ∈ Aij ∩ Ail ∩ Aim , 1 ≤ j < l < m ≤ k.

Proceeding this way, we have

5. The contribution of x in Sk is
(
k
k

)
= 1, and

6. The contribution of x in Sℓ for ℓ ≥ k + 1 is 0.

So, the contribution of x in (2.3.1) is

1 − k +

(
k

2

)

−
(

k

3

)

+ · · · + (−1)k−1

(
k

k − 1

)

+ (−1)k

(
k

k

)

+ 0 · · · + 0 = (1 − 1)k = 0.

�

Example 2.3.3 1. How many 10-letter words do not contain all the vowels?

Solution: Let U be the set consisting of all 10-letters words and let Aα denote the number

of 10-letter words that does not contain α. Then we need to compute

|Aa ∪ Ae ∪ Ai ∪ Ao ∪ Au| = S1 − S2 + S3 − S4 + S5.

Note that

S1 =
∑

α is a vowel

|Aα| =

(
5

1

)

2510, S2 =

(
5

2

)

2410, S3 =

(
5

3

)

2310, S4 =

(
5

4

)

2210,

and S5 = 2110.

So, the required answer is
5∑

k=1

(−1)k−1
(
5
k

)
(26 − k)10.

2. How many integers between 1 and 1000 are not divisible by any of 2, 3, 11, 13?

Solution: Let U = {1, 2, 3, . . . , 1000} and let Ai = {n ∈ U : i divides n} for i =

2, 3, 11, 13. Note that we are interested in calculating |U | − |A2 ∪A3 ∪A11 ∪A13|. Observe

that

|A2| = ⌊1000

2
⌋ = 500, |A3| = ⌊1000

3
⌋ = 333, |A11| = ⌊1000

11
⌋ = 90, |A13| = ⌊1000

13
⌋ = 76,

|A2 ∩ A3| = ⌊1000

6
⌋ = 166, |A2 ∩ A11| = ⌊1000

22
⌋ = 45, |A2 ∩ A13| = ⌊1000

26
⌋ = 38,

|A3 ∩ A11| = ⌊1000

33
⌋ = 30, |A3 ∩ A13| = ⌊1000

39
⌋ = 25, |A11 ∩ A13| = ⌊1000

143
⌋ = 6,

|A2 ∩ A3 ∩ A11| = 15, |A2 ∩ A3 ∩ A13| = 12, |A2 ∩ A11 ∩ A13| = 3,

|A3 ∩ A11 ∩ A13| = 2, |A2 ∩ A3 ∩ A11 ∩ A13| = 1.

Thus, the required answer is

1000−
(
(500+333+90+76)−(166+45+38+30+25+6)−(15+12+3+2)−1

)
= 1000−720 = 280.
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3. Euler’s φ-function Or Euler’s totient function Let n denote a positive integer.Then

the Euler φ-function is defined by

φ(n) =
∣
∣{k : 1 ≤ k ≤ n, gcd(n, k) = 1}

∣
∣.

Determine a formula for φ(n) in terms of its prime factors.

Solution: Let n = pα1

1 pα2

2 · · · pαk

k be the unique decomposition of n as product of distinct

primes p1, p2, . . . , pk. Suppose U = {1, 2, . . . , n} and Api
= {m ∈ U : pi divides m} for

1 ≤ i ≤ k. So, by definition

φ(n) = n −
k∑

i=1

n

pi
+

∑

1≤i<j≤k

n

pipj
− · · · + (−1)k n

p1p2 · · · pk

= n

k∏

i=1

(

1 − 1

pi

)

.

Exercise 2.3.4 1. Recall the Derangement problem given on 24 On a rainy day, n students

leave their umbrellas (which are indistinguishable) outside their examination room. What

is the probability that no student collects the correct umbrella when they finish the exami-

nation?

2. How many ways can 30 red balls be put into 4 distinguishable boxes with at most 10 balls

in each box?

3. How many ways can 30 distinguishable balls be placed into 10 distinguishable boxes with at

least 1 box empty?

4. How many ways can r distinguishable balls be placed into n distinguishable boxes with at

least 1 box empty?

5. Determine the number of onto functions f : M −→ N , where |M | = m, |N | = n and

n ≤ m (Recall (1.1.1) for another expression).

6. How many ways can r distinguishable balls be placed into n distinguishable boxes with no

box empty?

7. How many ways are there to distribute 40 distinguishable books to 25 boys if each boy must

get at least one book?

8. How many ways can the 10 integers 1, 2, 3, . . . , 10 be arranged with i never immediately

followed by i + 1?

9. How many 15-term sequence of digits do not contain all the 10 digits?
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10. In how many ways can n pairs of socks be hung on a line so that adjacent socks are from

different pairs, if socks within a pair are indistinguishable and each pair is different.



Chapter 3

Polya Theory

1 Groups

Our aim in this chapter is to look at groups and use it to the study of questions of the type:

1. How many different necklace configurations are possible if we use 6 beads of 3 different

colours? Or for that matter what if we use n beads of m different colours?

2. How many different necklace configurations are possible if we use 12 beads among which

3 are red, 5 are blue and 4 are green? And a generalization of this problem.

3. Counting the number of chemical compounds which can be derived by the substitution of

a given set of radicals in a given molecular structure.

It can be easily observed that if we want to look at different configurations of a necklace that

are formed with 6 beads of different colours, we need to understand the symmetries of a hexagon.

Such a study is achieved through what in literature is called groups. Once we have learnt a bit

about groups, we study group action. This helps us in defining an equivalence relation on the set

of colour configurations of the necklace. The equivalence classes so formed give us the distinct

colour configurations.

So, the basic object of Polya Theory is to count equivalence classes formed by group action.

As a group basically describes the symmetries of a given figure, Polya Theory counts the number

of distinct objects under symmetry.

Before coming to the definition and its properties, let us look at the properties of the sets

N, Z, Q, R and C. We know that the sets Z, Q, R and C satisfy the following:

1. for every a, b ∈ Z (Q, R, C), a + b ∈ Z (Q, R, C);

2. for every a, b, c ∈ Z (Q, R, C), (a + b) + c = a + (b + c);

39
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3. the element zero, denoted 0, is in all the three sets and has the property that for every

a ∈ Z (Q, R, C), a + 0 = a = 0 + a;

4. For every element a ∈ Z (Q, R, C), there exists an element −a ∈ Z (Q, R, C) such that

a + (−a) = 0 = −a + a;

5. We also have a + b = b + a for every a, b ∈ Z (Q, R, C).

Now, let us look at the sets Z∗ = Z − {0}, Q∗ = Q − {0}, R∗ = R − {0} and C∗ = C − {0}.
We know that the following statements to be true for the sets Z∗, Q∗, R∗ and C∗:

(1′) for every a, b ∈ Z∗ (Q∗, R∗, C∗), a · b ∈ Z∗ (Q∗, R∗, C∗);

(2′) for every a, b, c ∈ Z∗ (Q∗, R∗, C∗), (a · b) · c = a · (b · c);

(3′) the element identity, i.e., the unit element 1 is in all the sets Z∗ (Q∗, R∗, C∗) and for all

a ∈ Z∗ (Q∗, R∗, C∗), a · 1 = a = 1 · a;

(5′) We also have a · b = b · a for every a, b ∈ Z∗ (Q∗, R∗, C∗).

But if we look at property 4 above then for any a 6= 1,−1, a ∈ Z∗, there doesnot exits an

element b ∈ Z∗ such that a · b = 1 = b ·a. Whereas for the sets Q∗, R∗ and C∗ there always exists

b such that a · b = 1 = b · a.

Based on the above examples, an abstract notion called groups is defined. We start with

a non-empty set G. In G, we define a binary operation ∗. This binary operation can be either

addition or multiplication or composition or .... With this binary operation the elemetns of the

set G satisfy few of the following:

1. for every a, b ∈ G, a ∗ b ∈ G (Closure Property);

2. for every a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c) (Associativity Property);

3. there is an element e ∈ G such that a ∗ e = a = e ∗ a for all a ∈ G (Existence of Identity);

4. For every element a ∈ G, there exists an element b ∈ G such that a ∗ b = e = b ∗ a

(Existence of Inverse);

(if the binary operation is addition, we write b = −a, and if the binary operation is

multiplication, we write b = a−1)

5. For every a, b ∈ G, a ∗ b = b ∗ a (Commutative Property).

Thus, we make the following definition.
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Definition 3.1.1 (Group) A group G is a non-empty set together with a binary operation, say

∗, satisfying the first four conditions mentioned above. We will generally denote a group by by

(G, ∗).
In addition, if the set G satisfies the fifth condition, then G is said to be an abelian (com-

mutative) group.

We now look at examples which are important in the study of groups.

Example 3.1.2 1. The Symmetric group on n letters: Let N denote the set {1, 2, . . . , n}.
A function σ : N−→N is called a permutation on n elements if σ is both one to one and

onto. The set of all functions σ : N−→N that are both one to one and onto will be denoted

by Sn. That is, Sn is the set of all permutations of the set {1, 2, . . . , n}. Then we have the

following:

(a) Suppose f, g ∈ Sn. Then f and g are two one-to-one and onto functions from the set

N to itself. So, the composite function f ◦ g : N−→N is also one-to-one and onto.

Hence, f ◦ g ∈ Sn.

(b) The composition of functions is associative and thus (f ◦ g) ◦ h = f ◦ (g ◦ h).

(c) The function e : N−→N defined by e(i) = i for i = 1, 2, . . . , n is the identity function.

That is, check that f ◦ e = f = e ◦ f .

(d) Suppose f ∈ Sn. As f : N−→N is a one-to-one and onto function, the function

f−1 : N−→N defined by f−1(i) = j whenever f(j) = i for i = 1, 2, . . . , n exists and

is also one-to-one and onto. That is, f ◦ f−1 = e = f−1 ◦ f for any f ∈ Sn.

Thus (Sn, ◦) is a group. This group is called the Symmetric group on n letters. In general,

we represent a permutation σ by σ =

(

1 2 · · · n

σ(1) σ(2) · · · σ(n)

)

. This representation of

a permutation is called a two row notation for σ. Observe that as σ is one-to-one and

onto function from {1, 2, . . . , n} to itself, the numbers σ(1), σ(2), . . . , σ(n) are all distinct.

So, there are n choices for σ(1), n − 1 choices for σ(2) (all numbers except σ(1) from

{1, 2, . . . , n}), and so on. Hence, the total number of elements in Sn is n! = n(n−1) · · · 2·1.

2. (a) Consider a unit square placed at the coordinates (0, 0, 0), (1, 0, 0), (0, 1, 0) and (1, 1, 0).

Our aim is to move the square in space and put it back at the initial place. The ques-

tion arises, what are the possible ways can this be done? The possible configurations

are given in Figure 1.1.

Let r denote the counter-clockwise rotation of the square by 90◦ and f denote the

flipping of the square along the vertical axis passing through the midpoint of opposite
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D D
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e r r2 r3

f r2f r3f

.............................

..

rf

Figure 3.1: Symmetries of a Square.

horizontal edges. Then note that the possible configurations correspond to the set

G = {e, r, r2, r3, f, rf, r2f, r3f} with relations r4 = e = f2 and r3f = fr. (3.1.1)

Using (3.1.1), observe that (rf)2 = (rf)(rf) = r(fr)f = r(r3f)f = r4f2 = e.

Similarly, it can be checked that (r2f)2 = (r3f)2 = e. That is, all the terms f, rf, r2f

and r3f are flips.

The group G is generally denoted by D4 and is called the Dihedral group or the

symmetries of a square. This group can also be represented as follows:

{e, (ABCD), (AC)(BD), (ADCB), (AD)(BC), (BD), (AB)(CD), (AC)}.

Exercise: Relate the two representations of the group D4. Use this relationship to

calculate the product rule in the new representation.

(b) In the same way, we can define the symmetries of an equilateral triangle (see Figure

3.2). This group is denoted by D3 and is represented as

D3 = {e, r, r2, f, rf, r2f} with relations r3 = e = f2 and r2f = fr, (3.1.2)

where r is a counter-clockwise rotation by 120◦ and f is a flip.

(c) The group of symmetries of a pentagon (see Figure 3.3) are

G = {e, (1, 2, 3, 4, 5), (1, 3, 5, 2, 4), (1, 4, 2, 5, 3), (1, 5, 4, 3, 2), (2, 5)(3, 4),

(1, 3)(4, 5), (1, 5)(2, 4), (1, 2)(3, 5), (1, 4)(2, 3)}.
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2π
3

Figure 3.2: Symmetries of an Equilateral Triangle.

(d) In general, we can define symmetries of a regular n-gon. This group is denoted by

Dn, has 2n elements and is represented as

{e, r, r2, . . . , rn−1, f, rf, . . . , rn−1f} with rn = e = f2 and rn−1f = fr. (3.1.3)

Here the symbol r stands for a counter-clockwise rotation through an angle of
2π

n
and

f stands for a flip.

3. Consider a graph G = (V, E), where V is the vertex set and E ⊆ V ×V . When we use the

word “graph”, we generally assume that (i, j) ∈ E whenever (j, i) ∈ E. If this condition

doesn’t hold, we use the word “directed graph”. For example, for the graph G given in

Figure 3.4, the set V = {1, 2, 3, 4} and E = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}. Check

that the symmetries of this graph can be represented by the help of the group,

{e, (234), (243), (124), (142), (123), (132), (134), (143), (12)(34), (13)(24), (14)(23)},

where the element (ijk) and respectively (ij)(kℓ) stand for the one-one onto functions

f =

(

i j k ℓ

j k i ℓ

)

and g =

(

i j k ℓ

j i ℓ k

)

. For example,

(124) =

(

1 2 3 4

2 4 3 1

)

and (13)(24) =

(

1 2 3 4

3 4 1 2

)

. Use the product rule that you

obtained while studying Example 1 to get the product (234)(142). Does this product equal

(12)(34) or (14)(23)?

Does this group correspond to the symmetries of a tetrahedron? Give reasons?
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Figure 3.3: Symmetries of a Pentagon.
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Figure 3.4: A graph on 4 vertices
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Figure 3.5:

4. Consider the Cube and Octahedron given in Figure 3.5. It can be checked that the group

of symmetries of the two figures has 24 elements. We give the group elements for the

symmetries of the cube. The readers are supposed to compute the group elements for the

symmetries of the octahedron. For the cube (see Figure 3.6), we have



1. GROUPS 45

(a) One element is the identity element e,

(b) Nine elements are obtained by rotations that pass through the centre of opposite faces:

(1234)(5678), (13)(24)(57)(68), (1432)(5876), (1265)(3784), (16)(25)(38)(47),

(1562)(3487), (1485)(2376), (18)(45)(27)(36), (1584)(2673),
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Figure 3.6:

(c) Eight elements are obtained by rotations that pass through opposite vertices:

(254)(368), (245)(386), (163)(457), (136)(475), (275)(138),

(257)(183), (168)(274), (186)(247),

(d) Six elements are obtained by rotations that pass through the midpoint of opposite

edges:

(14)(67)(28)(35), (23)(58)(17)(46), (15)(37)(28)(64), (26)(48)(17)(35),

(12)(78)(36)(45), (34)(56)(17)(28).

5. Consider the regular solids Icosahedron and Dodecahedron given in Figure 3.7. Note that

the Icosahedron has 12 vertices, 20 faces and 30 edges and the Dodecahedron has 20 vertices,

12 faces and 30 edges.

It can be checked that the group of symmetries of the two figures has 60 elements. We

give the idea of the group elements for the symmetries of the Icosahedron. The readers are

supposed to compute the group elements for the symmetries of the Dodecahedron. For the

Icosahedron (see Figure 3.6), we have

(a) One element is the identity element e,

(b) Twenty elements are obtained by rotations that pass through the centre of opposite

faces:

(c) Twenty four elements are obtained by rotations that pass through opposite vertices:
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(d) Fifteen elements are obtained by rotations that pass through the midpoint of opposite

edges:

Exercise 3.1.3 Determine the group of symmeteries of a rectangle and a rhombus?

Theorem 3.1.4 Let G be a group.

1. Then the identity element of G is unique.

2. If ab = ac for some a, b, c ∈ G then b = c and if bd = cd then b = c.

3. For a ∈ G, the inverse of a is unique and is denoted by a−1. Also (a−1)−1 = a.

4. For any a, b ∈ G, (ab)−1 = b−1a−1.

5. For any positive integer n, and a ∈ G, (an)−1 = (a−1)n.

6. For any g ∈ G, g0 = e.

2 Subgroup

Definition 3.2.1 (Subgroup) Let G be a group with binary operation ⋆. Let H be a subset of

G which also forms a group with respect to the same binary operation ⋆. Then H is said to be

a subgroup of G.

Example 3.2.2 1. Let G be a group with identity element e. Then G and {e} are them-

selves groups and hence they are subgroups of G. These two subgroups are called trivial

subgroups.
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2. The set of integers, Z and the set of rational numbers, Q are subgroups of the set of real

numbers R, with respect to addition.

3. The set {e, r2, f, r2f} forms a subgroup of D4.

4. The group S3 can be thought of as a subgroup of S4. Note that there is one-to-one corre-

spondence between the elements of S3 and the set {σ ∈ S4 : σ(4) = 4}.

Definition 3.2.3 (Order of a Group) The number of elements in G is denoted by |G| and is

called the order of G. If |G| < ∞, then G is called a group of finite order.

Definition 3.2.4 (Order of an Element) Let G be a group and let g ∈ G. Then the small-

est positive integer m such that gm = e is called the order of g. If no such positive integer

exists then g is said to have infinite order. The order of an element is denoted by O(g).

In additive notation, the condition gn = e stands for ng = 0.

Example 3.2.5 1. The only element of order 1 in a group G is the identity element of G.

2. In D4, the elements r2, f, rf, r2f, rf have order 2, whereas the elements r and r3 have

order 4.

3. Prove that for any element a ∈ G, O(a) = O(a−1).

Theorem 3.2.6 (Subgroup Test) Let G be a group and H a subset of G. Then H is a

subgroup of G if

1. H is non-empty, and

2. if a, b ∈ H then ab−1 must belong to H. (In additive notation, whenever a, b ∈ H then

a − b must belong to H.)

Proof. As H is non-empty, we can find x ∈ H. Then taking a = x and b = x, the second

condition gives e = aa−1 ∈ H. Now taking a = e and b = x, the second condition again gives

x−1 = ex−1 ∈ H for all x ∈ H.

Also for any two elements x, y ∈ H, we have seen that x, y−1 ∈ H and hence by the second

condition again xy = x(y−1)−1 ∈ H. So, H closed with respect to the binary operation of G.

Since the binary operation of H is same as that of G, it is clear that this operation is associative.

Example 3.2.7 Let G be an abelian group with identity e. Consider the sets H = {x ∈ G :

x2 = e} and K = {x2 : x ∈ G}. Then both H and K are subgroups of G.
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Proof. Clearly e ∈ H and e ∈ K. Hence, both the sets are non-empty. We will now show

that H is a subgroup of G. The proof that K is also a subgroup of G is left as an exercise for

the reader.

As H is non-empty, pick x, y ∈ H. Then this assumption implies that x2 = e = y2. By

Theorem 3.2.6, we need to show that xy−1 ∈ H. This is equivalent to showing that
(
xy−1

)2
= e.

As G is abelian,
(
xy−1

)2
= x2(y−1)2 = e(y2)−1 = e−1 = e.

Hence, H is indeed a subgroup of G by Theorem 3.2.6.

Theorem 3.2.8 [Two-Step Subgroup Test] Let H be a subset of a group G. Then H is a

subgroup of G if

1. H is non-empty,

2. if a, b ∈ H then ab must belong to H (H is closed with respect to the binary operation of

G).

3. if a ∈ H, then a−1 ∈ H.

Proof. Left as an exercise. Use the ideas in the proof of Theorem 3.2.6

Theorem 3.2.9 [Finite Subgroup Test] Let H be a non-empty finite subset of a group G. If H

is closed with respect to the binary operation of G then H is a subgroup of G.

Proof. By Example 3.2.7.3.2.8, we need to show that for any a ∈ H, a−1 ∈ H. If a = e

then a−1 = e−1 = e and we are done. So, assume that a 6= e and a ∈ H. Then the set

S = {a, a2, a3, . . . , an, . . .} is a subset of H as H is closed with respect to the binary operation.

But H has finite number of elements. Hence all these elements of S are not distinct. That is,

there exist positive integers, say m, n, m > n such that am = an. This implies that am−n = e.

Hence a−1 = am−n−1 and clearly am−n−1 ∈ H.

3 Lagrange’s Theorem

Definition 3.3.1 Let G be a group and H a subgroup of G. Fix an element g ∈ G and consider

the two sets

gH = {gh : h ∈ H}, and (3.3.1)

Hg = {hg : h ∈ H}. (3.3.2)

As the identity element e ∈ H, for each g ∈ G, g ∈ gH and also g ∈ Hg. Therefore, gH is called

the left coset of H in G containing g and Hg is called the right coset of H in G containing g.
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Example 3.3.2 Consider the group D4 and let H = {e, f} and K = {e, r2} be two subgroups

of D4. Then observe the following:

H = {e, f} = Hf, Hr = {r, fr} = H(fr),

H(r2) = {r2, fr2} = H(fr2) and H(r3) = {r3, fr3} = H(fr3) (3.3.3)

H = {e, f} = fH, rH = {r, rf} = (rf)H,

(r2)H = {r2, r2f} = (r2f)H, and (r3)H = {r3, r3f} = (r3f)H (3.3.4)

K = {e, r2} = Kr2 = r2K, Kr = {r, r3} = rK = Kr3 = r3K,

Kf = {f, r2f} = fK = k(r2f) = (r2f)K, and

K(fr) = {fr, fr3} = (fr)K = K(fr3) = (fr3)K. (3.3.5)

From (3.3.3) and (3.3.4), we note that in general Hg 6= gH for all g ∈ D4, whereas from (3.3.5),

we see that Kg = gK for all g ∈ D4. So, there should be a way to distinguish between these

two subgroups of D4. The readers are asked to find another set of groups for which similar

statements can be made. Also, check that if M is any subgroup of D4 with |M | = 4 then for all

g ∈ G, gM = Mg. The subgroups H of G for which gH = Hg for all g ∈ G are called

Normal Subgroups.

Theorem 3.3.3 Let H be a subgroup of G. Suppose a, b ∈ G. Then the following results hold

for left cosets of H in G:

1. aH = H if and only if a ∈ H,

2. aH is a subgroup of G if and only if a ∈ H,

3. either aH = bH or aH ∩ bH = ∅,

4. aH = bH if and only if a−1b ∈ H.

Aimilar results hold for right cosets of H in G, namely

1. Ha = H if and only if a ∈ H,

2. Ha is a subgroup of G if and only if a ∈ H,

3. either Ha = Hb or Ha ∩ Hb = ∅,

4. Ha = Hb if and only if ab−1 ∈ H.

Also, aH = Ha if and only if H = aHa−1 = {aha−1 : h ∈ H}.

We are now ready to prove the main theorem of this section, the Lagrange’s Theorem.



50 CHAPTER 3. POLYA THEORY

Theorem 3.3.4 Let H be a subgroup of a finite group G. Then |H| divides |G. Moreover, the

number of distinct left (right) cosets of H in G equals
|G|
|H| .

Proof. Note that the number of left cosets of H in G is finite. Let g1H, g2H, . . . , gmH be the

collection of all left cosets of H in G. Then by Theorem 3.3.3, we know that two cosets are

either same or they don’t have any element in common. Hence, G is a disjoint union of the sets

g1H, g2H, . . . , gmH.

Also, it can be easily checked that |aH| = |bH| for all a, b ∈ G. Hence |giH| = |H| for all

i = 1, 2, . . . , m and

|G| =

∣
∣
∣
∣
∣

m⋃

i=1

giH

∣
∣
∣
∣
∣
=

m∑

i=1

|giH| = m|H| (the union is disjoint implies the second equality).

Thus, |H| divides |G| and the number of left cosets that equals m =
|G|
|H| .

Remark 3.3.5 The number m in the Theorem 3.3.4 is called the index of H in G, and is

denoted by [G : H] or iG(H).

Theorem 3.3.4 is a statement about any subgroup of a finite group. It may so happen that

the group G and its subgroup H may have infinite number of elements but the number of left

(right) cosets of H in G may be finite. In such cases as well, we talk of index of H in G. For

example, consider H = 10Z as a subgroup of the additive group Z. Then the index of H in Z is

10. In general, fix a positive integer m and consider the subgroup mZ of the additive group Z.

Then it can be easily shown that [Z : mZ] = m.

Remark 3.3.6 The converse of Lagrange’s Theorem is false. To see this consider the group G

discussed in Example 3. This group has 12 elements and 6 divides 12. But G doesn’t have a

subgroup of order 6.

Proof. Let H be a subgroup of order 6 in G, where

G = {e, (234), (243), (124), (142), (123), (132), (134), (143), (12)(34), (13)(24), (14)(23)}.

Observe that all the elements of G of the form (ijk) have order 3. Hence G has 8 elements of

order 3. Let a ∈ G with O(a) = 3. Consider the cosets H, aH and a2H (as a3 = e, we don’t

have any other coset). As [G : H] = 2, at most two of the cosets H, aH and a2H are distinct.

But equality of any two of them implies that a ∈ H. This implies that all the 8 elements of order

3 in G must be elements of H. That is, H must have at least 9 elements (8 elements of order 3

and one identity). This is absurd as |H| = 6.
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3.A Applications of Lagrange’s Theorem

we now derive some important corollaries of Lagrange’s Theorem. We omit the proof as it can

be found in any standard textbook on Groups. The first corollary is about the order of an

element of a finite group.

Corollary 3.3.7 Let G be a finite group and let g ∈ G. Then O(g) divides |G|.

Remark 3.3.8 The above corollary implies that if G is a finite group of order n then the

possible orders of its elements are only the divisors of n. For example, if |G| = 30 then for

any g ∈ G, O(g) ∈ {1, 2, 3, 5, 6, 10, 15, 30}.

Let G be a finite group. Then in the first corollary, we have shown that for any g ∈ G, O(g)

divides |G|. Therefore, |G| = mO(g) for some positive integer m. Hence

g|G| = gmO(g) = (gO(g))m = em = e.

This observation gives us the next corollary.

Corollary 3.3.9 Let G be a finite group. Then g|G| = e for all g ∈ G.

We use this corollary to prove a famous result called Fermat’s Little Theorem.

Corollary 3.3.10 Let a be any positive integer and p be a prime. Then ap−1 ≡ 1 (mod p) if p

does not divide a. In general, ap ≡ a (mod p).

We now give prove the Euler’s Theorem which is a generalisation of Fermat’s Little Theorem.

Corollary 3.3.11 Let a, n ∈ Z with n > 0. If gcd(a, n) = 1 then aϕ(n) ≡ 1 (mod n).

Example 3.3.12 1. Find the unit place in the expansion of 131001.

Solution : Observe that 13 ≡ 3 (mod 10). So, 131001 ≡ 31001 (mod 10). Now note that

3 ∈ U10 and 3|U10| = 1 (mod 10). But |U10| = 4. Also, 1001 = 4 · 250 + 1. Hence

131001 ≡ 31001 ≡ 34·250+1 ≡ (34)250 · 31 ≡ 1 · 3 ≡ 3 (mod 10).

Hence, the unit place in the expansion of 131001 is 3.

2. Find the unit and tens place in the expansion of 231002.

Solution : Observe that 23 ∈ U100 and 23|U100| = 1 (mod 100). But |U100| = 40 and

1002 = 40 · 25 + 2. Hence

231002 ≡ 2340·25+2 ≡ (2340)25 · 232 ≡ 1 · 232 ≡ 529 ≡ 29 (mod 100).

Hence, the unit place is 9 and the tens place is 2 in the expansion of 231002.

3. Compute the last three digits in the expansion of 291201.

Try it yourself.



52 CHAPTER 3. POLYA THEORY

4 Symmetric Groups

We have already seen the Symmetric group Sn in Example 1. We now want to understand this

group in a better fashion. This group is also known as the Permutation group as its elements

correspond to permutation of the numbers 1, 2, . . . , n.

We also learnt the two-row notation for any element σ ∈ Sn. There is another notation for

permutations that is often very useful. This notation is called the cycle notation. Let us try to

understand this notation.

Definition 3.4.1 Let σ ∈ Sn and let S = {i1, i2, . . . , ik} ⊆ {1, 2, . . . , n} be distinct. If σ satisfies

σ(iℓ) = iℓ+1 for ℓ = 1, 2, . . . , k − 1, σ(ik) = i1, and σ(r) = r for r 6∈ S

then σ is called a k-cycle and is denoted by σ = (i1, i2, . . . ik) or (i2, i3, . . . , ik, i1) and so on.

Example 3.4.2 1. The permutation

(

1 2 3 4 5

2 3 4 1 5

)

in cycle notation can be written as

(1234) or (2341) or (3412) or (4123).

2. The permutation

(

1 2 3 4 5 6

2 3 1 4 6 5

)

in cycle notation equals (123)(65).

3. Consider two permutations σ = (143)(27) and τ = (1357)(246). Then, note the following:

(σ ◦ τ)(1) = σ
(
τ(1)

)
= σ(3) = 1, (σ ◦ τ)(2) = σ

(
τ(2)

)
= σ(4) = 3, (σ ◦ τ)(3) = σ

(
τ(3)

)
=

σ(5) = 5, (σ◦τ)(4) = σ
(
τ(4)

)
= σ(6) = 6, (σ◦τ)(5) = 2, (σ◦τ)(6) = 7 and (σ◦τ)(7) = 4.

Hence

σ ◦ τ =

(

1 2 3 4 5 6 7

1 3 5 6 2 7 4

)

= (235)(467).

4. Similarly check that (1456)(152) = (16)(245).

Definition 3.4.3 Two cycles σ = (i1, i2, . . . , it) and τ = (j1, j2, . . . , js) are said to be disjoint if

{i1, i2, . . . , it} ∩ {j1, j2, . . . , js} = ∅.

The proof of the following theorems can be obtained from any standard book on Groups.

Theorem 3.4.4 Let σ ∈ Sn. Then σ can be written as a product of disjoint cycles.

Remark 3.4.5 Observe that the representation of a permutation as a product of disjoint cycles,

none of which is the identity, is unique upto the order of the disjoint cycles.
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Definition 3.4.6 A permutation σ ∈ Sn, is said to have the cycle structure zk1

ℓ1
zk2

ℓ2
· · · zkt

ℓt
, if σ

is a product of k1 cycles of length ℓ1, k2 cycles of length ℓ2 and so on till kt cycles of length ℓt,

where the zi’s are indeterminates.

Note that
t∑

i=1
ℓiki = n.

Example 3.4.7 Let σ =

(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 6 7 10 14 1 2 13 15 4 11 5 8 12 9

)

. Then

in the cycle notation,

σ = (1 3 7 2 6) (4 10) (5 14 12) (8 13) (9 15) (11)

and the cycle structure of σ is z1z
3
2z3z5.

Exercise 3.4.8 1. Check that the 12 elements that we have obtained in Example 3 correspond

to the elements of A4. This is the geometrical interpretation of A4.

2. Compute the group of symmetries of an equilateral triangle. Check that this corresponds

to the group S3.

3. Find the group of symmetries of the faces of the left figure and the symmetries of the edges

of the right figure given in Figure 3.8

1 2 3 4

8765

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13

14

15

16

17

18

19

20

21

22

23

24

Figure 3.8:

4. Compute the group of symmetries of vertices of a 2 × 2 square given in Figure 3.9.
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1

5
6

32

4

7
8

9

Figure 3.9: Symmetries of 2 × 2 Square.

5 Group Action

Definition 3.5.1 Let (G, ⋆) be a group with identity e. Then G is supposed to act on a set X

if there exists a map, say f : G × X−→X such that

1. f(e, x) = x for all x ∈ X, and

2. f
(
g, f(h, x)

)
= f(g ⋆ h, x) for all x ∈ X and g, h ∈ G.

Remark 3.5.2 1. Observe that, we just need to say that g · x ∈ X for all g ∈ G and x ∈ X,

in place of f(g, x).

2. With this understading, for a fixed element g ∈ G, the set {g · x x ∈ X} is same as the set

X. For if g · x = g · y, then we necessarily have

x = e · x = (g−1 ⋆ g)(x) = g−1(g · x) = g−1(g · y) = (g−1 ⋆ g)(y) = e · y = y.

That is g just permutes the elements of X.

3. It may happen that for all x ∈ X, g · x = h · x even though g 6= h.

Example 3.5.3 1. Let G be the group D6 = {e, r, . . . , r5, f, rf, . . . , r5f} with r6 = e, f2 = e

and rf = fr−1. Then this group acts on the labelling of the vertices by the numbers

1, 2, 3, 4, 5, 6 of a regular hexagon. For an example, see figure 3.10

2. Consider the set of ways of labelling the vertices of a square with two colours, say, Red

and Blue (see Figure 3.11). Then the group D4 = {e, r, r2, r3, f, rf, r2f, r3f} with r4 =

e, f2 = e and rf = fr−1 acts on the set X as follows:

(a) e · x = x for all x ∈ X (by definition).

(b) r · x1 = x1, r · x2 = x5, r · x3 = x2, · · · , r · x16 = x16.
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1
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6 3

2

4

r3

-

4

2

3 6
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1

Figure 3.10: Action by r3 on a labelled hexagon.
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x7
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x8
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RB

x9
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x12

R B

BB

x13
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BB

x14

B B
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x15

B B

BR

x16

B B

BB

Figure 3.11: Colouring the vertices of a square.

(c) f · x1 = x1, f · x2 = x3, f · x3 = x2, · · · , f · x16 = x16.

We now define two important sets associated with a group action.

Definition 3.5.4 Let G act on a set X. Then

1. for each fixed x ∈ X, we define O(x) = {g · x : g ∈ G} ⊂ X, called the Orbit of x under

the action of the group G,

2. for each fixed x ∈ X, we define Gx = {g ∈ G : g.x = x} ⊂ G, called the Stabilizer of x in

G, and

3. for each fixed g ∈ G, we define Fg = {x ∈ X : g · x = x} ⊂ X, called the Fix of g.

To understand the above definitions, let us consider the following example.

Example 3.5.5 Consider the set X whose elements consist of ways of labelling the vertices of

a square with two colours (see Figure 3.11). Then the group D4 act on X.In this case, we have

O(x2) = {x2, x3, x4, x5}, Gx2
= {e, rf}, and Frf = {x1, x2, x4, x7, x10, x13, x15, x16}.

The readers should compute the different sets by taking other examples.
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We now state a few results associated with the above definitions. The proofs are omitted as

they can be easily verified.

Proposition 3.5.6 Let G act on a set X.

1. Then for each fixed x ∈ X, the set Gx is a subgroup of G.

2. Define a relation on the set X by x ∼ y if there exists a g ∈ G such that g · x = y. Then

this relation defines an equivalence relation on the set X. The equivalence class containing

x ∈ X is given by O(x) = {g · x : g ∈ G} ⊂ X, the orbit of x under G.

3. Fix an x ∈ X. Suppose t ∈ O(x). Then O(x) = O(t).

we are now ready to relate the distinct orbits of the set with the cosets of the group.

Theorem 3.5.7 Let a group (G, ⋆) act on a set X and fix an element x ∈ X. Then there is a

one-to-one correspondence between the elements of O(x) and the set of all left cosets of Gx in

G. In particular,

|O(x)| = [G : Gx], the number of left cosets of Gx in G.

Moreover, if G is a fintie group then |G| = |O(x)| · |Gx| for all x ∈ X.

Proof. let S be the set of distinct left cosets of Gx in G. Then S = {gGx : g ∈ G}. Consider

the map τ : S−→O(x) by

τ(gGx) = g · x.

Let us check that this map is well-defined. So, suppose that the cosets gGx and hGx are the

same. That is, gGx = hGx. So, we get the following sequence of assertions:

gGx = hGx ⇐⇒ (h−1 ⋆ g) ∈ Gx ⇐⇒ (h−1 ⋆ g)(x) = x ⇐⇒ h−1(g · x) = x ⇐⇒ g · x = h · x.

These assertions also imply that

gGx = hGx ⇐⇒ τ(gGx) = τ(hGx).

Hence, τ is not only well-defined but also one-one. The map τ is onto, because for each y ∈ O(x),

there exists an h ∈ G such that h · x = y. So, τ(hGx) = h · x = y holds. Therefore, we have

shown that τ gives a one-to-one correspondence between the elements of O(x) and the set of

all left cosets of Gx in G. This completes the proof of the first part. The other part follows by

observing that by definition ; [G : Gx] =
|G|
|Gx|

for each subgroup Gx of G whenever |G| is finite.

The following lemmas are an immediate consequence of Proposition 3.5.6 and Theorem 3.5.7.

We give the proof for the sake of completeness.
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Lemma 3.5.8 Let G be a finite group acting on a set X. Then for each y ∈ X,

∑

x∈O(y)

|Gx| = |G|.

Proof. Recall that for each x ∈ O(y), |O(x)| = O(y)|. Hence, by using |G| = |Gx| · |O(x)| for

all x ∈ X, we get

∑

x∈O(y)

|Gx| =
∑

x∈O(y)

|G|
|O(x)| =

∑

x∈O(y)

|G|
|O(y)| =

|G|
|O(y)|

∑

x∈O(y)

1 = |G|.

Theorem 3.5.9 Let G be a finite group acting on a set X. Let N denote the number of distinct

orbits of X under the action of G. Then

N =
1

|G|
∑

x∈X

|Gx|.

Proof. By Lemma 3.5.8, note that
∑

x∈O(y)

|Gx| = |G| for all y ∈ X. Let x1, x2, . . . , xN be the

representative of the distinct orbits of X under the action of G. Then

∑

x∈X

|Gx| =
N∑

i=1

∑

y∈O(xi)

|Gxi
| =

N∑

i=1

|G| = N · |G|.

Hence, the result follows.

Example 3.5.10 Let us come back to Example 2. Check that the number of distinct colurings

are

1

|G|

16∑

i=1

|Gxi
| =

1

8
(8 + 2 + 2 + 2 + 2 + 2 + 4 + 2 + 2 + 4 + 2 + 2 + 2 + 2 + 2 + 8) = 6.

Remark 3.5.11 As the above example illustrates, we are able to find the number of distinct

configurations using this method. But it is important to observe that this method requires us

to list all elements of X. For example, if we colour the vertices of the square with 3 colours,

then |X| = 34 = 81, whereas the number of elements of D4 (the group that acts as the group of

symmetries of a square) remain 8. So, one feels that the calculation may become easy if one has

to look at the elements of the group D4. Or in general, can we get a formula which relates the

number of distinct orbits with the elements of the group, in place of the elements of the set X

(as seen above, the group may remain the same but the set X may change and |X| may become

very large).
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This query has an affirmative answer and is given as our next result.

Lemma 3.5.12 (Cauchy-Frobenius-Burnside’s Lemma) Let G be a finite group acting on

a set X. Let N denote the number of distinct orbits of X under the action of G. Then

N =
1

|G|
∑

g∈G

|Fg|.

Proof. Consider the set S = {(g, x) ∈ G × X : g · x = x}. We calculate |S| by two methods.

In the first method, let us fix x ∈ X. Then for each fixed x ∈ X, Gx gives the collection of

elements of G that satisfy g · x = x. So, |S| =
∑

x∈X

|Gx|.
In the second method, let us fix g ∈ G. Then for each fixed g ∈ G, Fg gives the collection of

elements of X that satisfy g · x = x. So, |S| =
∑

g∈G

|Fg|. That is,

∑

x∈X

|Gx| = |S| =
∑

g∈G

|Fg|.

Hence, using Theorem 3.5.9, we have

N =
1

|G|
∑

g∈G

|Fg|.

Example 3.5.13 1. Let us come back to Example 2. We now see that Fe = 16, Fr =

2, Fr2 = 4, Fr3 = 2, Ff = 4, Frf = 8, Fr2f = 4 and Fr3f = 8. Hence, the number of

distinct configurations are

1

|G|
∑

g∈G

|Fg| =
1

8
(16 + 2 + 4 + 2 + 4 + 8 + 4 + 8) = 6.

It is important to observe that this calculation can be done just by looking at the cycle

structure of the group elements. That is, to calculate the above sum, we need not look at

the elements of the set X at all.

2. Consider the group C5 = {e, r, r2, r3, r4} with r = (12345) and r5 = e. This is a subgroup

of D5 (see Example 2c). Let X be the set of colour patterns obtained by colouring the

vertices of the pentagon by three colours Red, Blue and Green (R, B, G). Then note that

Fe = X, Fr = Fr2 = Fr3 = Fr4 = {RRRRR, BBBBB, GGGGG}.

So, by Burnside’s Lemma, the number of distinct colour patterns upto rotations is

1

5
(35 + 3 + 3 + 3 + 3) = 51.
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6 The Cycle Index Polynomial

Till now, we haven’t cared much about the actual elements of the group G. Polya observed

that elements of G with the same cycle structure made the same contribution to the sets of fixed

points. He defined the notion of cycle index polynomial to keep track of the cycle structure of

the elements of G.

Definition 3.6.1 Let G be a permutation group on n symbols. For g ∈ G, let ℓk(g) denote the

number of cycles of g of length k. Then the cycle index polynomial of G, as a permutation group

on n symbols, is a polynomial in n variables z1, z2, . . . , zn given by

PG(z1, z2, . . . , zn) =
1

|G|




∑

g∈G

z
ℓ1(g)
1 z

ℓ2(g)
2 · · · zℓn(g)

n



 .

Example 3.6.2 1. Let G be the dihedral group D4 (see Example 2). Then the contributions

are as follows:

e = (1)(2)(3)(4)−→z4
1 , r = (1234)−→z4, r3 = (1432)−→z4, r2 = (13)(24)−→z2

2 ,

f = (14)(23)−→z2
2 , rf = (1)(3)(24)−→z2

1z2, r2f = (12)(34)−→z2
2 , r3f = (13)(2)(4)−→z2

1z2.

Thus,

PG(z1, z2, z3, z4) =
1

8

(
z4
1 + 2z4 + 3z2

2 + 2z2
1z2

)
.

2. Let G be the dihedral group D5 (see Example 2c). Then

PG(z1, z2, z3, z4, z5) =
1

10

(
z5
1 + 4z5 + 5z1z

2
2

)
.

3. It can be checked that the cycle index polynomial of the permutation group induced on the

set of vertices, edges and faces obtained by the rotations of the cube are respectively,

PG(z1, z2, . . . , z8) =
1

24

(
z8
1 + 6z2

4 + 9z4
2 + 8z2

1z
2
3

)

PG(z1, z2, . . . , z12) =
1

24

(
z12
1 + 6z3

4 + 3z6
2 + 8z4

3 + 6z2
1z

5
2

)

PG(z1, z2, . . . , z6) =
1

24

(
z6
1 + 6z2

1z4 + 3z2
1z

2
2 + 6z3

2 + 8z2
3

)

6.A Applications

Let X be a geometrical figure and let Y be the finite set of points of X which is of interest to us.

Also, let C be a finite set (say, of colours). Let Ω = {f : f is a function from Y to C}. Observe

that an element of Ω gives a colour pattern. Let G be a subgroup of the group of permutations
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of the figure X. Then G acts of Ω, the colour patterns of X by the following rule:

Fix an element x ∈ Y . Then for each φ ∈ Ω and g ∈ G, we define

(g ⋆ φ)(x) := g
(
φ(x)

)
= φ(g−1(x)).

Then it can be easily checked that g ⋆φ ∈ Ω and with the above notations, we have the following

theorem.

Theorem 3.6.3 Let C, X, Y and Ω be as defined above. Also, let G be a subgroup of the group

of permutations of the figure X acting on the elements of Ω. Then the number of distinct colour

patterns (distinct elements of Ω) is given by

PG(|C|, |C|, . . . , |C|).

Proof. Let |Y | = n. Then observe that G is a subgroup of Sn. So, each g ∈ G can be written

as a product of disjoint cycles. Also, by Burnside’s Lemma 3.5.12, the number of distinct colour

patterns (distinct orbits under the action of G) is
1

|G|
∑

g∈G

|Fg|, where

Fg = { φ ∈ ω : g(φ(x)) = φ(x) for all x ∈ Y } = { φ ∈ ω : g(φ) = φ}.

We claim that g ∈ G fixes a colour pattern (or an element of Ω) if and only if φ colours the

elements in a given cycle of g with the same colour.

Suppose that g ⋆ φ = φ. That is, g(φ(x)) = φ(x) for all x ∈ X. So, by definition of the

action on the colour patterns, we have

φ
(
g−1(x)

)
= φ(x) for all x ∈ X.

In particular, for a fixed y ∈ X, we get

φ(y) = φ
(
g(y)

)
= φ

(
g2(y)

)
= · · · .

Note that for each fixed y ∈ X, the permutation (y, g(y), g2(y), . . .) gives a cycle of g. Therefore,

if g fixes a colour pattern φ, then φ assigns the same colour to each element of any cycle of g.

Conversely, if φ is such that every point in a given cycle of g is coloured with the same

colour, then x and g−1(x) have the same colour for each x ∈ X. That is, φ(x) = φ
(
g−1(x)

)
for

all x ∈ X. Or equivalently, g ⋆ φ = φ. Hence g fixes the colour pattern φ. Thus the proof of the

claim is complete.

Hence, |Fg| = |C|ℓ1(g) · |C|ℓ2(g) · · · |C|ℓn(g), where for each k, 1 ≤ k ≤ n, ℓk(g) denotes the

number of cycles of g of length k.
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Example 3.6.4 1. Suppose we are interested in finding our the number of distinct colour

patterns, when a pentagon is coloured with 3 colours. Then the group D5 acts on the colour

patterns and the cycle index polynomial of D5 is PG(z1, z2, . . . , z5) =
1

|D5|
(z5

1+4z5+5z1z
2
2).

Thus by Theorem 3.6.3, the number of distinct patterns is

1

10
(35 + 4 · 3 + 5 · 3 · 32) = 39.

2. Suppose we have a necklace consisting of 6 beads and we are allowed to chose the beads from

three diffrent colours. Then to get the number of distinct necklaces, we note that the group

D6 acts on the colour patterns and the cycle index polynomial of D6 is PG(z1, z2, . . . , z5, z6) =
1

|D6|
(z6

1 + 2z6 + 2z2
3 + z3

2 + 3z3
2 + 3z2

1z
2
2). Thus by Theorem 3.6.3, the number of distinct

patterns is
1

12
(36 + 2 · 3 + 2 · 32 + 4 · 33 + 3 · 32 · 32) = 92.

6.B Polya’s Inventory Polynomial

In this section, we generalise the above ideas so that we can count the number of necklaces

having n beads with the restriction that the number of beads of of each colour may be strictly

less than n. To do this, with each element of C, we assign a weight to each colour pattern.

This weight may be a number, a variable or in general, an element of a commutative ring with

identity. So, we again have the same setup. That is, we still have a subgroup G of a group

of permutations of a finite set Y , a fintie set C of colours and the set Ω consisting of colour

patterns. To start with, we have the following definitions.

Definition 3.6.5 Let A be a commutative ring with identity (the elements of A are called

weights). Let w : C−→A be a map that assigns weights to each colour. Then the weight of a

colour pattern φ : X−→C, with respect to the weight function w is given by w(φ) =
∏

x∈X

w
(
φ(x)

)
.

Fix g ∈ G. Then we have seen that g fixes a colour pattern φ ∈ Ω if and only if φ colours

the elements in a given cycle of g with the same colour. Hence, the weight of each element in a

particular cycle is the same. Therefore, all the colour patterns which belong to one and the same

orbit, under the action of G, have the same weight, we may define the weight of the pattern as

this common value. Thus, we have the following definition.

Definition 3.6.6 Suppose ∆ ⊂ Ω is an orbit under the action of a group G. Then the weight

of ∆, denoted w(∆), is defined to be equal to w(φ) for any φ ∈ ∆.

Example 3.6.7 Let X consist of the set of all six faces of a cube and let G be the group of

symmetries of the cube produced by rotations. Let C consist of two colours ‘Red’ and ‘Blue’. We

assign the weight R to the Red colour and B to the Blue colour. Then we have the following:
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1. if all faces are coloured Blue, the corresponding weight is B6,

2. if two opposite faces are coloured Red and the other four faces are coloured Blue, then the

corresponding weight is R2B4,

3. if two adjacent faces are coloured Red and the other four faces are coloured Blue, then the

corresponding weight is R2B4,

4. if three faces meeting at a vertex are coloured Red and the other three faces meeting at the

opposite vertex are coloured Blue, then the corresponding weight is R3B3,

5. if three arbitrary faces are coloured Red and the other three faces are coloured Blue, then

the corresponding weight is R3B3.

The above examples indicate that different colour patterns need not have different weights.

We also define the following.

Definition 3.6.8 The pattern inventory, I under the action of the group G on the colour pat-

terns, Ω, with respect to the weight function w, is the sum of the weights of the orbits. That is,

I =
∑

∆

w(∆), where the sum runs over all distinct orbits ∆ obtained by the action of G on Ω.

With the above definitons, we are ready to prove the Polya’s Enumeration Theorem. To do so,

we first need to prove the weighted Burnside’s Lemma. This Lemma is the weighted version of

the Burnside’s Lemma 3.5.12.

Lemma 3.6.9 With the definition and notations as above,

I =
∑

∆

w(∆) =
1

|G|
∑

g∈G

∑

φ∈Ω

g(φ)=φ

w(φ)

where the summation runs over distinct orbits under the action of G.

Proof. As G acts on Ω, for each α ∈ Ω, by Lemma 3.5.7 |Gα| · |O(α)| = |G|. So, for each φ ∈ ∆,

|Gφ| · |∆| = |G|. As w(∆) = w(φ) for all φ ∈ ∆, we have

w(∆) = w(φ) =
1

|∆|
∑

φ∈∆

w(φ) =
∑

φ∈∆

|Gφ|
|G| w(φ) =

1

|G|
∑

φ∈∆

|Gφ| · w(φ).
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Thus, using the fact that
∑

φ∈Ω

w(φ) =
∑

φ∈Ω

∑

g∈G

g(φ)=φ

w(φ) =
∑

g∈G

∑

φ∈Ω

g(φ)=φ

w(φ), we get

I =
∑

∆

w(∆) =
∑

∆

1

|G|
∑

φ∈∆

|Gφ| · w(φ)

=
1

|G|
∑

∆

∑

φ∈∆

|Gφ| · w(φ) =
1

|G|
∑

φ∈Ω

|Gφ| · w(φ)

=
1

|G|
∑

φ∈Ω

∑

g∈G

g(φ)=φ

w(φ) =
1

|G|
∑

g∈G

∑

φ∈Ω

g(φ)=φ

w(φ).

We are now in a position to prove the Polya’s Enumerateion Theorem.

Theorem 3.6.10 (Polya’s Enumeration Theorem) With the definition and notations as

above,

I =
∑

∆

w(∆) = PG(x1, x2, . . . , xn),

where the summation runs over distinct orbits under the action of G and xi =
∑

c∈C

w(c)i, is the

ith power sum of the weights of the colours.

Proof. From the weighted Burnside Lemma 3.6.9, we need to prove that

∑

g∈G

∑

φ∈Ω

g(φ)=φ

w(φ) =
∑

g∈G

∑

φ∈Fg

w(φ) =
∑

g∈G

x
ℓ1(g)
1 x

ℓ2(g)
2 · · ·xℓn(g)

n ,

where ℓi(g) is the number of cycles g whose length equals i. It was shown (see the first paragraph

in the proof of Theorem 3.6.3) that Fg consists precisely of those colour schemes which colour

each cycle of g with just one colour. Now, we determine the weight of such a colour pattern. To

do so, suppose a fixed element g ∈ G consists of t cycles. Note that for 1 ≤ i ≤ t, if Xi denotes

the set that contains the numbers in the ith cycle of g, then X1, X2, . . . , Xt defines a partition

of X. So, for any φ ∈ Fg, observe that w(φ(x)) = w(φ(g(x)), as x and g(x) belong to the same

cycle of g. Thus,

w(φ) =
∏

x∈X

w(φ(x)) =
t∏

i=1

∏

x∈Xi

w(φ(x)) =
t∏

i=1

w(φ(si))
|Xi|
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where si ∈ Xi. Hence, using the fact that each g ∈ G has ℓk(g) cycles of length k, 1 ≤ k ≤ n,

we have

∑

φ∈Fg

w(φ) =
∑

c1,c2,...,ct

ci∈C

t∏

i=1

w(ci)
|Xi|

=

(
∑

c∈C

w(c)|X1|

)(
∑

c∈C

w(c)|X2|

)

· · ·
(
∑

c∈C

w(c)|Xt|

)

=
n∏

k=1

(
∑

c∈C

w(c)k

)ℓk(g)

=
n∏

k=1

x
ℓk(g)
k .

Thus we have obtained the required result.

Example 3.6.11 1. Consider a necklace consisting of 6 beads that needs to be coloured with

3 colours, say R, B and G. Determine the number of necklaces that have at least one R

bead? How many of the necklaces have three R, two B and one G bead?

Solution: Recall that the cycle index polynomial of D6 (the group that acts on a hexagon)

is

P (z1, z2, . . . , z6) =
1

12
(z6

1 + 4z3
2 + 2z2

3 + 2z6 + 3z2
1z

2
2).

So, for the first part, we are looking at unlimited supply of B and G but at least one R.

So, we define the weight of the colour R as x and that of B and G as 1. Thus, by Polya’s

Enumerateion Theorem 3.6.10,

I =
1

12

(
(x + 1 + 1)6 + 4(x2 + 1 + 1)3 + 2(x3 + 1 + 1)2

+2(x6 + 1 + 1) + 3(x + 1 + 1)2(x2 + 1 + 1)2
)

= x6 + 2x5 + 9x4 + 16x3 + 29x2 + 20x + 15.

So, the required answer is 1 + 2 + 9 + 16 + 29 + 20 = 77.

For the second part, we define the weights as R, B and G itself. So, we need to find the

coefficient of R3B2G in

I =
1

12

(
(R + B + G)6 + 4(R2 + B2 + G2)3 + 2(R3 + B3 + G3)2

+2(R6 + B6 + G6) + 3(R + B + G)2(R2 + B2 + G2)2
)
.

So, the required answer is

1

12

((
6

3, 2, 1

)

+ 3 · 2 · 2
)

=
1

12

(
6!

3!2!
+ 6

)

= 6.
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We end this chapter with a few Exercises. But before doeing so, we give the following

example with which Polya started his classic paper on this subject.

Example 3.6.12 Suppose we are given 6 similar spheres in three different colours, say, three

Red, two Blue and one Yellow (spheres of the same colour being indistinguishable). In how many

ways can we distribute the six spheres on the 6 vertices of an octahedron freely movable in space?

Solution: Here X = {1, 2, 3, 4, 5, 6} and C = {R, B, Y }. Use Example 4 on Page 44 to obtain

the cycle structure of the symmetric group of the octahedron acting on the vertices. Hence or

otherwise show that the cycle index polynomial is given by

1

24

(
z6
1 + 6z2

1z4 + 3z2
1z

2
2 + 8z2

3 + 6z3
2

)
.

Hence, the number of patterns of the required type is the coefficient of the term R3B2Y in

I =
1

24

(
(R + B + Y )6 + 6(R + B + Y )2(R4 + B4 + Y 4) + 3(R + B + Y )2(R2 + B2 + Y 2)2

+8(R3 + B3 + Y 3)2 + 6(R2 + B2 + Y 2)3
)
.

Check that the coefficient is 3.

Exercise 3.6.13 1. Three black and three white beads are strung together to form a necklace,

which can be rotated and turned over. Assuming that the beads of the same colour are

indistinguishable, how many different necklace patterns can be made?

2. Suppose we are colouring the edges of a regular tetrahedron with two colours white and

black. Then determine the number of patterns that have exactly four black edges and two

white edges.

3. The molecules of methane CH4 consists of a Carbon atom at the center of a regular tetra-

hedron (see Figure 3.4), bonded to each of four Hydrogen atoms at the vertices. Suppose

each Hydrogen atom can either be replaced by an atom of Flourine, Chlorine or Bromine.

Then how many essentially different compounds can be produced?

4. In essentially how many different ways can we colour the vertices of a cube if n colours

are available?

5. How many distinct chemical compounds are possible using 6 Carbon atome, 3 Hydrogen

and 3 Chlorine atoms? Note that these compounds are represented by the chemical formula

C6H3Cl3. For example two such compounds are given in Figure 6.

6. Count the number of distinct colouring of the binary tree given in Figure 6 with 2 colours

if we assume that the left and right configurations are indistinguishable.
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C

C

C

C

C

C

H

H

H Cl

Cl

Cl

C

C

C

C

C

C

H

Cl

H Cl

H

Cl

Two Distinct Configurations of C6H3Cl3

1

2 3

4 75 6

A Binary Tree on 7 Vertices

7. Suppose that we have an unlimited supply of balls of n different colours. Also assume that

p is a prime. Determine the number of distinct configurations that are possible if we place

p balls on a circle. Recall that Fermat’s Little Theorem states that p divides np − n. Does

the above answer give another proof of Fermat’s Little Theorem? Explain.



Chapter 4

Generating Functions and Its

Applications

1 Formal Power Series

In this chapter, we will try to get closed form expressions for some known recurrence relations.

To do so, we first recall from Page 23 that the binomial coefficients,
(
n
k

)
are also defined for

all n ∈ Q and k ∈ Z, k ≥ 0. We also define the concept of “formal power series” and study its

properties.

Definition 4.1.1 An expression of the form f(x) =
∑

n≥0
anxn is called a formal power series.

The number a0 is called the constant term of the series and an for n ≥ 1 is called the coefficient

of xn.

The set of all formal power series in the indeterminate x, will be denoted by P(x). We just

think of them as algebraic expressions. We do not intend to evaluate the series for any value of

x. In case, there is a need to evaluate the series, we will need to look at the notion of “radius

of convergence” of a power series. In this chapter, our main aim is manupulate the series by

means of algebraic rules. Before defining the algebraic rules, we need the following definition.

Definition 4.1.2 Two elements f(x) =
∑

n≥0
anxn and g(x) =

∑

n≥0
bnxn of P(x) are said to be

equal if an = bn for all n ≥ 0.

We are now ready to define the algebraic rules:

Definition 4.1.3 1. Let f(x) =
∑

n≥0
anxn and g(x) =

∑

n≥0
bnxn be two elements of P(x). We

67
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define their sum/addition by

f(x) + g(x) =
∑

n≥0

anxn +
∑

n≥0

nnxn =
∑

n≥0

(an + bn)xn.

2. Let f(x) =
∑

n≥0
anxn and g(x) =

∑

n≥0
bnxn be two elements of P(x). We define their product

by

f(x) · g(x) =




∑

n≥0

anxn



 ·




∑

n≥0

nnxn



 =
∑

n≥0

cnxn, where cn =

n∑

k=0

akbn−k for n ≥ 0.

This product is also called the Cauchy product.

Remark 4.1.4 Note that the expression eex−1 is defined where as the expression eex

is not

defined.

Thus, under the algebraic operations defined above, it can be checked that the set P(x) forms

a Commutative Ring with identity, where the identity element is given by the formal power series

f(x) = 1. In this ring, the element f(x) =
∑

n≥0
anxn is said to have a reciprocal if there exists

another element g(x) =
∑

n≥0
bnxn such that f(x) · g(x) = 1.

In case, f(x) · g(x) = 1, it does not mean that f(x) and g(x) as functions are inverse of each

other. For them to be the inverse of each other, we need (f ◦ g)(x) = f(g(x)) = g(f(x)) =

(g ◦ f)(x) = x. So, the questions arises, when can we talk about the reciprocal and inverse of

an element f(x) ∈ P(x). The answer to these questions are given in the following propositions.

Proposition 4.1.5 Let f(x) =
∑

n≥0
anxn ∈ P(x).

1. Then there exists g(x) ∈ P(x) satisfying f(x) · g(x) = 1 if and only if a0 6= 0.

2. Then there exists g(x) ∈ P(x) satisfying (f ◦ g)(x) = f(g(x)) = x if and only if either

f(x) is a polynomial or a0 = 0 and a1 6= 0.

We now define the formal differentiation and integration of elements of P(x).

Definition 4.1.6 Let f(x) =
∑

n≥0
anxn ∈ P(x).

1. We define the formal differentiation of f(x), denoted Df(x) by

Df(x) = a1 + 2a2x + · · · + nanxn−1 + · · · =
∑

n≥1

nanxn−1.
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2. We define the formal integration of f(x), denoted Intf(x) dx by

Intf(x) dx = a0x + a1
x2

2
+ · · · + an

xn+1

n + 1
+ · · · =

∑

n≥0

an
xn+1

n + 1
.

With the definitions as above the following proposition can be easily proved. So, we omit

the proof.

Proposition 4.1.7 Let f(x) =
∑

n≥0
anxn ∈ P(x). Then

1. f(x) = a0, a constant, whenever Df(x) = 0.

2. f(x) = a0e
x, whenever Df(x) = f(x).

Before proceeding further, let us look at some important examples.

Example 4.1.8 1. Consider
∑

n≥0
xn ∈ P(x). We denote this element by

1

1 − x
. That is, the

coefficient of xn in
1

1 − x
, denoted [xn]

1

1 − x
, equals 1.

2. let r be a positive integer and consider the closed form expression
1

(1 − x)r
. Then, the

coefficient of xn in
1

(1 − x)r
, denoted [xn]

1

(1 − x)r
, equals

(
n+r−1

n

)
.

3. Find a closed form expression for the element
∑

n≥0
nxn ∈ P(x).

Solution: As
1

1 − x
=
∑

n≥0
xn, we have

1

(1 − x)2
= D

(
1

1 − x

)

= D




∑

n≥0

xn



 =
∑

n≥0

nxn−1.

Thus, the closed form expression is
x

(1 − x)2
.

4. Let f(x) =
∑

n≥0
anxn ∈ P(x). Find

n∑

k=0

ak.

Solution: Recall that the Cauchy product of f(x) =
∑

n≥0
anxn and g(x) =

∑

n≥0
bnxn is given

by f(x) · g(x) =
∑

n≥0
cnxn, where cn =

n∑

k=0

akbn−k for n ≥ 0.

So, to get cn =
n∑

k=0

ak, we need bk = 1 for all k ≥ 0. That is, cn is the coefficient of xn in

the product f(x) · 1

1 − x
.
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5. Find the sum of the squares of the first N positive integers.

Solution: From Example 4.1.8.2, observe that k = [xk−1]

(
1

(1 − x)2

)

. So, by Exam-

ple 4.1.8.4

N∑

k=1

k = [xN−1]

(
1

(1 − x)2
· 1

1 − x

)

=

(
N − 1 + 3 − 1

N − 1

)

=
N(N + 1)

2
.

6. Find a closed form expression for
N∑

k=1

k2.

Solution: From Example 4.1.8.3, observe that
∑

k≥0

kxk =
x

(1 − x)2
. So,

∑

k≥0

k2xk = xD

(
x

(1 − x)2

)

=
x(1 + x)

(1 − x)3
. (4.1.1)

Thus, by Example 4.1.8.4

N∑

k=1

k2 = [xN ]

(
x(1 + x)

(1 − x)3
· 1

1 − x

)

= [xN−1]

(
1

(1 − x)4

)

+ [xN−2]

(
1

(1 − x)4

)

=

(
N − 1 + 4 − 1

N − 1

)

+

(
N − 2 + 4 − 1

N − 2

)

=
N(N + 1)(2N + 1)

6
.

7. Find a closed form expression for
N∑

k=1

k3.

Solution: From (4.1.1), observe that
∑

k≥0

k2xk =
x(1 + x)

(1 − x)3
. So,

∑

k≥0

k3xk = xD

(
x(1 + x)

(1 − x)3

)

=
x(1 + 4x + x2)

(1 − x)4
.

Thus, by Example 4.1.8.4

N∑

k=1

k3 = [xN ]

(
x(1 + 4x + x2

(1 − x)4)
· 1

1 − x

)

= [xN−1]

(
1

(1 − x)5

)

+ [xN−2]

(
4

(1 − x)5

)

+ [xN−3]

(
1

(1 − x)5

)

=

(
N − 1 + 5 − 1

N − 1

)

+ 4

(
N − 2 + 5 − 1

N − 2

)

+

(
N − 3 + 5 − 1

N − 3

)

=

(
N(N + 1)

2

)2

.
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Hence, we observe that we can inductively use this technique to get a closed form expression

for
N∑

k=1

kr for any positive integer r.

8. Find a closed form expression for
∑

n≥0

n2 + n + 6

n!
.

Solution: Observe that in this example, we are looking at an infinite sum. So, we cannot

use Cauchy product to solve this problem. Also, we need to talk about the convergence of

the series. Therefore, we recall that the series ex =
∑

n≥0

xn

n!
converges for all x ∈ R.

Now, we note that

n

n!
= [xn] (xDex) = [xn] (xex) , and

n2

n!
= [xn] (xDxex) = [xn]

(
(x + x2)ex

)
.

Thus,
∑

n≥0

n2 + n + 6

n!
= (x + x2)ex + xex + 6ex

∣
∣
∣
∣
x=1

= 9e.

9. For two positive integers n and r, find the number of non-negative integer solutions to the

system x1 + 2x2 + · · · + nxn = r?

Solution: Note that the given system can be rewritten as

xr = xx1+2x2+···+nxn = xx1 · x2x2 · · ·xnxn

with the condition that the xk’s are non-negative integers. Also, we know that for each

k, 1 lek ≤ n, xkxk is a term in the expression

1

1 − xk
=
∑

i≥0

xki.

Hence, we are interested in computing the coefficient of xr in

1

(1 − x)(1 − x2) · · · (1 − xn)
.

10. For two positive integers n and r, find the number of non-negative integer solutions to the

system x1 + 2x2 + · · · + nxn ≤ r?

Solution: By Example 4.1.8.9 and Example 4.1.8.4, observe that we need to compute the

coefficient of xr in
1

(1 − x)(1 − x2) · · · (1 − xn)
· 1

1 − x
.

We now look at some of the examples, in which it may be difficult to get a closed form

expression for the numbers that we are interested in. But one can use the package MATHE-

MATICA to obtain the answer. So, in the examples that we give below, we are interested in

getting a formal power series and then its coefficients give the answer to the questions raised.
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Example 4.1.9 1. Show that
N∑

k=1

1

k
equals the coefficient of xN in

1

1 − x
· ln
(

1

1 − x

)

.

Solution: Observe that, we need to compute
1

k
as the coefficient of a formal power series

and then use the Cauchy product formula (see Example 4). Now

1

k
= [xk]




∑

n≥1

xn

n



 = [xk]

(

Int
1

1 − x

)

= [xk]

(

ln

(
1

1 − x

))

.

Thus, the result follows.

2. How many non-negative integer solutions are there to the system x1 + x2 + · · · + x5 = n

such that x1 ≥ 4, x4 ≤ 10 and for r 6= 1, 4, xr is a multiple of r.

Solution: Note that the condition x1 ≥ 4 corresponds to looking at xk for k ≥ 4. That

is, the conditin x1 ≥ 4 gives us the formal power series
∑

k≥4

xk. Similarly, x4 ≤ 10 gives

the formal power series
10∑

k=0

xk and the condition xr is a multiple of r, for r 6= 1, 4, gives

the formal power series
∑

k≥0

xrk. So, we are interested in computing the coefficient of xn

in the product




∑

k≥4

xk



·
(

10∑

k=0

xk

)

·




∑

k≥0

x2k



·




∑

k≥0

x3k



·




∑

k≥0

x5k



 =
x4(1 − x11)

(1 − x)2(1 − x2)(1 − x3)(1 − x5)
.

3. In how many ways 100 voters cast their 100 votes for 10 candidates such that no candidate

gets more than 20 votes.

Solution: Note that we are assuming that the voters are identical. So, we need to solve the

system in non-negative integers to the system x1 + x2 + · · · + x10 = 100, with 0 ≤ xi ≤ 20

for 1 ≤ i ≤ 10. So, we need to find the coefficient of x100 in

(
20∑

k=1

xk

)10

=
(1 − x21)10

(1 − x)10
=

(
10∑

i=0

(−1)i

(
10

i

)

x21i

)

·




∑

j≥0

(
10 + j − 1

j

)

xj





=
4∑

i=0

(−1)i

(
10

i

)

·
(

109 − 21i

9

)

.

Exercise 4.1.10 For fixed positive integers m, n, and r, give reasons to prove that the following

problems are equivalent?

1. How many non-negative integer solutions are there to the system

x1 + x2 + · · · + xn = r with m ≤ xi ≤ 2m?
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2. How many ways are there to put r indistinguishable balls into n distinguishable boxes so

that the number of balls in each box any number between m and 2m (endpoints included)?

3. What is the coefficient of xr in the formal power series
xmn (1 − xm+1)n

(1 − x)n
?

We now look at the applications of generating functions/formal power series to the solution

of recurrence relations.

2 Recurrence Relation

We demonstrate the applications using the following examples.

Example 4.2.1 1. Determine a formula for the numbers a(n)’s, where a(n)’s satisfy the

following recurrence relation:

a(n) = 3a(n − 1) + 2n, for n ≥ 1 with a(0) = 1. (4.2.1)

Solution: Define A(x) =
∑

n≥0
a(n)xn. Then using the recurrence relation, we have

A(x) =
∑

n≥0

a(n)xn =
∑

n≥1

(3a(n − 1) + 2n)xn + 1

= 3x
∑

n≥1

a(n − 1)xn−1 + 2
∑

n≥1

nxn + 1 = 3xA(x) + 2
x

(1 − x)2
+ 1.

So, A(x) =
1 + x2

(1 − 3x)(1 − x)2
=

5

2(1 − 3x)
− 1

2(1 − x)
− 1

(1 − x)2
. Thus,

a(n) = [xn]A(x) =
5

2
3n − 1

2
− (n + 1) =

5 · 3n − 1

2
− (n + 1).

2. Determine a generating function for the numbers f(n) that satisfy the recurrence relation

f(n) = f(n − 1) + f(n − 2), for n ≥ 2 with f(0) = 1 and f(1) = 1. (4.2.2)

Hence or otherwise find a formula for the numbers f(n).

Solution: Define F (x) =
∑

n≥0
f(n)xn. Then using the recurrence relation, we have

F (x) =
∑

n≥0

f(n)xn =
∑

n≥2

(f(n − 1) + f(n − 2)) xn + 1 + x

= x
∑

n≥2

f(n − 1)xn−1 + x2
∑

n≥2

f(n − 2)xn−2 + 1 + x = xF (x) + x2F (x) + 1.
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So,

F (x) =
1

1 − x − x2
.

Let α =
1 +

√
5

2
and β =

1 −
√

5

2
. Then it can be checked that (1−αx)(1−βx) = 1−x−x2

and

F (x) =
1√
5

(
α

1 − αx
− β

1 − βx

)

=
1√
5




∑

n≥0

αn+1xn −
∑

n≥0

βn+1xn



 .

Therefore,

f(n) = [xn]F (x) =
1√
5

∑

n≥0

(
αn+1 − βn+1

)
.

As β < 0 and |β| < 1, we observe that

f(n) ≈ 1√
5

(

1 +
√

5

2

)n+1

.

Remark 4.2.2 The numbers f(n) for n ≥ 0 are called Fibonacci numbers. It is related

with the following problem:

Suppose a couple bought a pair of rabbits (each one year old) in the year 2001. If a pair of

rabbits start giving birth to a pair of rabbits as soon as they grow 2 years old, determine

the number of rabbits the couple will have in the year 2025.

3. Suppose n, m are non-negative integers. Determine a generating function for the numbers

f(n, m) that satisfy the recurrence relation

f(n, m) = f(n − 1, m) + f(n − 1, m − 1), (n, m) 6= (0, 0) with (4.2.3)

f(n, 0) = 1 for all n ≥ 0 and f(0, m) = 0 for all m > 0.

Hence or otherwise find a formula for the numbers f(n, m).

Solution: Before we start with the solution, note that in the above recurrence relation,

the value of m need not be ≤ n.

Method 1: Define Fn(x) =
∑

m ≥ 0f(n, m)xm. Then for n ≥ 1, the use of (4.2.3) gives

Fn(x) =
∑

m ≥ 0f(n, m)xm =
∑

m ≥ 0 (f(n − 1, m) + f(n − 1, m − 1)) xm

=
∑

m ≥ 0f(n − 1, m)xm +
∑

m ≥ 0f(n − 1, m − 1)xm

= Fn−1(x) + xFn−1(x) = (1 + x)Fn−1(x) = · · · = (1 + x)nF0(x).

As F0(x) = 1, we get Fn(x) = (1 + x)n. Hence

f(n, m) = [xm](1 + x)n =

(
n

m

)

if 0 ≤ m ≤ n and f(n, m) = 0 for m > n.
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Method 2: Define Gm(y) =
∑

n ≥ 0f(n, m)yn. Then for m ≥ 1, the use of (4.2.3) gives

Gm(y) =
∑

n ≥ 0f(n, m)yn =
∑

n ≥ 0 (f(n − 1, m) + f(n − 1, m − 1)) yn

=
∑

n ≥ 0f(n − 1, m)yn +
∑

n ≥ 0f(n − 1, m − 1)yn

= yGm(y) + yGm−1(y).

Therefore, Gm(y) =
y

1 − y
Gm−1(y). As G0(y) =

1

1 − y
, we get

Gm(y) =
ym

(1 − y)m+1
.

Hence

f(n, m) = [yn]
ym

(1 − y)m+1
= [yn−m]

1

(1 − y)m+1
=

(
n

m

)

if 0 ≤ m ≤ n and f(n, m) = 0 for m > n.

4. Suppose n, m are non-negative integers. Determine a generating function for the numbers

S(n, m) that satisfy the recurrence relation

S(n, m) = mS(n − 1, m) + S(n − 1, m − 1), (n, m) 6= (0, 0) with (4.2.4)

S(0, 0) = 1, S(n, 0) = 0 for all n > 0 and S(0, m) = 0 for all m > 0.

Hence or otherwise find a formula for the numbers S(n, m).

Solution: Define Gm(y) =
∑

n ≥ 0S(n, m)yn. Then for m ≥ 1, the use of (4.2.4) gives

Gm(y) =
∑

n ≥ 0S(n, m)yn =
∑

n ≥ 0 (mS(n − 1, m) + S(n − 1, m − 1)) yn

= m
∑

n ≥ 0S(n − 1, m)yn +
∑

n ≥ 0S(n − 1, m − 1)yn

= myGm(y) + yGm−1(y).

Therefore, Gm(y) =
ym

1 − my
Gm−1(y). As G0(y) = 1, we get

Gm(y) =
ym

(1 − y)(1 − 2y) · · · (1 − my)
= ym

m∑

k=1

αk

1 − ky
, (4.2.5)

where αk =
(−1)m−kkm

k! (m − k)!
for 1 ≤ k ≤ m. Hence

S(n, m) = [yn]

(

ym
m∑

k=1

αk

1 − ky

)

=
m∑

k=1

[yn−m]
αk

1 − ky
(4.2.6)

=
m∑

k=1

αkk
n−m =

m∑

k=1

(−1)m−kkn

k! (m − k)!
. (4.2.7)
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Or equivalently, S(n, m) =
m∑

k=1

(−1)m−k kn−1

(k − 1)! (m − k)!
. Also,

m! S(n, m) =
m∑

k=1

m!
(−1)m−k kn

k! (m − k)!
=

m∑

k=1

(−1)m−k

(
m

k

)

kn.

The above expression was already obtained earlier (see (1.1.1) and Exercise 5). This

identity is generally known as the Stirling’s Identity.

Observation:

(a) We have not considered Hn(x) =
∑

m ≥ 0S(n, m)xm. If we do so, it can be checked

that we will obtain

Hn(x) = (x + xD)n · 1 as H0(x) = 1.

Therefore, H1(x) = x, H2(x) = x+x2, · · · . From this it is difficult to obtain a general

formula for its coefficients. But we will use this to show that if n is fixed then the

numbers S(n, m) first increase and then decrease. That is, for fixed n, the sequence
{
S(n, m)

}n

m=0
is unimodal. The same holds for

{(
n
m

)}n

m=0
, the sequence of binomial

coefficients.

(b) Note that in the above recurrence relation, we have not put any restriction on the n

and m. So, the expression (4.2.6) is valid even when n < m. In this case, we know

that S(n, m) = 0. Hence, it can be checked that
m∑

k=1

(−1)m−k kn−1

(k − 1)! (m − k)!
= 0 whenever

n < m.

5. We are now ready to study “Bell Numbers”. For a positive integer n, the nth Bell number,

denoted b(n), is the number of partitions of the set {1, 2, . . . , n}. So, by definition, it

follows that b(n) =
n∑

m=1
S(n, m) for n ≥ 1 and by the convention (for Stirling Numbers),

b(0) = 1. From the above observation, we have

b(n) =
n∑

m=1

S(n, m) =
∑

m≥1

S(n, m) =
∑

m≥1

m∑

k=1

(−1)m−k kn−1

(k − 1)! (m − k)!

=
∑

k≥1

kn

k!

∑

m≥k

(−1)m−k

(m − k)!
=

1

e

∑

k≥1

kn

k!
. (4.2.8)

We will now find the exponential generating function for Bell numbers and use it to get

the recurrence relation (see Exercise 1.1.17.5). Define B(x) =
∑

n≥0
b(n)

xn

n!
. Observe that
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we need to write B(x) = 1 +
∑

n≥1
b(n)

xn

n!
as the recurrence relation for S(n, k) was valid

only when (n, k) 6= (0, 0). So,

B(x) = 1 +
∑

n≥1

b(n)
xn

n!
= 1 +

∑

n≥1




1

e

∑

k≥1

kn

k!




xn

n!

= 1 +
1

e

∑

k≥1

1

k!

∑

n≥1

kn xn

n!
= 1 +

1

e

∑

k≥1

1

k!

∑

n≥1

(kx)n

n!

= 1 +
1

e

∑

k≥1

1

k!

(

ekx − 1
)

= 1 +
1

e

∑

k≥1

(
(ex)k

k!
− 1

k!

)

= 1 +
1

e

(
eex − 1 − (e − 1)

)
= eex−1. (4.2.9)

Note that eex−1 is a valid formal power series. We are now ready to derive the recurrence

relation for b(n)’s. Taking the natural logarithm on both the sides of (4.2.9), we have

Ln




∑

n≥0

b(n)
xn

n!



 = ex − 1.

Now, we make the following sequence of operations (differentiating with respect to x, mul-

tiplying by x and cross multiplication), to obtain

∑

n≥1

n
b(n)xn

n!
= xex

∑

n≥0

b(n)
xn

n!
= x




∑

m≥0

xm

m!



 ·




∑

n≥0

b(n)
xn

n!



 .

Thus,

b(n)

(n − 1)!
= [xn]

∑

n≥1

n
b(n)xn

n!
= [xn]x




∑

m≥0

xm

m!



·




∑

n≥0

b(n)
xn

n!



 =
n−1∑

m=0

1

(n − 1 − m)!
·b(m)

m!
.

Hence, we have the required result. That is,

b(n) =
n−1∑

m=0

(
n − 1

m

)

b(m) for n ≥ 1 and b(0) = 1.

6. Determine the number of ways of arranging n pairs of parentheses (left and right) such

that at any stage the number of right parentheses is always less than or equal to the number

of left parentheses.

Solution: Recall from Page 20 that this number is the nth Catalan number. Here, we will

use recurrence relation to solve this problem. To do so, we first define the following.
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An arrangement of n pairs of parentheses (left and right) is called a valid n-arrangement

if at any stage the number of right parentheses is always less than or equal to the number

of left parentheses. A valid n-arrangement is called n-special if for each k < n, in the

first 2k stages, the number of left parentheses is strictly greater than the number of right

parentheses. Let us denote the number of valid n-arrangement by f(n) and the number of

n-special arrangements by g(n).

Claim: g(1) = 1 and for n ≥ 2, g(n) = f(n − 1).

Clearly g(1) = 1. Note that for n ≥ 2, an n-special arrangement, necessarily starts with

two left parentheses and ends with two right parentheses. So, if we remove the first left

parenthesis and the last right parenthesis, we will be left with a valid (n− 1)-arrangement.

In a similar way, if we add one left parenthesis at the beginning and a right parenthesis at

the end of a valid (n − 1)-arrangement then we will get an n-special arrangement. Thus

the proof of the claim is complete.

Consider a valid n-arrangement. Then for some k, 1 ≤ k ≤ n the first k pairs of paren-

theses will form a k-special arrangement and the remaining (n − k) pairs of parenthesis

will form a valid (n − k)-arrangement. Hence if we take f(0) = g(1) = 1, we have

f(n) =
n∑

k=1

g(k)f(n − k) =
n∑

k=1

f(k − 1)f(n − k), for n ≥ 2.

Define F (x) =
∑

n≥0
f(n)xn. Then

F (x) =
∑

n≥0

f(n)xn = 1 +
∑

n≥1

f(n)xn = 1 +
∑

n≥1

(
n∑

k=1

f(k − 1)f(n − k)

)

xn

= 1 + x




∑

k≥1

f(k − 1)xk−1
∑

n ≥ kf(n − k)xn−k





= 1 + x



F (x)
∑

k≥1

f(k − 1)xk−1



 = 1 + x (F (x))2 .

Thus, we get xF (x)2 − F (x) + 1 = 0. Hence, F (x) =
1 ±

√
1 − 4x

2x
. But the condition

F (0) = 1 implies that

F (x) =
1 −

√
1 − 4x

2x
.
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Therefore,

f(n) = [xn]F (x) =
1

2
· [xn+1]

(
1 −

√
1 − 4x

)

= −1

2
·

1

2

(
1

2
− 1

)(
1

2
− 2

)

· · ·
(

1

2
− n

)

(n + 1)!
(−4)n+1

= 2(−4)n · 1 · (−1) · (−3) · (−5) · · · (1 − 2n)

2n+1(n + 1)!
= 2n 1 · 3 · 5 · · · (2n − 1)

(n + 1)!

=
1

n + 1

(
2n

n

)

, the nth Catalan Number.

Exercise 4.2.3 1. A man at each step either climbs one stair or two stairs. Suppose the

man has to climb a staircase consiting of n stairs. Determine the number of ways in which

he can clomb the staircase.

2. Let an denote the number of sequences of length n that consist of the digits 0, 1, 2 and 3

and that do not have two consecutive appearances of 0’s.

3. Suppose a person has n rupees. The person can either buy a toffee worth 1 rupee or a

chocolate worth 2 rupees or an icecream worth 3 rupees. Determine the number of ways in

which he can spend n rupees.

4. Let f(n, k) denote the number of k-element subsets that can be selected from the set

{1, 2, . . . , n} and that do not contain two consecutive integers. Find a recurrence relation

for f(n, k)’s and hence determine the value of f(n, k). = f(n − 1, k) + f(n − 2, k − 1) =
n

n − k

(
n−k+1

k

)
. Recall that this problem also appeared in Miscellaneous Exercises on Page 15

in a different form.

5. Suppose the numbers {1, 2, . . . , n} are arranged in a round table. Let g(n, k) denote the

number of k-element subsets that can be selected from this round table with the condition

that no two consecutive integers appear. Find a recurrence relation for g(n, k)’s and hence

determine the value of g(n, k). = f(n − 1, k) + f(n − 3, k − 1) =
n

n − k

(
n−k

k

)
.

3 Applications of Generating Functions

We will now use the ideas learnt in the above sections to get closed form expressions for sums

arising out of binomial coefficients. To do so, we will need to recall the following important

sums. The readers are requested to get proof of the identities given below.

1.
∑

k≥0

(
n
k

)
= 2n.
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2.
∑

k≥0

(
n
k

)
xk = (1 + x)n.

3.
∑

k≥−r

(
n

r+k

)
xk = x−r

∑

r+k≥0

(
n

r+k

)
xr+k = x−r(1 + x)n.

4.
∑

r≥k

(
r
k

)
xr =

xk

(1 − x)k+1
for k ≥ 0.

5.
∑

n≥0

1

n + 1

(
2n
n

)
xn =

1

2x

(
1 −

√
1 − 4x

)
.

Example 4.3.4 1. Find a closed form expression for the numbers a(n) =
∑

k≥0

(
k

n−k

)
.

Solution: Define A(x) =
∑

n≥0
a(n)xn. Then

A(x) =
∑

n≥0

a(n)xn =
∑

n≥0




∑

k≥0

(
k

n − k

)


xn

=
∑

k≥0




∑

n≥0

(
k

n − k

)

xn



 =
∑

k≥0

xk




∑

n≥k

(
k

n − k

)

xn−k





=
∑

k≥0

xk(1 + x)k =
∑

k≥0

(
x(1 + x)

)k

=
1

1 − x(1 + x)
.

Therefore, from Example 4.2.1.2, we have

a(n) = [xn]A(x) = [xn]
1

1 − x(1 + x)
= Fn, the nth Fibonacci number.

2. Find a closed form expression for the polynomials a(n, x) =
⌊n

2
⌋

∑

k=0

(
n−k

k

)
(−1)kxn−2k.
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Solution: Define A(x, y) =
∑

n≥0
a(n, x)yn. Then

A(x, y) =
∑

n≥0

a(n, x)yn =
∑

n≥0





⌊n
2
⌋

∑

k=0

(
n − k

k

)

(−1)kxn−2k



 yn

=
∑

k≥0

(−1)ky2k




∑

n≥2k

(
n − k

k

)

(xy)n−2k





=
∑

k≥0

(−1)ky2k(xy)−k




∑

t≥k

(
t

k

)

(xy)t





=
∑

k≥0

(−y2)k(xy)−k (xy)k

(1 − xy)k+1
=

1

1 − xy
·
∑

k≥0

( −y2

1 − xy

)k

=
1

1 − xy
· 1

1 − −y2

1−xy

=
1

1 − xy + y2
.

Let 1 − xy + y2 = (1 − αy)(1 − βy), where α =
x +

√
x2 − 4

2
and β =

x −
√

x2 − 4

2
.

Therefore,

a(n, x) = [yn]A(x, y) = [yn]
1

1 − xy + y2
= [yn]

1

α − β

(
α

1 − αy
− β

1 − βy

)

=
1

α − β

(
αn+1 − βn+1

)

=
1√

x2 − 4





(

x +
√

x2 − 4

2

)n+1

−
(

x −
√

x2 − 4

2

)n+1


 .

As α and β are the roots of the equation y2 − xy + 1 = 0, we get α2 = αx − 1 and

β2 = βx − 1. Therefore, it can be checked that the a(n, x)’s satisfy the recurrence relation

a(n, x) = xa(n − 1, x) − a(n − 2, x), for n ≥ 2 with a(0, x) = 1, and a(1, x) = x.

This recurrence relation also appears as the characteristic polynomial of an n × n matrix

A = (aij), where aij =

{

1, if |i − j| = 1,

0, otherwise.
This matrix is the adjacency matrix of a

tree T on n vertices where the vertices are labeled v1, v2, . . . , vn and the vertex vi is adjacent

to the vertex vi+1 for 1 ≤ i ≤ n − 1. That is,

a(n, x) = det(xIn − A).

The polynomials a(n, x)’s are also called Chebyshev’s polynomial of second kind. We

will now substitute different values for x and obtain expressions in each case.
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(a) Let x = z+
1

z
. Then

√
x2 − 4 = z− 1

z
and we obtain a(n, z+ 1

z ) =
z2n+2 − 1

(z2 − 1)zn
. Hence,

we have
⌊n

2
⌋

∑

k=0

(
n−k

k

)
(−1)k

(
z + 1

z

)n−2k
=

z2n+2 − 1

(z2 − 1)zn
. Or equivalently,

⌊n
2
⌋

∑

k=0

(
n − k

k

)

(−1)k
(
z2 + 1

)n−2k
z2k =

z2n+2 − 1

z2 − 1
.

(b) Writing x in place of z2, we obtain the following identity.

⌊n
2
⌋

∑

k=0

(
n − k

k

)

(−1)k (x + 1)n−2k xk =
xn+1 − 1

x − 1
=

n∑

k=0

xk. (4.3.10)

(c) Hence, equating the coefficient of xm in (4.3.10), we have

⌊n
2
⌋

∑

k=0

(−1)k

(
n − k

k

)(
n − 2k

m − k

)

=

{

1, if 0 ≤ m ≤ n;

0, otherwise.

(d) Also, if we substitute x = 1 in (4.3.10), we get
⌊n

2
⌋

∑

k=0

(−1)k
(
n−k

k

)
2n−2k = n + 1.

Exercise 4.3.5 1. Let n be a non-negative integer. Prove the Reed Dawson’s identity

1

k + 1

∑

k≥0

(
n

k

)(
2k

k

)

(−1)k2−k =

{ (
n

n/2

)
, if n is even;

0, otherwise.

2. Let m, n ∈ N. Then prove that
∑

k≥0

(
n+k

m+2k

)(
2k
k

)(−1)k

k + 1
=
(

n−1
m−1

)
.

3. Let n be a non-negative integer. Prove that
∑

k≥0

(
n+k
2k

)
2n−k =

22n+1 + 1

3
.

4. Let m, n ∈ N. Determine whether or not the following identities are correct.

(a)
∑

k≥0

(
m
k

)
·
(
n+k
m

)
=
∑

k≥0

(
m
k

)
·
(
n
k

)
2k.

(b)
n∑

k=0

(−1)k
(
m+1

k

)(
m+n−k

m

)
=

{

1, if n = 0,

0, if n > 0.

(c)
n∑

k=m+1

(−1)k
(
n
k

)(
k−1
m

)
= (−1)m+1.

5. Determine whether or not the following statement is correct.

n∑

k=1

(−1)k+1

k

(
n

k

)

=
n∑

k=1

1

k
.

Notes: Most of the ideas for this chapter have come from book [8].



Chapter 5

Answers and Hints

1 Counting and Permutations

Answers to Questions on Page 5.

(1) 30 + 20 = 50.

(2) 3 × 2 × 3 = 18.

(3) The first place has 21 choices (there are 21 consonants), the second place has 5 choices

(there are 5 vowels) and the third and the fourth places have 26 choices each (no restric-

tion). Hence, the answer is 21 · 5 · 26 · 26.

(4) The word CAD may start at the first place or the second place and the third place. As

we need 5 letter words, there are two places left after using the places for the word CAD.

So, the number of words that have CAD are 3 · 42. So, the answer is 45 − 3 · 42.

Answers to Questions on Page 6.

( 1) This is same as looking at all functions f : {1, 2, 3}−→{a, b, . . . , z}. And therefore by

Example 1.1.1, this number is 263.

( 2) When we throw a dice, an outcome is an element of the set {1, 2, 3, 4, 5, 6}. So, the problem

reduces to “find the number of functions f : {1, 2, . . . , k}−→{1, 2, 3, 4, 5, 6}. So, the answer

is 6k.

Answers to Questions on Page 7

83
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(1) All one-one functions f : {1, 2, 3}−→{a, b, . . . , z}. So, the answer is 26 · 25 · 24 =
26 !

23 !
.

(2) All one-one functions f : {1, 2, 3}−→{c1, c2, c3, c4, c5}. So, the answer is
5 !

2 !
.

(3) All one-one functions f : {1, 2, 3, 4, 5}−→{c1, c2, c3, c4, c5}. So, the answer is 5!.

(4) All one-one functions f : {1, 2, 3, 4, 5}−→{A1, A2, A3, E4, E5}. So, the answer is 5!.

(5) As Ram and Shyam are sitting next to each other, they can be thought of as one person.

So, we need to arrange 7 people with the understanding that Ram and Shyam give rise to

2! ways for themselves. So, the answer is 2! · 7!.

Answers to Questions on Page 8

(1)
(
6
5

)
, as we are picking a subset of size 5 from a set with 6 elements.

(2)
(
8
2

)
, as we are picking a subset of size 2 from a set with 8 = 5 + 3 elements.

By another method: The two students can both be boys, or can both be girls or one

boy and one girl. So, we have
(
5
2

)
+
(
3
2

)
+
(
5
1

)
·
(
3
1

)
=
(
8
2

)
.

(3)
(
15
7

)
. Reasoning, same as that of Question 1.1.9.2.

(4)
(
11
5

)
.

(5)
(
3
1

)
·
(
4
1

)
·
(
5
1

)
.

(6) Out of the five places, choose 2 places for D’s. This can be done is
(
5
2

)
ways. At the three

positions, the letters A, B, C can be arranged in 3! ways. So, the answer is 3! ·
(
5
2

)
=

5!

2!
.

(7) Out of the five places, choose 2 places for D’s. This can be done is
(
5
2

)
ways. This also

fixes the places for A’s. Hence, the answer is
(
5
2

)
.

(8) Out of 11 places,
(
11
2

)
for the M ’s, out of the remaining 9 places,

(
9
2

)
for the A’s, out of the

remaining 7 places,
(
7
2

)
for the T ’s and the remaining 5 places for the letters C, E, H, I

and S. These 5 letters can be arranged in 5! ways. So, the answer is

5! ·
(

11

2

)

·
(

9

2

)

·
(

7

2

)

.

(9) A similar reasoning as that of Question 1.1.9.8 gives the answer as

3! ·
(

19

6

)

·
(

13

6

)

·
(

7

2

)

·
(

5

2

)

.
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(10) 210 − 1, as at least one friend has to be invited.

Answers to Questions on Page 10.

(1) Let S = {a1, a2, . . . , an}.

(a) Suppose we need to make a committee of r people. Then an is in the committee or

not. If an is in the committee then we need to choose r−1 people from the remaining

n− 1 people. If an is not in the committee then we need to choose k people from the

remaining n − 1 people to get a committee consisting of k people in which an is not

a member.

(b) Let us count all sets of the form {x, A} such that A ⊂ S, x ∈ A and |A| = k. There

are
(
n
k

)
ways of choosing the set A and then there are k choices of x. Or we can choose

x in n ways from the set S and then there are
(
n−1
k−1

)
ways of building the remaining

k − 1 elements from S − {x} to get the set A such that x ∈ A.

(c) Let us count all sets of the form {B, A} such that B ⊂ A ⊂ S, |B| = ℓ, |A| = k and

ℓ ≤ k. Now proceed as in the above exercise.

(d) Use the previous identity.

(e) A repeated application of Pascal’s identity with the observation that
(
n+1

0

)
=
(
n
0

)
.

(f) A repeated application of Pascal’s identity. Or you can try some substitution in the

above identity.

Try this yourself: Van der monde’s Identity

k∑

ℓ=0

(
n

ℓ

)(
w

k − ℓ

)

=

(
n + w

k

)

.

(2) Fix an element a ∈ X. Define a map fa : Xo−→Xe by

fa(S) =

{

S ∪ {a} if a 6∈ S

S \ {a} if a ∈ S
.

Check that fa is a bijection.

(3) Note that we are putting m distinguishable balls into n indistinguishable boxes. So, among

the n boxes, there can be exactly k boxes, k = 1, 2, . . . , n that are non-empty. So, using

Remark 1.1.14, we get the number as
n∑

k=1

S(m, k).
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(4) The direct count gives the total number of functions as nm. The indirect count looks

at the number of elements in f(M). Suppose |f(M)| = k. Then 1 ≤ k ≤ n and we

have
(
n
k

)
subsets of N of size k. Also, for each subset K of N there are k! S(m, k) onto

functions f : M−→K ⊂ N . So, the total number of functions f : M−→N is also given

by
n∑

k=1

(
n
k

)
k!S(m, k). Therefore,

nm =
n∑

k=1

(
n

k

)

k!S(m, k) =
n∑

k=0

(
n

k

)

k!S(m, k)

as S(m, 0) = 0 for m > 0. Also, the conventions S(m, k) = 0 for all k > m and
(
n
k

)
= 0 for

k > n implies that we can replace the number n in the limit of the sum by m and obtain

nm =
m∑

k=0

(
n

k

)

k!S(m, k).

Let S = {a1, a2, . . . , an} be a set consisting of n elements. Then for any k ≤ n, any

partition of S into k parts, either contains the set {an} or the element an comes with some

other element. In the first case, we need to partition the set {a1, a2, . . . , an−1} into k − 1

parts, and in the later case, we need to partition the set {a1, a2, . . . , an−1} into k parts

with the element an appearing in any of the k parts. So, the answer is

S(n, k) = S(n − 1, k − 1) + kS(n − 1, k), S(n, 1) = 1 and S(n, n) = 1.

(5) Consider the set {1, 2, . . . , n}. The element n appears in the partition with some k elements

of the above set for k = 0, 1, . . . , n−1. These k elements can be chosen in
(
n−1

k

)
ways. Also,

for any such subset K of {1, 2, . . . , n}, and a partition P of the set {1, 2, . . . , n}\(K∪{n}),
we get a partition of the set {1, 2, . . . , n}, consisting of P, K ∪ {n}. The partition P can

be chosen independent of K in b(n − 1 − k) ways. Hence,

b(n) =
n−1∑

k=0

(
n − 1

k

)

b(n − 1 − k) =
n−1∑

k=0

(
n − 1

n − 1 − k

)

b(n − 1 − k) =
n−1∑

k=0

(
n − 1

k

)

b(k).

(6) Think of the functions as follows: Out of a1, a2, . . . , am any k of them gives a map to

{b1, b2, . . . , bn} and the remaining m − k ai’s is mapped to bn+1.

(7) Think of this as a problem about onto functions.

(8) Observe that f is idempotent implies that f is an identity function on f(N). So, let

|f(N)| = k. Clearly 1 ≤ k ≤ n. Let K be any subset of N of size k. There are
(
n
k

)
subsets

of N of size k. Then we need to consider all functions f : N −K−→K so that f(N) = K.

The total number of such functions is kn−k. Hence, the required result.
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(9)
(
7
3

)
=
(
7
4

)
.

(10)
(
n
r

)
choices to place the A’s and so, the B’s get fixed.

(11) 7! ways. Either look at all one-one functions f : {1, 2, . . . , 7}−→{b1, b2, b3, b4, g1, g2, g3}.
Or there are

(
7
4

)
ways to choose the places for boys. They can be arranged in 4! ways and

the remaining 3 places can be filled with girls in 3! ways. So, the number is 3! · 4! ·
(
7
4

)
.

(12) 7! ways.

(13) n! ways. All one-one functions f : {1, 2, . . . , n}−→{p1, p2, . . . , pn}.

(14)
(
n
r

)
. Just take a subset of size r from the set {p1, p2, . . . , pn}.

(15) Let the n distinguishable objects be the elements of the set S = {p1, p2, . . . , pn}. Now
(
n
r

)

is the number of ways of choosing a subset of size r from S.

(16) There are
(
20
5

)
ways to give the toys to the first child,

(
15
5

)
ways to give to the second

child,
(
10
5

)
ways to give to the third child and the rest to the fourth child. So, the answer

is
(
20
5

)
·
(
15
5

)
·
(
10
5

)
=

20!

5! 5! 5! 5!
.

(17)
(
18
5

)
·
(
13
6

)
=

18!

5! 6! 7!
.

(18) First observe that f is exactly k-injective if and only if |f(X)| = k. So, we need to pick

a subset k of X, say S and we want to find the number of onto functions from X to S.

Therefore, the answer is
(
n
k

)
k!S(n, k).

Answers to Questions on Page 13

(1) Suppose, we have i1 letter consisting of a’s, i2 letters consisting of b’s and so on till i26

letters consisting of z’s. Then we have to find number of solutions in non-negative integers

to the equation i1 + i2 + · · · + i26 = 4. So, the answer is
(
26+4−1

4

)
=
(
29
4

)
.

(2) As each box is supposed to be non-empty, let us put exactly one ball in each box. Then

we are left with m− (n) = m− n indistinguishable balls and they are supposed to be put

into n boxes. So, using Remark 1.2.3, the answer is
(
m−n+n−1

n−1

)
=
(
m−1
n−1

)
.

(3) Method 1: Put the consonants in any order (there are 21! ways) and choose 5 places from

the 22 places that have been generated after putting the consonants. So, the answer is

21! · 5! ·
(
22
5

)
.
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Method 2: Put the vowels in any order (there are 5! ways). Now you put any four con-

sonants after the first 4 vowels. This helps us to get over the restriction that no two

vowels are together. So, now we have to put the rest of the consonants (17 = 21 − 4) at

the 6 places generated by putting the vowels. That is, solve in non-negative integers the

equation x1 +x2 + · · ·+x6 = 17. This gives the answer as 21! · 5! ·
(
17+6−1

17

)
= 21! · 5! ·

(
22
5

)
.

(4) Put the vowels in any order (there are 5! ways). Now you put exactly two consonants

between any two vowels (so, 8 consonants have been used). This helps us to get over the

restriction. So, now we have to put the rest of the consonants (13 = 21−8) at the 6 places

generated by putting the vowels. That is, solve in non-negative integers the equation

x1 + x2 + · · · + x6 = 13. This gives the answer as 21! · 5! ·
(
13+6−1

13

)
= 21! · 5! ·

(
18
5

)
.

(5) The reason is similar to Exercise 1.2.4.4. Hence the answer is 10! · 7! ·
(
11
7

)
.

(6) There are 6! ways to seat the six persons different from Ram and Shyam. Now we have
(
7
2

)

places for Ram and Shyam. Also, 2! for arranging Ram and Shyam itself. So, the answer

is 2! · 6! ·
(
7
2

)
.

(7) The reason is similar to Exercise 1.2.4.4. Hence the answer is
10!

4! 2! 2!
· 8!

4!
·
(
11
8

)
.

(8) There is only one way to arrange the vowels in alphabetical order. Now the consonants

can be put anywhere among the 9 places created by the vowels. So, we need to solve for

non-negative integers the equation x1 +x2 + . . .+x9 = 10. So, the answer is
10!

4! 2! 2!
· ·
(
18
8

)
.

(9) Using Remark 1.2.3, the answer is
(
67+5−1

67

)
.

(10) Define yi = xi − 1 for i = 1, 2, . . . , 5. Replace xi’s in the equation by the yi’s. Then we

need to solve for non-negative integers the equation y1 +y2 + · · ·+y5 = 62. So, the answer

is
(
62+5−1

62

)
.

(11) Method 1: Let 0 ≤ k ≤ 67. Then we need to solve in non-negative integers the equation

x1 + x2 + · · · + x5 = k. So, the answer is
67∑

k=0

(
k+5−1

k

)
=
(
72
5

)
.

Method 2: The inequality can be made into an equation by solving in non-negative integers

the equation x1 + x2 + · · · + x5 + x6 = 67. So,the answer is
(
67+6−1

67

)
=
(
72
5

)
.

(12) As the order matters and the repetition is not allowed, we need to find the number of one-

one functions f : {1, 2, . . . , r}−→{1, 2, . . . , n}. So, answer is n(n−1) · · · (n− r+1) = n(r).

(13) As order matters and the repetition is allowed, we need to find the number of functions

f : {1, 2, . . . , r}−→{1, 2, . . . , n}. So, the answer is nr.
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(14) As repetition is not allowed and the order doesn’t matter, we need to look at all subsets

of size r from the set {1, 2, . . . , n}. So, the number is
(
n
r

)
.

(15) Let the distinguishable objects be 1, 2, . . . , n and let xi for 1 ≤ i ≤ n be the number

of times the object i has appeared. Then we need to solve in non-negative integers the

equation x1 + x2 + . . . + xn = r. So, the answer is
(
r+n−1

r

)
.

Answers to Questions on Page 15

(1) Note that there are 8 A’s, 2 B’s, 2 C’s, 2 D’s and 3 R’s. Let us just put the 8 A’s. Then

B’s can appear at any of the 8 places after the first A has appeared. So, we need to solve

in non-negative integers the equation x1 + x2 + · · · + x8 = 2. This gives
(
2+8−1

2

)
ways.

The rest of the letters can be arranged among themselves in
7!

2! 2! 3!
ways. Also, they

can be put anywhere among the possible 11 places. So, we need to solve in non-negative

integers the equation x1 + x2 + · · ·+ x11 = 7. This gives
(
7+11−1

7

)
ways. So, the answer is

7!

2! 2! 3!
·
(
2+8−1

2

)
·
(
7+11−1

7

)
.

(2) The first part remains the same as Exercise 2.B.1. For the other part, check that there

are
(
2+2−1

2

)
ways to get the first D preceding the first C. The D’s and C’s can be put

anywhere among the possible 11 places. So, we need to solve in non-negative integers the

equation x1 + x2 + · · · + x11 = 4. This gives
(
4+11−1

4

)
ways. Now the R’s can be put

anywhere among the possible 15 places. So, we need to solve in non-negative integers

the equation x1 + x2 + · · · + x15 = 3. This gives
(
3+15−1

3

)
ways. So, the answer is

(
2+8−1

2

)
·
(
2+2−1

2

)
·
(
4+11−1

4

)
·
(
3+15−1

3

)
.

(3) We have to find the number of solution in non-negative integers, the equation x1 + x2 +

· · ·+x5 = 60 with the restriction that x1+x2 ≤ 30 and x3 ≥ 10. As Mohan gets at least 10,

we get define x3 = y3 + 10. Also, for any r, 0 ≤ r ≤ 30, we need to solve in non-negative

integers the equation x1 + x2 = r. So, we need to solve in non-negative integers the

equation y3 +x4 +x5 = 50−r. So, the answer is
30∑

r=0

(
r+1
1

)
·
(
50−r+3−1

50−r

)
=

30∑

r=0
(r+1) ·

(
52−r

2

)
.

(4) We need to solve in non-negative integers, the equation x1 + x2 + x3 = 20 with the

restriction that x1 ≤ 10, x2 ≤ 15 and x3 ≥ 15. Observe that if 5 ≤ x1 ≤ 10, then we need

to solve in non-negative integers the equation x2 +x3 = 20−x1 ≤ 15. That is, in this case,

there is no restriction on x2 and x3 and hence the solution for this part is
10∑

r=5

(
20−r+1

1

)
.

For the part 0 ≤ x1 ≤ 4, we need to look at the solution of x2 + x3 = 20 − x1 with
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the restriction on x2 and x3 still remaining. So, in this case, the number of solutions is

15 − (5 − r) + 1 = 11 + r, 0 ≤ r ≤ 4. Therefore, the total number of solutions is

10∑

r=5

(
20 − r + 1

1

)

+
4∑

r=0

(11 + r).

(5) Method 1: First note that we can arrange the selected numbers in increasing order. Now,

we need to have at least 3 numbers ( the difference between any two of them is at least 4)

between any two of the selected numbers. So, remove 18 = 3 × 6 numbers from the list.

This leaves us with 32 numbers. So, the answer is
(
32
7

)
.

Method 2: Let the numbers be x1, x2, . . . , x7. Then x1 ≥ 1, x7 ≤ 50 and xi+1 − xi ≥ 4 for

i = 1, 2, . . . , 6. Define y1 = x1 − 1 and for i = 2, 3, . . . , 7, define yi+1 = xi+1 −xi − 4. Then

yi ≥ 0 and y1 + y2 + · · · + y7 = x7 − 25. As x7 ≤ 50, we need to solve the inequality

y1 + y2 + · · · + y7 ≤ 25.

This is same as solving in non-negative integers the equation y1 + y2 + · · ·+ y7 + y8 = 25.

So, the answer is
(
25+8−1

25

)
=
(
32
7

)
.

(6) Total number of subsets of size 10 is
(
26
10

)
. Among these, there are

(
17
10

)
that have no

consecutive letters (To put 10 letters so that we don’t have consecutive letters, we need

to place one letter between any two letters. So 9 letters are used and we are left with 17

letters to choose from). So, the answer is
(
26
10

)
−
(
17
10

)
.

We can also think of the problem as follows: Consider the set S = {1, 2, 3, . . . , 26}. We

want to find all the subsets of S of size 10 such that there is at least one pair of numbers

m, n such that m = n + 1. So, let us look at all subsets of size 10 where such a condition

is not valid. That is, if {x1 ≥ x2 ≥ · · · ≥ x10} is a subset of size 10 then xi+1 − xige2 for

i = 1, 2, . . . , 9. This problem can now be solved using the idea in Method 2 of 5 to get to

the problem “find the number of nonnegative integer solutions to the system

y1 + y2 + · · · + y10 ≤ 7.

This leads to the answer
(
17
7

)
=
(
17
10

)
.

(7) The number of elements in each set is mn.

(8) The number of elements in each set is m(n) = m(m − 1) · · · (m − n + 1).

(9) The number of elements in each set is
(
m+n−1

n

)
.
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(10) There are n distinct objects. They can be arranged in n! ways. For each such arrangement,

there are
(
n+m−1

n

)
ways of placing the objects intwo m distinct boxes. So, the total number

is n! ×
(
n+m−1

n

)
= m(m + 1) · · · (m + n − 1) := m(n).

Answers to Questions on Page 17

(1) Method 1: At a round table, 7 women can be arranged in 6! ways. The men can be

arranged among themselves in 5! ways can they can sit at any of the 7 places in
(
7
5

)
ways.

So, the answer is 6! · 5! ·
(
7
5

)
.

Method 2: At a round table, 5 men can be arranged in 4! ways. We can put 5 women

after each man to get rid of the restriction. So, we are left with 2 women to be allowed to

sit anywhere at the 5 places. So, we need to solve in non-negative integers the equation

x1 +x2 + · · ·+x5 = 2. The women in themselves can be arranged in 7! ways, so the answer

is
(
2+5−1

2

)
· 4!7! = 6! · 5! ·

(
7
5

)
.

(2) An argument similar to Exercise 3.1 gives the answer as 9! · 7! ·
(
10
7

)
.

(3) Let Ram sit at position 1. The other 6 persons (excluding Shyam) can sit in 6! ways. Now,

there are 5 positions for Shyam. So, the answer is 6! ·
(
5
1

)
= 6! · 5.

(4) Either the first person is chosen or not. If the first person is chosen then we need to choose

5 more from the remaining 25 − 3 = 22 with the restriction that no adjacent men are

chosen. So, we need to choose 5 places from 18 = 22−4 places. So, in this case the answer

is
(
18
5

)
.

If the first person is not chosen, then we need to select 6 men from 24 men with no adjacent

men being selected. That is, we need to choose 6 places from 24 − 5 = 19 places. So, in

this case the answer is
(
19
6

)
. So, overall the answer is

(
19

6

)

+

(
18

5

)

.

(5) Recall that the number of solutions in non-negative integers is in one-to-one correspondence

with “the number of arrangements of n 1’s and k +’s.”

This is in one-to-one correspondence with “the number of arrangements of n H’s and

k U ’s.” And this gives the number of lattice paths from (0, 0) to (n, k).
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2 Mathematical Induction

Answers to Questions on Page 28

(1) The result is true for n = 1. Assume the result for n = k. Then for n = k + 1, we have

1 + 2 + · · · + k + (k + 1) =
k(k + 1)

2
+ (k + 1) Use induction

=
(k + 1)(k + 2)

2
.

So, the result is true for n = k + 1. Hence the result is true for all n ∈ N by the use of

principle of mathematical induction.

(2) The result is true for n = 1. Assume the result for n = k. Then for n = k + 1, we have

1 + 3 + · · · + (2k − 1) + (2k + 1) = k2 + (2k + 1) Use induction

= (k + 1)2.

So, the result is true for n = k + 1. Hence the result is true for all n ∈ N by the use of

principle of mathematical induction.

(3) The result is true for n = 1. Assume the result for n = k. Then for n = k + 1, we have

12 + 22 + · · · + k2 + (k + 1)2 =
k(k + 1)(2k + 1)

6
+ (k + 1)2 Use induction

=
(k + 1)(k + 2)(2k + 3)

6
.

So, the result is true for n = k + 1. Hence the result is true for all n ∈ N by the use of

principle of mathematical induction.

(4) Note that (n + 1)4 − n4 = 4n3 + 6n2 + 4n + 1. So,

(n + 1)4 − 14 =
(
(n + 1)4 − n4

)
+
(
n4 − (n − 1)4

)
+ · · · + (34 − 24) + (24 − 14)

= 4
n∑

k=1

k3 + 6
n∑

k=1

k2 + 4
m∑

k=1

k + n

= 4
n∑

k=1

k3 + n(n + 1)(2n + 1) + 2n(n + 1) + n.

Therefore,

n∑

k=1

k3 =
1

4

(
(n + 1)4 − 1 − (n(n + 1)(2n + 1) + 2n(n + 1) + n)

)
=

(
n(n + 1)

2

)2

.

Now, use (n + 1)5 − n5 = 5n4 + 10n3 + 10n2 + 5n + 1 and the above method to get your

answer.
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(6) The result is true for n = 1. Assume the result for n = k. To prove the result for n = k+1.

Let S = {a1, a2, . . . , ak, ak+1}. Now note that by induction hypothesis there are exactly

2k subsets of the set {a1, a2, . . . , ak}. In all these 2k subsets, we can put ak+1 to get 2k

distinct subsets of S. So, the total number of distinct subsets is

2k + 2k = 2k+1.

So, the result is true for n = k + 1. Hence the result is true for all n ∈ N by the use of

principle of mathematical induction.

3 Pigeonhole Principle

Answers to Questions on Page 33

(1) Let n = 2m + 1. Then there are m even numbers and m + 1 odd numbers. Therefore, in

P (p) there exists at least one k such that k and p(k) have the same parity.

(2) Let xi denote the number of friends of the ith person. Clearly 1 ≤ xi ≤ n − 1 and there

are n numbers xi’s. So, at least two of them are equal.

(3 ) Partition the equilateral triangle of length 1 unit into 4 congruent equilateral triangles of

length .5 units.

(4) Out of five points, there will be three points which has the same parity for the first

component. Out of this three, there will be at least two which has the same parity for the

second component.

(5) Let g(x) = f(x) − 4. Then g(a) = g(b) = g(c) = 0. That is, x − a, x − b and x − c

divide g(x). Thus g(x) = (x − a)(x − b)(x − c)h(x) for some polynomial h(x) that has

integral coefficients. Now suppose that there is an integer m such that f(m) = 5. Then

1 = 5−4 = f(m)−4 = g(m) = (m−a)(m−b)(m−c)h(m) with m−a, m−b, m−c, h(m) ∈ Z.

That is, all the four integers are allowed to be either 1 or −1. This is not possible as a, b

and c are distinct integers.

(6) Consider the set S = {3ℓ : ℓ ∈ N}. The set S has infinite number of elements and all of

them give remainder between 0 and 2004, when divided by 2005. So, there are at least two

numbers, say 3i and 3j with i < j such that they leave the same remainder when divided

by 2005. That is, 2005 divides 3j − 3i.

(7) Note that this question is same as asking the following: there is a power of 3 which when

divided by 10000 leaves the remainder 1. Or equivalently, 10000 divides 3ℓ − 1 for some
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ℓ ∈ N. Proceed as in the above problem to get 10000 divides 3j −3i. But gcd(10000, 3) = 1

and hence 10000 divides 3j−i − 1.

(9) Make groups of two chairs that are allowed.

(10) If one of the numbers is a multiple of n, we are done. So, let us assume that none of the

elements is a multiple of n. Consider the set S = {x1, x1 +x2, . . . , x1 +x2 + · · ·+xn}. The

set S has n elements and they leave a remainder between 1 and n− 1 when divided by n.

So, two of them give the same remainder when divided by n. So, the result follows.

(11) Method 1: Note that the remainders 0, 1, 2, . . . , 2004 (when a number is divided by 2005)

can be grouped into 1003 sets as follows:

{0}, {1, 2004}, {2, 2003}, . . . , {i, 2005 − i}, . . . , {1002, 1003}.

As we have 1004 numbers and 1003 sets, two of the numbers, say xi, xj , must lie in the

same set. If the numbers are equivalent modulo 200, then xixj is divisible by 2005, else

xi + xj is divisible by 2005.

Method 2: Let the 1004 integers by x1, x2, . . . , x1004. Now consider the set S = {x1 ± xi :

i = 2, 3, . . . , 1004}. This set has 2006 numbers and there are only 2005 choices for the

remainder.

(12) Let xi denote the number of pizzas taken till the ith day. Then 1 ≤ x1 < x2 < · · · < x15 =

25 (strict inequality as at least one pizza is being taken each day). Also, x1 +4 < x2 +4 <

· · · < x15 + 4 = 29. So, we have 30 numbers and they lie between 1 and 29. Hence, at

least two of them are equal. So, there exist i and i, (i > j) such that xi = xj + 4. That

is, xi − xj = 4.

(13) The argument is similar to the above question.

(14) There are at least two numbers with the same parity.

(15) Let A = {x1, x2, . . . , x9}. Then observe that 1 is the smallest possible sum and 58 + · · ·+
65 = 492 is the largest possible sum for any proper subset of A. Also, we have 512 = 29

possible subsets of A. But then 512 > 492. So, the pigeonhole principle implies that there

will be two subsets of A which will give the same sum. These two subsets need not be

disjoint. Remove the common ones to get the result.

(16) The argument is similar to the above question.

(17) The worst case that we can think of is choosing all the even numbers. This will just give us

n numbers. So, we are forced to choose an odd number which will give the desired result.
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(18) If the average is m, then at least one of them has to be larger than or equal to m. The

reason being “if all the numbers is strictly less than m, then the average will also be strictly

less than n.

(19) Number the sectors of both the discs as 1, 2, . . . , 2n. Now fix disc A and put disc B above

disc A such that the sector numbered 1 of both the discs are one above the other. The

idea is to rotate disc B, 2n times, by an angle of
π

n
and get back to the original position.

For 1 ≤ ℓ ≤ 2n, let aℓ denote the number of matching sectors when disc B is rotated by

an angle
ℓπ

n
. Then observe that after 2n rotations, each sector of B has covered either all

the n yellow sectors of A or all the n green sectors of A exactly once. So, each sector of B

gives rise to exactly n matchings after 2n rotations. Hence a1 + a2 + · · · a2n = 2n2. Thus
a1 + a2 + · · · a2n

2n
= n. Thus the result follows.

(20) The argument is similar to the answer of Exercise 6.

(21) Each real number can be associated with tan(θ) for some θ ∈ (−π, π). Also, we can divide

this interval into 6 equal intervals and tan(A − B) = tan(A)−tan(B)
1+tan(A) tan(B) .

(22) Let the given sequence be T = {x1, x2, . . . , xn}. If one of the elements S = {x1, x1 +

x2, . . . , x1 + x2 + · · · + xn} is a multiple of n, we are done. So, let us assume that none of

the elements of S are a multiple of n. So, the remainder of these n numbers lies between

1a nd n − 1. So, two of them are equal and we get the required result.

(23a) If the whole plane is coloured with only one colour, we are done. So, assume that both

the colours have been used. Pick a point at random, which is coloured yellow. Now, take

a circle of radius 1 unit with the chosen yellow point as centre. If there is one yellow point

on the circle, we are done. If all the colours on the circle are green then there are two

points on the circle that are at a distance of 1 unit.

(23b) We know that there are two points, say A and B in the plane that have the same colour.

Use point A as the center and draw a circle of unit radius. Use the B to make a hexagon

of unit length. If the vertex adjacent to B also has the same colour, we are done. Else,

the two adjacent vertices need to have a different colour. If the vertex opposite the vertex

B also has the same colour as the two vertices that are adjacent to B, we are done. Else

this vertex is coloured the same as the vertex B and the other vertices are all coloured

differently. Now extend the segments to get an equilateral triangle of 2 units to complete

the result. (For details, See Figure 5.1.)

(23c) Consider a horizontal line segment and choose nine points at random. Then there are

5 points with the same colour, say red. Draw three lines parallel to this line and draw
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the vertical lines passing through the red vertices. Use the two colours to colour the new

vertices that are 10 in number to get the result. If two vertices on the second horizontal

line also have the colour red, we are done. So, exactly one vertex on the second horizontal

line has colour red. So, see what can be done for the third horizontal line. (For details,

See Figure 5.1.)

(24) Pick a person. He has either 3 mutual friends or 3 mutual strangers. Now look at these

four people and get the answer.

(25) Without loss of generality, assume that m, n ∈ N and n > m. Consider the numbers

m, 2m, 3m, . . . , (n − 1)m.

As m and n are coprime, check that n does not divide jm for 1 ≤ j ≤ n − 1. Also,

if there does not exist j, 1 ≤ j ≤ n − 1 such that jm ≡ 1 (mod n), then the above

n − 1 numbers when divided by n will have to lie in the n − 2 boxes corresponding to the

possible remainders 2, 3, . . . , n − 1. But then by pigeonhole principle, two of the numbers

will have the same remainder. This implies that n divides jm − im = (j − i)m for some

1 ≤ i < j ≤ n − 1. This is a contradiction as m and n are coprime and 1 < j − i < n.

Hence the result holds.

(26) Without loss of generality, assume that 0 ≤ a, b < m. Now consider the numbers

a, a + m, a + 2m, . . . , a + (n − 1)m.

Suppose there does not exist j, 0 ≤ j ≤ n − 1 such that a + jm ≡ b (mod n). Then the

above n numbers when divided by n will have to lie in the n−1 boxes corresponding to the

possible remainders 0, 1, . . . , b−1, b+1, . . . , n−1. But then by pigeonhole principle, two of

the numbers will have the same remainder. This implies that n divides jm−im = (j−i)m

for some 1 ≤ i < j ≤ n−1. This is a contradiction as m and n are coprime and 1 < j−i < n.

Hence the result holds.

(27) Yes. Consider the numbers

7, 77, 777, . . . .

These numbers when divided by 2007 leave the remainders 0, 1, 2, . . . , 2006. So, there

exists two numbers that leave the same remainder. That is, 2007 divides

77 · · · 7
︸ ︷︷ ︸

j times

− 77 · · · 7
︸ ︷︷ ︸

i times

= 77 · · · 7
︸ ︷︷ ︸

j−i times

00 · · · 0
︸ ︷︷ ︸

i times

for some j > i. But 2007 is coprime to 10t for any positive integer t. So, the result follows.
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Figure 5.1: Equilateral Triangel and Rectangle

4 Inclusion and Exclusion

Answers to Questions on Page 37

(1) Let U denote the set of all possible ways in which the students collect the umbrellas. Then

|U | = n!. For 1 ≤ i ≤ n, let Ai denote that subset of U for which the ith student doesn’t

collect his/her umbrella. Then we are interested in calculating |A1 ∩ A2 ∩ · · · ∩ An|. By

the principle of inclusion-exclusion, we need to calculate

1

|U | (|U | − S1 + S2 − S3 + · · · ) .

Check that for 1 ≤ i < j < k < · ≤ n, |Ai| = (n−1)!, |Ai∩Aj | = (n−2)!, |Ai∩Aj ∩Ak| =

(n − 3)! and so on. Hence, the required answer is

1

n!

(

n! − n · (n − 1)! +

(
n

2

)

(n − 2)! −
(

n

3

)

(n − 3)! + · · ·
)

= 1 − 1

1!
+

1

2!
− 1

3!
+ · · ·

−→ 1

e
as n −→ ∞.

(2) Let U denote the total number of placements of 30 balls into 4 distinguishable boxes and

let Ai denote that subset of U for which the ith box gets more than 10 balls. We need to

count the number of ways in which, none of the Ai’s occur. Note the following:

|U | =

(
30 + 4 − 1

4

)

, |Ai| =

(
19 + 4 − 1

4

)

, and |Ai ∩ Aj | =

(
8 + 4 − 1

4

)

.

So, the required answer is

(
30 + 4 − 1

4

)

−
(

4

1

)(
19 + 4 − 1

4

)

+

(
4

2

)(
8 + 4 − 1

4

)

.

(3) Let U denote the total number of placements of 30 balls into 10 distinguishable boxes and

let Ai denote that subset of U for which the ith box is empty. We need to determine
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|A1 ∪ A2 · · · ∪ A10|. Note the following:

|U | = 1030, |Ai| = 930, |Ai ∩ Aj | = 830, |Ai ∩ Aj ∩ Ak| = 730, and so on.

So, the required answer is

(
10

1

)

930 −
(

10

2

)

830 +

(
10

3

)

730 − · · · =
9∑

k=1

(−1)k−1

(
10

k

)

(10 − k)30.

(4) Observe that this problem is a generalisation of Problem 3. So, the answer is

n∑

k=1

(−1)k−1

(
n

k

)

(n − k)m.

(5) Observe that this problem is the complement of Problem 4. That is, if we let U denote

the total number of function f : M−→N and let Ai denote that subset of U for which

the ith element of N is not in the image, then we are interested in the calculation of “the

number of functions that belongs to none of the Ai’s”. So, the required answer is

n∑

k=0

(−1)k

(
n

k

)

(n − k)m.

(6) Observe that this problem is the same as Problem 4. Hence, the required answer is

n∑

k=0

(−1)k

(
n

k

)

(n − k)r = n!S(r, n).

(7) Observe that this problem is same as number of onto function from the set of books, 40

in number, to the set of students, 25 in number. That is, this is same as Problem 5 with

|M | = 40 and |N | = 25. So, the answer is

25∑

k=0

(−1)k

(
25

k

)

(25 − k)40.

(8) Let U denote the 10! ways of arranging the 10 given numbers and let Ai denote the

arrangement in which the number i + 1 appears immediately after i, for i = 1, 2, . . . , 9.

Then we are interested in the calculation of “none of the Ai’s appears”. So, the answer is

10! −
(

9

1

)

(10 − 1)! +

(
9

2

)

(10 − 2)! + · · · =
9∑

i=0

(
9

i

)

(10 − i)!.
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(9) Let U be the set of all 15 term sequences in the digits 0, 1, . . . , 9 and for 0 ≤ i ≤ 9

let Ai denote the sequences that do not contain the digit i. Then |U | = 1015, |Ai| =

915, |Ai ∩ Aj | = 815 and so on. So, the answer is

|A0 ∩ A2 ∩ · · · ∩ A9| =
9∑

i=1

(−1)k−1

(
10

i

)

(10 − i)15.
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Answers to Questions on Page 65

(1) 3.

(2) The cycle index polynomial is
1

12

(
z6
1 + 8z2

3 + 3z2
1z

2
2

)
. So, the required answer is 12.

(3) The cycle index polynomial is
1

12

(
z4
1 + 8z2

1z3 + 3z2
2

)
. So, the required answer is 15.

(4)
1

24

(
n8 + 17n4 + 6n2

)
.

(5) The cycle index polynomial is
1

12

(
z6
1 + 2z6 + 2z2

3 + 4z3
2 + 3z2

1z
2
2

)
. So, the required answer

is 3.

(6) The cycle index polynomial is

1

48

(
z7
1 + 7z5

1z2 + 8z4
1z3 + 6z3

1z4 + 9z3
1z

2
2 + 8z2

1z2z3 + 6z1z2z4 + 3z1z
3
2

)
.

So, the required answer is 30.

Answers to Questions on Page 82

(1) Let n be a non-negative integer. Prove the Reed Dawson’s identity

∑

k≥0

(
n

k

)(
2k

k

)

(−1)k2−k =

{ (
n

n/2

)
, if n is even;

0, otherwise.

(2) Let m, n ∈ N. Then prove that
∑

k≥0

(
n+k

m+2k

)(
2k
k

)(−1)k

k + 1
=
(

n−1
m−1

)
.

(3) Let n be a non-negative integer. Prove that
∑

k≥0

(
n+k
2k

)
2n−k =

22n+1 + 1

3
.

(4) Let m, n ∈ N. Determine whether or not the following identities are correct.

(4a)
∑

k≥0

(
m
k

)
·
(
n+k
m

)
=
∑

k≥0

(
m
k

)
·
(
n
k

)
2k.

(4b)
n∑

k=0

(−1)k
(
m+1

k

)(
m+n−k

m

)
=

{

1, if n = 0,

0, if n > 0.

(4c) Correct.

Method 1: Both of them are coefficient of xn in the expansion of
(−x)m+1

1 − x
. It follows

by calculating
∑

n≥m+1

(
n∑

k=m+1

(−1)k
(
n
k

)(
k−1
m

)

)

xn =
∑

k≥m+1

(−1)k
(
k−1
m

) ∑

n≥k

(
n
k

)
xn =
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1

1 − x

∑

t≥0

(
m+t
m

)
(

− x

1 − x

)t+m+1

=
(−x)m+1

1 − x
.

Method 2: LHS =
1∫

0

1 − (1 − x)n

x
dx =

1∫

0

1 − xn

1 − x
dx = RHS.

n∑

k=m+1

(−1)k
(
n
k

)(
k−1
m

)
= (−1)m+1.

(5) Correct.

Method 1: Both of them are coefficient of xn in the expansion of
log(1 − x)

1 − x
.

Method 2: LHS =
1∫

0

1 − (1 − x)n

x
dx =

1∫

0

1 − xn

1 − x
dx = RHS.
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