II B.Tech II Semester Supplementary Examinations, November/December 2005
 PROBABILITY THEORY \& STOCHASTIC PROCESS (Bio-Medical Engineering)

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

* $\star \star \star \star$

1. (a) Define Probability density function and obtain the relationship between probability and probability density.
(b) Consider the probability density $\mathrm{f}(\mathrm{x})=a e^{-b|x|}$ where x is a random variable Whose allowable values range from $\mathrm{x}=-\infty$ to ∞. Find
i. the CDF F (x)
ii. the relationship between a and b. and
iii. the probability that the out come x lies between 1 and 2 .

$$
[7+9]
$$

2. Two discrete random variables X and Y have joint p.m.f. given by the following

$\stackrel{\text { table }}{\mathrm{X}} \downarrow$	1	2	3
1	1/12	1/6	1/12
2	1/6	1/4	1/12
3	1/12	1/12	0

Compute the probability of each of the following events
(a) $\mathrm{X} \leq 11 / 2$
(b) XY is even
(c) Y is even given that X is even.

$$
[5+5+6]
$$

3. (a) For a function $\mathrm{Y}=\left(X-m_{x}\right) / \sigma_{x}$, prove that mean is zero $\&$ variance is 1
(b) For the joint distribution of (X, Y) given by

$$
\begin{aligned}
\mathrm{f}_{\mathrm{xy}}(\mathrm{x}, \mathrm{y}) & =\frac{1}{4 a^{2}}\left[(1+x y)\left(x^{2}-y^{2}\right],|\mathrm{x}|<=\mathrm{a},|\mathrm{y}|<=\mathrm{a}, \mathrm{a}>0\right. \\
& =0, \text { otherwise }
\end{aligned}
$$

Show that the Characteristic function of $\mathrm{X}+\mathrm{Y}$ is equal to the product of the characteristic function of $\mathrm{X} \& \mathrm{Y}$.

$$
[8+8]
$$

4. (a) State and prove properties of cross correlation function.
(b) Consider the Random process $\mathrm{x}(\mathrm{t})=\mathrm{A} \cos \left(\varpi_{0} t+\theta\right)$ where A and ϖ_{0} are real constants and θ is a random variable uniformly distributed on the interval $(0, \pi / 2)$ find the average power $P_{x x}$ in $\mathrm{x}(\mathrm{t})$.
5. Find the input auto correlation function, output autocorrelation and o/p spectral density of RC low pass filter, where the filter is subjected to a white noise of spectral density $N_{0} / 2$.
6. Write short notes on
(a) Flicker noise
(b) Partition noise
(c) Johnson's noise

$$
[5+5+6]
$$

7. (a) Derive the equation for narrow band noise and illustrate all its properties
(b) Show their noise figure F of a n / w is given by $\mathrm{F}=\frac{G o(f)}{K^{2} \operatorname{Gin}(f)}$ where $\mathrm{Go}(\mathrm{f})$, Gin(f), and K are respectively open circuited voltage, spectral density and the voltage gain of n / w.
$[10+6]$
8. (a) Consider an AWGN channel with $\mathrm{S} / \mathrm{N}=10^{4}$. Find the maximum rate for reliable information transmission when, $\mathrm{B}=1 \mathrm{KHz}, 10 \mathrm{KHz}$ and 100 KHz .
(b) The Binary Erasure Channel (BEC) has two source symbols 0 and 1, and three destination symbols 0,1 and E , where E denotes a detected but uncorrectable error. The forward transition probabilities are,

$$
\begin{array}{lrrl}
P(0 / 0)=1-\alpha & P(E / 0)=\alpha & P(1 / 0)=0 \\
P(0 / 1)=0 & P(E / 1)=\alpha & P(1 / 1)=1-\alpha
\end{array}
$$

$\mathrm{I}(\mathrm{x}, \mathrm{y})$ is maximum when source symbols are equiprobable. Find C_{s} (channel capacity) in terms of α.

$$
[6+10]
$$

II B.Tech II Semester Supplementary Examinations, November/December 2005
 PROBABILITY THEORY \& STOCHASTIC PROCESS (Bio-Medical Engineering)

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

* * * \star *

1. (a) State and prove Bayes theorem of probability.
(b) In a single throw of two dice, what is the probability of obtaining a sum of at least 10 ?
2. Two discrete random variables X and Y have joint p.m.f. given by the following

${ }^{\text {table }}$				
X				
	\downarrow	1	2	3
				Y
1	$1 / 12$	$1 / 6$	$1 / 12$	
2	$1 / 6$	$1 / 4$	$1 / 12$	
3		$1 / 12$	$1 / 12$	0

Compute the probability of each of the following events
(a) $\mathrm{X} \leq 11 / 2$
(b) XY is even
(c) Y is even given that X is even.

$$
[5+5+6]
$$

3. (a) For a function $\mathrm{Y}=\left(X-m_{x}\right) / \sigma_{x}$, prove that mean is zero \& variance is 1
(b) For the joint distribution of (X, Y) given by $\mathrm{f}_{\mathrm{xy}}(\mathrm{x}, \mathrm{y})=\frac{1}{4 a^{2}}\left[(1+x y)\left(x^{2}-y^{2}\right],|\mathrm{x}|<=\mathrm{a},|\mathrm{y}|<=\mathrm{a}, \mathrm{a}>0\right.$

$$
=0 \text {, otherwise }
$$

Show that the Characteristic function of $\mathrm{X}+\mathrm{Y}$ is equal to the product of the characteristic function of X \& Y.
4. Consider a Random binary waveform that consists of a sequence of pulses with the following properties
(a) Each pulse is of duration T_{0}
(b) Pulses are Equally likely to be ± 1
(c) All pulses are statistically independent
(d) The pulses are not synchronized, that is, the starting time T of the first pulse is Equally likely to be anywhere between 0 and Tb

Find the Auto correlation and power spectral density function of $x(t)$.
5. (a) Find the PSD of a random process $z(t)=X(t)+y(t)$ where $\mathrm{x}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$ are zero mean, individual random process.
(b) A wss random process $x(t)$ is applied to the input of an LTI system whose impulse response is $5 t . e^{-2 t}$ The mean of $x(t)$ is 3 . Find the output of the system.

$$
[8+8]
$$

6. (a) What are the causes of thermal noise?
(b) What are the causes of shot noise?

$$
[8+8]
$$

7. In TV receivers, the antenna is often mounted on a tall mask and a long lossy cable is used to connect the antenna and receiver. To overcome the effect of noisy cable, a preamplifier is mounted on the antenna. The parameters of the different stages are
Preamplifier gain

$$
=20 \mathrm{~dB}
$$

Preamplifier Noise figure $\quad=6 \mathrm{~dB}$
Lossy cable noisy figure $\quad=3 \mathrm{~dB}$
Cable Loss $\quad=-20 \mathrm{~dB}$
Receiver front end gain $\quad=60 \mathrm{~dB}$
Receiver Noise figure $\quad=16 \mathrm{~dB}$
Determine the overall noise figure of the system.
8. (a) Discuss the necessity for "Source coding".
(b) A source has an alphabet $\{\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3, \mathrm{a} 4, \mathrm{a} 5$, and a6\} with corresponding probabilities $\{0.1,0.2,0.3,0.05,0.15$, and 0.2$\}$. Find the entropy of its source. Compare the entropy with the entropy of a uniformly distributed source with same alphabet.

$$
[8+8]
$$

II B.Tech II Semester Supplementary Examinations, November/December 2005
 PROBABILITY THEORY \& STOCHASTIC PROCESS (Bio-Medical Engineering)

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

* $\star \star \star \star$

1. (a) If A and B are any events, not necessarily mutually exclusive events, derive an expression for probability of A Union B. When A and B are mutually exclusive, what happens to the above expression derived?
(b) Define the term Independent events. State the conditions for independence of
i. any two events A and B .
ii. any three events A, B and C .
(c) A coin is tossed. If it turns up heads, two balls will be drawn from box A, otherwise, two balls will be drawn from box B. Box A contains three black and five white balls. Box B contains seven black and one white balls. In both cases, selections are to be made with replacement. What is the probability that Box A is used, given that both balls drawn are black?

$$
[5+6+5]
$$

2. The Rayleigh density function is given by

$$
\begin{gathered}
\mathrm{f}(\mathrm{x})=\mathrm{xe}^{-\mathrm{x}^{2} / 2} \quad \mathrm{x} \geq 0 \\
=0 x<0
\end{gathered}
$$

(a) Prove that $\mathrm{f}(\mathrm{x})$ satisfies the properties of the p.d.f.
i. $\mathrm{f}(\mathrm{x}) \geq 0$ for all x and
ii. $\int_{\infty}^{\infty} f(x) d x=1$
(b) Find the distribution function F (x)
(c) Find $\mathrm{P}(0.5<\mathrm{x} \leq 2)$
(d) Find $P(0.5 \leq x<2)$.

$$
[2+2+4+4+4]
$$

3. (a) Given the following table

X	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{x})$	0.05	0.1	0.3	0	0.3	0.15	0.1

Find
i. $\mathrm{E}[\mathrm{X}]$
ii. $E\left[X^{2}\right]$
iii. $\mathrm{V}[\mathrm{X}]$
iv. $\mathrm{V}[2 \mathrm{x} \pm 3]$
(b) Prove that $\operatorname{cov}(\mathrm{ax}, \mathrm{by})=\mathrm{ab} \operatorname{cov}(\mathrm{x}, \mathrm{y})$

$$
[8+8]
$$

4. (a) Explain Ergodic random process
(b) State and prove properties of Auto correlation function
5. White noise $\mathrm{n}(\mathrm{t})$ with $\mathrm{G}(\mathrm{f})=\eta / 2$ is passed through a low pass RC network with a 3 dB frequency f_{c}.
(a) Find the autocorrelation $\mathrm{R}(\tau)$ of the out put noise of the network.
(b) Sketch $\mathrm{P}(\tau)=R(\tau) / R(0)$
(c) Find $\varpi_{\mathrm{c}}(\tau)$ such that $P(\tau) \leq 0.1$.

$$
[8+4+4]
$$

6. (a) What are the causes of thermal noise?
(b) What are the causes of shot noise?

$$
[8+8]
$$

7. (a) Show that the effective noise temperature of n networks in cascade is given by, $T_{e}=T_{e 1}+T_{e 2} / g_{1}+T_{e 3} / g_{1} g_{2}+\ldots \ldots \ldots \ldots \ldots \ldots+T_{e n} / g_{1} g_{2} g_{n-1}$
(b) A low noise receiver for satellite ground station consists of the following stages Antenna with $T_{i}=125 \mathrm{~K}$
Waveguide with a loss of 0.5 dB
Power amplifier with $g_{a}=30 d B, T_{e}=6 K, B_{N}=20 \mathrm{MHz}$
TWT amplifier with $g_{a}=16 d B, F=6 d B, B_{N}=20 \mathrm{MHz}$
Calculate the effective noise temperature of the system.

$$
[8+8]
$$

8. (a) A code is composed of dots and dashes. Assume that a dash is three times as long as the dot and has one-third the probability of occurrence.
Find,
i. The information in a dot and that in a dash, and
ii. The entropy in the dot - dash code.
(b) Suppose 100 voltage levels are employed to transmit 100 equally likely messages. Assume the system to be a Gaussian channel with $\lambda=3.5$ and bandwidth $\mathrm{B}=104 \mathrm{~Hz}$. Find S/N.

$$
[8+8]
$$

II B.Tech II Semester Supplementary Examinations, November/December 2005
 PROBABILITY THEORY \& STOCHASTIC PROCESS
 (Bio-Medical Engineering)

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

* * * \star *

1. (a) State and prove Bayes theorem of probability.
(b) In a single throw of two dice, what is the probability of obtaining a sum of at least 10 ?
2. Two discrete random variables X and Y have joint p.m.f. given by the following

${ }^{\text {table }}{ }^{\text {X }} \downarrow$	1	2	3	Y
				\leftarrow
1	$1 / 12$	$1 / 6$	$1 / 12$	
2	$1 / 6$	$1 / 4$	$1 / 12$	
3	$1 / 12$	$1 / 12$	0	

Compute the probability of each of the following events
(a) $\mathrm{X} \leq 11 / 2$
(b) XY is even
(c) Y is even given that X is even.

$$
[5+5+6]
$$

3. (a) Prove that the second moment of binomial distribution is given by $E\left(X^{2}\right)=(n p)^{2}+n p q$.
(b) From the nth moment of exponential distribution, determine its variance to be $1 / \alpha^{2}$, where α is a constant.

$$
[8+8]
$$

4. (a) If the auto correlation function of a wss process is $\mathrm{R}(\tau)=\mathrm{k} . e^{-k(\tau)}$, show that its spectral density is given by $S(\omega)=\frac{2}{1+\left(\frac{\omega}{k}\right)^{2}}$
(b) Find the PSD of a random process $\mathrm{x}(\mathrm{t})$ if $\mathrm{E}[\mathrm{x}(\mathrm{t})]=1$ and $R_{x x}(\tau)=1+\mathrm{e}^{-\alpha|\tau|}$

$$
[8+8]
$$

5. (a) Find the PSD of a random process $z(t)=X(t)+y(t)$ where $\mathrm{x}(\mathrm{t})$ and $\mathrm{y}(\mathrm{t})$ are zero mean, individual random process.
(b) A wss random process $x(t)$ is applied to the input of an LTI system whose impulse response is $5 t . e^{-2 t}$ The mean of $x(t)$ is 3 . Find the output of the system.

$$
[8+8]
$$

6. (a) Explain how partition noise is present in electron devices?
(b) Explain the usefulness of knowing the noise power spectral density of a network.

$$
[8+8]
$$

7. (a) Bring out the difference between narrowband and broadband noises
(b) Describe the quadrature representation of narrowband noise.

$$
[8+8]
$$

8. (a) Consider an AWGN channel with $\mathrm{S} / \mathrm{N}=10^{4}$. Find the maximum rate for reliable information transmission when, $\mathrm{B}=1 \mathrm{KHz}, 10 \mathrm{KHz}$ and 100 KHz .
(b) The Binary Erasure Channel (BEC) has two source symbols 0 and 1, and three destination symbols 0,1 and E , where E denotes a detected but uncorrectable error. The forward transition probabilities are,

$$
\begin{array}{lrr}
P(0 / 0)=1-\alpha & P(E / 0)=\alpha & P(1 / 0)=0 \\
P(0 / 1)=0 & P(E / 1)=\alpha & P(1 / 1)=1-\alpha
\end{array}
$$

$\mathrm{I}(\mathrm{x}, \mathrm{y})$ is maximum when source symbols are equiprobable. Find C_{s} (channel capacity) in terms of α.

$$
[6+10]
$$

