Set No. 1

Max Marks: 80

II B.Tech II Semester Supplementary Examinations, November/December 2005 PROBABILITY THEORY & STOCHASTIC PROCESS

(Bio-Medical Engineering)

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Define Probability density function and obtain the relationship between probability and probability density.
 - (b) Consider the probability density $f(x) = ae^{-b|x|}$ where x is a random variable Whose allowable values range from $x = -\infty to\infty$. Find
 - i. the CDF F(x)
 - ii. the relationship between a and b. and
 - iii. the probability that the out come x lies between 1 and 2.

[7+9]

2. Two discrete random variables X and Y have joint p.m.f. given by the following table

Compute the probability of each of the following events

- (a) $X \leq 11/2$
- (b) XY is even
- (c) Y is even given that X is even.

[5+5+6]

- 3. (a) For a function $Y=(X-m_x)/\sigma_x$, prove that mean is zero & variance is 1
 - (b) For the joint distribution of (X,Y) given by

$$\begin{split} f_{xy}(x,y) = & \frac{1}{4a^2} \left[(1+xy) \left(x^2 - y^2 \right], |x| <= a, |y| <= a, a > 0 \\ &= 0, \text{ otherwise} \end{split}$$

Show that the Characteristic function of X+Y is equal to the product of the characteristic function of X & Y.

[8+8]

4. (a) State and prove properties of cross correlation function.

Set No. 1

(b) Consider the Random process $\mathbf{x}(t) = \mathbf{A} \cos(\varpi_0 t + \theta)$ where A and ϖ_0 are real constants and θ is a random variable uniformly distributed on the interval $(0, \pi/2)$ find the average power P_{xx} in $\mathbf{x}(t)$.

[8+8]

- 5. Find the input auto correlation function, output autocorrelation and o/p spectral density of RC low pass filter, where the filter is subjected to a white noise of spectral density $N_0/2$.
- 6. Write short notes on
 - (a) Flicker noise
 - (b) Partition noise
 - (c) Johnson's noise

[5+5+6]

- 7. (a) Derive the equation for narrow band noise and illustrate all its properties
 - (b) Show their noise figure F of a n/w is given by $F = \frac{Go(f)}{K^2Gin(f)}$ where Go(f), Gin(f), and K are respectively open circuited voltage, spectral density and the voltage gain of n/w.

[10+6]

- 8. (a) Consider an AWGN channel with $S/N = 10^4$. Find the maximum rate for reliable information transmission when, B = 1 KHz, 10 KHz and 100 KHz.
 - (b) The Binary Erasure Channel (BEC) has two source symbols 0 and 1, and three destination symbols 0, 1 and E, where E denotes a detected but uncorrectable error. The forward transition probabilities are,

$$P(0/0) = 1 - \alpha$$
 $P(E/0) = \alpha$ $P(1/0) = 0$ $P(0/1) = 0$ $P(E/1) = \alpha$ $P(1/1) = 1 - \alpha$

I (x, y) is maximum when source symbols are equiprobable. Find C_s (channel capacity) in terms of α .

[6+10]

Set No. 2

Max Marks: 80

II B.Tech II Semester Supplementary Examinations, November/December 2005 PROBABILITY THEORY & STOCHASTIC PROCESS

(Bio-Medical Engineering)

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks

1. (a) State and prove Bayes theorem of probability.

(b) In a single throw of two dice, what is the probability of obtaining a sum of at least 10?

[8+8]

2. Two discrete random variables X and Y have joint p.m.f. given by the following table

Compute the probability of each of the following events

- (a) $X \le 1^{1/2}$
- (b) XY is even
- (c) Y is even given that X is even.

[5+5+6]

- 3. (a) For a function $Y=(X-m_x)/\sigma_x$, prove that mean is zero & variance is 1
 - (b) For the joint distribution of (X,Y) given by

$$f_{xy}(x, y) = \frac{1}{4a^2} [(1 + xy) (x^2 - y^2], |x| \le a, |y| \le a, a > 0$$

= 0, otherwise

Show that the Characteristic function of X+Y is equal to the product of the characteristic function of X & Y.

[8+8]

- 4. Consider a Random binary waveform that consists of a sequence of pulses with the following properties
 - (a) Each pulse is of duration T_0
 - (b) Pulses are Equally likely to be ± 1
 - (c) All pulses are statistically independent
 - (d) The pulses are not synchronized, that is, the starting time T of the first pulse is Equally likely to be anywhere between 0 and Tb

Set No. 2

Find the Auto correlation and power spectral density function of x(t). [8+8]

- 5. (a) Find the PSD of a random process z(t) = X(t) + y(t) where x(t) and y(t) are zero mean, individual random process.
 - (b) A wss random process x(t) is applied to the input of an LTI system whose impulse response is $5t.e^{-2t}$ The mean of x(t) is 3. Find the output of the system.

[8+8]

- 6. (a) What are the causes of thermal noise?
 - (b) What are the causes of shot noise?

[8+8]

7. In TV receivers, the antenna is often mounted on a tall mask and a long lossy cable is used to connect the antenna and receiver. To overcome the effect of noisy cable, a preamplifier is mounted on the antenna. The parameters of the different stages are

 $\begin{array}{lll} \mbox{Preamplifier gain} & = 20 \mbox{ dB} \\ \mbox{Preamplifier Noise figure} & = 6 \mbox{ dB} \\ \mbox{Lossy cable noisy figure} & = 3 \mbox{ dB} \\ \mbox{Cable Loss} & = -20 \mbox{ dB} \\ \mbox{Receiver front end gain} & = 60 \mbox{ dB} \\ \mbox{Receiver Noise figure} & = 16 \mbox{ dB} \\ \end{array}$

Determine the overall noise figure of the system. [16]

- 8. (a) Discuss the necessity for "Source coding".
 - (b) A source has an alphabet {a1, a2, a3, a4, a5, and a6} with corresponding probabilities {0.1, 0.2, 0.3, 0.05, 0.15, and 0.2}. Find the entropy of its source. Compare the entropy with the entropy of a uniformly distributed source with same alphabet.

[8+8]

II B.Tech II Semester Supplementary Examinations, November/December 2005 PROBABILITY THEORY & STOCHASTIC PROCESS (Bio-Medical Engineering)

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) If A and B are any events, not necessarily mutually exclusive events, derive an expression for probability of A Union B. When A and B are mutually exclusive, what happens to the above expression derived?
 - (b) Define the term Independent events. State the conditions for independence of
 - i. any two events A and B.
 - ii. any three events A, B and C.
 - (c) A coin is tossed. If it turns up heads, two balls will be drawn from box A, otherwise, two balls will be drawn from box B. Box A contains three black and five white balls. Box B contains seven black and one white balls. In both cases, selections are to be made with replacement. What is the probability that Box A is used, given that both balls drawn are black?

[5+6+5]

2. The Rayleigh density function is given by

$$f(x) = x e^{-x^2/2}$$
 $x \ge 0$
= 0 x < 0

- (a) Prove that f (x) satisfies the properties of the p.d.f.
 - i. $f(x) \ge 0$ for all x and
 - ii. $\int_{\infty}^{\infty} f(x) dx = 1$
- (b) Find the distribution function F (x)
- (c) Find $P(0.5 < x \le 2)$
- (d) Find $P(0.5 \le x < 2)$.

[2+2+4+4+4]

3. (a) Given the following table

X	1	2	3	4	5	6	7
P(x)	0.05	0.1	0.3	0	0.3	0.15	0.1

Find

i. E[X]

- ii. $E[X^2]$
- iii. V[X]
- iv. $V[2x \pm 3]$
- (b) Prove that cov(ax,by) = ab cov(x,y)

[8+8]

- 4. (a) Explain Ergodic random process
 - (b) State and prove properties of Auto correlation function

[8+8]

- 5. White noise n(t) with G(f) = $\eta/2$ is passed through a low pass RC network with a 3dB frequency f_c .
 - (a) Find the autocorrelation $R(\tau)$ of the out put noise of the network.
 - (b) Sketch $P(\tau) = R(\tau)/R(0)$
 - (c) Find $\varpi_{\rm c}(\tau)$ such that $P(\tau) \leq 0.1$.

[8+4+4]

- 6. (a) What are the causes of thermal noise?
 - (b) What are the causes of shot noise?

[8+8]

- 7. (a) Show that the effective noise temperature of n networks in cascade is given by, $T_e = T_{e1} + T_{e2}/g_1 + T_{e3}/g_1g_2 + \dots + T_{en}/g_1g_2g_{n-1}$
 - (b) A low noise receiver for satellite ground station consists of the following stages Antenna with $T_i=125\,\mathrm{K}$

Waveguide with a loss of 0.5dB

Power amplifier with $g_a = 30dB$, $T_e = 6K$, $B_N = 20$ MHz

TWT amplifier with $g_a = 16dB, F = 6dB, B_N = 20 \text{ MHz}$

Calculate the effective noise temperature of the system.

[8+8]

- (a) A code is composed of dots and dashes. Assume that a dash is three times as long as the dot and has one-third the probability of occurrence. Find,
 - i. The information in a dot and that in a dash, and
 - ii. The entropy in the dot dash code.
 - (b) Suppose 100 voltage levels are employed to transmit 100 equally likely messages. Assume the system to be a Gaussian channel with $\lambda = 3.5$ and bandwidth B = 104 Hz. Find S/N.

[8+8]

Set No. 4

Max Marks: 80

Code No: RR221101

II B.Tech II Semester Supplementary Examinations, November/December 2005 PROBABILITY THEORY & STOCHASTIC PROCESS

(Bio-Medical Engineering)

Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) State and prove Bayes theorem of probability.
 - (b) In a single throw of two dice, what is the probability of obtaining a sum of at least 10?

[8+8]

2. Two discrete random variables X and Y have joint p.m.f. given by the following table

Compute the probability of each of the following events

- (a) $X \le 11/2$
- (b) XY is even
- (c) Y is even given that X is even.

[5+5+6]

- 3. (a) Prove that the second moment of binomial distribution is given by $E(X^2) = (np)^2 + npq$.
 - (b) From the nth moment of exponential distribution, determine its variance to be $1/\alpha^2$, where α is a constant.

[8+8]

- 4. (a) If the auto correlation function of a wss process is $R(\tau) = k \cdot e^{-k(\tau)}$, show that its spectral density is given by $S(\omega) = \frac{2}{1+(\frac{\omega}{\tau})^2}$
 - (b) Find the PSD of a random process $\mathbf{x}(t)$ if $\mathbf{E}[\mathbf{x}(t)] = 1$ and $R_{xx}(\tau) = 1 + e^{-\alpha|\tau|}$ [8+8]
- 5. (a) Find the PSD of a random process z(t) = X(t) + y(t) where x(t) and y(t) are zero mean, individual random process.
 - (b) A wss random process x(t) is applied to the input of an LTI system whose impulse response is $5t.e^{-2t}$ The mean of x(t) is 3. Find the output of the system.

[8+8]

Set No. 4

6. (a) Explain how partition noise is present in electron devices?

(b) Explain the usefulness of knowing the noise power spectral density of a network.

[8+8]

7. (a) Bring out the difference between narrowband and broadband noises

(b) Describe the quadrature representation of narrowband noise.

[8+8]

8. (a) Consider an AWGN channel with $S/N = 10^4$. Find the maximum rate for reliable information transmission when, B = 1 KHz, 10 KHz and 100 KHz.

(b) The Binary Erasure Channel (BEC) has two source symbols 0 and 1, and three destination symbols 0, 1 and E, where E denotes a detected but uncorrectable error. The forward transition probabilities are,

$$P(0/0) = 1 - \alpha$$
 $P(E/0) = \alpha$ $P(1/0) = 0$ $P(0/1) = 0$ $P(E/1) = \alpha$ $P(1/1) = 1 - \alpha$

I (x, y) is maximum when source symbols are equiprobable. Find C_s (channel capacity) in terms of α .

[6+10]