Gujarat Technological University 2010 Diploma Hydraulics Question paper

Q.1 (a) Define

- (1) Ideal Fluid (2) Specific weight (3) Hydraulics (4) Notch (5) Viscosity 05
- (b) Convert following:
- 1 300 cm of oil (sp. Gr. 0.8) head in head of water 05
- 2 0.15 kg/cm2 vacuum pressure into absolute pressure
- (c) Explain the working of Bourden's Pressure gauge using a neat sketch 04
- Q.2 (a) A circular plate 2.5m diameter is immersed in water its greatest and lowest depth below the free surface being 3.0m and 1.0m respectively find:
- (1) Total pressure on one face of the plate
- (2) The position of centre of pressure

07

(b) Differentiate between reciprocating and centrifugal pumps. 07

OR

- (b) Write main components of centrifugal pumps and mention their purpose. 07
- Q.3 (a) State and explain the Bernoulli's equation with its assumption. 05
- (b) A venturimeter 15cm x 7.5cm used to measure the flow of an oil of sp. Gr.
- 0.9 A differential oil mercury manometer connected to inlet and throat gives reading of 17.5cm of mercury. Determine discharge through pipe in liters/sec. Assume Cd = 0.97
- (c) A jet of water issue from 25mm diameter a sharp edged vertical orifice under a constant head of 1.0m at certain point, has the horizontal and vertical co-ordinates measured from vena contracts as 35cm and 35cm

respectively. If the rate of discharge is 0.00135m3/sec then find values of Cc, Cv and Cd. 04

OR

Q.3 (a) List out various apparatus working on Bernoulli's equation and explain anyone with sketch.

- (b) Prove Bernoulli's equation. 05
- (c) Define: (1) Co-efficient of contraction (2) Co-efficient of velocity 04
- Q.4 (a) Determine discharge for trapezoidal channel having 3.0m bed width and slide slope 1.5:1 when it carries water up to depth of 80cm, it has bed slope of 1 in 900, value of manning's 0.03. 05
- (b) The discharge through a rectangular channel 6.0m wide is 12m3/sec, when depth of flow is 1.0m calculate:
- (1) Specific energy of flow
- (2) Critical depth and critical velocity for this discharge
- (3) Value of minimum specific energy for this discharge
- (4) Type of flow