Gujarat Technological University 2010 Diploma Hydraulics Question paper
Q. 1 (a) Define
(1) Ideal Fluid (2) Specific weight (3) Hydraulics (4) Notch (5) Viscosity 05
(b) Convert following:

1300 cm of oil (sp. Gr. 0.8) head in head of water 05
$20.15 \mathrm{~kg} / \mathrm{cm} 2$ vacuum pressure into absolute pressure
(c) Explain the working of Bourden's Pressure gauge using a neat sketch 04
Q. 2 (a) A circular plate 2.5m diameter is immersed in water its greatest and lowest depth below the free surface being 3.0 m and 1.0 m respectively find:
(1) Total pressure on one face of the plate
(2) The position of centre of pressure

07
(b) Differentiate between reciprocating and centrifugal pumps. 07

OR
(b) Write main components of centrifugal pumps and mention their purpose. 07
Q. 3 (a) State and explain the Bernoulli's equation with its assumption. 05
(b) A venturimeter $15 \mathrm{~cm} \times 7.5 \mathrm{~cm}$ used to measure the flow of an oil of sp . Gr.
0.9 A differential oil mercury manometer connected to inlet and throat gives reading of 17.5 cm of mercury. Determine discharge through pipe in liters/sec. Assume Cd = 0.97
05
(c) A jet of water issue from 25 mm diameter a sharp edged vertical orifice under a constant head of 1.0 m at certain point, has the horizontal and vertical co-ordinates measured from vena contracts as 35 cm and 3.5 cm
respectively. If the rate of discharge is $0.00135 \mathrm{~m} 3 / \mathrm{sec}$ then find values of Cc, Cv and Cd .
04
OR
Q. 3 (a) List out various apparatus working on Bernoulli's equation and explain anyone with sketch. 05
(b) Prove Bernoulli's equation. 05
(c) Define: (1) Co-efficient of contraction (2) Co-efficient of velocity 04
Q. 4 (a) Determine discharge for trapezoidal channel having 3.0 m bed width and slide slope $1.5: 1$ when it carries water up to depth of 80 cm , it has bed slope of 1 in 900 , value of manning's 0.03 . 05
(b) The discharge through a rectangular channel 6.0 m wide is $12 \mathrm{~m} 3 / \mathrm{sec}$, when depth of flow is 1.0 m calculate:
(1) Specific energy of flow
(2) Critical depth and critical velocity for this discharge
(3) Value of minimum specific energy for this discharge
(4) Type of flow

