USN

First / Second Semester B.E. Degree Examination, December 2011

Basic Electronics

Max. Marks:100 Time: 3 hrs.

Note: 1. Answer any FIVE full questions, choosing at least two from each part.

- 2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.
- 3 Answer to objective type questions on sheets other than OMR will not be valued.

	, 3	, /1/13	wer to objective i	spe questions on si	ices office fruit Offi	. Will hot oc r	at at Cita	
				PART	$\mathbf{C} - \mathbf{A}$			
1	a.	Choose the correct answers for the following:					(04 Marks)	
		i) The voltage at which forward current through the diode starts increasing r					ng rapidly is	
			called as ———					
					over voltage C) cut in v		off voltage.	
ii) Dynamic zener resistance is ——— in reverse breakdown condition.								
			A) very high	B) high	C) zero	D) very	/ small	
iii) Smaller the ripple factor, the output will have higher ——— components.								
			A) AC	B) DC	C) Both AC an	d DC D) Pul	se	
	iv) The transformer utilization factor of a bridge type full wave rectifier is ———							
		,			C) 0.864	D) 0.48		
	b.	Draw the AC equivalent circuit of a diode.					(04 Marks)	
	c. With a circuit diagram, explain the working of a centre – tapped FWR.						(06 Marks)	
	d. Prove that ripple factor of a HWR is 1.21.						(06 Marks)	
		210	· · · · · · · · · · · · · · · · · · ·		and the same of th		2	
2	a.	Choose the correct answers for the following:					(04 Marks)	
	i) The current conduction in bipolar junction transistor is because of—							
	A) Electrons B) Holes C) Both electrons and holes D							
	ii) In cut off region both base – to – collector and base to emitter junctions are ——							
		11).	III Cat off Togron	COMI CADO TO COI	TOTOL MIN CUDO TO OHIGH	or June none un	•	

C) Reverse biased A) forward biased B) ON D) None of these

In a transistor $I_B = 30$ mA and $I_E = 10$ mA. What is the value of α ? iii)

B) 0.99 C) 0.98 D) 0.96 A) 0.92

In CB- mode of a transistor when the reverse bias voltage increases, the width of iv) depletion region also increases, which reduces the electrical base width called as —— A) Depletion width B) Early effect

C) cut in D) punch through effect

b. What are the advantages of transistor over vacuum tube? (04 Marks)

- Draw and explain the input and output characteristics of CE configuration of a transistor. (06 Marks)
- For the CE -- circuit shown in Fig. 2(d), draw the DC load line and obtain Q-point values. Assume $\beta = 100$ and $V_{BE} = 0.7V$. (06 Marks)

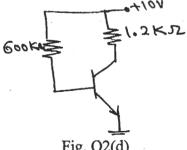


Fig. Q2(d)

a.	Cho	ose the correct answers for the following:	•	(04 Marks)		
	i)	Ideally stability factor should be zero to get	Q-point.			
		A) Unstable B) Centre of the cutof	f			
		C) Stable D) None				
	ii)	Which of the following factor affects the Q-	-point stability?			
		A) I _{CO} B) Coupling capaciton	r	•		
		C) Emitter resistor D) Bypass capacitor.				
	iii)	In what biasing circuit voltage shunt negative		d?		
		A) Voltage divider biasing	B) Fixed bias			
		C) Collector to base bias	D) Emitter bias.			
	iv)	Fixed bias circuit provides ——— stabilit	у			
		A) Poor B) High				
		C) Better D) Very good	100 177 677	0 1 1 . D . ID		
b.	For the circuit shown in Fig. Q3(b), $I_C = 2$ mA, $\beta = 100$, and $V_{CE} = 3V$. Calculate R_1 and R_C .					
	Assu	$\text{Ime V}_{\text{BE}} = 0.6 \text{V}.$		(08 Marks)		
			V21+0-			
		R. L	€R _c			
		``` <b>\`</b>				
			*			
			•			
		, <u>\</u>	RE			
		K27 =	200			
		COKY	1 600 v			
		-	<u>_</u>			
		Fig. Q3(	b)			
c.	Wha	at factors cause instability of a Q-point? Expl	ain it.	(08 Marks)		
a.		oose the correct answers for the following:		(04 Marks)		
	i)	JFET is a ———— device	C) 11 1 D: 1	D) 31 C.1		
	•••	A) Bipolar B) Unipolar	C) Uni-Bipolar	D) None of these		
	ii)	PNPN device is an ———	a) Mogrem	D) DVT		
		A) UJT B) SCR	C) MOSFET	D) BJT		
	iii)	The UJT relaxation oscillator is used to gen		alama1		
	-	A) Square wave signal	B) Rectangular wave	e signai		
	;,,)	C) Sine wave signal The holding augment in SCP is	D) Triggering pulse			
	iv)	The holding current in SCR is ———————————————————————————————————	C) Equal to	D) None of these		
b.	Dro	w the equivalent circuit of a UJT and mention	, -	(04 Marks)		
c.		at are the applications of SCR?	ir its applications.	(04 Marks)		
d.		w the drain characteristics of a n-channel JFE	T and explain it	(08 Marks)		
u.	Dia	w the drain characteristics of a m-charmer 31 L	71 and explain it.	(00 Marks)		
		PART -	- В			
a.	Ch	oose the correct answers for the following:		(04 Marks)		
	i)	If the voltage gain of the amplifier is 0.001	, what is the value of g	gain is dB's?		
	,	A) $-60$ B) $-62$	C) 60	D) 100		
	ii)	With negative feedback, the bandwidth of a	an amplifier			
	•	A) Decreases R) Increases	C) Both A & B	D) Constant		

(08 Marks)

(03 Marks)

(05 Marks)

feedback is used iii) In oscillator circuit B) Positive C) Negative A) Voltage series D) Both +ve and –ve In RC - phase shift oscillator each section of RC - network produces phase shift of iv)  $\overline{A)} 60^{\circ}$ C) 180° B) 30° D) 90° b. With a neat diagram, explain the operation of a Colpitt's oscillator. (08 Marks) c. Explain the operation of single stage RC coupled amplifier and draw its frequency response. Choose the correct answers for the following: (04 Marks) 6 a. For a differential amplifier  $A_d = 10000$  and CMRR =  $10^8$ . What is the value of  $A_c$ ? C)  $10^4$ A) =  $10^{-4}$ B) 10⁻⁶ D) 100 For an inverting op-amp if  $R_1 = R_F$  then circuit is called ii) B) Sign multiplier C) +ve sign D) None of these A) Sign changer The ideal bandwidth of an op-amp is iii) C) High D) Medium A) Zero B) Infinity iv) Buffer and level shifter is usually a A) Current follower B) Collector follower D) Emitter follower C) Resistance follower Define the following terms with respect to op-amps ii) Power supply rejection ratio iii) CMRR. i) Slew rate (06 Marks) c. Derive the expression of output voltage of a op-amp differentiator. (05 Marks) d. Determine the output voltage for the op-amp adder circuit shown in Fig. Q.6(d). (05 Marks) Fig. Q.6(d) 7 Choose the correct answers for the following: (04 Marks) The carrier frequency is i) modulating frequency A) Lower than B) Higher than C) Equal to D) None of these The bandwidth of AM wave is ii) A) 2fm B) fm C) fm/2 D) None of these iii) Find the decimal equivalent of (10AB)₁₆ A) 3267 B) 4265 C) 4268 D) 4267 What is the binary equivalent of (1126)₈? iv) A) 001 001 010 110 B) 100 001 010 110 C) 110 110 001 001 D) 001 001 110 010

Draw the block diagram of superheterodyne receiver and explain the function of each block

c. Convert (BCDE)₁₆ = ( )₂ = ( )₈ = ( )₁₀.

d. Subtract  $(57)_{10}$  from  $(43)_{10}$  using 2's complement from.

8	a.	Choose the correct answer	(04 Marks)				
		i) For NAND- Gate b					
		A) High	B) Low	C) Tristate	D) None of these		
		ii) $Y = \overline{AB} + AB$ is a Boolean expression for					
		A) EX – OR	B) EX - NAND	C) EX - NOR	D) None of these		
		iii) $A+(B+C)=(A+B)+$					
		A) Associative	B) Commutative	C) Distributive	D) None of these		
iv) The expression $Y = AB + BC + BC$ when simplified				simplified is			
		A)B+C	B) AB	C) $A + \overline{B}$	D) AB+C		
	b.						
		$Y = \overline{ABC} + \overline{ABC} + A\overline{BC}$					
		$Y = (A\overline{B} + \overline{A}C)(BC + B\overline{C})(ABC) $ (00)					
	c.	Draw the logic circuit of a full adder and also write its truth table with sum and carr expressions. (06 Marks					
	.d.	Realize the expression F	$=\overline{(X+Y(\overline{Z}+\overline{Y}))}$ using	only NAND - Gates.	(04 Marks)		

* * * * *