Roll No. Total No. of Questions : 9]

[Total No. of Pages : 03

B.Tech. (Sem. - 1st/2nd) ENGINEERING MATHEMATICS - I SUBJECT CODE : AM - 101 (2K4 & ONWARDS) Paper ID : [A0111]

Section. B

[Note : Please fill subject code and paper ID on OMR]

cardioid r = art + cos g) which pass

Time : 03 Hours

Maximum Marks : 60

Instruction to Candidates:

- 1) Section A is Compulsory.
- 2) Attempt any Five questions from Section B & C.
- 3) Select atleast two questions from Section B & C.

Section - A

Q1)

[Marks : 2 each]

- a) Test for the convergence of the series $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$.
- b) Using double integration, find area enclosed between the curves $y^2 = x^3$ and x = y.
- c) If $u = x^3 + xy$ and v = xy. Find $\frac{\partial(u, v)}{\partial(x, y)}$.
 - d) Prove $\Gamma(n+1) = n\Gamma(n)$, where n > 0.
 - e) Find the curvature of curve $y^2 = x^3 + 8$ at the point (1, 3).
 - f) Find the cube roots of unity.
 - g) Evaluate $\int_0^2 \int_1^2 \int_0^{yz} xyz \, dx dy dz$.
 - h) Define homogeneous function with an example.
- i) Find the centre and the radius of the sphere $x^2 + y^2 + z^2 6x + 8y 10z + 1 = 0$.

Prove that 1 1 - 1

j) Expand $\tan x$ in powers of x upto x^3 .

Section - B

[Marks : 8 Each]

Q2) (a) State and prove Euler's theorem.

- (b) If $z = \sqrt{x^2 + y^2}$ and $x^3 + y^3 + 3axy = 5a^2$, find the value of $\frac{dz}{dx}$, when x = y = a.
- **Q3)** (a) Trace the curve $a^2y^2 = x^2(a^2 x^2)$.
 - (b) If ρ_1, ρ_2 be the radii of curvature at the extremities of the chord of the cardioid $r = a(1 + \cos \theta)$ which pass through the pole, show that

$$\rho_1^2 + \rho_2^2 = \frac{16a^2}{9}.$$

- Q4) (a) Expand $x^2y + 3y 2$ in powers of (x 1) and (y + 2) using Taylor's theorem.
 - (b) Discuss maxima and minima of $x^3y^2(1 x y)$.
- Q5) (a) Find the moment, about x-axis of arc of parabola $y = \sqrt{x}$, lying between (0, 0) & (4, 2).
 - (b) Find root mean square of sin x over the range x = 0 to $\pi/2$.

Section - C

[Marks : 8 Each]

Q6) (a) Show that the two circles $x^2 + y^2 + z^2 - 2x + 3y + 4z - 5 = 0, 5y + 6z + 1 = 0$ $x^2 + y^2 + z^2 - 3x - 4y + 5z - 6 = 0, x + 2y - 7z = 0$ lie on the same sphere and find its equations.

- (b) Find the equation of cone whose vertex is at the points (1, 1, 3) and which passes through the ellipse $4x^2 + z^2 = 1$, y = 4.
- **Q7)** (a) Change the order of integration $\int_0^1 \int_{x^2}^{2-x} xy \, dx \, dy$ and hence evaluate the integral.

(b) Prove that
$$\int_{1}^{0} \frac{x \, dx}{\sqrt{1-x^5}} = \frac{1}{5} \beta \left(\frac{2}{5}, \frac{1}{2}\right).$$

M-816

- **Q8)** (a) Test the convergence of the series $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots$
 - (b) Show that the series $\sum_{n=1}^{\infty} \frac{\sin(x^2 + nx)}{n(n+2)}$ for all real x, is uniformly convergent.
- **Q9)** (a) Separate $\tan^{-1}(x + iy)$ into real and imaginary parts.
 - (b) Solve the equation $x^4 x^3 + x^2 x + 1 = 0$, using De Moivre's theorem.

* * * *

3