CBSE-XII-2014 EXAMINATION

CAREER POINT

P

(MATHEMATICS)

Code : 65/1 Max. Marks : 100

Time : 3 Hrs.

General Instructions :

- (i) All question are compulsory.
- (ii) The question paper consists of 29 questions divided into three sections A, B and C. Section A comprises of 10 questions of one mark each, Section B comprises of 12 questions of four marks each and Section C comprises of 7 questions of six marks each.
- (iii) All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
- (iv) There is no overall choice. However, internal choice has been provided in 4 questions of four marks each and 2 questions of six marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is **not** permitted. You may ask for logarithmic tables, if required.

SECTION A

Question numbers 1 to 10 carry 1 mark each.

1. If
$$R = \{(x, y) : x + 2y = 8\}$$
 is a relation on N, write the range of R

Sol. $R = \{(x, y) : x + 2y = 8\}$ is a relation on N Then we can say 2y = 8 - x

$$y = 4 - \frac{x}{2}$$

so we can put the value of x, x = 2, 4, 6 only we get y = 3 at x = 2we get y = 2 at x = 4we get y = 1 at x = 6so range = {1, 2, 3} Ans.

2. If $\tan^{-1} x + \tan^{-1} y = \frac{\pi}{4}$, xy < 1, then write the value of x + y + xy.

Sol.
$$\tan^{-1} x + \tan^{-1} y = \frac{\pi}{4}$$

$$\Rightarrow \tan^{-1} \frac{x+y}{1-xy} = \frac{\pi}{4}$$

$$\Rightarrow \frac{x+y}{1-xy} = \tan \frac{\pi}{4}$$

$$\Rightarrow \frac{x+y}{1-xy} = 1 \text{ or , } x+y = 1-xy$$

or, $x+y+xy = 1$ Ans.

3. If A is a square matrix such that $A^2 = A$, then write the value of $7A - (I + A)^3$, where I is an identity matrix. Sol. $A^2 = A$

501.

 $7A - (I + A)^{3}$ $7A - [(I + A)^{2}(I + A)] = 7A - [(I + AA + 2AI) (I + A)]$ $= 7A - [I + A^{2} + 2AI] [I + A]$ = 7A - [I + A + 2A] [I + A] = 7A - [I + 3A] [I + A] $= 7A - [I + IA + 3AI + 3A^{2}]$ = 7A - [I + A + 3A + 3A] = 7A - [I + 7A] = -I Ans.

CBSE-XII-2014 EXAMINATION

P

4. If
$$\begin{bmatrix} x - y & z \\ 2x - y & w \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ 0 & 5 \end{bmatrix}$$
, find the value of $x + y$.
Sol. If $\begin{bmatrix} x - y & z \\ 2x - y & w \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ 0 & 5 \end{bmatrix}$ then $x + y = ?$
we can compare the element of 2 matrices. so
 $x - y = -1$...(1)
 $2x - y = 0$...(2)
On solving both eqⁿ we get $\rightarrow x = 1, y = 2$
so $x + y = 3$ Ans.
5. If $\begin{vmatrix} 3x & 7 \\ -2 & 4 \end{vmatrix} = \begin{vmatrix} 8 & 7 \\ 6 & 4 \end{vmatrix}$, find the value of x .
Sol. $\begin{vmatrix} 3x & 7 \\ -2 & 4 \end{vmatrix} = \begin{vmatrix} 8 & 7 \\ 6 & 4 \end{vmatrix}$, find the value of x .
Sol. $\begin{vmatrix} 3x & 7 \\ -2 & 4 \end{vmatrix} = \begin{vmatrix} 8 & 7 \\ 6 & 4 \end{vmatrix}$, find the value of $f'(x)$.
Sol. $f(x) = \int_{0}^{x} t \sin t \, dt$, then write the value of $f'(x)$.
Sol. $f(x) = \int_{0}^{x} t \sin t \, dt$, then write the value of $f'(x)$.
Sol. $f(x) = \int_{0}^{x} t \sin t \, dt$
 $\Rightarrow f'(x) = 1 \cdot x \sin x - 0$
 $= x \sin x \text{ Ans.}$
7. Evaluate:
 $\int_{0}^{4} \frac{x}{x^{2} + 1} \, dx$
Sol. $1 = \int_{4}^{4} \frac{x}{x^{2} + 1} \, dx$
 $yut x^{2} + 1 = t \Rightarrow 2x \, dx = dt$
 $x \, dx = \frac{1}{2} \, dt$
 $= \frac{1}{2} [\log |t|]_{4}^{17}$

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

P

$$= \frac{1}{2} [\log 17 - \log 4]$$
$$= \frac{1}{2} \log (17/4) \text{ Ans.}$$

8. Find the value of 'p' for which the vectors $3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\hat{i} - 2p\hat{j} + 3\hat{k}$ are parallel.

Let $\vec{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$, $\vec{b} = \hat{i} - 2p\hat{j} + 3\hat{k}$ Sol. if \vec{a} , \vec{b} are parallel vector then their exist a, λ such that $\vec{a} = \lambda \vec{b}$ so $(3\hat{i}+2\hat{j}+9\hat{k}) = \lambda(\hat{i}-2p\hat{j}+3\hat{k})$ compare $3 = \lambda$ $2 = -2p\lambda$ $9 = 3\lambda$ $\lambda = 3$ put $\lambda = 3$ in $2 = -2p\lambda$ 2 = -2p.3 $p = -\frac{1}{3}$ Ans. Find $\vec{a} \cdot (\vec{b} \times \vec{c})$, if $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j} + 2\hat{k}$. 9. If $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$, $\vec{c} = 3\hat{i} + \hat{j} + 2\hat{k}$ Sol. Then $\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} 2 & 1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & 2 \end{vmatrix}$ expand along $R_1 = 2[4-1] - 1[-2-3] + 3[-1-6]$ = 6 + 5 - 21 = -10 If the Cartesian equations of a line are $\frac{3-x}{5} = \frac{y+4}{7} = \frac{2z-6}{4}$, write the vector equation for the line. 10. Cartesian eqⁿ of line is Sol. $\frac{3-x}{5} = \frac{y+4}{7} = \frac{2z-6}{4}$

 $\frac{y+1}{5} = \frac{y+1}{7} = \frac{zz}{4}$ we can write it as $\frac{x-3}{-5} = \frac{y+4}{7} = \frac{z-3}{2}$ so vector eqⁿ is $\vec{r} = (3\hat{i} - 4\hat{j} + 3\hat{k}) + \lambda(-5\hat{i} + 7\hat{j} + 2\hat{k})$ where λ is a constant

> **CAREER POINT,** CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

CBSE-XII-2014 EXAMINATION

CAREER POINT

P

SECTION B

Question numbers 11 to 22 carry 4 marks each.

11. If the function $f: R \to R$ be given by $f(x) = x^2 + 2$ and $g: R \to R$ be given by $g(x) = \frac{x}{x-1}$, $x \neq 1$, find fog and gof and hence find fog (2) and gof (-3).

Sol. f:
$$\mathbb{R} \to \mathbb{R}$$
; $f(x) = x^{1} + 2$
g: $\mathbb{R} \to \mathbb{R}$; $g(x) = \frac{x}{x-1}, x \neq 1$
fog = f(g(x))
= $f(\frac{x}{x-1})^{2} = (\frac{x^{2}}{(x-1)^{2}} + 2)$
 $= \frac{x^{2} + 2(x-1)^{2}}{(x-1)^{2}}$
 $= \frac{x^{2} + 2(x-1)^{2}}{(x-1)^{2}}$
 $= \frac{x^{2} + 2(x-1)^{2}}{(x-1)^{2}}$
gof = $g(f(x))$
 $= g(x^{2} + 2)$
 $= \frac{(x^{2} + 2)}{(x^{2} + 2) - 1} = \frac{x^{2} + 2}{x^{2} + 1} = 1 + \frac{1}{x^{2} + 1}$
 \therefore fog (2) = $\frac{3(2)^{2} - 4(2) + 2}{(2-1)^{2}} = 6$
gof (-3) = $1 + \frac{1}{(-3)^{2} + 1} = \frac{11}{10} = 1\frac{1}{10}$
12. Prove that $\tan^{-1}\left[\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}\right] = \frac{\pi}{4} - \frac{1}{2} - \cos^{-1}x, -\frac{1}{\sqrt{2}} \le x \le 1$
If $\tan^{-1}\left(\frac{x-2}{x-4}\right) + \tan^{-1}\left(\frac{x+2}{x+4}\right) = \frac{\pi}{4}$, find the value of x.
Sol. $\tan^{-1}\left[\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}\right] = \frac{\pi}{4} - \frac{1}{2}\cos^{-1}x, \frac{1}{\sqrt{2}} \le x \le 1$
In LHS
put $x = \cos 20$
 $\tan^{-1}\left[\frac{\sqrt{1+\cos 20} - \sqrt{1-\cos 20}}{\sqrt{1+\cos 20} + \sqrt{1-\cos 20}}\right]$

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

=

CBSE-XII-2014 EXAMINATION

OR

Þ

$$= \tan^{-1} \left[\frac{\sqrt{1 + 2\cos^2 \theta - 1} - \sqrt{1 - 1 + 2\sin^2 \theta}}{\sqrt{1 + 2\cos^2 \theta - 1} + \sqrt{1 - 1 + 2\sin^2 \theta}} \right]$$
$$= \tan^{-1} \left[\frac{\cos \theta - \sin \theta}{\cos \theta + \sin \theta} \right]$$
$$= \tan^{-1} \left[\frac{1 - \tan \theta}{1 + \tan \theta} \right]$$
$$= \tan^{-1} \left[\frac{\tan(\pi/4) - \tan \theta}{1 + \tan(\pi/4) \cdot \tan \theta} \right]$$
$$= \tan^{-1} \left[\tan(\pi/4 - \theta) \right]$$
$$= \frac{\pi}{4} - \theta \qquad \text{as} \begin{cases} x = \cos 2\theta \\ \sin \theta = \frac{\cos^{-1} x}{2} \end{cases}$$
$$\frac{\pi}{4} - \frac{1}{2}\cos^{-1} x = \text{RHS} \quad \text{proved}$$
$$n^{-1} \left(\frac{x - 2}{2} \right) + \tan^{-1} \left(\frac{x + 2}{2} \right) = \frac{\pi}{4} \quad \dots \quad (1)$$

$$\tan^{-1}\left(\frac{x-2}{x-4}\right) + \tan^{-1}\left(\frac{x+2}{x+4}\right) = \frac{\pi}{4} \qquad \dots (1)$$

Use formula, $\tan^{-1}\left[\frac{\frac{x-2}{x-4} + \frac{x+2}{x+4}}{1-\left(\frac{x-2}{x-4}\right)\left(\frac{x+2}{x+4}\right)}\right] = \frac{\pi}{4}$
$$\Rightarrow \ \tan^{-1}\left[\frac{(x-2)(x+4) + (x+2).(x-4)}{(x-4).(x+4) - (x-2).(x+2)}\right] = \frac{\pi}{4}$$
$$\Rightarrow \ \frac{(x-2)(x+4) + (x+2).(x-4)}{(x-4).(x+4) - (x-2).(x+2)} = 1$$
$$\Rightarrow \ \frac{x^2 - 8 + 2x + x^2 - 8 - 2x}{x-1}$$

$$\Rightarrow \frac{x^2 - 8 + 2x + x^2 - 8 - 2x}{x^2 - 16 - x^2 + 4} = 1$$

$$\Rightarrow \frac{2x^2 - 16}{-12} = 1$$

$$\Rightarrow 2x^2 = -12 + 16 = 4$$

$$\Rightarrow x^2 = 2 \qquad \Rightarrow x = \pm \sqrt{2}$$

13. Using properties of determinants, prove that

$$\begin{vmatrix} x + y & x & x \\ 5x + 4y & 4x & 2x \\ 10x + 8y & 8x & 3x \end{vmatrix} = x^{3}$$
Sol. To prove, $\begin{vmatrix} x + y & x & x \\ 5x + 4y & 4x & 2x \\ 10x + 8y & 8x & 3x \end{vmatrix} = x^{3}$

$$LHS = \begin{vmatrix} x & x & x \\ 5x & 4x & 2x \\ 10x & 8x & 3x \end{vmatrix} + \begin{vmatrix} y & x & x \\ 4y & 4x & 2x \\ 8y & 8x & 3x \end{vmatrix}$$

14.

Sol.

15.

Sol.

CBSE-XII-2014 EXAMINATION

P

$$\begin{aligned} = x^{3} \begin{vmatrix} 1 & 1 & 1 \\ 5 & 4 & 2 \\ |1 & 0 & 8 & 3 \end{vmatrix} + yx^{2} \begin{vmatrix} 1 & 1 & 1 \\ 4 & 4 & 2 \\ 8 & 8 & 3 \end{vmatrix} \\ \end{aligned}$$
Applying $C_{1} \rightarrow C_{1} - C_{2}, C_{2} \rightarrow C_{2} - C_{3}$ in the first determinant
$$\begin{aligned} = x^{3} \begin{vmatrix} 0 & 0 & 1 \\ 1 & 2 & 2 \\ 2 & 5 & 3 \end{vmatrix} + yx^{2} \times 0 \\ \end{aligned}$$
As the first two columns of the 2nd determinant are same.
Expanding the first determinant through $R_{1} \\ = x^{3}, 1, \begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} = x^{3} (5 - 4) \\ = x^{3} = RHS \qquad \text{thus proved} \end{aligned}$
Find the value of $\frac{dy}{dx}$ at $\theta = \frac{\pi}{4}$, if $x = ae^{\theta} (\sin \theta - \cos \theta)$ and $y = ae^{\theta} (\sin \theta + \cos \theta)$.
 $y = ae^{\theta} (\sin \theta - \cos \theta) \\ \frac{dy}{dx} = \frac{dy}{dx} (4 \text{ Applying parametric differentiation}) \qquad \dots (1) \\ Now, $\frac{dy}{d\theta} = ae^{\theta} (\cos \theta - \sin \theta) + ae^{\theta} (\sin \theta + \cos \theta) \\ = 2ae^{\theta} (\cos \theta) \quad (\text{Applying product Rule}) \\ \frac{dx}{d\theta} = ae^{\theta} (\cos \theta + \sin \theta) + ae^{\theta} (\sin \theta - \cos \theta) \\ = 2ae^{\theta} (\sin \theta) \\ \text{Substituting the values of } \frac{dy}{d\theta} \text{ and } \frac{dx}{d\theta} \text{ in } (1) \\ \frac{dy}{dx} = \frac{2ae^{\theta} \cos \theta}{2ae^{\theta} \sin \theta} = \cot \theta \\ Now \frac{dy}{dx} = t = \frac{\pi}{4} \\ [\cot \theta]_{\theta=\pi,d} = \cot \frac{\pi}{4} = 1 \text{ Ans.} \\ \text{If } y = Pe^{ax} + Qe^{bx}, \text{ show that} \\ \frac{d^{2}y}{dx^{2}} - (a + b) \frac{dy}{dx} + aby = 0. \\ y = Pe^{ax} + Qe^{bx} \qquad \dots (1) \\ \frac{d^{2}y}{dx^{2}} = a^{2}Pe^{ax} + bQe^{bx} \qquad \dots (2) \\ \frac{d^{2}y}{dx^{2}} = a^{2}Pe^{ax} + bQe^{bx} \qquad \dots (2) \\ \frac{d^{2}y}{dx^{2}} = a^{2}Pe^{ax} + bQe^{bx} \qquad \dots (2) \\ \frac{d^{2}y}{dx^{2}} = a^{2}Pe^{ax} + bQe^{bx} \qquad \dots (2) \\ \frac{d^{2}y}{dx^{2}} = a^{2}Pe^{ax} + bQe^{bx} \qquad \dots (3) \\ \text{multiplying } (2) \text{ by } (a + b) \end{cases}$$

CBSE-XII-2014 EXAMINATION

CAREER POINT

P

we get,
$$(a + b)\frac{dy}{dx} = (a + b)(aPe^{ax} + bQe^{bx}) = (a^2Pe^{ax} + b^2Pe^{bx}) + (abPe^{ax} + abQe^{bx})$$

or, $(a^2Pe^{ax} + b^2Qe^{bx}) - (a + b)\frac{dy}{dx} + (abPe^{ax} + abQe^{bx})$
or, $\frac{d^2y}{dx^2} - (a + b)\frac{dy}{dx} + aby = 0$

16. Find the value(s) of x for which $y = [x (x - 2)]^2$ is an increasing function.

OR

Find the equations of the tangent and normal to the curve $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at the point $(\sqrt{2}a, b)$.

Sol.
$$f(x) = [x(x-2)]^{2}$$
we know, for increasing function we have $f'(x) \ge 0$
 $\therefore f'(x) = 2 [x(x-2)] \left[\frac{d}{dx} x(x-2) \right]$
or, $f'(x) = 2 [x(x-2)] \left[\frac{d}{dx} (x^{2} - 2x) \right]$
 $= 2x(x-2) (2x-2)$
 $= 4x(x-2) (x-1)$
for $f'(x) \ge 0$
i.e., $4x(x-1) (x-2) \ge 0$
the values of x are :
 $\therefore \frac{-}{0} + \frac{+}{1} - \frac{-}{2} + \frac{+}{1} \rightarrow \frac{-}{2} + \frac{+}{1} \rightarrow \frac{-}{2} + \frac{+}{2} \rightarrow \frac{-}{2} \rightarrow \frac{-}{$

CBSE-XII-2014 EXAMINATION

OR

P

$$yb\sqrt{2} - b^2\sqrt{2} = -ax + \sqrt{2}a^2$$

or $ax + b\sqrt{2}y - \sqrt{2}(a^2 + b^2) = 0$

$$\int_{0}^{\pi} \frac{4x \sin x}{1 + \cos^2 x} \, \mathrm{d}x$$

Evaluate ·

$$OR$$
Evaluate :

$$\int \frac{x+2}{\sqrt{x^2+5x+6}} dx$$
Sol. $I = \int_0^{\pi} \frac{4x \sin x}{1+\cos^2 x} dx$

$$I = \int_0^{\pi} \frac{4\pi \sin x}{1+\cos^2 (\pi - x)} dx \quad \left\{ Applying \int f(a - x) = \int f(x) \right\}$$

$$I = \int_0^{\pi} \frac{4\pi \sin x}{1+\cos^2 x} dx - \int_0^{\pi} \frac{4x \sin x}{1+\cos^2 x} dx$$
or,

$$I = \int_0^{\pi} \frac{4\pi \sin x}{1+\cos^2 x} dx - I$$

$$2I = 4\pi \int_0^{\pi} \frac{\sin x}{1+\cos^2 x} dx$$

$$2I = 4\pi 2 \times \int_0^{\pi/2} \frac{\sin x}{1+\cos^2 x} dx$$

$$I = 4\pi \int_0^{\pi/2} \frac{1}{1+t^2} \qquad \left\{ \int_0^{\pi} f(x) dx = 2 \int_0^{\pi/2} f(x) dx \text{ if } f(2a - x) = f(x) \right\}$$

$$I = 4\pi \int_0^{\pi/2} \frac{1}{1+t^2} \qquad \left\{ \int_0^{\pi/2} f(x) dx = -\int_0^{\pi/2} f(x) dx + \int_0^{\pi/2} f(x) dx$$

CBSE-XII-2014 EXAMINATION

P

OR

$$\int \frac{x+2}{\sqrt{x^{2}+5x+6}} dx$$
put $x + 2 = \lambda \left(\frac{d}{dx} (x^{2} + 5x + 6) \right) + \mu$
 $x + 2 = 2\lambda x + 5\lambda + \mu$
comparing coefficients of x both sides
 $1 = 2\lambda \Rightarrow \lambda = 1/2$
comparing constant terms both sides,
 $2 = 5\lambda + \mu$
or, $\mu = 2 - \frac{5}{2} = -\frac{1}{2}$
 $\therefore \int \frac{x+2}{\sqrt{x^{2}+5x+6}} dx = \int \frac{1}{2} \frac{(2x+5)-\frac{1}{2}}{\sqrt{x^{2}+5x+6}} dx$ {as $x + 2 = \lambda (2x + 5) + \mu$ }
 $\therefore 1 = \int \frac{1}{2} \frac{(2x+5)}{\sqrt{x^{2}+5x+6}} dx - \frac{1}{2} \int \frac{dx}{\sqrt{x^{2}+5x+6}}$
 $\therefore 1 = 1, -1_{2}$
 $\therefore (1)$
 $I_{1} = \frac{1}{2} \int \frac{(2x+5)}{\sqrt{x^{2}+5x+6}} dx - \frac{1}{2} \int \frac{dx}{\sqrt{x^{2}+5x+6}}$
 $\therefore (2x+5) dx = dt$
 $= \frac{1}{2} \int \frac{dt}{\sqrt{t}} = \frac{1}{2} \left(\frac{t^{-1/2+1}}{-\frac{1}{2}+1} \right) + C = t^{1/2} + C = \sqrt{t} + C = \sqrt{x^{2}+5x+6} + C$
 $I_{2} = \frac{1}{2} \int \frac{dx}{\sqrt{x^{2}+5x+6}} = \frac{1}{2} \int \frac{dx}{\sqrt{(x+\frac{5}{2})^{2}} - (\frac{1}{2})^{2}}$
 $= \frac{1}{2} \log \left[\left(x + \frac{5}{2}\right) + \sqrt{\left(x+\frac{5}{2}\right)^{2} - (\frac{1}{2})^{2}} \right] + C$
 $= \frac{1}{2} \log \left[\left(x + \frac{5}{2}\right) + \sqrt{x^{2}+5x+6} \right] + C$
Substituting the values of I_{1} and I_{2} in (1)
we get,

 $I = \sqrt{x^{2} + 5x + 6} + \frac{1}{2} \log \left[\left(x + \frac{5}{2} \right) + \sqrt{x^{2} + 5x + 6} \right] + c$

CBSE-XII-2014 EXAMINATION

CAREER POINT

P

Find the particular solution of the differential equation $\frac{dy}{dx} = 1 + x + y + xy$, given that y = 0 when x = 1. 18. $\frac{\mathrm{d}y}{\mathrm{d}x} = (1+x) + y(1+x)$ Sol. or, $\frac{dy}{dx} = (1 + y)(1 + x)$ or, $\frac{dy}{1+y} = (1+x) dx$ $\int \frac{\mathrm{d}y}{1+y} = \int (1+x) \mathrm{d}x$ $\log |1 + y| = x + \frac{x^2}{2} + C$ given y = 0 when x = 1i.e., $\log |1 + 0| = 1 + \frac{1}{2} + C$ \Rightarrow C = $-\frac{3}{2}$:. The particular solution is $\log |1 + y| = \frac{x^2}{2} + x - \frac{3}{2}$ Ans. or the answer can expressed as $\log|1 + y| = \frac{x^2 + 2x - 3}{2}$ or $1 + y = e^{(x^2 + 2x - 3)/2}$ or, $y = e^{(x^2 + 2x - 3)/2} - 1$ Ans. Solve the differential equation $(1 + x^2) \frac{dy}{dx} + y = e^{\tan^{-1}x}$ 19. $(1 + x^2)\frac{dy}{dx} + y = e^{\tan^{-1}x}$ Sol. $\frac{dy}{dx} + \frac{y}{1+x^2} = \frac{e^{\tan^{-1}x}}{1+x^2}$ It is a linear differential equation of 1st order. comparing with standard LDE $\frac{\mathrm{d}y}{\mathrm{d}x} + \mathrm{P}(x)\mathrm{y} = \mathrm{Q}(x)$ $P(x) = \frac{1}{1+x^2}$; Q (x) = $\frac{e^{\tan^{-1}x}}{1+x^2}$ Integrating factor IF = $e^{\int P dx} = e^{\int \frac{1}{1+x^2} dx} = e^{\tan^{-1}x}$ Solution of LDE $y.IF = \int IF Q(x) dx + C$:. y. $e^{\tan^{-1}x} = \int e^{\tan^{-1}x} \cdot \frac{e^{\tan^{-1}x}}{1+x^2} dx + C$

> CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

CBSE-XII-2014 EXAMINATION

P

y.
$$e^{\tan^{-1}x} = \int \frac{(e^{\tan^{-1}x})^2}{1+x^2} dx + C$$
 ... (1)
To solving $\int \frac{(e^{\tan^{-1}x})^2}{1+x^2} dx$
put $e^{\tan^{-1}x} = t$
or $e^{\tan^{-1}x} \cdot \frac{1}{1+x^2} dx = dt$
 $\therefore \int \frac{e^{\tan^{-1}x} \cdot e^{\tan^{-1}x}}{1+x^2} dx = \int t dt$
 $= \frac{t^2}{2} + C = \frac{(e^{\tan^{-1}x})^2}{2} + C$
Substituting in (1)

Substituting in (1) y. $e^{\tan^{-1}x} = \frac{(e^{\tan^{-1}x})^2}{2} + C$

20. Show that the four points A, B, C and D with position vectors $4\hat{i} + 5\hat{j} + \hat{k}$, $-\hat{j} - \hat{k}$, $3\hat{i} + 9\hat{j} + 4\hat{k}$ and $4\left(-\hat{i} + \hat{j} + \hat{k}\right)$ respectively are coplanar.

OR 🖷

The scalar product of the vector $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of vectors $\vec{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\vec{c} = \lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ and hence find the unit vector along $\vec{b} + \vec{c}$.

Sol. If P.V of A =
$$4\hat{i} + 5\hat{j} + \hat{j}$$

$$\dot{\mathbf{B}} = -\hat{\mathbf{j}} - \hat{\mathbf{k}}$$
$$\vec{\mathbf{C}} = 3\hat{\mathbf{i}} + 9\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$$
$$\vec{\mathbf{D}} = 4\left(-\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}\right)$$

 $= \begin{vmatrix} -4 & -6 & -2 \\ -1 & 4 & 3 \\ -8 & -1 & 3 \end{vmatrix}$

Points \vec{A} , \vec{B} , \vec{C} , \vec{D} all Coplanar if $\begin{bmatrix} \vec{AB} & \vec{AC} & \vec{AD} \end{bmatrix} = 0 \implies (1)$ So, $\vec{AB} = P.V.$ of $\vec{B} - P.V.$ of $\vec{A} = -4\hat{i} - 6\hat{j} - 2\hat{k}$ $\vec{AC} = P.V.$ of $\vec{C} - P.V.$ of $\vec{A} = -\hat{i} + 4\hat{j} + 3\hat{k}$ $\vec{AD} = P.V.$ of $\vec{D} - P.V.$ of $\vec{A} = -8\hat{i} - \hat{j} + 3\hat{k}$ So, so for $\begin{bmatrix} \vec{AB} & \vec{AC} & \vec{AD} \end{bmatrix}$

> CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

21.

Sol.

CBSE-XII-2014 EXAMINATION

CAREER POINT

P

expand along $R_1 \rightarrow$ -4[12+3]+6[-3+24]-2[1+32]= -60 + 126 - 66= 0So, we can say that point A, B, C, D are Coplanar proved OR Given $\rightarrow \quad \vec{a} = \hat{i} + \hat{i} + \hat{k}$ $\vec{b} = 2\hat{i} + 4\hat{i} - 5\hat{k}$ $\vec{c} = \lambda \hat{i} + 2\hat{j} - 3\hat{k}$ So, $\vec{b} + \vec{c} = (2 + \lambda) \hat{i} + 6\hat{j} - 2\hat{k}$ Unit vector along $(\vec{b} + \vec{c}) = \frac{(2+\lambda)\hat{i} + \hat{j} - 2\hat{k}}{\sqrt{(2+\lambda)^2 + 36 + 4}}$ $= \frac{(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{(2+\lambda)^2+40}}$ given that dot product of \vec{a} with the unit vector of $\vec{b} + \vec{c}$ is equal to 1 So, apply given condition $\frac{(2+\lambda)+6-2}{\sqrt{(2+\lambda)^2+40}} = 1$ $\Rightarrow 2 + \lambda + 4 = \sqrt{(2 + \lambda)^2 + 40}$ Squaring $36 + \lambda^2 + 12\lambda = 4 + \lambda^2 + 4\lambda + 40$ $\Rightarrow 8\lambda = 8$ $\Rightarrow \lambda = 1$ Ans. A line passes through (2, -1, 3) and is perpendicular to the lines $\vec{r} = (\hat{i} + \hat{j} - \hat{k}) + \lambda (2\hat{i} - 2\hat{j} + \hat{k})$ and $\vec{r} = (2\hat{i} - \hat{j} - 3\hat{k}) + \mu(\hat{i} + 2\hat{j} + 2\hat{k})$. Obtain its equation in vector and Cartesian form. Line L is passing through point = $(2\hat{i} - \hat{j} + 3\hat{k})$ if $L_1 \Rightarrow \vec{r} = (\hat{i} + \hat{j} - \hat{k}) + \lambda (2\hat{i} - 2\hat{j} + \hat{k})$ $L_2 \Rightarrow \vec{r} = (2\hat{i} - \hat{j} - 3\hat{k}) + \mu(\hat{i} + 2\hat{j} + 2\hat{k})$ given that line L is perpendicular to L_1 and L_2 Let dr of line $L = a_1, a_2, a_3$ The eqⁿ of L in vector form \Rightarrow $\vec{r} = (2\hat{i} - \hat{j} + 3\hat{k}) + k(a_1\hat{i} + a_2\hat{j} + a_3\hat{k})$ k is any constant.

> CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

... (1)

 $a_1a_2 + b_1b_2 + c_1c_2 = 0$

so by condition that L_1 is perpendicular to L

 $2a_1 - 2a_2 + a_3 = 0$

CBSE-XII-2014 EXAMINATION

P

and also

$$L \perp L_2$$
so, $a_1 + 2a_2 + 2a_3 = 0$...(2)
Solve (1), (2)
 $3a_1 + 3a_3 = 0$
 $\Rightarrow a_3 = -a_1$
put it in (2)
 $a_1 + 2a_2 - 2a_1 = 0$
 $a_2 = \frac{a_1}{2}$ let
so dr of $L = \left(a_1, \frac{a_1}{2}, -a_1\right)$
so we can say dr of $L = \left(1, \frac{1}{2}, -1\right)$
so eqⁿ of L in vector form
 $\vec{r} = (2\hat{i} - \hat{j} + 3\hat{k}) + k\left(\hat{i} + \frac{\hat{j}}{2} - \hat{k}\right)$
3-D form $\rightarrow \frac{x-2}{1} = \frac{y+1}{1/2} = \frac{z-3}{-1}$

22. An experiment succeeds thrice as often as it fails. Find the probability that in the next five trials, there will be at least 3 successes.

Sol. In Binomial distribution $(p+q)^{n} = {}^{n}C_{0}.p^{n} + {}^{n}C_{1}.p^{n-1}.q^{1} + {}^{n}C_{2}.p^{n-2}.q^{2} + \dots + {}^{n}C_{n}.q^{n}$ if p = probability of success q = prob. of failgiven that p = 3q ...(1) we know that p + q = 1so, 3q + q = 1 $q = \frac{1}{4}$

so,

Now given
$$\Rightarrow$$
 n = 5 we required minimum 3 success
(p + q)⁵ = ${}^{5}C_{0}.p^{5} + {}^{5}C_{1}.p^{4}.q^{1} + {}^{5}C_{2}.p^{3}.q^{2}$
= ${}^{5}C_{0}.\left(\frac{3}{4}\right)^{5} + {}^{5}C_{1}.\left(\frac{3}{4}\right)^{4}.\left(\frac{1}{4}\right) + {}^{5}C_{2}.\left(\frac{3}{4}\right)^{3}.\left(\frac{1}{4}\right)^{2}$
= $\frac{3^{5}}{4^{5}} + \frac{5.3^{4}}{4^{5}} + \frac{10.3^{3}}{4^{5}}$
= $\frac{3^{5} + 5.3^{4} + 10.3^{3}}{4^{5}} = \frac{3^{3}[9 + 15 + 10]}{4^{5}} = \frac{34 \times 27}{16 \times 64} = \frac{459}{512}$ Ans.

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

P

SECTION C

Question numbers 23 to 29 carry 6 marks each.

- 23. Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award ₹ x each, ₹ y each and ₹ z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹ 1,600. School B wants to spend ₹ 2,300 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is ₹ 900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.
- Sol. Let Matrix D represents number of students receiving prize for the three categories :-

1	Number of students of	SINCERITY	TRUTHFULNESS	HELPFULNESS
_	school			
D =	А	3	2	1
	В	4	1	3
	One student for each value	1	1	1

$$X = \begin{bmatrix} x \\ y \end{bmatrix}$$

 $\begin{bmatrix} y \\ z \end{bmatrix}$ where x, y and z are rupees mentioned as it is the question, for sincerity, truthfulness and

helpfulness respectively.

1600

 $E = \begin{vmatrix} 2300 \\ 900 \end{vmatrix}$ is a matrix representing total award money for school A, B and for one prize for each value.

We can represent the given question in matrix multiplication as :

DX = E

or $\begin{bmatrix} 3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1600 \\ 2300 \\ 900 \end{bmatrix}$

Solution of the matrix equation exist if $|D| \neq 0$

i.e.,
$$\begin{vmatrix} 3 & 2 & 1 \\ 4 & 1 & 3 \\ 1 & 1 & 1 \end{vmatrix} = 3[1-3] - 2[4-3] + 1[4-1]$$

= $-6 - 2 + 3$

therefore, the solution of the matrix equation is $X = D^{-1} E$

To find
$$D^{-1}$$
; $D^{-1} = \frac{1}{|D|} adj(D)$

Cofactor Matrix of D

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

P

$$= \begin{bmatrix} -2 & -1 & 3 \\ -1 & 2 & -1 \\ 5 & -5 & -5 \end{bmatrix}$$

Adjoint of D = adj (D)
$$= \begin{bmatrix} -2 & -1 & 5 \\ -1 & 2 & -5 \\ 3 & -1 & -5 \end{bmatrix}$$

{transpose of Cofactor Matrix}
$$\therefore D^{-1} = \frac{1}{-5} \begin{bmatrix} -2 & -1 & 5 \\ -1 & 2 & -5 \\ 3 & -1 & -5 \end{bmatrix}$$

Now, X = D⁻¹E
$$= \frac{1}{-5} \begin{bmatrix} -2 & -1 & 5 \\ -1 & 2 & -5 \\ 3 & -1 & -5 \end{bmatrix} \begin{bmatrix} 1600 \\ 2300 \\ 900 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 200 \\ 300 \\ 400 \end{bmatrix}$$

$$\therefore x = 200 \ x = 300 \ z = 400 \ Amburkarrow and a matrix = 200 \ x = 300 \ z = 300 \ z = 400 \ x = 300 \ z = 50 \ x = 300 \ z = 50 \ x = 50 \$$

 \therefore x = 200, y = 300, z = 400. Ans.

Award can also be given for Punctuality.

- 24. Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is $\frac{4r}{3}$. Also show that the maximum volume of the cone is $\frac{8}{27}$ of the volume of the sphere.
- Sol. Let R and h be the radius and height of the cone. r be the radius of sphere.

and Maximum Volume of Sphere

=
$$\frac{\delta}{27}$$
 Volume of Sphere
In △ABC, AC = h - r
 \therefore (h - r)² + R² = r² {Pythagorus Theorem}

P

 $\Rightarrow R^2 = r^2 - (h - r)^2$ Volume of cone : $V = \frac{1}{3}\pi R^2 h$ or, V = $\frac{1}{3} \pi (r^2 - (h - r)^2)h$ $V = \frac{1}{3}\pi[r^2 - h^2 - r^2 + 2hr]h$ $V = \frac{1}{2}\pi[2h^2r - h^3]$ For maxima or minima, $\frac{dV}{dh} = 0$ Now, $\frac{dV}{dh} = \frac{1}{3}\pi[4hr - 3h^2]$ Putting, $\frac{dV}{dh} = 0$ we get $4hr = 3h^2$ \Rightarrow h = $\frac{4r}{3}$ $\frac{\mathrm{d}^2 \mathrm{V}}{\mathrm{d} \mathrm{h}^2} = \frac{1}{3}\pi [4\mathrm{r} - 6\mathrm{h}]$ Putting $h = \frac{4r}{3}$ $\frac{\mathrm{d}^2 \mathrm{V}}{\mathrm{dh}^2} = \frac{1}{3} \pi \left(4\mathrm{r} - \frac{6.4\mathrm{r}}{3} \right)$ $=-\frac{1}{2}\pi[4r]$ Which is less than zero, therefore $h = \frac{4r}{3}$ is a Maxima and the Volume of the cone at $h = \frac{4r}{3}$ will be maximum, $V = \frac{1}{3}\pi R^2 h$ $= \frac{1}{3}\pi[r^2 - (h - r)^2] h$ $= \frac{1}{3}\pi \left[r^2 - \left(\frac{4r}{3} - r\right)^2 \right] \left[\frac{4r}{3} \right]$ $=\frac{1}{3}\pi\left[\frac{8r^2}{9}\right]\left[\frac{4r}{3}\right]$

> CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

P

$$= \frac{8}{27} \left(\frac{4\pi r^3}{3} \right)$$
$$= \frac{8}{27} (Volume of the sphere)$$

25. Evaluate :

$$\int \frac{1}{\cos^4 x + \sin^4 x} \, \mathrm{d}x$$

Sol.

$$\int \frac{1}{\cos^4 x + \sin^4 x} dx$$

$$\int \frac{dx}{\cos^4 x + \sin^4 x} dx$$

$$= \int \frac{1}{\cos^4 x} \frac{dx}{x + \sin^4 x}$$

$$= \int \frac{1}{\cos^4 x} \frac{dx}{x + \sin^4 x}$$

$$= \int \frac{1}{\cos^4 x} \frac{dx}{x + \sin^4 x}$$

$$= \int \frac{1}{1 + \tan^4 x}$$

$$= \int \frac{(1 + \tan^2 x) \sec^2 x dx}{1 + \tan^4 x}$$
put tan $x = t \implies \sec^2 x dx = dt$

$$= \int \frac{(1 + t^2) dt}{1 + t^4}$$

$$= \int \frac{(1 + t^2) dt}{t^2 + t^2} \{ \text{dividing each by } t^2 \}$$

$$= \int \frac{(1 + \frac{1}{t^2}) dt}{(t - \frac{1}{t})^2 + 2}$$
put $t = \frac{1}{t} = z \implies (1 + \frac{1}{t^2}) dt = dz$

$$= \int \frac{dz}{z^2 + 2} = \frac{1}{\sqrt{2}} \tan^{-1} z + C$$

$$= \frac{1}{\sqrt{2}} \tan^{-1} (\tan x - \tan x) + C$$

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

CBSE-XII-2014 EXAMINATION

CAREER POINT

P

26. Using integration, find the area of the region bounded by the triangle whose vertices are (-1, 2), (1, 5) and (3, 4).

Sol. Let A = (-1, 2)

- B = (1, 5)
- C = (3, 4)

..(1)

...(2)

= x - 3

...(3)

We have to find the area of $\triangle ABC$

Eqⁿ of AC
$$\rightarrow$$

 $y - 4 = \left(\frac{2-4}{-1-3}\right) \cdot (x-3)$
 $y - 4 = \frac{1}{2}(x-3) \Rightarrow 2y - 8$
 $x - 2y + 5 = 0$
 $\Rightarrow y = \frac{x+5}{-1}$

So, required area =
$$\int_{-1}^{1} \left(\frac{3x+7}{2}\right) dx + \int_{1}^{3} \left(\frac{11-x}{2}\right) dx - \int_{-1}^{3} \left(\frac{x+5}{2}\right) dx$$

= $\frac{1}{2} \left[\frac{3x^2}{2} + 7x\right]_{-1}^{1} + \frac{1}{2} \left[11x - \frac{x^2}{2}\right]_{1}^{3} - \frac{1}{2} \left[\frac{x^2}{2} + 5x\right]_{-1}^{3}$
= $\frac{1}{2} \left[\left(\frac{3}{2} + 7\right) - \left(\frac{3}{2} - 7\right)\right] + \frac{1}{2} \left[\left(33 - \frac{9}{2}\right) - \left(11 - \frac{1}{2}\right)\right] - \frac{1}{2} \left[\left(\frac{9}{2} + 15\right) - \left(\frac{1}{2} - 5\right)\right]$
= $\frac{1}{2} \left[14 + 22 - 4 - 24\right] = \frac{1}{2} \left[36 - 28\right] = 4$ square unit

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

CBSE-XII-2014 EXAMINATION

CAREER POINT

P

- 27. Find the equation of the plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y + 4z = 5which is perpendicular to the plane x - y + z = 0. Also find the distance of the plane obtained above, from the origin. OR Find the distance of the point (2, 12, 5) from the point of intersection of the line $\vec{r} = 2\hat{i} - 4\hat{j} + 2\hat{k} + \lambda(3\hat{i} + 4\hat{j} + 2\hat{k}) \text{ and the plane } \vec{r} \cdot (\hat{i} - 2\hat{j} + \hat{k}) = 0.$ Eqⁿ of given planes are Sol. $P_1 \Longrightarrow x + y + z - 1 = 0$ $P_2 \Longrightarrow 2x + 3y + 4z - 5 = 0$ Eq^n of plane through the line of intersection of planes P_1 , P_2 is $\mathbf{P}_1 + \lambda \mathbf{P}_2 = \mathbf{0}$ $(x + y + z - 1) + \lambda(2x + 3y + 4z - 5) = 0$ $(1 + 2\lambda)x + (1 + 3\lambda)y + (1 + 4\lambda)z + (-1 - 5\lambda) = 0$... (1) given that plane represented by $eq^{n}(1)$ is perpendicular to plane x - y + z = 0so we use formula $a_1a_2 + b_1b_2 + c_1c_2 = 0$ so $(1+2\lambda).1 + (1+3\lambda).(-1) + (1+4\lambda).1 = 0$ $1+2\lambda-1-3\lambda+1+4\lambda=0$ $3\lambda + 1 = 0$ $\lambda = \frac{-1}{3}$ put $\lambda = -\frac{1}{2}$ in eqⁿ (1) so we get $\left(1-\frac{2}{3}\right)x + (1-1)y + \left(1-\frac{4}{3}\right)z + \frac{2}{3} = 0$ $\frac{x}{3} - \frac{z}{3} + \frac{2}{3} = 0$ x - z + 2 = 0 Ans. OR General points on the line: $x = 2 + 3\lambda, y = -4 + 4\lambda, z = 2 + 2\lambda$ The equation of the plane : $\vec{r} .(\hat{i} - 2\hat{j} + \hat{k}) = 0$ The point of intersection of the line and the plane : Substituting general point of the line in the equation of plane and finding the particular value of λ . $[(2+3\lambda)\hat{i} + (-4+4\lambda)\hat{j} + (2+2\lambda)\hat{k}].(\hat{i}-2\hat{j}+\hat{k}) = 0$ $(2+3\lambda)$. $1 + (-4+4\lambda)(-2) + (2+2\lambda)$. 1 = 0 $12 - 3\lambda = 0$ or, $\lambda = 4$: the point of intersection is : (2+3(4), -4+4(4), 2+2(4)) = (14, 12, 10)
 - Distance of this point from (2, 12, 5) is

 $= \sqrt{(14-2)^2 + (12-12)^2 + (10-5)^2}$ {Applying distance formula}

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

P

- $=\sqrt{12^2+5^2}$
- = 13 Ans.
- 28. A manufacturing company makes two types of teaching aids A and B of Mathematics for class XII. Each type of A requires 9 labour hours of fabricating and 1 labour hour for finishing. Each type of B requires 12 labour hours for fabricating and 3 labour hours for finishing. For fabricating and finishing, the maximum labour hours available per week are 180 and 30 respectively. The company makes a profit of ₹ 80 on each piece of type A and ₹ 120 on each piece of type B. How many pieces of type A and type B should be manufactured per week to get a maximum profit? Make it as an LPP and solve graphically. What is the maximum profit per week?
- Sol. Let pieces of type A manufactured per week = x Let pieces of type B manufactured per week = y

Companies profit function which is to be maximized : Z = 80x + 120y

	Fabricating hours	Finishing hours
А	9	1
В	12	3

Constraints : Maximum number of fabricating hours = 180

 $\therefore 9x + 12y \le 180 \quad \Rightarrow \ 3x + 4y \le 60$

Where 9x is the fabricating hours spent by type A teaching aids, and 12y hours spent on type B. and Maximum number of finishing hours = 30

 $\therefore x + 3y \le 30$

where x is the number of hours spent on finishing aid A while 3y on aid B.

So, the LPP becomes :

Z (MAXIMISE) = 80x + 120 y

Subject to $3x + 4y \le 60$ $x + 3y \le 30$

 $x \ge 0$

 $y \ge 0$

Solving it Graphically :

CAREER POINT, CP Tower, Road No.1, IPIA, Kota (Raj.), Ph: 0744-3040000 Website : www.careerpointgroup.com, Email: info@careerpointgroup.com

P

= 1680

Maximum profit is at (0, 15) \therefore Teaching aid A = 0 Teaching aid B = 15 Should be made

29. There are three coins. One is a two-headed coin (having head on both faces), another is a biased coin that comes up heads 75% of the times and third is also a biased coin that comes up tails 40% of the times. One of the three coins is chosen at random and tossed, and it shows heads. What is the probability that it was the two-headed coin?

OR

Two numbers are selected at random (without replacement) from the first six positive integers. Let X denote the larger of the two numbers obtained. Find the probability distribution of the random variable X, and hence find the mean of the distribution.

Sol. If there are 3 coins.

Let these are A, B, C respectively

For coin A \rightarrow Prob. of getting Head P(H) = 1

For coin B \rightarrow Prob. of getting Head $P(H) = \frac{3}{4}$

For coin C \rightarrow Prob. of getting Head P(H) = 0.6

we have to find $P(A_{H}) = Prob.$ of getting H by coin A

So, we can use formula

$$P(A_{H}) = \frac{P(H_{A}) \cdot P(A)}{P(H_{A}) \cdot P(A) + P(H_{B}) \cdot P(B) + P(H_{C}) \cdot P(C)}$$

Here $P(A) = P(B) = P(C) = \frac{1}{3}$ (Prob. of choosing any one coin)

$$P(H_A) = 1, P(H_B) = \frac{3}{4}, P(H_C) = 0.6$$

Put value in formula so

$$P(A_{H}) = \frac{1 \cdot \frac{1}{3}}{1 \cdot \frac{1}{3} + \frac{3}{4} \cdot \frac{1}{3} + \frac{1}{3}(0 \cdot 6)} = \frac{1}{1 + 0 \cdot 75 + 0 \cdot 6}$$
$$= \frac{100}{235}$$
$$= \frac{20}{47} \text{ Ans.}$$

OR

First six numbers are 1, 2, 3, 4, 5, 6.

X is bigger number among 2 number so

Variable (X)	2	3	4	5	6	
--------------	---	---	---	---	---	--

CBSE-XII-2014 EXAMINATION

P

Probability P(X)

if X = 2

for P(X) = Prob. of event that bigger of the 2 chosen number is 2

So, Cases = (1, 2)

So,
$$P(X) = \frac{1}{{}^{6}C_{2}} = \frac{1}{15}$$
 ...(1)

if X = 3

So, favourable cases are = (1, 3), (2, 3)

$$P(x) = \frac{2}{{}^{6}C_{2}} = \frac{2}{15} \quad \dots (2)$$

if $X = 4 \Rightarrow$ favourable casec = (1, 4), (2, 4), (3, 4)

$$P(X) = \frac{3}{15}$$
 ...(3)

if $X = 5 \Rightarrow$ favourable cases $\Rightarrow (1, 5), (2, 5), (3, 5), (4, 5)$

$$P(X) = \frac{4}{15}$$
 ...(4)

if $X = 6 \Rightarrow$ favourable cases are = (1, 6), (2, 6), (3, 6), (4, 6), (5, 6)

$$P(X) = \frac{5}{15}$$
 ...(5)

We can put all value of P(X) in chart, So

Variable (X)	2	3	4	5	6	
Probability P(X)	1	2	3	4	5	
	15	15	15	15	15	
and required mean	$=2\cdot\left(\frac{1}{2}\right)$	$\left(\frac{1}{15}\right) + \frac{1}{15}$	$3 \cdot \left(\frac{2}{15}\right)$	+4($\left(\frac{3}{15}\right) +$	$5 \cdot \left(\frac{4}{15}\right) + 6 \cdot \left(\frac{5}{15}\right)$

$$=\frac{70}{15}=\frac{14}{3}$$
 Ans

