IIT JEE-2010 Paper-1 (Chemistry) # PART-I CHEMISTRY SECTION-I (Single Correct Choice Type) This section contains **8 multiple choice questions**. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE** is correct. Q.1 Plots showing the variation of the rate constant (k) with temperature (T) are given below. The plot that follows Arrhenius equation is Ans. [A] Q.2 In the reaction $$\bigcirc$$ OCH₃ \longrightarrow the products are (A) Br— $$\bigcirc$$ OCH $_3$ and H $_2$ (B) $$\sim$$ Br and CH_3Br (D) $$\sim$$ OH and CH₃Br Ans. [D] Q.3 The correct statement about the following disaccharide is - (A) Ring (a) is pyranose with α -glycosidic link. - (B) Ring (a) is furanose with α -glycosidic link - (C) Ring (b) is furanose with α -glycosidic link - (D) Ring (b) is pyranose with β -glycosidic link Ans. [A] - Q.4 The synthesis of 3-octyne is achieved by adding a bromoalkane into a mixture of sodium amide and an alkyne. The bromoalkane and alkyne respectively are - (A) BrCH₂CH₂CH₂CH₂CH₃ and CH₃CH₂C≡CH - (B) BrCH₂CH₂CH₃ and CH₃CH₂CH₂C≡CH - (C) $BrCH_2CH_2CH_2CH_3$ and $CH_3C\equiv CH$ - (D) $BrCH_2CH_2CH_2CH_3$ and $CH_3CH_2C\equiv CH$ Ans. [D] Q.5 The ionization isomer of $[Cr(H_2O)_4Cl(NO_2)]Cl$ is $(A) \left[Cr(H_2O)_4(O_2N) \right] Cl_2$ (B) $[Cr(H_2O)_4Cl_2](NO_2)$ (C) [Cr(H₂O)₄Cl(ONO)]Cl (D) $[Cr(H_2O)_4Cl_2(NO_2)]\cdot H_2O$ Ans. [B] Q.6 The correct structure of ethylenediaminetetraacetic acid (EDTA) is $$(A) \begin{tabular}{ll} HOOC-CH_2 \\ HOOC-CH_2 \\ \hline \end{tabular} N-CH=CH-N \\ CH_2-COOH \\ \hline \end{tabular}$$ $$\begin{array}{c} \text{HOOC-CH}_2 \\ \text{(C)} \\ \text{HOOC-CH}_2 \end{array} \begin{array}{c} \text{CH}_2\text{-COOH} \\ \text{CH}_2\text{-COOH} \end{array}$$ (D) $$\begin{array}{c} \text{COOH} \\ \text{HOOC-CH}_2 & \text{CH}_2 \\ \text{N-CH-CH-N} \\ \text{CH}_2 & \text{CH}_2\text{-COOH} \\ \text{HOOC} \\ \end{array}$$ Ans. [C] - Q.7 The bond energy (in **kcal mol**⁻¹) of a C–C single bond is approximately - (A) 1 - (B) 10 - (C) 100 - (D) 1000 Ans. [C] - Q.8 The species which by definition has **ZERO** standard molar enthalpy of formation at 298 K is - $(A) \operatorname{Br}_{2}(g)$ - $(B) \operatorname{Cl}_{2}(g)$ - (C) H₂O(g) - $(D) CH_4(g)$ Ans. [B] ### **SECTION-II** # (Multiple Correct Choice Type) This section contains 5 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), out of which **ONE OR MORE** may be correct. OH $\frac{\text{NaOH(aq)/Br}_2}{\text{NaOH(aq)/Br}_2}$ the intermediate(s) is(are) Q.9 In the reaction [A, B, C]Ans. Q.10Among the following, the intensive property is (properties are) (A) molar conductivity (B) electromotive force (C) resistance (D) heat capacity [A, B]Ans. The reagent(s) used for softening the temporary hardness of water is(are) (A) Ca₃(PO₄)₂ (B) $Ca(OH)_{2}$ (C) Na₂CO₃ (D) NaOCl [B, C, D]Ans. Aqueous solutions of HNO₃, KOH, CH₃COOH, and CH₃COONa of identical concentrations are 0.12provided. The pair(s) of solutions which form a buffer upon mixing is(are) (A) HNO₃ and CH₃COOH (B) KOH and CH₃COONa (C) HNO₃ and CH₃COONa (D) CH₃COOH and CH₃COONa Ans. [C, D] [Option 'C' is correct under certain condition] In the Newman projection for 2,2-dimethylbutane Q.13 **X** and **Y** can respectively be (A) H and H (B) H and C_2H_5 (C) C_2H_5 and H (D) CH_3 and CH_3 [B, D]Ans. #### SECTION-III #### (Paragraph Type) This section contains 2 paragraphs. Based upon the first paragraph 3 multiple choice questions and based upon the second paragraph 2 multiple choice questions have to be answered. Each of these questions has 4 choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct. #### Paragraph for Questions 14 to 16 Copper is the most noble of the first row transition metals and occurs in small deposits in several countries. Ores of copper include chalcanthite ($CuSO_4 \cdot 5H_2O$), atacamite ($Cu_2Cl(OH)_3$), cuprite (Cu_2O), copper glance (Cu₂S) and malachite (Cu₂(OH)₂CO₃). However, 80% of the world copper production comes from the ore chalcopyrite (CuFeS₂). The extraction of copper from chalopyrite involved partial roasting, removal of iron and self-reduction. - Q.14 Partial roasting of chalcopyrite produces - (A) Cu₂S and FeO (B) Cu₂O and FeO (C) CuS and Fe₂O₃ (D) $\tilde{\text{Cu}_2\text{O}}$ and Fe_2O_3 Ans. [A] Iron is removed from chalcopyrite as (A) FeO (B) FeS (C) Fe_2O_3 (D) FeSiO₃ Ans. [D] In self-reduction, the reducing species is (A)S (B) O^{2-} (C) S^{2-} (D) SO₂ Ans. [C] #### Paragraph for Questions 17 to 18 The concentration of potassium ions inside a biological cell is at least twenty times higher than the outside. The resulting potential difference across the cell is important in several processes such as transmission of nerve impulses and maintaining the ion balance. A simple model for such a concentration cell involving a metal M is: $M(s) | M^{+}(aq; 0.05 \text{ molar}) | | M^{+}(aq; 1 \text{ molar}) | M(s)$ For the above electrolytic cell the magnitude of the cell potential $|E_{cell}| = 70 \text{ mV}$. Q.17 For the above cell (A) $E_{cell} < 0; \Delta G > 0$ (B) $E_{cell} > 0$; $\Delta G < 0$ (D) $E_{cell} > 0$; $\Delta G^{\circ} < 0$ (C) $E_{cell}^{cell} < 0$; $\Delta G^{\circ} > 0$ Ans. [B] Q.18 If the 0.05 molar solution of M⁺ is replaced by a 0.0025 molar M⁺ solution, then the magnitude of the cell potential would be $(A) 35 \,\mathrm{mV}$ $(B) 70 \,\mathrm{mV}$ $(C) 140 \, mV$ (D) $700 \, \text{mV}$ [C] Ans. #### **SECTION-IV** #### (Integer Type) This Section contains **TEN** questions. The answer to each question is a **single digit integer** ranging from 0 to 9. The correct digit below the question number in the ORS is to be bubbled. Q.19 In the scheme given below, the total number of intramolecular aldol condensation products formed from ${\bf \hat{Y}}$ is $$\frac{1.O_3}{2.Zn,H_2O} \mathbf{Y} \xrightarrow{1.NaOH(aq)} 2.heat$$ Ans. [1] Q.20 Amongst the following, the total number of compounds soluble in aqueous NaOH is Ans. [4] Q.21 Amongst the following, the total number of compounds whose aqueous solution turns red litmus paper blue is Ans. [3] Q.22 Based on VSEPR theory, the number of 90 degree F–Br–F angles in BrF₅ is Ans. [0] Q.23 The value of n in the molecular formula $Be_nAl_2Si_6O_{18}$ is Ans. [3] Q.24 A student performs a titration with different burettes and finds titre values of 25.2 mL, 25.25 mL, and 25.0 mL. The number of significant figures in the average titre value is Ans. [3] Q.25 The concentration of R in the reaction $R \rightarrow P$ was measured as a function of time and the following data is obtained: | [R](molar) | 1.0 | 0.75 | 0.40 | 0.10 | |------------|-----|------|------|------| | t (min.) | 0.0 | 0.05 | 0.12 | 0.18 | The order of the reaction is: Ans. [0] Q.26 The number of neutrons emitted when $^{235}_{92}$ U undergoes controlled nuclear fission to $^{142}_{54}$ Xe and $^{90}_{38}$ Sr is **Ans.** [4] Q.27 The total number of basic groups in the following form of lysine is $$\begin{array}{c} \text{H}_{3}\overset{\oplus}{\text{N}}\text{-CH}_{2}\text{-CH}_{2}\text{-CH}_{2}\text{-CH}_{2} \\ \text{CH} - \text{C} \\ \text{H}_{2}\text{N} \end{array}$$ Ans. [2] Q.28 The total number of cyclic isomers possible for a hydrocarbon with the molecular formula C_4H_6 is **Ans.** [5] # **IIT JEE-2010 Paper-1 (Mathematics) PART-II (MATHEMATICS) SECTION-I** (Single Correct Choice Type) This section contains 8 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), out of which **ONLY ONE** is correct. | Q.29 The | e value of I | $\lim_{x \to 0} \frac{1}{x^3}$ | $\int_{0}^{x} \frac{t \ln(1+t)}{t^4+4}$ | dt is | |----------|--------------|--------------------------------|-----------------------------------------|-------| |----------|--------------|--------------------------------|-----------------------------------------|-------| (A) 0 (B) $\frac{1}{12}$ (C) $\frac{1}{24}$ (D) $\frac{1}{64}$ Ans. [B] The number of 3×3 matrices A whose entries are either 0 or 1 and for which the system A $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ Q.30 has exactly two distinct solutions, is (A) 0 (B) $2^9 - 1$ (C) 168 (D) 2 [A] Ans. Q.31 Let P, Q, R and S be the points on the plane with position vectors $-2\hat{\mathbf{i}} - \hat{\mathbf{j}}$, $4\hat{\mathbf{i}}$, $3\hat{\mathbf{i}} + 3\hat{\mathbf{j}}$ and $-3\hat{\mathbf{i}} + 2\hat{\mathbf{j}}$ respectively. The quadrilateral PQRS must be a (A) parallelogram, which is neither a rhombus nor a rectangle. (B) square. (C) rectangle, but not a square. (D) rhombus, but not a square. Ans. [A] Q.32 Let ω be a complex cube root of unity with $\omega \neq 1$. A fair die is thrown three times. If r_1 , r_2 and r_3 are the numbers obtained on the die, then the probability that $\ \omega^{r_1}+\omega^{r_2}+\omega^{r_3}=0$ is (A) $\frac{1}{18}$ (B) $\frac{1}{9}$ (C) $\frac{2}{9}$ (D) $\frac{1}{36}$ [C] Ans. Equation of the plane containing the straight line $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3} = \frac{y}{4} = \frac{z}{2}$ and $\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$, is (A) x + 2y - 2z = 0 (B) 3x + 2y - 2z = 0 (C) x - 2y + z = 0 (D) 5x + 2y - 4z = 0 Ans. [C] - If the angles A, B and C of a triangle are in an arithmetic progression and if a, b and c denote the lengths of the sides opposite to A, B and C respectively, then the value of the expression $\frac{a}{c} \sin 2C + \frac{c}{c} \sin 2A$, is - (A) $\frac{1}{2}$ - (B) $\frac{\sqrt{3}}{2}$ - (C) 1 - (D) $\sqrt{3}$ Ans. [**D**] - Q.35 Let f, g and h be real-valued functions defined on the interval [0, 1] by $f(x) = e^{x^2} + e^{-x^2}$. $g(x) = xe^{x^2} + e^{-x^2}$ and $h(x) = x^2e^{x^2} + e^{-x^2}$. If a, b and c denote respectively, the absolute maximum of f, g and h on [0, 1], then - (A) a = b and $c \neq b$ - (B) a = c and $a \neq b$ - (C) $a \neq b$ and $c \neq b$ (D) a = b = c Ans. [D] - Q.36 Let p and q be real numbers such that $p \neq 0$, $p^3 \neq q$ and $p^3 \neq -q$. If α and β are nonzero complex numbers satisfying $\alpha + \beta = -p$ and $\alpha^3 + \beta^3 = q$, then a quadratic equation having $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ as its roots is $\begin{array}{ll} \text{(A)} \ (p^3+q)x^2 - (p^3+2q)x + (p^3+q) = 0 \\ \text{(C)} \ (p^3-q)x^2 - (5p^3-2q)x + (p^3-q) = 0 \end{array} \\ \begin{array}{ll} \text{(B)} \ (p^3+q)x^2 - (p^3-2q)x + (p^3+q) = 0 \\ \text{(D)} \ (p^3-q)x^2 - (5p^3+2q)x + (p^3-q) = 0 \end{array} \\ \end{array}$ Ans. ### **SECTION-II** # (Multiple Correct Choice Type) This section contains 5 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), out of which **ONE OR MORE** may be correct. Let ABC be a triangle such that $\angle ACB = \frac{\pi}{6}$ and let a, b and c denote the lengths of the sides opposite to A, B and C respectively. The value(s) of x for which $a = x^2 + x + 1$, $b = x^2 - 1$ and c = 2x + 1 is/are (B) $1+\sqrt{3}$ (A) $-(2+\sqrt{3})$ (C) $2+\sqrt{3}$ (D) $4\sqrt{3}$ Ans. [B] - Q.38 Let f be a real valued function defined on the interval $(0, \infty)$ by $f(x) = \ln x + \int_{0}^{\infty} \sqrt{1 + \sin t} \, dt$. Then which - of the following statement(s) is/are true? (A) f "(x) exists for all $x \in (0, \infty)$ - (B) f'(x) exists for all $x \in (0, \infty)$ and f' is continuous on $(0, \infty)$ but not differentiable on $(0, \infty)$. - (C) there exists $\alpha > 1$ such that |f'(x)| < |f(x)| for all $x \in (\alpha, \infty)$ - (D) there exists $\beta > 0$ such that $|f(x)| + |f'(x)| \le \beta$ for all $x \in (0, \infty)$ Ans. [B, C] Q.39 Let A and B be two distinct point on the parabola $y^2 = 4x$. If the axis of the parabola touches the circle of radius r having AB as its diameter, then the slope of the line joining A and B can be $(A) \frac{-1}{r}$ (B) $\frac{1}{r}$ (C) $\frac{2}{r}$ (D) $\frac{-2}{r}$ [C, D]Ans. Q.40 The value(s) of $\int_{0}^{1} \frac{x^{4}(1-x)^{4}}{1+x^{2}} dx$ is(are) (A) $\frac{22}{7} - \pi$ (B) $\frac{2}{105}$ (C) 0 (D) $\frac{71}{15} - \frac{3\pi}{2}$ Ans. Q.41 Let z_1 and z_2 be two distinct complex number and let $z = (1-t)z_1 + tz_2$ for some real number t with $0 \le t \le 1$. If Arg(w) denotes the principal argument of a nonzero complex number ω , then (A) $|z-z_1| + |z-z_2| = |z_1-z_2|$ (B) Arg $(z - z_1) = Arg(z - z_2)$ (C) $\begin{vmatrix} z-z_1 & \overline{z}-\overline{z}_1 \\ z_2-z_1 & \overline{z}_2-\overline{z}_1 \end{vmatrix} = 0$ (D) Arg $(z-z_1) = Arg(z_2-z_1)$ [A, C, D]Ans. #### **SECTION-III** #### **Comprehension Type** This section contains 2 groups of questions. Based upon the first paragraph 3 multiple choice questions and based upon the second paragraph 2 multiple questions have to be answered. Each of these question has four choices (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** is correct. # Paragraph for questions 42 to 44 Let p be an odd number and T_p be the following set of 2×2 matrices. $$T_{p} = \left\{ A = \begin{bmatrix} a & b \\ c & a \end{bmatrix} : a, b, c \in \{0, 1, 2, \dots, p-1\} \right\}$$ The number of A in T_p such that A is either symmetric or skew-symmetric or both, and det(A) divisible Q.42 by p is $(A) (p-1)^2$ - (B) 2(p-1) (C) $(p-1)^2 + 1$ (D) 2p-1 Ans. [D] The number of A in T_p such that the trace of A is not divisible by p but det (A) is divisible by p is [Note: The trace of a matrix is the sum of its diagonal entries.] (A) $(p-1)(p^2-p+1)$ (B) $p^3 - (p-1)^2$ (C) $(p-1)^2$ (D) $(p-1)(p^2-2)$ Ans. [C] The number of A in T_p such that det(A) is not divisible by p is (A) $2p^2$ (B) $p^3 - 5p$ (D) $p^3 - 3p$ Q.44 (D) $p^3 - p^2$ #### Ans. [**D**] ### Paragraph for questions 45 to 46 The circle $x^2 + y^2 - 8x + 0$ and hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$ intersect at the points A and B. Equation of a common tangent with positive slope to the circle as well as to the hyperbola is (A) $$2x - \sqrt{5}y - 20 = 0$$ (B) $$2x - \sqrt{5}y + 4 = 0$$ (C) $$3x - 4y + 8 = 0$$ (D) $$4x - 3y + 4 = 0$$ [B] Ans. Q.46 Equation of the circle with AB as its diameter is (A) $$x^2 + y^2 - 12x + 24 = 0$$ (C) $x^2 + y^2 + 24x - 12 = 0$ (B) $$x^2 + y^2 + 12x + 24 = 0$$ (D) $x^2 + y^2 - 24x - 12 = 0$ (C) $$x^2 + y^2 + 24x - 12 = 0$$ (D) $$x^2 + y^2 - 24x - 12 = 0$$ Ans. #### **SECTION-IV** #### **Integer Type** This section contains **Ten questions**. The answer to each question is a single-digit integer, ranging from 0 to 9. The correct digit below the question number in the ORS is to be bubbled. Q.47 If \vec{a} and \vec{b} are vectors in space given by $\vec{a} = \frac{\hat{i} - 2\hat{j}}{\sqrt{5}}$ and $\vec{b} = \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}}$, then the value of $$(2\vec{a} + \vec{b}) \cdot [(\vec{a} \times \vec{b}) \times (\vec{a} - 2\vec{b})]$$, is Ans. The line 2x + y = 1 is tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. If this line passes through the point of intersection of the nearest directrix and the x-axis, then the eccentricity of the hyperbola, is Ans. [2] If the distance between the plane Ax – 2y+z=d and the plane containing the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $$\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$$ is $\sqrt{6}$, then $|d|$ is [6] Ans. For any real number x, let [x] denote the largest integer less than or equal to x. Let f be a real valued function defined on the interval [-10, 10] by $$f(x) = \begin{cases} x - [x] & \text{if } [x] \text{ is odd} \\ 1 + [x] - x & \text{if } [x] \text{ is even} \end{cases}$$ Then the value of $\frac{\pi^2}{10} \int_{10}^{10} f(x) \cos \pi x \, dx$ is [4] Ans. Q.51 Let w be the complex number $\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$. Then the number of distinct complex number z satisfying $$\begin{vmatrix} z+1 & \omega & \omega^2 \\ \omega & z+\omega^2 & 1 \\ \omega^2 & 1 & z+\omega \end{vmatrix} = 0$$ is equal to Ans. [1] Q.52 Let S_k , k = 1, 2,, 100, denote the sum of the infinite geometric series whose first term is $\frac{k-1}{k!}$ and the common ratio is $$\frac{1}{k}$$. Then the value of $\frac{100^2}{100!} + \sum_{k=1}^{100} \left| \left(k^2 - 3k + 1 \right) S_k \right|$, is Ans. [4] Q.53 The number of all possible values of θ , where $0 < \theta < \pi$, for which the system of equations $$(y+z)\cos 3\theta = (xyz)\sin 3\theta$$ $$x\sin 3\theta = \frac{2\cos 3\theta}{y} + \frac{2\sin 3\theta}{z}$$ $$(xyz) \sin 3\theta = (y + 2z) \cos 3\theta + y \sin 3\theta$$ have a solution (x_0, y_0, z_0) with $y_0 z_0 \neq 0$, is Ans. [3] Q.54 Let f be a real valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If the y-intercept of the tangent at any point P(x, y) on the curve y = f(x) is equal to the cube of the abscissa of P, then the value of f(-3) is equal to Ans. [9] Q.55 The number of values of θ in the interval $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ such that $\theta \neq \frac{n\pi}{5}$ for $n = 0, \pm 1, \pm 2$ and $\tan \theta = \cot 5\theta$ as well as $\sin 2\theta = \cos 4\theta$, is Ans. [3] Q.56 The maximum value of the expression $\frac{1}{\sin^2 \theta + 3\sin \theta \cos \theta + 5\cos^2 \theta}$ is Ans. [2] # PAPER-1 PART III: PHYSICS **SECTION -I** # **Single Correct Choice Type** This section contains 8 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONLY ONE is correct. A thin flexible wire of length L is connected to two adjacent fixed points and carries a current I in the clockwise direction, as shown in the figure. When the system is put in a uniform magnetic field of strength B going into the plane of the paper, the wire takes the shape of a circle. The tension in the wire is (A) IBL [C] Ans. An AC voltage source of variable angular frequency ω and fixed amplitude V_0 is connected in series with Q.58 a capacitance C and an electric bulb of resistance R (inductance zero). When ω is increased (A) the bulb glows dimmer (B) the bulb glows brighter (C) total impedance of the circuit is unchanged (D) total impedance of the circuit increases Ans. [B] Q.59 To verify Ohm's law, a student is provided with a test resistor R_T, a high resistance R₁, a small resistance R_2 , two identical galvanometers G_1 and G_2 , and a variable voltage source V. The correct circuit to carry out the experiment is: Ans. [C] Incandescent bulbs are designed by keeping in mind that the resistance of their filament increases with the increase in temperature. If at room temperature, 100 W, 60 W and 40 W bulbs have filament resistances R_{100} , R_{60} and R_{40} , respectively, the relation between these resistances is (A) $$\frac{1}{R_{100}} = \frac{1}{R_{40}} + \frac{1}{R_{60}}$$ (B) $$R_{100} = R_{40} + R_{60}$$ (C) $$R_{100} > R_{60} > R_{40}$$ (D) $$\frac{1}{R_{100}} > \frac{1}{R_{60}} > \frac{1}{R_{40}}$$ Ans. [D] A real gas behaves like an ideal gas if its Q.61 - (A) pressure and temperature are both high - (B) pressure and temperature are both low - (C) pressure is high and temperature is low - (D) pressure is low and temperature is high Ans. [**D**] Q.62 Consider a thin square sheet of side L and thickness t, made of a material of resistivity ρ . The resistance between two opposite faces, shown by the shaded areas in the figure is - (A) directly proportional to L - (B) directly proportional to t (C) independent of L (D) independent of t required to take a unit mass from point P on its axis to infinity is Ans. [C] Q.63 A thin uniform annular disc (see figure) of mass M has outer radius 4R and inner radius 3R. The work - (A) $\frac{2GM}{7R} \left(4\sqrt{2} 5 \right)$ (B) $-\frac{2GM}{7R} \left(4\sqrt{2} 5 \right)$ (C) $\frac{GM}{4R}$ (D) $\frac{2GM}{5R} \left(\sqrt{2} 1 \right)$ Ans. [A] Q.64 A block of mass m is on an inclined plane of angle θ . The coefficient of friction between the block and the plane is μ and $\tan \theta > \mu$. The block is held stationary by applying a force P parallel to the plane. The direction of force pointing up the plane is taken to be positive. As P is varied from $P_1 = mg (\sin \theta - \mu \cos \theta)$ to $P_2 = mg (\sin \theta + \mu \cos \theta)$, the frictional force f versus P graph will look like Ans. [A] # **SECTION -II Multiple Correct Choice Type** This section contains 5 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE OR MORE may be correct. - Q.65 A student uses a simple pendulum of exactly 1m length to determine g, the acceleration due to gravity. He uses a stop watch with the least count of 1 sec for this and records 40 seconds for 20 oscillations. For this observation, which of the following statement(s) is (are) true? - (A) Error ΔT in measuring T, the time period, is 0.05 seconds - (B) Error ΔT in measuring T, the time period, is 1 second - (C) Percentage error in the determination of g is 5% - (D) Percentage error in the determination of g is 2.5% **Ans.** [A, C] Q.66 A ray OP of monochromatic light is incident on the face AB of prism ABCD near vertex B at an incident angle of 60° (see figure). If the refractive index of the material of the prism is $\sqrt{3}$, which of the following is (are) correct? - (A) The ray gets totally internally reflected at face CD - (B) The ray comes out through face AD - (C) The angle between the incident ray and the emergent ray is 90° - (D) The angle between the incident ray and the emergent ray is 120° Ans. [A, B, C] Q.67 A few electric field lines for a system of two charges Q_1 and Q_2 fixed at two different points on the x-axis are shown in the figure. These lines suggest that (A) $|Q_1| > |Q_2|$ - (B) $|Q_1| < |Q_2|$ - (C) at a finite distance to the left of Q_1 the electric field is zero - (D) at a finite distance to the right of \hat{Q}_2 the electric field is zero Ans. [A, D] Q.68 One mole of an ideal gas in initial state A undergoes 1 a cyclic process ABCA, as shown in the figure. Its pressure at A is P_0 Choose the correct option(s) from the following - (A) Internal energies at A and B are the same - (B) Work done by the gas in process AB is $P_0V_0 \ln 4$ (C) Pressure at C is $\frac{P_0}{4}$ (D) Temperature at C is $\frac{T_0}{4}$ **Ans.** [**A**, **B**] - Q.69 A point mass of 1kg collides elastically with a stationary point mass of 5kg. After their collision, the 1kg mass reverses its direction and moves with a speed of 2 ms⁻¹. Which of the following statement(s) is (are) correct for the system of these two masses? - (A) Total momentum of the system is 3kg ms⁻¹ - (B) Momentum of 5kg mass after collision is 4kg ms⁻¹ - (C) Kinetic energy of the centre of mass is 0.75 J - (D) Total kinetic energy of the system is 4J Ans. [A, C] #### SECTION - III ### Paragraph Type This section contains 2 paragraphs. Based upon the first paragraph 3 multiple choice questions and based upon the second paragraph 2 multiple choice questions have to be answered. Each of these questions has four choices (A), (B), (C) and (D) out of which ONLYONE is correct. # Paragraph for Questions 70 to 72 When a particle of mass m moves on the x-axis in a potential of the form $V(x) = kx^2$, it performs simple harmonic motion. The corresponding time period is proportional to $\sqrt{\frac{m}{k}}$, as can be seen easily using dimensional analysis. However, the motion of a particle can be periodic even when its potential energy increases on both sides of x = 0 in a way different from kx^2 and its total energy is such that the particle does not escape to infinity. Consider a particle of mass m moving on the x-axis. Its potential energy is $V(x) = \alpha x^4$ ($\alpha > 0$) for |x| near the origin and becomes a constant equal to V_0 for $|x| \ge X_0$ (see figure). - If the total energy of the particle is E, it will perform periodic motion only if Q.70 - (A) E < 0 - (B) E > 0 - $(C) V_0 > E > 0$ - (D) $E > V_0$ Ans. [C] - Q.71For periodic motion of small amplitude A, the time period T of this particle is proportional to - (A) $A\sqrt{\frac{m}{\alpha}}$ (B) $\frac{1}{A}\sqrt{\frac{m}{\alpha}}$ (C) $A\sqrt{\frac{\alpha}{m}}$ (D) $\frac{1}{A}\sqrt{\frac{\alpha}{m}}$ [B] Ans. - The acceleration of this particle for $|x| > X_0$ is Q.72 - (A) proportional to V_0 (B) proportional to $\frac{V_0}{mX_2}$ (C) proportional to $\sqrt{\frac{V_0}{mX_0}}$ (D) zero [D]Ans. # Paragraph for Questions 73 to 74 Electrical resistance of certain materials, known as superconductors, changes abruptly from a nonzero value to zero as their temperature is lowered below a critical temperature $T_C(0)$. An interesting property of superconductors is that their critical temperature becomes smaller than $T_C(0)$ if they are placed in a magnetic field, i.e., the critical temperature $T_C(B)$ is a function of the magnetic field strength B. The dependence of $T_C(B)$ on B is shown in the figure. Q.73 In the graphs below, the resistance R of a superconductor is shown as a function of its temperature T for two different magnetic fields B₁ (solid line) and B₂ (dashed line). If B₂ is larger than B₁, which of the following graphs shows the correct variation of R with T in these fields? Ans. [A] Q.74 A superconductor has $T_C(0) = 100$ K. When a magnetic field of 7.5 Tesla is applied, its T_C decreases to 75K. For this material one can definitely say that when (A) $B = 5 \text{ Tesla}, T_C(B) = 80 \text{ K}$ (B) B = 5 Tesla, $75K < T_C(B) < 100 K$ (C) $B = 10 \text{ Tesla}, 75 \text{ K} < T_C (B) < 100 \text{ K}$ (D) $B = 10 \text{ Tesla}, T_C(B) = 70 \text{ K}$ Ans. [B] # **SECTION -IV Integer Type** This section contains TEN questions. The answer to each question is a single-digit integer, ranging from 0 to 9. The correct digit below the question number in the ORS is to be bubbled. Q.75 When two identical batteries of internal resistance 1Ω each are connected in series across a resistor R, the rate of heat produced in R is J_1 . When the same batteries are connected in parallel across R, the rate is J_2 . If $J_1 = 2.25 J_2$ then the value of R in Ω is. Ans. [4] Q.76 Two spherical bodies A(radius 6 cm) and B(radius 18 cm) are at temperature T_1 and T_2 , respectively. The maximum intensity in the emission spectrum of A is at 500 nm and in that of B is at 1500 nm. Considering them to be black bodies, what will be the ratio of the rate of total energy radiated by A to that of B? **Ans.** [9] Q.77 When two progressive waves $y_1 = 4 \sin(2x - 6t)$ and $y_2 = 3 \sin\left(2x - 6t - \frac{\pi}{2}\right)$ are superimposed, the amplitude of the resultant wave is Ans. [5] Q.78 A 0.1 kg mass is suspended from a wire of negligible mass. The length of the wire is 1m and its cross-sectional area is 4.9×10^{-7} m². If the mass is pulled a little in the vertically downward direction and released, it performs simple harmonic motion of angular frequency 140 rad s⁻¹. If the Young's modulus of the material of the wire is $n \times 10^9$ Nm⁻², the value of n is Ans. [4] Q.79 A binary star consists of two stars A (mass $2.2\,M_S$) and B (mass $11\,M_S$), where M_S is the mass of the sun. They are separated by distance d and are rotating about their centre of mass, which is stationary. The ratio of the total angular momentum of the binary star to the angular momentum of a star B about the centre of mass is **Ans.** [6] Q.80 Gravitational acceleration on the surface of a planet is $\frac{\sqrt{6}}{11}$ g, where g is the gravitational acceleration on the surface of the earth. The average mass density of the planet is $\frac{2}{3}$ times that of the earth. If the escape speed on the surface of the earth is taken to be 11 kms⁻¹, the escape speed on the surface of the planet in kms⁻¹ will be **Ans.** [3] Q.81 A piece of ice (heat capacity = $2100 \,\mathrm{J\,kg^{-1}}\,^{\circ}\mathrm{C^{-1}}$ and latent heat = $3.36 \times 10^5 \,\mathrm{J\,kg^{-1}}$) of mass m grams is at $-5\,^{\circ}\mathrm{C}$ at atmospheric pressure. It is given $420 \,\mathrm{J}$ of heat so that the ice starts melting. Finally when the ice-water mixture is in equilibrium, it is found that $1\,\mathrm{gm}$ of ice has melted. Assuming there is no other heat exchange in the process, the value of m is Ans. [8] Q.82 A stationary source is emitting sound at a fixed frequency f_0 , which is reflected by two cars approaching the source. The difference between the frequencies of sound reflected from the cars is 1.2% of f_0 . What is the difference in the speeds of the cars (in km per hour) to the nearest integer? The cars are moving at constant speeds much smaller than the speed of sound which is 330 ms⁻¹. Ans. [7] Q.83 The focal length of a thin biconvex lens is 20 cm. When an object is moved from a distance of 25 cm in front of it to 50 cm, the magnification of its image changes from m_{25} to m_{50} . The ratio $\frac{m_{25}}{m_{50}}$ is **Ans.** [6] Q.84 An α -particle and a proton are accelerated from rest by a potential difference of 100V. After this, their de-Broglie wavelengths are λ_{α} and λ_{p} respectively. The ratio $\frac{\lambda_{p}}{\lambda_{\alpha}}$, to the nearest integer, is Ans. [3]