
SYLLABUS
OBJECT ORIENTED PROGRAMMING WITH C++

(Common to CSE & ISE)

Subject Code: 10CS36 I.A. Marks : 25
Hours/Week : 04 Exam Hours: 03
Total Hours : 52 Exam Marks: 100

PART – A
UNIT 1 6 Hours
Introduction: Overview of C++, Sample C++ program, Different data types,operators,
expressions, and statements, arrays and strings, pointers & userdefined types Function
Components, argument passing, inline functions, function overloading, recursive functions

UNIT 2 7 Hours
Classes & Objects – I: Class Specification, Class Objects, Scope resolution operator,
Access members, Defining member functions, Data hiding, Constructors, Destructor s,
Parameterized constructors, Static data members, Functions

UNIT 3 7 Hours
Classes & Objects –II: Friend functions, Passing objects as arguments, Returning objects,
Arrays of objects, Dynamic objects, Pointers to objects, Copy constructors, Generic
functions and classes, Applications Operator overloading using friend functions such as +, - ,
pre-increment, post-increment, [] etc., overloading <<, >>.

UNIT 4 6 Hours
Inheritance – I: Base Class, Inheritance and protected members, Protected base class
inheritance, Inheriting multiple base classes

PART – B
UNIT 5 6 Hours
Inheritance – II: Constructors, Destructors and Inheritance, Passing parameters to base
class constructors, Granting access, Virtual base classes

UNIT 6 7 Hours
Virtual functions, Polymorphism: Virtual function, Calling a Virtual function through a
base class reference, Virtual attribute is inherited, Virtual functions are hierarchical, Pure
virtual functions, Abstract classes, Using virtual functions, Early and late binding.

UNIT 7 6 Hours
I/O System Basics, File I/0: C++ stream classes, Formatted I/O, I/O manipulators, fstream
and the File classes, File operations

UNIT 8 7 Hours
Exception Handling, STL: Exception handling fundamentals, Exception handling options
STL: An overview, containers, vectors, lists, maps.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

Text Books:
1. Herbert Schildt: The Complete Reference C++, 4th Edition, Tata McGraw Hill, 2003.
Reference Books:
1. Stanley B.Lippmann, Josee Lajore: C++ Primer, 4th Edition, Pearson Education, 2005.
2. Paul J Deitel, Harvey M Deitel: C++ for Programmers, Pearson Education, 2009.
3. K R Venugopal, Rajkumar Buyya, T Ravi Shankar: Mastering C++, Tata McGraw Hill,
1999.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

INDEX

UNIT 1 Introduction 2-46

UNIT 2 Classes & Objects – I 47-68

UNIT 3 Classes & Objects –II 69-118

UNIT 4 Inheritance – I1 19-128

UNIT 5 Inheritances – II1 29-145

UNIT 6 Virtual functions, Polymorphism1 46-163

UNIT 7 I/O System Basics, File I/0 164-188

UNIT 8 Exception Handling, STL 189-211

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

2

UNIT 1
Introduction

1.1 Overview of C++

1.2 Sample C++ program

1.3 Different data types

1.4 Operators, expressions, and statements

1.5 Arrays and strings

1.6 Pointers & user-defined types

1.7 Function Components

1.8 Argument passing

1.9 Inline functions

1.10 Function overloading

1.11 Recursive functions

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

3

1.1 Overview of C++

C++ began as an expanded version of C. The C++ extensions were first invented by

Bjarne Stroustrup in 1979 at Bell Laboratories in Murray Hill, New Jersey. He initially

called the new language "C with Classes." However, in 1983 the name was changed to C++.

Since C++ was first invented, it has undergone three major revisions, with each adding to

and altering the language. The first revision was in 1985 and the second in 1990. The third

occurred during the standardization of C++. Several years ago, work began on a standard for

C++. Toward that end, a joint ANSI (American National Standards Institute) and ISO

(International Standards Organization) standardization committee was formed. The first

draft of the proposed standard was created on January 25, 1994.

The ANSI/ISO C++ committee kept the features first defined by Stroustrup and added some

new ones as well. But in general, this initial draft reflected the state of C++ at the time.

What Is Object-Oriented Programming?

Since object-oriented programming (OOP) drove the creation of C++, it is necessary to

understand its foundational principles. OOP is a powerful way to approach the job of

programming. Programming methodologies have changed dramatically since the invention of

the computer, primarily to accommodate the increasing complexity of programs. For example,

when computers were first invented, programming was done by toggling in the binary machine

instructions using the computer's front panel. As long as programs were just a few hundred

instructions long, this approach worked. As programs grew, assembly language was invented

so that a programmer could deal with larger, increasingly complex programs, using symbolic

representations of the machine instructions. As programs continued to grow, high-level

languages were introduced that gave the programmer more tools with which to handle

complexity. The first widespread language was, of course, FORTRAN. Although FORTRAN

was a very impressive first step, it is hardly a language that encourages clear, easy-

tounderstand programs.

The 1960s gave birth to structured programming. This is the method encouraged by languages

such asCand Pascal. The use of structured languages made it possible to write moderately

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

4

complex programs fairly easily. Structured languages are characterized by their support for

stand-alone subroutines, local variables, rich control constructs, and their lack of reliance upon

theGOTO. Although structured languages are a powerful tool, they reach their limit when a

project becomes too large.

Object-oriented programming took the best ideas of structured programming and combined

them with several new concepts. The result was a different way of organizing a program. In the

most general sense, a program can be organized in one of two ways: around its code (what is

happening) or around its data (who is being affected). Using only structured programming

techniques, programs are typically organized around code. This approach can be thought of as

"code acting on data." For example, a program written in a structured language such as C is

defined by its functions, any of which may operate on any type of data used by the program.

Object-oriented programs work the other way around. They are organized around data, with the

key principle being "data controlling access to code." In an object-oriented language, you

define the data and the routines that are permitted to act on that data. Thus, a data type defines

precisely what sort of operations can be applied to that data.

To support the principles of object-oriented programming, all OOP languages have three traits

in common: encapsulation, polymorphism, and inheritance. Let's examine each.

Encapsulation

Encapsulation is the mechanism that binds together code and the data it manipulates, and keeps

both safe from outside interference and misuse. In an object-oriented language, code and data

may be combined in such a way that a self-contained "black box" is created. When code and

data are linked together in this fashion, an object is created. In other words, an object is the

device that supports encapsulation. Within an object, code, data, or both may be private to that

object or public. Private code or data is known to and accessible only by another part of the

object. That is, private code or data may not be accessed by a piece of the program that exists

outside the object. When code or data is public, other parts of your program may access it even

though it is defined within an object. Typically, the public parts of an object are used to

provide a controlled interface to the private elements of the object. For all intents and purposes,

an object is a variable of a user-defined type. It may seem strange that an object that links both

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

5

code and data can be thought of as a variable. However, in object-oriented programming, this

is precisely the case. Each time you define a new type of object, you are creating a new data

type. Each specific instance of this data type is a compound variable.

Polymorphism

Object-oriented programming languages support polymorphism, which is characterized by the

phrase "one interface, multiple methods." In simple terms, polymorphism is the attribute that

allows one interface to control access to a general class of actions. The specific action selected

is determined by the exact nature of the situation. A real-world example of polymorphism is a

thermostat. No matter what type of furnace your house has (gas, oil, electric, etc.), the

thermostat works the same way. In this case, the thermostat (which is the interface) is the same

no matter what type of furnace (method) you have. For example, if you want a 70-degree

temperature, you set the thermostat to 70 degrees. It doesn't matter what type of furnace

actually provides the heat. This same principle can also apply to programming.

For example, you might have a program that defines three different types of stacks. One stack

is used for integer values, one for character values, and one for floating-point values. Because

of polymorphism, you can define one set of names, push() and pop(), that can be used for all

three stacks. In your program you will create three specific versions of these functions, one for

each type of stack, but names of the functions will be the same. The compiler will

automatically select the right function based upon the data being stored. Thus, the interface to a

stack—the functions push() and pop()—are the same no matter which type of stack is being

used. The individual versions of these functions define the specific implementations (methods)

for each type of data. Polymorphism helps reduce complexity by allowing the same interface to

be used to access a general class of actions. It is the compiler's job to select the specific action

(i.e., method) as it applies to each situation. You, the programmer, don't need to do this

selection manually. You need only remember and utilize the general interface. The first object-

oriented programming languages were interpreters, so polymorphism was, of course, supported

at run time. However, C++ is a compiled language. Therefore, in C++, both run-time and

compile-time polymorphism are supported.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

6

Inheritance
Inheritance is the process by which one object can acquire the properties of another object.

This is important because it supports the concept of classification. If you think about it, most

knowledge is made manageable by hierarchical classifications. For example, a Red Delicious

apple is part of the classification apple, which in turn is part of the fruit class, which is under

the larger class food. Without the use of classifications, each object would have to define

explicitly all of its characteristics. However, through the use of classifications, an object need

only define those qualities that make it unique within its class. It is the inheritance mechanism

that makes it possible for one object to be a specific instance of a more general case. As you

will see, inheritance is an important aspect of object-oriented programming

1.2 A Sample C++ Program
Let's start with the short sample C++ program shown here.

#include <iostream>

using namespace std;

int main()

{

int i;

cout << "This is output.\n"; // this is a single line comment

/* you can still use C style comments */

// input a number using >>

cout << "Enter a number: ";

cin >> i;

// now, output a number using <<

cout << i << " squared is " << i*i << "\n";

return 0;

}

As you can see, this program looks much different from the C subset programs found in Part

One. A line-by-line commentary will be useful. To begin, the header <iostream> is included.

This header supports C++-style I/O operations. (<iostream> is to C++ what stdio.h is to C.)

Notice one other thing: there is no .h extension to the name iostream. The reason is that

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

7

<iostream> is one of the modern-style headers defined by Standard C++. Modern C++ headers

do not use the .h extension.

The next line in the program is

using namespace std;

This tells the compiler to use the std namespace. Namespaces are a recent addition to C++.

Anamespace creates a declarative region in which various program elements can be placed.

Namespaces help in the organization of large programs. The using statement informs the

compiler that you want to use the std namespace. This is the namespace in which the entire

Standard C++ library is declared. By using the std namespace you simplify access to the

standard library. The programs in Part One, which use only the C subset, don't need a

namespace statement because the C library functions are also available in the default, global

namespace.

Since both new-style headers and namespaces are recent additions to C++, you mayencounter

older code that does not use them. Also, if you are using an older compiler,it may not support

them. Instructions for using an older compiler are found later in this chapter.

Now examine the following line.

int main()

Notice that the parameter list in main() is empty. In C++, this indicates that main() has no

parameters. This differs from C. In C, a function that has no parameters must use void in its

parameter list, as shown here:

int main(void)

This was the way main() was declared in the programs in Part One. However, in C++, the use

of void is redundant and unnecessary. As a general rule, in C++ when a function takes no

parameters, its parameter list is simply empty; the use of void is not required.

The next line contains two C++ features.

cout << "This is output.\n"; // this is a single line comment

First, the statement

cout << "This is output.\n";

Assuming that i has the value 10, this statement causes the phrase 10 squared is 100 to be

displayed, followed by a carriage return-linefeed. As this line illustrates, you can run together

several << output operations.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

8

The program ends with this statement:

return 0;

This causes zero to be returned to the calling process (which is usually the operating system).

This works the same in C++ as it does in C. Returning zero indicates that the program

terminated normally. Abnormal program termination should be signaled by returning a nonzero

value. You may also use the values EXIT_SUCCESS and EXIT_FAILURE if you like.

1.3 Different data types

The Five Basic Data Types

There are five atomic data types in the C subset: character, integer, floating-point, double

floating-point, and valueless (char, int, float, double, and void, respectively). As you will see,

all other data types in C are based upon one of these types. The size and range of these data

types may vary between processor types and compilers. However, in all cases a character is 1

byte. The size of an integer is usually the same as the word length of the execution

environment of the program. For most 16-bit environments, such as DOS or Windows 3.1, an

integer is 16 bits. For most 32-bit environments, such as Windows 2000, an integer is 32 bits.

However, you cannot make assumptions about the size of an integer if you want your programs

to be portable to the widest range of environments. It is important to understand that both C

and C++ only stipulate the minimal range of each data type, not its size in bytes.

To the five basic data types defined by C, C++ adds two more: bool and wchar_t. These are

discussed in Part Two.The exact format of floating-point values will depend upon how they are

implemented. Integers will generally correspond to the natural size of a word on the host

computer. Values of type char are generally used to hold values defined by the ASCII

character set. Values outside that range may be handled differently by different compilers. The

range of float and double will depend upon the method used to represent the floating-point

numbers. Whatever the method, the range is quite large. Standard C specifies that the minimum

range for a floating-point value is 1E−37 to 1E+37. The minimum number of digits of

precision for each floating-point type is shown in Table 1-1.

Standard C++ does not specify a minimum size or range for the basic types. Instead, it simply

states that they must meet certain requirements. For example, Standard C++states that an int

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

9

will “have the natural size suggested by the architecture of the execution environment." In all

cases, this will meet or exceed the minimum ranges specified by Standard C. Each C++

compiler specifies the size and range of the basic types in the header <climits>.

Type Typical Size in Bits Minimal Range

char 8 -127 to 127

unsigned char 8 0 to 255

signed char 8 -127 to 127

int 16 or 32 -32,767 to 32,767

unsigned int 16 or 32 0 to 65,535

signed int 16 or 32 same as int

short int 16 -32,767 to 32,767

unsigned short int 16 0 to 65,535

signed short int 16 same as short int

long int 32 -2,147,483,647 to
2,147,483,647

signed long int 32 same as long int

unsigned long int 32 0 to 4,294,967,295

float 32 Six digits of precision

double 64 Ten digits of precision

long double 80 Ten digits of precision

Table 1-1. All Data Types Defined by the ANSI/ISO C Standard

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

10

Modifying the Basic Types
Except for type void, the basic data types may have various modifiers preceding them. You use

a modifier to alter the meaning of the base type to fit various situations more precisely. The list

of modifiers is shown here:

signed

unsigned

long

short

You can apply the modifiers signed, short, long, and unsigned to integer base types.You can

apply unsigned and signed to characters. You may also apply long to double. Table 1-1 shows

all valid data type combinations, along with their minimal ranges and approximate bit widths.

(These values also apply to a typical C++ implementation.) Remember, the table shows the

minimum range that these types will have as specified by Standard C/C++, not their typical

range. For example, on computers that use two's complement arithmetic (which is nearly all),

an integer will have a range of at least 32,767 to –32,768. The use of signed on integers is

allowed, but redundant because the default integer declaration assumes a signed number. The

most important use of signed is to modify char in implementations in which char is unsigned

by default. The difference between signed and unsigned integers is in the way that the

highorder bit of the integer is interpreted. If you specify a signed integer, the compiler

generates code that assumes that the high-order bit of an integer is to be used as a sign flag. If

the sign flag is 0, the number is positive; if it is 1, the number is negative.

In general, negative numbers are represented using the two's complement approach, which

reverses all bits in the number (except the sign flag), adds 1 to this number, and sets the sign

flag to 1. Signed integers are important for a great many algorithms, but they only have half the

absolute magnitude of their unsigned relatives. For example, here is 32,767: 0 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 If the high-order bit were set to 1, the number would be interpreted as −1. However,

if you declare this to be an unsigned int, the number becomes 65,535 when the highorder bit is

set to 1. When a type modifier is used by itself (that is, when it does not precede a basic type),

then int is assumed.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

11

Thus, the following sets of type specifiers are equivalent:

Specifier Same As

signed signed int

unsigned unsigned int

long long int

short short int

Although the int is implied, many programmers specify the int anyway.

1.4 Operators, expressions, and statements
Operators

C/C++ is rich in built-in operators. In fact, it places more significance on operators than do

most other computer languages. There are four main classes of operators: arithmetic,relational,

logical, and bitwise. In addition, there are some special operators for particular tasks.

The Assignment Operator
You can use the assignment operator within any valid expression. This is not the case with

many computer languages (including Pascal, BASIC, and FORTRAN), which treat the

assignment operator as a special case statement. The general form of the assignment operator is

variable_name = expression;

where an expression may be as simple as a single constant or as complex as you require.

C/C++ uses a single equal sign to indicate assignment (unlike Pascal or Modula-2, which use

the := construct). The target, or left part, of the assignment must be a variable or a pointer, not

a function or a constant. Frequently in literature on C/C++ and in compiler error messages you

will see these two terms: lvalue and rvalue. Simply put, an lvalue is any object that can occur

on the left side of an assignment statement. For all practical purposes, "lvalue" means

"variable." The term rvalue refers to expressions on the right side of an assignment and simply

means the value of an expression.

Type Conversion in Assignments

When variables of one type are mixed with variables of another type, a type conversion will

occur. In an assignment statement, the type conversion rule is easy: The value of the right side

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

12

(expression side) of the assignment is converted to the type of the left side (target variable), as

illustrated here:

int x;

char ch;

float f;

void func(void)

{

ch = x; /* line 1 */

x = f; /* line 2 */

f = ch; /* line 3 */

f = x; /* line 4 */
}

Multiple Assignments

C/C++ allows you to assign many variables the same value by using multiple assignments in a

single statement. For example, this program fragment assigns x, y, and z the value 0: x = y = z

= 0; In professional programs, variables are frequently assigned common values using this

method.

Arithmetic Operators

Table 2-4 lists C/C++'s arithmetic operators. The operators +, −, *, and / work as they do in

most other computer languages. You can apply them to almost any built-in data type. When

you apply / to an integer or character, any remainder will be truncated. For example, 5/2 will

equal 2 in integer division.The modulus operator % also works in C/C++ as it does in other

languages, yielding the remainder of an integer division. However, you cannot use it on

floating-point types.

The following code fragment illustrates %:

int x, y;

x = 5;

y = 2;

printf("%d ", x/y); /* will display 2 */

printf("%d ", x%y); /* will display 1, the remainder of

the integer division */

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

13

x = 1;

y = 2;

printf("%d %d", x/y, x%y); /* will display 0 1 */

The last line prints a 0 and a 1 because 1/2 in integer division is 0 with a remainder of 1.

The unary minus multiplies its operand by –1. That is, any number preceded by a minus sign

switches its sign.

Increment and Decrement

C/C++ includes two useful operators not found in some other computer languages. These are

the increment and decrement operators, ++ and −−. The operator ++ adds 1 to its operand,

and −−subtracts 1.

In other words:

x = x+1;

is the same as

++x;

and

x = x-1;

is the same as

x--;

Both the increment and decrement operators may either precede (prefix) or follow (postfix) the

operand.

For example, x = x+1; can be written

++x;

or

x++;

There is, however, a difference between the prefix and postfix forms when you use these

operators in an expression. When an increment or decrement operator precedes its operand, the

increment or decrement operation is performed before obtaining the value of the operand for

use in the expression. If the operator follows its operand, the value of the operand is obtained

before incrementing or decrementing it.

For instance,

x = 10;

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

14

y = ++x;

sets y to 11. However, if you write the code as

x = 10;

y = x++;

y is set to 10. Either way, x is set to 11; the difference is in when it happens. Most C/C++

compilers produce very fast, efficient object code for increment and decrement operations—

code that is better than that generated by using the equivalent assignment statement. For this

reason, you should use the increment and decrement operators when you can.

Here is the precedence of the arithmetic operators:

highest ++ – –

– (unary minus)

* / %

lowest + –

Operators on the same level of precedence are evaluated by the compiler from left to right. Of

course, you can use parentheses to alter the order of evaluation. C/C++ treats parentheses in the

same way as virtually all other computer languages. Parentheses force an operation, or set of

operations, to have a higher level of precedence.

Relational and Logical Operators

In the term relational operator, relational refers to the relationships that values can have with

one another. In the term logical operator, logical refers to the ways these relationships can be

connected. Because the relational and logical operators oftenwork together, they are discussed

together here. The idea of true and false underlies the concepts of relational and logical

operators.

In C, true is any value other than zero. False is zero. Expressions that use relational or logical

operators return 0 for false and 1 for true. C++ fully supports the zero/non-zero concept of true

and false. However, it also defines the bool data type and the Boolean constants true and false.

In C++, a 0 value is automatically converted into false, and a non-zero value is automatically

converted into true. The reverse also applies: true converts to 1 and false converts to 0. In

C++, the outcome of a relational or logical operation is true or false. But since this

automatically converts into 1 or 0, the distinction between C and C++ on this issue is mostly

academic.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

15

The following program contains the function xor(), which returns the outcome of an exclusive

OR operation performed on its two arguments:

#include <stdio.h>

int xor(int a, int b);

int main(void)

{

printf("%d", xor(1, 0));

printf("%d", xor(1, 1));

printf("%d", xor(0, 1));

printf("%d", xor(0, 0));

return 0;

}

Bitwise Operators

Unlike many other languages, C/C++ supports a full complement of bitwise operators.Since C

was designed to take the place of assembly language for most programming including

operations on bits. Bitwise operation refers to testing, setting, or shifting the actual bits in a

byte or word, which correspond to the char and int data types and variants. You cannot use

bitwise operations on float, double, long double, void, bool, or other, more complex types.

These operations are applied to the individual bits of the operands. The bitwise AND, OR, and

NOT (one's complement) are governed by the same truth table as their logical equivalents,

except that they work bit by bit

The ? Operator

C/C++ contains a very powerful and convenient operator that replaces certain statements of the

if-then-else form. The ternary operator ? takes the general form Exp1 ? Exp2 : Exp3; where

Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon. The ?

operator works like this: Exp1 is evaluated. If it is true, Exp2 is evaluated and becomes the

value of the expression. If Exp1 is false, Exp3 is evaluated and its value becomes the value of

the expression.

For example, in

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

16

x = 10;

y = x>9 ? 100 : 200;

y is assigned the value 100. If x had been less than 9, y would have received the value 200. The

same code written using the if-else statement is x = 10;

if(x>9) y = 100;

else y = 200;

The ? operator will be discussed more fully in Chapter 3 in relationship to the other conditional

statements.

The & and * Pointer Operators

A pointer is the memory address of some object. A pointer variable is a variable that is

specifically declared to hold a pointer to an object of its specified type. Knowing a variable's

address can be of great help in certain types of routines. However, pointers have three main

functions in C/C++. They can provide a fast means of referencing array elements. They allow

functions to modify their calling parameters. Lastly, they support linked lists and other

dynamic data structures. Chapter 5 is devoted exclusively to pointers. However, this chapter

briefly covers the two operators that are used to manipulate pointers. The first pointer operator

is &, a unary operator that returns the memory address of its operand. (Remember, a unary

operator only requires one operand.)

For example, m = &count;

places into m the memory address of the variable count. This address is the computer's internal

location of the variable. It has nothing to do with the value of count. You can think of & as

meaning "the address of." Therefore, the preceding assignment statement means "m receives

the address of count."

The Compile-Time Operator sizeof

sizeof is a unary compile-time operator that returns the length, in bytes, of the variable or

parenthesized type-specifier that it precedes. For example, assuming that integers are 4 bytes

and doubles are 8 bytes, double f;

printf("%d ", sizeof f);

printf("%d", sizeof(int));

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

17

will display 8 4.

Remember, to compute the size of a type, you must enclose the typenamein parentheses.

This is not necessary for variable names, although there is no harm done if you do so. C/C++

defines (using typedef) a special type called size_t, which corresponds loosely to an unsigned

integer. Technically, the value returned by sizeof is of type size_t. For all practical purposes,

however, you can think of it (and use it) as if it were an unsigned integer value.

The Comma Operator

The comma operator strings together several expressions. The left side of the comma operator

is always evaluated as void. This means that the expression on the right side becomes the value

of the total comma-separated expression. For example, x = (y=3, y+1); first assigns y the value

3 and then assigns x the value 4. The parentheses are necessary because the comma operator

has a lower precedence than the assignment operator. Essentially, the comma causes a

sequence of operations. When you use it on the right side of an assignment statement, the value

assigned is the value of the last expression of the comma-separated list. The comma operator

has somewhat the same meaning as the word "and" in normal English as used in the phrase "do

this and this and this."

The Dot (.) and Arrow (>) Operators

In C, the . (dot) and the >(arrow) operators access individual elements of structures and unions.

Structures and unions are compound (also called aggregate) data types that may be referenced

under a single name (see Chapter 7). In C++, the dot and arrow operators are also used to

access the members of a class. The dot operator is used when working with a structure or union

directly. The arrow operator is used when a pointer to a structure or union is used.

For example, given the fragment

struct employee

{

char name[80];

int age;

float wage;

} emp;

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

18

struct employee *p = &emp; /* address of emp into p */

you would write the following code to assign the value 123.23 to the wage member of

structure variable emp:

emp.wage = 123.23;

However, the same assignment using a pointer to emp would be p->wage = 123.23.

The [] and () Operators

Parentheses are operators that increase the precedence of the operations inside them. Square

brackets perform array indexing (arrays are discussed fully in Chapter 4). Given an array, the

expression within square brackets provides an index into that array.

For example,

#include <stdio.h>

char s[80];

int main(void)

{

s[3] = 'X';

printf("%c", s[3]);

return 0;

}

first assigns the value 'X' to the fourth element (remember, all arrays begin at 0) of array s, and

then prints that element.

Expressions

Operators, constants, and variables are the constituents of expressions. An expression in C/C++

is any valid combination of these elements. Because most expressions tend to follow the

general rules of algebra, they are often taken for granted. However, a few aspects of

expressions relate specifically to C and C++.

Order of Evaluation

Neither C nor C++ specifies the order in which the subexpressions of an expression are

evaluated. This leaves the compiler free to rearrange an expression to produce more optimal

code. However, it also means that your code should never rely upon the order in which

subexpressions are evaluated. For example, the expression

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

19

x = f1() + f2();

does not ensure that f1() will be called before f2().

Type Conversion in Expressions

When constants and variables of different types are mixed in an expression, they are all

converted to the same type. The compiler converts all operands up to the type of the largest

operand, which is called type promotion. First, all char and short int values are automatically

elevated to int. (This process is called integral promotion.) Once this step has been completed,

all other conversions are done operation by operation, as described in the following type

conversion algorithm:

IF an operand is a long double

THEN the second is converted to long double

ELSE IF an operand is a double

THEN the second is converted to double

ELSE IF an operand is a float

THEN the second is converted to float

ELSE IF an operand is an unsigned long

THEN the second is converted to unsigned long

ELSE IF an operand is long

THEN the second is converted to long

ELSE IF an operand is unsigned int

THEN the second is converted to unsigned int

There is one additional special case: If one operand is long and the other is unsigned int, and if

the value of the unsigned int cannot be represented by a long, both operands are converted to

unsigned long. Once these conversion rules have been applied, each pair of operands is of the

same type and the result of each operation is the same as the type of both operands.

For example, consider the type conversions that occur in Figure 2-2. First, the character ch is

converted to an integer. Then the outcome of ch/i is converted to a double because f*d is

double. The outcome of f+i is float, because f is a float. The final result is double.

Casts

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

20

You can force an expression to be of a specific type by using a cast. The general form of a cast

is

(type) expression

where type is a valid data type. For example, to make sure that the expression x/2 evaluates to

type float, write (float) x/2 Casts are technically operators. As an operator, a cast is unary and

has the same precedence as any other unary operator.

Spacing and Parentheses

You can add tabs and spaces to expressions to make them easier to read. For example, the

following two expressions are the same:

x=10/y~(127/x);

x = 10 / y ~(127/x);

Compound Assignments

There is a variation on the assignment statement, called compound assignment, that simplifies

the coding of a certain type of assignment operation. For example,

x = x+10;

can be written as

x += 10;

The operator += tells the compiler to assign to x the value of x plus 10. Compound assignment

operators exist for all the binary operators (those that require two operands). In general,

statements like:

var = var operator expression

can be rewritten as

var operator = expression

For another example,

x = x-100;

is the same as

x -= 100;

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

21

Compound assignment is widely used in professionally written C/C++ programs; you should

become familiar with it. Compound assignment is also commonly referred to as shorthand

assignment because it is more compact.

Selection Statements

C/C++ supports two types of selection statements: if and switch. In addition, the ? operator is

an alternative to if in certain circumstances.

if

The general form of the if statement is

if (expression) statement;

else statement;

where a statement may consist of a single statement, a block of statements, or nothing (in the

case of empty statements). The else clause is optional.

Nested ifs

A nested if is an if that is the target of another if or else. Nested ifs are very common in

programming. In a nested if, an else statement always refers to the nearest if statement that is

within the same block as the else and that is not already associated with an else.

For example if(i)

{

if(j) statement 1;

if(k) statement 2; /* this if */

else statement 3; /* is associated with this else */

}

else statement 4; /* associated with if(i) */

As noted, the final else is not associated with if(j) because it is not in the same block. Rather,

the final else is associated with if(i). Also, the inner else is associated with if(k), which is the

nearest if .

The if-else-if Ladder
A common programming construct is the if-else-if ladder, sometimes called the if-else-if

staircase because of its appearance.

Its general form is

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

22

if (expression) statement;

else

if (expression) statement;

else

if (expression) statement;

….

else statement;

The conditions are evaluated from the top downward. As soon as a true condition is found, the

statement associated with it is executed and the rest of the ladder is bypassed. If none of the

conditions are true, the final else is executed. That is, if all other conditional tests fail, the last

else statement is performed. If the final else is not present, no action takes place if all other

conditions are false. Although the indentation of the preceding if-else-if ladder is technically

correct, it can lead to overly deep indentation. For this reason, the if-else-if ladder is generally

indented like this:

if (expression)

statement;

else if (expression)

statement;

else if (expression)

statement;

... else

statement;

The ? Alternative
You can use the ? operator to replace if-else statements of the general form:

if(condition) expression;

else expression;

However, the target of both if and else must be a single expression—not another statement.

The ? is called a ternary operator because it requires three operands.

It takes the general form

Exp1 ? Exp2 : Exp3

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

23

where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.

The Conditional Expression

Sometimes newcomers to C/C++ are confused by the fact that you can use any valid

expression to control the if or the ? operator. That is, you are not restricted to expressions

involving the relational and logical operators (as is the case in languages like BASIC or

Pascal). The expression must simply evaluate to either a true or false (zero or nonzero) value.

For example, the following program reads two integers from the keyboard and displays the

quotient. It uses an if statement, controlled by the second number, to avoid a divide-by-zero

error.

/* Divide the first number by the second. */

#include <stdio.h>

int main(void)

{

int a, b;

printf("Enter two numbers: ");

scanf("%d%d", &a, &b);

if(b) printf("%d\n", a/b);

else printf("Cannot divide by zero.\n");

return 0;

}

switch

C/C++ has a built-in multiple-branch selection statement, called switch, which successively

tests the value of an expression against a list of integer or character constants. When a match is

found, the statements associated with that constant are executed.

The general form of the switch statement is

switch (expression) {

case constant1:

statement sequence

break;

case constant2:

statement sequence

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

24

break;

case constant3:

statement sequence

break;

...

default

statement sequence

}

The expression must evaluate to a character or integer value. Floating-point expressions, for

example, are not allowed. The value of expression is tested, in order, against the values of the

constants specified in the case statements. When a match is found, the statement sequence

associated with that case is executed until the break statement or the end of the switch

statement is reached. The default statement is executed if no matches are found. The default is

optional and, if it is not present, no action takes place if all matches fail.

Nested switch Statements
You can have a switch as part of the statement sequence of an outer switch. Even if the case

constants of the inner and outer switch contain common values, no conflicts arise.

For example, the following code fragment is perfectly acceptable:

switch(x)

{

case 1:

switch(y) {

case 0: printf("Divide by zero error.\n");

break;

case 1: process(x,y);

}

break;

case 2:

.

.

.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

25

Iteration Statements
In C/C++, and all other modern programming languages, iteration statements (also called

loops) allow a set of instructions to be executed repeatedly until a certain condition is reached.

This condition may be predefined (as in the for loop), or open-ended (as in the while and do-

while loops).

The for Loop

The general design of the for loop is reflected in some form or another in all procedural

programming languages. However, in C/C++, it provides unexpected flexibility and power.

The general form of the for statement is for(initialization; condition; increment) statement;

for Loop Variations

The previous discussion described the most common form of the for loop. However, several

variations of the for are allowed that increase its power, flexibility, and applicability to certain

programming situations. One of the most common variations uses the comma operator to allow

two or more variables to control the loop. (Remember, you use the comma operator to string

together a number of expressions in a "do this and this" fashion.)

For example, the variables x and y control the following loop, and both are initialized inside

the for statement:

for(x=0, y=0; x+y<10; ++x) {

y = getchar();

y = y - '0'; /* subtract the ASCII code for 0

from y */

.

.

.

}

The Infinite Loop

Although you can use any loop statement to create an infinite loop, for is traditionally used for

this purpose. Since none of the three expressions that form the for loop are required, you can

make an endless loop by leaving the conditional expression empty:

for(; ;)

printf("This loop will run forever.\n");

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

26

When the conditional expression is absent, it is assumed to be true. You may have an

initialization and increment expression, but C++ programmers more commonly use the for(;;)

construct to signify an infinite loop.

The while Loop

The second loop available in C/C++ is the while loop.

Its general form is

while(condition) statement;

where statement is either an empty statement, a single statement, or a block of statements. The

condition may be any expression, and true is any nonzero value. The loop iterates while the

condition is true. When the condition becomes false, program control passes to the line of code

immediately following the loop.

The do-while Loop

Unlike for and while loops, which test the loop condition at the top of the loop, the do-while

loop checks its condition at the bottom of the loop. This means that a do-while loop always

executes at least once.

The general form of the do-while loop is

do {

statement;

} while(condition);

Jump Statements

C/C++ has four statements that perform an unconditional branch: return, goto, break, and

continue. Of these, you may use return and goto anywhere in your program. You may use the

break and continue statements in conjunction with any of the loop statements. As discussed

earlier in this chapter, you can also use break with switch.

The return Statement

The return statement is used to return from a function. It is categorized as a jump statement

because it causes execution to return (jump back) to the point at which the call to the function

was made. A return may or may not have a value associated with it. If return has a value

associated with it, that value becomes the return value of the function. In C89, a non-void

function does not technically have to return a value. If no return value is specified, a garbage

value is returned. However, in C++ (and in C99), a non-void function must return a value. That

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

27

is, in C++, if a function is specified as returning a value, any return statement within it must

have a value associated with it. (Even in C89, if a function is declared as returning a value, it is

good practice to actually return one!)

The general form of the return statement is

return expression;

The expression is present only if the function is declared as returning a value. In this case, the

value of expression will become the return value of the function.

The goto Statement

Since C/C++ has a rich set of control structures and allows additional control using break and

continue, there is little need for goto. Most programmers' chief concern about the goto is its

tendency to render programs unreadable. Nevertheless, although the goto statement fell out of

favor some years ago, it occasionally has its uses. There are no programming situations that

require goto. Rather, it is a convenience, which, if used wisely, can be a benefit in a narrow set

of programming situations, such as jumping out of a set of deeply nested loops. The goto is not

used outside of this section. The goto statement requires a label for operation. (A label is a

valid identifier followed by a colon.) Furthermore, the label must be in the same function as the

goto that uses it—you cannot jump between functions.

The general form of the goto

statement is

goto label;

...

label:

where label is any valid label either before or after goto. For example, you could create a loop

from 1 to 100 using the goto and a label, as shown here:

x = 1;

loop1:

x++;

if(x<100) goto loop1;

The break Statement
The break statement has two uses. You can use it to terminate a case in the switch statement

(covered in the section on switch earlier in this chapter). You can also use it to force

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

28

immediate termination of a loop, bypassing the normal loop conditional test. When the break

statement is encountered inside a loop, the loop is immediately terminated and program control

resumes at the next statement following the loop.

For example,

#include <stdio.h>

int main(void)

{

int t;

for(t=0; t<100; t++) {

printf("%d ", t);

if(t==10) break;

}

return 0;

}

prints the numbers 0 through 10 on the screen. Then the loop terminates because break causes

immediate exit from the loop, overriding the conditional test t<100.

The exit() Function

Although exit() is not a program control statement, a short digression that discusses it is in

order at this time. Just as you can break out of a loop, you can break out of a program by using

the standard library function exit(). This function causes immediate termination of the entire

program, forcing a return to the operating system. In effect, the exit() function acts as if it

were breaking out of the entire program.

The general form of the exit() function is

void exit(int return_code);

The continue Statement

The continue statement works somewhat like the break statement. Instead of forcing

termination, however, continue forces the next iteration of the loop to take place, skipping any

code in between. For the for loop, continue causes the conditional test and increment portions

of the loop to execute. For the while and do-while loops, program control passes to the

conditional tests. For example, the following program counts the number of spaces contained

in the string entered by the user:

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

29

/* Count spaces */

#include <stdio.h>

int main(void)

{

char s[80], *str;

int space;

printf("Enter a string: ");

gets(s);

str = s;

for(space=0; *str; str++) {

if(*str != ' ') continue;

space++;

}

printf("%d spaces\n", space);

return 0;

}

Each character is tested to see if it is a space. If it is not, the continue statement forces the for

to iterate again. If the character is a space, space is incremented.

Expression Statements

Chapter 2 covered expressions thoroughly. However, a few special points are mentioned here.

Remember, an expression statement is simply a valid expression followed by a semicolon, as

in

func(); /* a function call */

a = b+c; /* an assignment statement */

b+f(); /* a valid, but strange statement */

; /* an empty statement */

The first expression statement executes a function call. The second is an assignment. The third

expression, though strange, is still evaluated by the C++ compiler and the function f() is

called. The final example shows that a statement can be empty (sometimes called a null

statement).

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

30

Block Statements
Block statements are simply groups of related statements that are treated as a unit. The

statements that make up a block are logically bound together. Block statements are also called

compound statements. A block is begun with a { and terminated by its matching }.

Programmers use block statements most commonly to create a multistatement target for some

other statement, such as if. However, you may place a block statement anywhere you would

put any other statement.

For example, this is perfectly valid (although unusual) C/C++ code:

#include <stdio.h>

int main(void)

{

int i;

{ /* a block statement */

i = 120;

printf("%d", i);

}

return 0;

1.5 Arrays and strings

Single-Dimension Arrays

The general form for declaring a single-dimension array is

type var_name[size] ;

Like other variables, arrays must be explicitly declared so that the compiler may allocate space

for them in memory. Here, type declares the base type of the array, which is the type of each

element in the array, and size defines how many elements the array will hold. For example, to

declare a 100-element array called balance of type double,

use this statement:

double balance[100];

An element is accessed by indexing the array name. This is done by placing the index of the

element within square brackets after the name of the array.

For example,

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

31

balance[3] = 12.23;

assigns element number 3 in balance the value 12.23.

Two-Dimensional Arrays

C/C++ supports multidimensional arrays. The simplest form of the multidimensional array is

the two-dimensional array. A two-dimensional array is, essentially, an array of one-

dimensional arrays.

To declare a two-dimensional integer array d of size 10,20, you would write int d[10][20];

Pay careful attention to the declaration. Some other computer languages use commas to

separate the array dimensions; C/C++, in contrast, places each dimension in its own set of

brackets.Similarly, to access point 1,2 of array d, you would use d[1][2]

The following example loads a two-dimensional array with the numbers 1 through 12 and

prints them row by row.

#include <stdio.h>

int main(void)

{

int t, i, num[3][4];

for(t=0; t<3; ++t)

for(i=0; i<4; ++i)

num[t][i] = (t*4)+i+1;

/* now print them out */

for(t=0; t<3; ++t) {

for(i=0; i<4; ++i)

printf("%3d ", num[t][i]);

printf("\n");

}

return 0;

}

In this example, num[0][0] has the value 1, num[0][1] the value 2, num[0][2] the value 3, and

so on. The value of num[2][3] will be 12.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

32

Arrays of Strings
It is not uncommon in programming to use an array of strings. For example, the input

processor to a database may verify user commands against an array of valid commands. To

create an array of null-terminated strings, use a two-dimensional character array. The size of

the left index determines the number of strings and the size of the right index specifies the

maximum length of each string. The following code declares an array of 30 strings, each with a

maximum length of 79 characters, plus the null terminator. char str_array[30][80]; It is easy to

access an individual string: You simply specify only the left index.

For example, the following statement calls gets() with the third string in str_array.

gets(str_array[2]);

The preceding statement is functionally equivalent to

gets(&str_array[2][0]);

but the first of the two forms is much more common in professionally writtenC/C++ code. To

better understand how string arrays work, study the following short program, which uses a

string array as the basis for a very simple text editor:

/* A very simple text editor. */

#include <stdio.h>

#define MAX 100

#define LEN 80

char text[MAX][LEN];

int main(void)

{

register int t, i, j;

printf("Enter an empty line to quit.\n");

for(t=0; t<MAX; t++) {

printf("%d: ", t);

gets(text[t]);

if(!*text[t]) break; /* quit on blank line */

}

for(i=0; i<t; i++) {

for(j=0; text[i][j]; j++) putchar(text[i][j]);

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

33

putchar('\n');

}

return 0;

}

This program inputs lines of text until a blank line is entered. Then it redisplays each line one

character at a time.

Multidimensional Arrays

C/C++ allows arrays of more than two dimensions. The exact limit, if any, is determined by

your compiler. The general form of a multidimensional array declaration is

type name[Size1][Size2][Size3]. . .[SizeN];

Arrays of more than three dimensions are not often used because of the amount of memory

they require. For example, a four-dimensional character array with dimensions 10,6,9,4

requires 10 * 6 * 9 * 4 or 2,160 bytes. If the array held 2-byte integers, 4,320 bytes would be

needed. If the array held doubles (assuming 8 bytes per double), 17,280 bytes would be

required. The storage required increases exponentially with the number of dimensions. For

example, if a fifth dimension of size 10 was added to the preceding array, then 172, 800 bytes

would be required.

In multidimensional arrays, it takes the computer time to compute each index. This means that

accessing an element in a multidimensional array can be slower than accessing an element in a

single-dimension array. When passing multidimensional arrays into functions, you must

declare all but the leftmost dimension.

For example, if you declare array m as int m[4][3][6][5]; a function, func1(), that receives m,

would look like this:

void func1(int d[][3][6][5])

{

.

.

.

}

Of course, you can include the first dimension if you like.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

34

1.6 Pointers & user-defined types

A pointer is a variable that holds a memory address. This address is the location of another

object (typically another variable) in memory. For example, if one variable contains the

address of another variable, the first variable is said to point to the second.

Pointer Variables
If a variable is going to hold a pointer, it must be declared as such. Apointer declaration

consists of a base type, an *, and the variable name. The general form for declaring a pointer

variable is

type *name;

where type is the base type of the pointer and may be any valid type. The name of the pointer

variable is specified by name.

The base type of the pointer defines what type of variables the pointer can point to.

Technically, any type of pointer can point anywhere in memory. However, all pointer

arithmetic is done relative to its base type, so it is important to declare the pointer correctly.

(Pointer arithmetic is discussed later in this chapter.)

The Pointer Operators

The pointer operators were discussed in Chapter 2. We will take a closer look at them here,

beginning with a review of their basic operation. There are two special pointer operators: * and

&. The & is a unary operator that returns the memory address of its operand. (Remember, a

unary operator only requires one operand.)

For example,

m = &count;

places into m the memory address of the variable count. This address is the computer's internal

location of the variable. It has nothing to do with the value of count. You can think of & as

returning "the address of." Therefore, the preceding assignment statement means "m receives

the address of count." To understand the above assignment better, assume that the variable

count uses memory location 2000 to store its value. Also assume that count has a value of 100.

Then, after the preceding assignment, m will have the value 2000. The second pointer operator,

*, is the complement of &. It is a unary operator that returns the value located at the address

that follows.

For example, if m contains the memory address of the variable count,

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

35

q = *m;

places the value of count into q. Thus, q will have the value 100 because 100 is stored at

location 2000, which is the memory address that was stored in m. You can think of * as "at

address." In this case, the preceding statement means "q receives the value at address m." Both

& and * have a higher precedence than all other arithmetic operators except the unary minus,

with which they are equal.

You must make sure that your pointer variables always point to the correct type of data. For

example, when you declare a pointer to be of type int, the compiler assumes that any address

that it holds points to an integer variable—whether it actually does or not. Because you can

assign any address you want to a pointer variable, the following program compiles without

error, but does not produce the desired result:

#include <stdio.h>

int main(void)

{

double x = 100.1, y;

int *p;

/* The next statement causes p (which is an integer pointer) to point to a double. */

p = (int *)&x;

/* The next statement does not operate as expected. */

y = *p;

printf("%f", y); /* won't output 100.1 */

return 0;

}

This will not assign the value of x to y. Because p is declared as an integer pointer, only 4

bytes of information (assuming 4-byte integers) will be transferred to y, not the 8 bytes that

normally make up a double. In C++, it is illegal to convert one type of pointer into another

without the use of an explicit type cast. In C, casts should be used for most pointer conversions.

Pointer Expressions

In general, expressions involving pointers conform to the same rules as other expressions. This

section examines a few special aspects of pointer expressions. Pointer Assignments As with

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

36

any variable, you may use a pointer on the right-hand side of an assignment statement to assign

its value to another pointer.

For example,

#include <stdio.h>

int main(void)

{

int x;

int *p1, *p2;

p1 = &x;

p2 = p1;

printf(" %p", p2); /* print the address of x, not x's value! */

return 0;

}

Both p1 and p2 now point to x. The address of x is displayed by using the %p printf() format

specifier, which causes printf() to display an address in the format used by the host computer.

Pointer Arithmetic

There are only two arithmetic operations that you may use on pointers: addition and

subtraction. To understand what occurs in pointer arithmetic, let p1 be an integer pointer with a

current value of 2000. Also, assume integers are 2 bytes long. After the expression p1++; p1

contains 2002, not 2001. The reason for this is that each time p1 is incremented; it will point to

the next integer. The same is true of decrements. For example, assuming that p1 has the value

2000, the expression p1--; causes p1 to have the value 1998. Generalizing from the preceding

example, the following rules govern pointer arithmetic. Each time a pointer is incremented, it

points to the memory location

Pointer Comparisons
You can compare two pointers in a relational expression. For instance, given two pointers p

and q, the following statement is perfectly valid: if(p<q) printf("p points to lower memory than

q\n");

Pointers to Functions

A particularly confusing yet powerful feature of C++ is the function pointer. Even though a

function is not a variable, it still has a physical location in memory that can be assigned to a

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

37

pointer. This address is the entry point of the function and it is the address used when the

function is called. Once a pointer points to a function, the function can be called through that

pointer. Function pointers also allow functions to be passed as arguments to other functions.

1.7 Function Components

The General Form of a Function

The general form of a function is

ret-type function-name(parameter list)

{

body of the function

}

The ret-type specifies the type of data that the function returns.Afunction may return any type

of data except an array. The parameter list is a comma-separated list of variable names and

their associated types that receive the values of the arguments when the function is

called.Afunction may be without parameters, in which case the parameter list is empty.

However, even if there are no parameters, the parentheses are still required. In variable

declarations, you can declare many variables to be of a common type by using a comma-

separated list of variable names. In contrast, all function parameters must be declared

individually, each including both the type and name. That is, the parameter declaration list for

a function takes this general form:

f(type varname1, type varname2, . . . , type varnameN)

For example, here are correct and incorrect function parameter declarations:

f(int i, int k, int j) /* correct */

f(int i, k, float j) /* incorrect */

Scope Rules of Functions

The scope rules of a language are the rules that govern whether a piece of code knows about or

has access to another piece of code or data. Each function is a discrete block of code.

Afunction's code is private to that function and cannot be accessed by any statement in any

other function except through a call to that function. (For instance, you cannot use goto to

jump into the middle of another function.) The code that constitutes the body of a function is

hidden from the rest of the program and, unless it uses global variables or data, it can neither

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

38

affect nor be affected by other parts of the program. Stated another way, the code and data that

are defined within one function cannot interact with the code or data defined in another

function because the two functions have a different scope. Variables that are defined within a

function are called local variables. A local variable comes into existence when the function is

entered and is destroyed upon exit. That is, local variables cannot hold their value between

function calls. The only exception to this rule is when the variable is declared with the static

storage class specifier. This causes the compiler to treat the variable as if it were a global

variable for storage purposes, but limits its scope to within the function. In C (and C++) you

cannot define a function within a function. This is why neither C nor C++ are technically

block-structured languages.

1.8 Argument passing

Function Arguments

If a function is to use arguments, it must declare variables that accept the values of the

arguments. These variables are called the formal parameters of the function. They behave like

other local variables inside the function and are created upon entry into the function and

destroyed upon exit. As shown in the following function, the parameter declarations occur after

the function name:

/* Return 1 if c is part of string s; 0 otherwise. */

int is_in(char *s, char c)

{

while(*s)

if(*s==c) return 1;

else s++;

return 0;

}

The function is_in() has two parameters: s and c. This function returns 1 if the character c is

part of the string s; otherwise, it returns 0. As with local variables, you may make assignments

to a function's formal parameters or use them in an expression. Even though these variables

perform the special task of receiving the value of the arguments passed to the function, you can

use them as you do any other local variable.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

39

Call by Value, Call by Reference
In a computer language, there are two ways that arguments can be passed to a subroutine. The

first is known as call by value. This method copies the value of an argument into the formal

parameter of the subroutine. In this case, changes made to the parameter have no effect on the

argument. Call by reference is the second way of passing arguments to a subroutine. In this

method, the address of an argument is copied into the parameter. Inside the subroutine, the

address is used to access the actual argument used in the call. This means that changes made to

the parameter affect the argument. By default, C/C++ uses call by value to pass arguments. In

general, this means that code within a function cannot alter the arguments used to call the

function.

Consider the following program:

#include <stdio.h>

int sqr(int x);

int main(void)

{

int t=10;

printf("%d %d", sqr(t), t);

return 0;

}

int sqr(int x)

{

x = x*x;

return(x);

}

In this example, the value of the argument to sqr(), 10, is copied into the parameter x. When

the assignment x = x*x takes place, only the local variable x is modified. The variable t, used

to call sqr(), still has the value 10. Hence, the output is 100 10. Remember that it is a copy of

the value of the argument that is passed into the function. What occurs inside the function has

no effect on the variable used in the call.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

40

Creating a Call by Reference
Even though C/C++ uses call by value for passing parameters, you can create a call by

reference by passing a pointer to an argument, instead of the argument itself. Since the address

of the argument is passed to the function, code within the function can change the value of the

argument outside the function. Pointers are passed to functions just like any other value. Of

course, you need to declare the parameters as pointer types.

For example, the function swap(), which exchanges the values of the two integer variables

pointed to by its arguments, shows how.

void swap(int *x, int *y)

{

int temp;

temp = *x; /* save the value at address x */

*x = *y; /* put y into x */

y = temp; / put x into y */

}

swap() is able to exchange the values of the two variables pointed to by x and y because their

addresses (not their values) are passed. Thus, within the function, the contents of the variables

can be accessed using standard pointer operations, and the contents of the variables used to call

the function are swapped.

The return Statement

The return statement itself is described in Chapter 3. As explained, it has two important uses.

First, it causes an immediate exit from the function that it is in. That is, it causes program

execution to return to the calling code. Second, it may be used to return a value.

This section examines how the return statement is used.

1.9 Inline functions

Inline Functions

There is an important feature in C++, called an inline function, that is commonly used with

classes. Since the rest of this chapter (and the rest of the book) will make heavy use of it, inline

functions are examined here. In C++, you can create short functions that are not actually

called; rather, their code is expanded in line at the point of each invocation. This process is

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

41

similar to using a function-like macro. To cause a function to be expanded in line rather than

called, precede its definition with the inline keyword.

For example, in this program, the function max() is expanded in line instead of called:

#include <iostream>

using namespace std;

inline int max(int a, int b)

{

return a>b ? a : b;

}

int main()

{

cout << max(10, 20);

cout << " " << max(99, 88);

return 0;

}

As far as the compiler is concerned, the preceding program is equivalent to this one:

#include <iostream>

using namespace std;

int main()

{

cout << (10>20 ? 10 : 20);

cout << " " << (99>88 ? 99 : 88);

return 0;

}

The reason that inline functions are an important addition to C++ is that they allow you to

create very efficient code. Since classes typically require several frequently executed interface

functions (which provide access to private data), the efficiency of these functions is of critical

concern. As you probably know, each time a function is called, a significant amount of

overhead is generated by the calling and return mechanism. Typically, arguments are pushed

onto the stack and various registers are saved when a function is called, and then restored when

the function returns. The trouble is that these instructions take time. However, when a function

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

42

is expanded in line, none of those operations occur. Although expanding function calls in line

can produce faster run times, it can also result in larger code size because of duplicated code.

For this reason, it is best to inline only very small functions. Further, it is also a good idea to

inline only those functions that will have significant impact on the performance of your

program.

Defining Inline Functions Within a Class

It is possible to define short functions completely within a class declaration. When a function is

defined inside a class declaration, it is automatically made into an inline function (if possible).

It is not necessary (but not an error) to precede its declaration with the inline keyword. For

example, the preceding program is rewritten here with the definitions of init() and show()

contained within the declaration of myclass:

#include <iostream>

using namespace std;

class myclass {

int a, b;

public:

// automatic inline

void init(int i, int j) { a=i; b=j; }

void show() { cout << a << " " << b << "\n"; }

};

int main()

{

myclass x;

x.init(10, 20);

x.show();

return 0;

}

Notice the format of the function code within myclass.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

43

1.10 Function overloading

Function Overloading

Function overloading is the process of using the same name for two or more functions. The

secret to overloading is that each redefinition of the function must use either different types of

parameters or a different number of parameters. It is only through these differences that the

compiler knows which function to call in any given situation.

For example, this program overloads myfunc() by using different types of parameters.

#include <iostream>

using namespace std;

int myfunc(int i); // these differ in types of parameters

double myfunc(double i);

int main()

{

cout << myfunc(10) << " "; // calls myfunc(int i)

cout << myfunc(5.4); // calls myfunc(double i)

return 0;

}

double myfunc(double i)

{

return i;

}

int myfunc(int i)

{

return i;

}

The next program overloads myfunc() using a different number of parameters:

#include <iostream>

using namespace std;

int myfunc(int i); // these differ in number of parameters

int myfunc(int i, int j);

int main()

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

44

{

cout << myfunc(10) << " "; // calls myfunc(int i)

cout << myfunc(4, 5); // calls myfunc(int i, int j)

return 0;

}

int myfunc(int i)

{

return i;

}

int myfunc(int i, int j)

{

return i*j;

}

As mentioned, the key point about function overloading is that the functions must differ in

regard to the types and/or number of parameters. Two functions differing only in their return

types cannot be overloaded. For example, this is an invalid attempt to overload myfunc():

int myfunc(int i); // Error: differing return types are float myfunc(int i); // insufficient when

overloading. Sometimes, two function declarations will appear to differ, when in fact they do

not.

For example, consider the following declarations.

void f(int *p);

void f(int p[]); // error, *p is same as p[]

Remember, to the compiler *p is the same as p[]. Therefore, although the two prototypes

appear to differ in the types of their parameter, in actuality they do not.

1.11 Recursive functions

Recursion

In C/C++, a function can call itself. A function is said to be recursive if a statement in the body

of the function calls itself. Recursion is the process of defining something in terms of itself,

and is sometimes called circular definition.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

45

A simple example of a recursive function is factr(), which computes the factorial of an

integer. The factorial of a number n is the product of all the whole numbers between 1 and n.

For example, 3 factorial is 1 x 2 x 3, or 6. Both factr() and its iterative equivalent are shown

here:

/* recursive */

int factr(int n) {

int answer;

if(n==1) return(1);

answer = factr(n-1)*n; /* recursive call */

return(answer);

}

/* non-recursive */

int fact(int n) { int

t, answer; answer

= 1; for(t=1; t<=n;

t++)

answer=answer*(t);

return(answer);

}

The nonrecursive version of fact() should be clear. It uses a loop that runs from 1 to n and

progressively multiplies each number by the moving product. The operation of the recursive

factr() is a little more complex. When factr() is called with an argument of 1, the function

returns 1. Otherwise, it returns the product of factr(n−1)*n. To evaluate this expression, factr(

) is called with n−1. This happens until n equals 1 and the calls to the function begin returning.

Computing the factorial of 2, the first call to factr() causes a second, recursive call with the

argument of 1. This call returns 1, which is then multiplied by 2 (the original n value). The

answer is then 2. Try working through the computation of 3 factorial on your own. (You might

want to insert printf() statements into factr() to see the level of each call and what the

intermediate answers are.) When a function calls itself, a new set of local variables and

parameters are allocated storage on the stack, and the function code is executed from the top

with these new variables. A recursive call does not make a new copy of the function. Only the

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

46

values being operated upon are new. As each recursive call returns, the old local variables and

parameters are removed from the stack and execution resumes at the point of the function call

inside the function. Recursive functions could be said to "telescope" out and back.

Often, recursive routines do not significantly reduce code size or improve memory utilization

over their iterative counterparts. Also, the recursive versions of most routines may execute a bit

slower than their iterative equivalents because of the overhead of the repeated function calls. In

fact, many recursive calls to a function could cause a stack overrun. Because storage for

function parameters and local variables is on the stack and each new call creates a new copy of

these variables, the stack could be exhausted. However, you probably will not have to worry

about this unless a recursive function runs wild.

The main advantage to recursive functions is that you can use them to create clearer and

simpler versions of several algorithms. For example, the Quicksort algorithm is difficult to

implement in an iterative way. Also, some problems, especially ones related to artificial

intelligence, lend themselves to recursive solutions. Finally, some people seem to think

recursively more easily than iteratively. When writing recursive functions, you must have a

conditional statement, such as an if, somewhere to force the function to return without the

recursive call being executed. If you don't, the function will never return once you call it.

Omitting the conditional statement is a common error when writing recursive functions. Use

printf() liberally during program development so that you can watch what is going on and

abort execution if you see a mistake.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

47

UNIT 2

Classes & Objects – I

2.1 Class Specification

2.2 Class Objects

2.3 Scope resolution operator

2.4 Access members

2.5 Defining member functions

2.6 Data hiding

2.7 Constructors

2.8 Destructors

2.9 Parameterized constructors

2.10 Static data members

2.11 Functions

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

48

2.1 Class Specification

Classes

Classes are created using the keyword class. A class declaration defines a new type that links

code and data. This new type is then used to declare objects of that class. Thus, a class is a

logical abstraction, but an object has physical existence. In other words, an object is an

instance of a class. A class declaration is similar syntactically to a structure. A simplified

general form of a class declaration was shown. Here is the entire general form of a class

declaration that does not inherit any other class.

class class-name {

private data and functions

access-specifier:

data and functions

access-specifier:

data and functions

// ...

access-specifier:

data and functions

} object-list;

The object-list is optional. If present, it declares objects of the class. Here, access-specifieris

one of these three C++ keywords:

public

private

protected

2.2 Class Objects

Classes and objects

C++ has classes A class is a user-defined type. The variables of this type are objects. A class

can be obtained from a structure if some member functions are added.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

49

Member data and member functions can both be accessed using variable-to-member access

operator Each object will have separate separate copy of the member data within itself but only

one copy of member function exists

Private and public

A member (variable or function) can be private or public The keywords are also known as

access modifiers or access specifiers a "good" class keeps its member variables private = data

hiding and uses public member functions to access or change each private variable. Class

members are private by default whereas struct members are public Objects Variables of classes

are known as objects.

2.3 Scope resolution operator

The Scope Resolution Operator

As you know, the :: operator links a class name with a member name in order to tell the

compiler what class the member belongs to. However, the scope resolution operator has

another related use: it can allow access to a name in an enclosing scope that is "hidden" by a

local declaration of the same name.

For example, consider this fragment:

int i; // global i

void f()

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

50

{

int i; // local i

i = 10; // uses local i

.

.

.

}

As the comment suggests, the assignment i = 10 refers to the local i. But what if function f()

needs to access the global version of i? It may do so by preceding the i with the :: operator, as

shown here.

int i; // global i

void f()

{

int i; // local i

::i = 10; // now refers to global i

.

.

.

}

2.4 Access members

The arrow operator is used to access members of the object. Here is a short program that

creates a class called balance that links a person's name with his or her account balance. Inside

main(), an object of type balance is created dynamically.

#include <iostream>

#include <new>

#include <cstring>

using namespace std;

class balance {

double cur_bal;

char name[80];

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

51

public:

void set(double n, char *s) {

cur_bal = n;

strcpy(name, s);

}

void get_bal(double &n, char *s) {

n = cur_bal;

strcpy(s, name);

}

};

int main()

{

balance *p;

char s[80];

double n;

try {

p = new balance;

} catch (bad_alloc xa) {

cout << "Allocation Failure\n";

return 1;

}

p->set(12387.87, "Ralph Wilson");

p->get_bal(n, s);

cout << s << "'s balance is: " << n;

cout << "\n";

delete p;

return 0;

}

Because p contains a pointer to an object, the arrow operator is used to access members

of the object.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

52

2.5 Defining member functions

A member operator function takes this general form:

ret-type class-name::operator#(arg-list)

{

// operations

}

Often, operator functions return an object of the class they operate on, but ret-type can be any

valid type. The # is a placeholder. When you create an operator function, substitute the

operator for the #. For example, if you are overloading the / operator, use operator/. When you

are overloading a unary operator, arg-list will be empty. When you are overloading binary

operators, arg-list will contain one parameter. (The reasons for this seemingly unusual

situation will be made clear in a moment.) Here is a simple first example of operator

overloading. This program creates a class called loc, which stores longitude and latitude

values. It overloads the + operator relative to this class. Examine this program carefully,

paying special attention to the definition of operator+():

#include <iostream>

using namespace std;

class loc {

int longitude, latitude;

public:

loc() {}

loc(int lg, int lt) {

longitude = lg;

latitude = lt;

}

void show() {

cout << longitude << " ";

cout << latitude << "\n";

}

loc operator+(loc op2);

};

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

53

// Overload + for loc.

loc loc::operator+(loc op2)

{

loc temp;

temp.longitude = op2.longitude + longitude;

temp.latitude = op2.latitude + latitude;

return temp;

}

int main()

{

loc ob1(10, 20), ob2(5, 30);

ob1.show(); // displays 10 20

ob2.show(); // displays 5 30

ob1 = ob1 + ob2;

ob1.show(); // displays 15 50

return 0;

}

2.6 Data hiding

Data hiding is the mechanism that binds together code and the data it manipulates, and keeps

both safe from outside interference and misuse. In an object-oriented language, code and data

may be combined in such a way that a self-contained "black box" is created. When code and

data are linked together in this fashion, an object is created. In other words, an object is the

device that supports encapsulation. Within an object, code, data, or both may be private to that

object or public. Private code or data is known to and accessible only by another part of the

object. That is, private code or data may not be accessed by a piece of the program that exists

outside the object. When code or data is public, other parts of your program may access it even

though it is defined within an object. Typically, the public parts of an object are used to

provide a controlled interface to the private elements of the object. For all intents and purposes,

an object is a variable of a user-defined type. It may seem strange that an object that links both

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

54

code and data can be thought of as a variable. However, in object-oriented programming, this

is precisely the case. Each time you define a new type of object, you are creating a new data

type. Each specific instance of this data type is a compound variable.

2.7 Constructors

Constructors

It is very common for some part of an object to require initialization before it can be used. For

example, think back to the stack class developed earlier in this chapter. Before the stack could

be used, tos had to be set to zero. This was performed by using the function init(). Because the

requirement for initialization is so common, C++ allows objects to initialize themselves when

they are created. This automatic initialization is performed through the use of a constructor

function.

A constructor is a special function that is a member of a class and has the same name as that

class. For example, here is how the stack class looks when converted to use a constructor for

initialization:

// This creates the class stack.

class stack {

int stck[SIZE];

int tos;

public:

stack(); // constructor

void push(int i);

int pop();

};

Notice that the constructor stack() has no return type specified. In C++, constructors cannot

return values and, thus, have no return type.

The stack() constructor is coded like this:

// stack's constructor

stack::stack()

{

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

55

tos = 0;

cout << "Stack Initialized\n";

}

Keep in mind that the message Stack Initialized is output as a way to illustrate the constructor.

In actual practice, most constructors will not output or input anything. They will simply

perform various initializations. An object's constructor is automatically called when the object

is created. This means that it is called when the object's declaration is executed.

2.8 Destructors
Destructors

The complement of the constructor is the destructor. In many circumstances, an object will

need to perform some action or actions when it is destroyed. Local objects are created when

their block is entered, and destroyed when the block is left. Global objects are destroyed when

the program terminates. When an object is destroyed, its destructor (if it has one) is

automatically called. There are many reasons why a destructor may be needed. For example, an

object may need to deallocate memory that it had previously allocated or it may need to close a

file that it had opened. In C++, it is the destructor that handles deactivation events. The

destructor has the same name as the constructor, but it is preceded by a ~. For example, here is

the stack class and its constructor and destructor. (Keep in mind that the stack class does not

require a destructor; the one shown here is just for illustration.)

// This creates the class stack.

class stack {

int stck[SIZE];

int tos;

public:

stack(); // constructor

~stack(); // destructor

void push(int i);

int pop();

};

// stack's constructor

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

56

stack::stack()

{

tos = 0;

cout << "Stack Initialized\n";

}

// stack's destructor

stack::~stack()

{

cout << "Stack Destroyed\n";

}

Notice that, like constructors, destructors do not have return values. To see how constructors

and destructors work, here is a new version of the stack program examined earlier in this

chapter. Observe that init() is no longer needed.

// Using a constructor and destructor.

#include <iostream>

using namespace std;

#define SIZE 100

// This creates the class stack.

class stack {

int stck[SIZE];

int tos;

public:

stack(); // constructor

~stack(); // destructor

void push(int i);

int pop();

};

// stack's constructor

stack::stack()

{

tos = 0;

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

57

cout << "Stack Initialized\n";

}

// stack's destructor

stack::~stack()

{

cout << "Stack Destroyed\n";

}

void stack::push(int i)

{

if(tos==SIZE) {

cout << "Stack is full.\n";

return;

}

stck[tos] = i;

tos++;

}

int stack::pop()

{

if(tos==0) {

cout << "Stack underflow.\n";

return 0;

}

tos--;

return stck[tos];

}

int main()

{

stack a, b; // create two stack objects

a.push(1);

b.push(2);

a.push(3);

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

58

b.push(4);

cout << a.pop() << " ";

cout << a.pop() << " ";

cout << b.pop() << " ";

cout << b.pop() << "\n";

return 0;

}

This program displays the following:

Stack Initialized

Stack Initialized

3 1 4 2

Stack Destroyed

Stack Destroyed

2.9 Parameterized constructors

Parameterized Constructors

It is possible to pass arguments to constructors. Typically, these arguments help initialize an

object when it is created. To create a parameterized constructor, simply add parameters to it the

way you would to any other function. When you define the constructor's body, use the

parameters to initialize the object. For example, here is a simple class that includes a

parameterized constructor:

#include <iostream>

using namespace std;

class myclass {

int a, b;

public:

myclass(int i, int j) {a=i; b=j;}

void show() {cout << a << " " << b;}

};

int main()

{

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

59

myclass ob(3, 5);

ob.show();

return 0;

}

Notice that in the definition of myclass(), the parameters i and j are used to give initial values

to a and b.

The program illustrates the most common way to specify arguments when you declare an

object that uses a parameterized constructor. Specifically, this statement myclass ob(3, 4);

causes an object called ob to be created and passes the arguments 3 and 4 to the i and j

parameters of myclass(). You may also pass arguments using this type of declaration

statement:

myclass ob = myclass(3, 4);

However, the first method is the one generally used, and this is the approach taken by most of

the examples in this book. Actually, there is a small technical difference between the two types

of declarations that relates to copy constructors. (Copy constructors are discussed later) Here is

another example that uses a parameterized constructor. It creates a class that stores information

about library books.

#include <iostream>

#include <cstring>

using namespace std;

const int IN = 1;

const int CHECKED_OUT = 0;

class book {

char author[40];

char title[40];

int status;

public:

book(char *n, char *t, int s);

int get_status() {return status;}

void set_status(int s) {status = s;}

void show();

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

60

};

book::book(char *n, char *t, int s)

{

strcpy(author, n);

strcpy(title, t);

status = s;

}

void book::show()

{

cout << title << " by " << author;

cout << " is ";

if(status==IN) cout << "in.\n";

else cout << "out.\n";

}

int main()

{

book b1("Twain", "Tom Sawyer", IN);

book b2("Melville", "Moby Dick", CHECKED_OUT);

b1.show();

b2.show();

return 0;

}

Parameterized constructors are very useful because they allow you to avoid having to make an

additional function call simply to initialize one or more variables in an object. Each function

call you can avoid makes your program more efficient. Also, notice that the short get_status()

and set_status() functions are defined in line, within the book class. This is a common

practice when writing C++ programs.

2.10 Static data members

Static Data Members

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

61

When you precede a member variable's declaration with static, you are telling the compiler

that only one copy of that variable will exist and that all objects of the class will share that

variable. Unlike regular data members, individual copies of a static member variable are not

made for each object. No matter how many objects of a class are created, only one copy of a

static data member exists. Thus, all objects of that class use that same variable. All static

variables are initialized to zero before the first object is created. When you declare a static data

member within a class, you are not defining it. (That is, you are not allocating storage for it.)

Instead, you must provide a global definition for it elsewhere, outside the class. This is done by

redeclaring the static variable using the scope resolution operator to identify the class to which

it belongs. This causes storage for the variable to be allocated. (Remember, a class declaration

is simply a logical construct that does not have physical reality.)

To understand the usage and effect of a static data member, consider this program:

#include <iostream>

using namespace std;

class shared {

static int a;

int b;

public:

void set(int i, int j) {a=i; b=j;}

void show();

} ;

int shared::a; // define a

void shared::show()

{

cout << "This is static a: " << a;

cout << "\nThis is non-static b: " << b;

cout << "\n";

}

int main()

{

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

62

shared x, y;

x.set(1, 1); // set a to 1

x.show();

y.set(2, 2); // change a to 2

y.show();

x.show(); /* Here, a has been changed for both x and y because a is shared by both objects. */

return 0;

}

This program displays the following output when run.

This is static a: 1

This is non-static b: 1

This is static a: 2

This is non-static b: 2

This is static a: 2

This is non-static b: 1

Notice that the integer a is declared both inside shared and outside of it. As mentioned earlier,

this is necessary because the declaration of a inside shared does not allocate storage. As a

convenience, older versions of C++ did not require the second declaration of a static member

variable. However, this convenience gave rise to serious inconsistencies and it was eliminated

several years ago. However, you may still find older C++ code that does not redeclare static

member variables. In these cases, you will need to add the required definitions.

A static member variable exists before any object of its class is created. For example, in the

following short program, a is both public and static. Thus it may be directly accessed in main(

). Further, since a exists before an object of shared is created, a can be given a value at any

time. As this program illustrates, the value of a is unchanged by the creation of object x. For

this reason, both output statements display the same value: 99.

#include <iostream>

using namespace std;

class shared {

public:

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

63

static int a;

} ;

int shared::a; // define a

int main()

{

// initialize a before creating any objects

shared::a = 99;

cout << "This is initial value of a: " << shared::a;

cout << "\n";

shared x;

cout << "This is x.a: " << x.a;

return 0;

}

Notice how a is referred to through the use of the class name and the scope resolution operator.

In general, to refer to a static member independently of an object, you must qualify it by using

the name of the class of which it is a member. One use of a static member variable is to

provide access control to some shared resource used by all objects of a class. For example, you

might create several objects, each of which needs to write to a specific disk file. Clearly,

however, only one object can be allowed to write to the file at a time. In this case, you will

want to declare a static variable that indicates when the file is in use and when it is free. Each

object then interrogates this variable before writing to the file.

The following program shows how you might use a static variable of this type to control

access to a scarce resource:

#include <iostream>

using namespace std;

class cl {

static int resource;

public:

int get_resource();

void free_resource() {resource = 0;}

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

64

};

int cl::resource; // define resource

int cl::get_resource()

{

if(resource) return 0; // resource already in use

else {

resource = 1;

return 1; // resource allocated to this object

}

}

int main()

{

cl ob1, ob2;

if(ob1.get_resource()) cout << "ob1 has resource\n";

if(!ob2.get_resource()) cout << "ob2 denied resource\n";

ob1.free_resource(); // let someone else use it

if(ob2.get_resource())

cout << "ob2 can now use resource\n";

return 0;

}

Another interesting use of a static member variable is to keep track of the number of objects of

a particular class type that are in existence.

For example,

#include <iostream>

using namespace std;

class Counter {

public:

static int count;

Counter() { count++; }

~Counter() { count--; }

};

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

65

int Counter::count;

void f();

int main(void)

{

Counter o1;

cout << "Objects in existence: ";

cout << Counter::count << "\n";

Counter o2;

cout << "Objects in existence: ";

cout << Counter::count << "\n";

f();

cout << "Objects in existence: ";

cout << Counter::count << "\n";

return 0;

}

void f()

{

Counter temp;

cout << "Objects in existence: ";

cout << Counter::count << "\n";

// temp is destroyed when f() returns

}

This program produces the following output.

Objects in existence: 1

Objects in existence: 2

Objects in existence: 3

Objects in existence: 2

As you can see, the static member variable count is incremented whenever an object is created

and decremented when an object is destroyed. This way, it keeps track of how many objects of

type Counter are currently in existence. By using static member variables, you should be able

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

66

to virtually eliminate any need for global variables. The trouble with global variables relative

to OOP is that they almost always violate the principle of encapsulation.

2.11 Functions

Static Member Functions

Member functions may also be declared as static. There are several restrictions placed on

static member functions. They may only directly refer to other static members of the class. (Of

course, global functions and data may be accessed by static member functions.) A static

member function does not have a this pointer. (See Chapter 13 for information on this.) There

cannot be a static and a non-static version of the same function. A static member function

may not be virtual. Finally, they cannot be declared as const or volatile. Following is a slightly

reworked version of the shared-resource program from the previous section. Notice that

get_resource() is now declared as static. As the program illustrates, get_resource() may be

called either by itself, independently of any object, by using the class name and the scope

resolution operator, or in connection with an object.

#include <iostream>

using namespace std;

class cl {

static int resource;

public:

static int get_resource();

void free_resource() { resource = 0; }

};

int cl::resource; // define resource

int cl::get_resource()

{

if(resource) return 0; // resource already in use

else {

resource = 1;

return 1; // resource allocated to this object

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

67

}

}

int main()

{

cl ob1, ob2;

/* get_resource() is static so may be called independent

of any object. */

if(cl::get_resource()) cout << "ob1 has resource\n";

if(!cl::get_resource()) cout << "ob2 denied resource\n";

ob1.free_resource();

if(ob2.get_resource()) // can still call using object syntax

cout << "ob2 can now use resource\n";

return 0;

}

Actually, static member functions have limited applications, but one good use for them is to

"preinitialize" private static data before any object is actually created.

For example, this is a perfectly valid C++ program:

#include <iostream>

using namespace std;

class static_type {

static int i;

public:

static void init(int x) {i = x;}

void show() {cout << i;}

};

int static_type::i; // define i

int main()

{

// init static data before object creation

static_type::init(100);

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

68

static_type x;

x.show(); // displays 100

return 0;

}

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

69

UNIT 3

Classes & Objects –II

3.1 Friend functions

3.2 Passing objects as arguments

3.3 Returning objects

3.4 Arrays of objects

3.5 Dynamic objects

3.6 Pointers to objects

3.7 Copy constructors

3.8 Generic functions and classes

3.9 Applications

3.10 Operator overloading using friend functions such as +, - ,

Pre-increment, post- increment, [] etc., overloading <<, >>.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

70

3.1 Friend functions

Friend Functions

It is possible to grant a nonmember function access to the private members of a class by using

a friend. A friend function has access to all private and protected members of the class for

which it is a friend. To declare a friend function, include its prototype within the class,

preceding it with the keyword friend. Consider this program:

#include <iostream>

using namespace std;

class myclass {

int a, b;

public:

friend int sum(myclass x);

void set_ab(int i, int j);

};

void myclass::set_ab(int i, int j)

{

a = i;

b = j;

}

// Note: sum() is not a member function of any class.

int sum(myclass x)

{

/* Because sum() is a friend of myclass, it can

directly access a and b. */

return x.a + x.b;

}

int main()

{

myclass n;

n.set_ab(3, 4);

cout << sum(n);

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

71

return 0;

}

In this example, the sum() function is not a member of myclass. However, it still has full

access to its private members. Also, notice that sum() is called without the use of the dot

operator. Because it is not a member function, it does not need to be (indeed, it may not be)

qualified with an object's name. Although there is nothing gained by making sum() a friend

rather than a member function of myclass, there are some circumstances in which friend

functions are quite valuable.

First, friends can be useful when you are overloading certain types of operators (see Chapter

14). Second, friend functions make the creation of some types of I/O functions easier (see

Chapter 18). The third reason that friend functions may be desirable is that in some cases, two

or more classes may contain members that are interrelated relative to other parts of your

program. Let's examine this third usage now. To begin, imagine two different classes, each of

which displays a pop-up message on the screen when error conditions occur. Other parts of

your program may wish to know if a pop-up message is currently being displayed before

writing to the screen so that no message is accidentally overwritten. Although you can create

member functions in each class that return a value indicating whether a message is active, this

means additional overhead when the condition is checked (that is, two function calls, not just

one). If the condition needs to be checked frequently, this additional overhead may not be

acceptable. However, using a function that is a friend of each class, it is possible to check the

status of each object by calling only this one function. Thus, in situations like this, a friend

function allows you to generate more efficient code.

The following program illustrates this concept:

#include <iostream>

using namespace std;

const int IDLE = 0;

const int INUSE = 1;

class C2; // forward declaration

class C1 {

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

72

int status; // IDLE if off, INUSE if on screen

// ...

public:

void set_status(int state);

friend int idle(C1 a, C2 b);

};

class C2 {

int status; // IDLE if off, INUSE if on screen

// ...

public:

void set_status(int state);

friend int idle(C1 a, C2 b);

};

void C1::set_status(int state)

{

status = state;

}

void C2::set_status(int state)

{

status = state;

}

int idle(C1 a, C2 b)

{

if(a.status || b.status) return 0;

else return 1;

}

int main()

{

C1 x; C2 y;

x.set_status(IDLE);

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

73

y.set_status(IDLE);

if(idle(x, y)) cout << "Screen can be used.\n";

else cout << "In use.\n";

x.set_status(INUSE);

if(idle(x, y)) cout << "Screen can be used.\n";

else cout << "In use.\n";

return 0;

}

Notice that this program uses a forward declaration (also called a forward reference) for the

class C2. This is necessary because the declaration of idle() inside C1 refers to C2 before it is

declared. To create a forward declaration to a class, simply use the form shown in this

program. A friend of one class may be a member of another.

For example, here is the preceding program rewritten so that idle() is a member of C1:

#include <iostream>

using namespace std;

const int IDLE = 0;

const int INUSE = 1;

class C2; // forward declaration

class C1 {

int status; // IDLE if off, INUSE if on screen

// ...

public:

void set_status(int state);

int idle(C2 b); // now a member of C1

};

class C2 {

int status; // IDLE if off, INUSE if on screen

// ...

public:

void set_status(int state);

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

74

friend int C1::idle(C2 b);

};

void C1::set_status(int state)

{

status = state;

}

void C2::set_status(int state)

{

status = state;

}

// idle() is member of C1, but friend of C2

int C1::idle(C2 b)

{

if(status || b.status) return 0;

else return 1;

}

int main()

{

C1 x; C2 y;

x.set_status(IDLE);

y.set_status(IDLE);

if(x.idle(y)) cout << "Screen can be used.\n";

else cout << "In use.\n";

x.set_status(INUSE);

if(x.idle(y)) cout << "Screen can be used.\n";

else cout << "In use.\n";

return 0;

}

Because idle() is a member of C1, it can access the status variable of objects of type C1

directly. Thus, only objects of type C2 need be passed to idle(). There are two important

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

75

restrictions that apply to friend functions. First, a derived class does not inherit friend

functions. Second, friend functions may not have a storage-class specifier. That is, they may

not be declared as static or extern.

3.2 Passing objects as arguments
Passing Objects to Functions

Objects may be passed to functions in just the same way that any other type of variable can.

Objects are passed to functions through the use of the standard call-byvalue mechanism.

Although the passing of objects is straightforward, some rather unexpected events occur that

relate to constructors and destructors.

To understand why, consider this short program.

// Passing an object to a function.

#include <iostream>

using namespace std;

class myclass {

int i; public:

myclass(int n);

~myclass();

void set_i(int n) { i=n; }

int get_i() { return i; }

};

myclass::myclass(int n)

{

i = n;

cout << "Constructing " << i << "\n";

}

myclass::~myclass()

{

cout << "Destroying " << i << "\n";

}

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

76

void f(myclass ob);

int main()

{

myclass o(1);

f(o);

cout << "This is i in main: ";

cout << o.get_i() << "\n";

return 0;

}

void f(myclass ob)

{

ob.set_i(2)

cout << "This is local i: " << ob.get_i();

cout << "\n";

}

This program produces this output:

Constructing 1

This is local i: 2

Destroying 2

This is i in main: 1

Destroying 1

As the output shows, there is one call to the constructor, which occurs when o is created in

main(), but there are two calls to the destructor. Let's see why this is the case. When an object

is passed to a function, a copy of that object is made (and this copy becomes the parameter in

the function). This means that a new object comes into existence. When the function

terminates, the copy of the argument (i.e., the parameter) is destroyed. This raises two

fundamental questions: First, is the object's constructor called when the copy is made? Second,

is the object's destructor called when the copy is destroyed? The answers may, at first, surprise

you. When a copy of an argument is made during a function call, the normal constructor is not

called. Instead, the object's copy constructor is called. A copy constructor defines how a copy

of an object is made. As explained in Chapter 14, you can explicitly define a copy constructor

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

77

for a class that you create . However, if a class does not explicitly define a copy constructor, as

is the case here, then C++ provides one by default.

The default copy constructor creates a bitwise (that is, identical) copy of the object. The reason

a bitwise copy is made is easy to understand if you think about it. Since a normal constructor

is used to initialize some aspect of an object, it must not be called to make a copy of an already

existing object. Such a call would alter the contents of the object. When passing an object to a

function, you want to use the current state of the object, not its initial state. However, when the

function terminates and the copy of the object used as an argument is destroyed, the destructor

is called. This is necessary because the object has gone out of scope. This is why the preceding

program had two calls to the destructor. The first was when the parameter to f() went out-of-

scope. The second is when o inside main() was destroyed when the program ended.

To summarize: When a copy of an object is created to be used as an argument to a function, the

normal constructor is not called. Instead, the default copy constructor makes a bit-by-bit

identical copy. However, when the copy is destroyed (usually by going out of scope when the

function returns), the destructor is called. Because the default copy constructor creates an exact

duplicate of the original, it can, at times, be a source of trouble. Even though objects are passed

to functions by means of the normal call-by-value parameter passing mechanism which, in

theory, protects and insulates the calling argument, it is still possible for a side effect to occur

that may affect, or even damage, the object used as an argument. For example, if an object

used as an argument allocates memory and frees that memory when it is destroyed, then its

local copy inside the function will free the same memory when its destructor is called. This

will leave the original object damaged and effectively useless. To prevent this type of problem

you will need to define the copy operation by creating a copy constructor for the class, as

explained

3.3 Returning objects
Returning Objects

A function may return an object to the caller. For example, this is a valid C++ program:

// Returning objects from a function.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

78

#include <iostream>

using namespace std;

class myclass {

int i;

public:

void set_i(int n) { i=n; }

int get_i() { return i; }

};

myclass f(); // return object of type myclass

int main()

{

myclass o;

o = f();

cout << o.get_i() << "\n";

return 0;

}

myclass f()

{

myclass x;

x.set_i(1);

return x;

}

When an object is returned by a function, a temporary object is automatically created that holds

the return value. It is this object that is actually returned by the function. After the value has

been returned, this object is destroyed. The destruction of this temporary object may cause

unexpected side effects in some situations. For example, if the object returned by the function

has a destructor that frees dynamically allocated memory, that memory will be freed even

though the object that is receiving the return value is still using it. There are ways to overcome

this problem that involve overloading the assignment operator (see Chapter 15) and defining a

copy constructor.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

79

3.4 Arrays of objects
Arrays of Objects

In C++, it is possible to have arrays of objects. The syntax for declaring and using an object

array is exactly the same as it is for any other type of array. For example, this program uses a

three-element array of objects:

#include <iostream>

using namespace std;

class cl {

int i;

public:

void set_i(int j) { i=j; }

int get_i() { return i; }

};

int main()

{

cl ob[3];

int i;

for(i=0; i<3; i++) ob[i].set_i(i+1);

for(i=0; i<3; i++)

cout << ob[i].get_i() << "\n";

return 0;

}

This program displays the numbers 1, 2, and 3 on the screen.

If a class defines a parameterized constructor, you may initialize each object in an array by

specifying an initialization list, just like you do for other types of arrays. However, the exact

form of the initialization list will be decided by the number of parameters required by the

object's constructors. For objects whose constructors have only one parameter, you can simply

specify a list of initial values, using the normal array-initialization syntax. As each element in

the array is created, a value from the list is passed to the constructor's parameter.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

80

For example, here is a slightly different version of the preceding program that uses an

initialization:

#include <iostream>

using namespace std;

class cl {

int i;

public:

cl(int j) { i=j; } // constructor

int get_i() { return i; }

};

int main()

{

cl ob[3] = {1, 2, 3}; // initializers

int i;

for(i=0; i<3; i++)

cout << ob[i].get_i() << "\n";

return 0;

}

As before, this program displays the numbers 1, 2, and 3 on the screen.

Actually, the initialization syntax shown in the preceding program is shorthand for this longer

form: cl ob[3] = { cl(1), cl(2), cl(3) };

Here, the constructor for cl is invoked explicitly. Of course, the short form used in the program

is more common. The short form works because of the automatic conversion that applies to

constructors taking only one argument. Thus, the short form can only be used to initialize

object arrays whose constructors only require one argument. If an object's constructor requires

two or more arguments, you will have to use the longer initialization form.

For example,

#include <iostream>

using namespace std;

class cl {

int h;

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

81

int i;

public:

cl(int j, int k) { h=j; i=k; } // constructor with 2 parameters

int get_i() {return i;}

int get_h() {return h;}

};

int main()

{

cl ob[3] = {

cl(1, 2), // initialize

cl(3, 4),

cl(5, 6)

};

int i;

for(i=0; i<3; i++) {

cout << ob[i].get_h();

cout << ", ";

cout << ob[i].get_i() << "\n";

}

return 0;

}

Here, cl's constructor has two parameters and, therefore, requires two arguments. This means

that the shorthand initialization format cannot be used and the long form, shown in the

example, must be employed.

3.5 Dynamic objects
A special case situation occurs if you intend to create both initialized and uninitialized arrays

of objects. Consider the following class.

class cl {

int i;

public:

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

82

cl(int j) { i=j; }

int get_i() { return i; }

};

Here, the constructor defined by cl requires one parameter. This implies that any array declared

of this type must be initialized. That is, it precludes this array declaration: cl a[9]; // error,

constructor requires initializers The reason that this statement isn't valid (as cl is currently

defined) is that it implies that cl has a parameterless constructor because no initializers are

specified. However, as it stands, cl does not have a parameterless constructor. Because there is

no valid constructor that corresponds to this declaration, the compiler will report an error.

To solve this problem, you need to overload the constructor, adding one that takes no

parameters, as shown next. In this way, arrays that are initialized and those that are not are both

allowed.

class cl {

int i;

public:

cl() { i=0; } // called for non-initialized arrays

cl(int j) { i=j; } // called for initialized arrays

int get_i() { return i; }

};

Given this class, both of the following statements are permissible:

cl a1[3] = {3, 5, 6}; // initialized

cl a2[34]; // uninitialized

3.6 Pointers to objects
Pointers to Objects

Just as you can have pointers to other types of variables, you can have pointers to objects.

When accessing members of a class given a pointer to an object, use the arrow (–>) operator

instead of the dot operator.

The next program illustrates how to access an object given a pointer to it:

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

83

#include <iostream>

using namespace std;

class cl {

int i;

public:

cl(int j) { i=j; }

int get_i() { return i; }

};

int main()

{

cl ob(88), *p;

p = &ob; // get address of ob

cout << p->get_i(); // use -> to call get_i()

return 0;

}

As you know, when a pointer is incremented, it points to the next element of its type. For

example, an integer pointer will point to the next integer. In general, all pointer arithmetic is

relative to the base type of the pointer. (That is, it is relative to the type of data that the pointer

is declared as pointing to.) The same is true of pointers to objects.

For example, this program uses a pointer to access all three elements of array ob after being

assigned ob's starting address:

#include <iostream>

using namespace std;

class cl {

int i;

public:

cl() { i=0; }

cl(int j) { i=j; }

int get_i() { return i; }

};

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

84

int main()

{

cl ob[3] = {1, 2, 3}

cl *p;

int i;

p = ob; // get start of array

for(i=0; i<3; i++) {

cout << p->get_i() << "\n";

p++; // point to next object

}

return 0;

}

You can assign the address of a public member of an object to a pointer and then access that

member by using the pointer. For example, this is a valid C++ program that displays the

number 1 on the screen:

#include <iostream>

using namespace std;

class cl {

public:

int i;

cl(int j) { i=j; }

};

int main()

{

cl ob(1);

int *p;

p = &ob.i; // get address of ob.i

cout << *p; // access ob.i via p

return 0;

}

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

85

Because p is pointing to an integer, it is declared as an integer pointer. It is irrelevant that i is a

member of ob in this situation.

3.7 Copy constructors
Copy Constructors

One of the more important forms of an overloaded constructor is the copy constructor.

Defining a copy constructor can help you prevent problems that might occur when one object

is used to initialize another. Let's begin by restating the problem that the copy constructor is

designed to solve. By default, when one object is used to initialize another, C++ performs a

bitwise copy. That is, an identical copy of the initializing object is created in the target object.

Although this is perfectly adequate for many cases—and generally exactly what you want to

happen—there are situations in which a bitwise copy should not be used. One of the most

common is when an object allocates memory when it is created.

For example, assume a class called MyClass that allocates memory for each object when it is

created, and an object A of that class. This means that A has already allocated its memory.

Further, assume that A is used to initialize B,

as shown here: MyClass B = A;

If a bitwise copy is performed, then B will be an exact copy of A. This means that B will be

using the same piece of allocated memory that A is using, instead of allocating its own. Clearly,

this is not the desired outcome. For example, if MyClass includes a destructor that frees the

memory, then the same piece of memory will be freed twice when A and B are destroyed! The

same type of problem can occur in two additional ways: first, when a copy of an object is made

when it is passed as an argument to a function; second, when a temporary object is created as a

return value from a function. Remember, temporary objects are automatically created to hold

the return value of a function and they may also be created in certain other circumstances. To

solve the type of problem just described, C++ allows you to create a copy constructor, which

the compiler uses when one object initializes another. Thus, your copy constructor bypasses the

default bitwise copy.

The most common general form

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

86

of a copy constructor is

classname (const classname &o) {

// body of constructor

}

Here, o is a reference to the object on the right side of the initialization. It is permissible for a

copy constructor to have additional parameters as long as they have default arguments defined

for them. However, in all cases the first parameter must be a reference to the object doing the

initializing. It is important to understand that C++ defines two distinct types of situations in

which the value of one object is given to another. The first is assignment. The second is

initialization, which can occur any of three ways:

■ When one object explicitly initializes another, such as in a declaration

■ When a copy of an object is made to be passed to a function

■ When a temporary object is generated (most commonly, as a return value)

The copy constructor applies only to initializations. For example, assuming a class called

myclass, and that y is an object of type myclass, each of the following statements involves

initialization.

myclass x = y; // y explicitly initializing x

func(y); // y passed as a parameter

y = func(); // y receiving a temporary, return object

Following is an example where an explicit copy constructor is needed. This program creates a

very limited "safe" integer array type that prevents array boundaries from being overrun.

(Chapter 15 shows a better way to create a safe array that uses overloaded operators.) Storage

for each array is allocated by the use of new, and a pointer to the memory is maintained within

each array object.

/* This program creates a "safe" array class. Since space for the array is allocated using new, a

copy constructor is provided to allocate memory when one array object is used to initialize

another. */

#include <iostream>

#include <new>

#include <cstdlib>

using namespace std;

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

87

class array {

int *p; int

size; public:

array(int sz) {

try {

p = new int[sz];

} catch (bad_alloc xa) {

cout << "Allocation Failure\n";

exit(EXIT_FAILURE);

}

size = sz;

}

~array() { delete [] p; }

// copy constructor

array(const array &a);

void put(int i, int j) {

if(i>=0 && i<size) p[i] = j;

}

int get(int i) {

return p[i];

}

};

// Copy Constructor

array::array(const array &a) {

int i;

try {

p = new int[a.size];

} catch (bad_alloc xa) {

cout << "Allocation Failure\n";

exit(EXIT_FAILURE);

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

88

}

for(i=0; i<a.size; i++) p[i] = a.p[i];

}

int main()

{

array num(10);

int i;

for(i=0; i<10; i++) num.put(i, i);

for(i=9; i>=0; i--) cout << num.get(i);

cout << "\n";

// create another array and initialize with num

array x(num); // invokes copy constructor

for(i=0; i<10; i++) cout << x.get(i);

return 0;

}

Let's look closely at what happens when num is used to initialize x in the statement array

x(num); // invokes copy constructor The copy constructor is called, memory for the new array

is allocated and stored in x.p, and the contents of num are copied to x's array. In this way, x

and num have arrays that contain the same values, but each array is separate and distinct. (That

is, num.p and x.p do not point to the same piece of memory.) If the copy constructor had not

been created, the default bitwise initialization would have resulted in x and num sharing the

same memory for their arrays. (That is, num.p and x.p would have indeed pointed to the same

location.) Remember that the copy constructor is called only for initializations.

For example, this sequence does not call the copy constructor defined in the preceding

program:

array a(10);

// ...

array b(10);

b = a; // does not call copy constructor

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

89

In this case, b = a performs the assignment operation. If = is not overloaded (as it is not here),

a bitwise copy will be made. Therefore, in some cases, you may need to overload the =

operator as well as create a copy constructor to avoid certain types of problems.

3.8 Generic functions and classes
Generic Functions

Ageneric function defines a general set of operations that will be applied to various types of

data. The type of data that the function will operate upon is passed to it as a parameter.

Through a generic function, a single general procedure can be applied to a wide range of data.

As you probably know, many algorithms are logically the same no matter what type of data is

being operated upon. For example, the Quicksort sorting algorithm is the same whether it is

applied to an array of integers or an array of floats. It is just that the type of the data being

sorted is different. By creating a generic function, you can define the nature of the algorithm,

independent of any data. Once you have done this, the compiler will automatically generate the

correct code for the type of data that is actually used when you execute the function. In

essence, when you create a generic function you are creating a function that can automatically

overload itself.

A generic function is created using the keyword template. The normal meaning of the word

"template" accurately reflects its use in C++. It is used to create a template (or framework) that

describes what a function will do, leaving it to the compiler to fill in the details as needed.

The general form of a template function definition is shown here: template <class Ttype> ret-

type func-name(parameter list)

{

// body of function

}

Here, Ttype is a placeholder name for a data type used by the function. This name may be used

within the function definition. However, it is only a placeholder that the compiler will

automatically replace with an actual data type when it creates a specific version of the function.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

90

Although the use of the keyword class to specify a generic type in a template declaration is

traditional, you may also use the keyword typename.

The following example creates a generic function that swaps the values of the two variables

with which it is called. Because the general process of exchanging two values is independent of

the type of the variables, it is a good candidate for being made into a generic function.

// Function template example.

#include <iostream>

using namespace std;

// This is a function template.

template <class X> void swapargs(X &a, X &b)

{

X temp;

temp = a;

a = b;

b = temp;

}

int main()

{

int i=10, j=20;

double x=10.1, y=23.3;

char a='x', b='z';

cout << "Original i, j: " << i << ' ' << j << '\n';

cout << "Original x, y: " << x << ' ' << y << '\n';

cout << "Original a, b: " << a << ' ' << b << '\n';

swapargs(i, j); // swap integers

swapargs(x, y); // swap floats

swapargs(a, b); // swap chars

cout << "Swapped i, j: " << i << ' ' << j << '\n';

cout << "Swapped x, y: " << x << ' ' << y << '\n';

cout << "Swapped a, b: " << a << ' ' << b << '\n';

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

91

return 0;

}

Let's look closely at this program. The line:

template <class X> void swapargs(X &a, X &b)

tells the compiler two things: that a template is being created and that a generic definition is

beginning. Here, X is a generic type that is used as a placeholder. After the template portion,

the function swapargs() is declared, using X as the data type of the values that will be

swapped. In main(), the swapargs() function is called using three different types of data: ints,

doubles, and chars. Because swapargs() is a generic function, the compiler automatically

creates three versions of swapargs(): one that will exchange integer values, one that will

exchange floating-point values, and one that will swap characters.

Here are some important terms related to templates. First, a generic function (that is, a function

definition preceded by a template statement) is also called a template function. Both terms will

be used interchangeably in this book. When the compiler creates a specific version of this

function, it is said to have created a specialization. This is also called a generated function. The

act of generating a function is referred to as instantiating it. Put differently, a generated

function is a specific instance of a template function. Since C++ does not recognize end-of-line

as a statement terminator, the template clause of a generic function definition does not have to

be on the same line as the function's name.

The following example shows another common way to format the swapargs() function.

template <class X>

void swapargs(X &a, X &b)

{

X temp;

temp = a;

a = b;

b = temp;

}

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

92

If you use this form, it is important to understand that no other statements can occur between

the template statement and the start of the generic function definition.

For example, the fragment shown next will not compile.

// This will not compile.

template <class X>

int i; // this is an error

void swapargs(X &a, X &b)

{

X temp;

temp = a;

a = b;

b = temp;

}

As the comments imply, the template specification must directly precede the function

definition.

A Function with Two Generic Types

You can define more than one generic data type in the template statement by using a comma-

separated list. For example, this program creates a template function that has two generic types.

#include <iostream>

using namespace std;

template <class type1, class type2>

void myfunc(type1 x, type2 y)

{

cout << x << ' ' << y << '\n';

}

int main()

{

myfunc(10, "I like C++");

myfunc(98.6, 19L);

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

93

return 0;

}

In this example, the placeholder types type1 and type2 are replaced by the compiler with the

data types int and char *, and double and long, respectively, when the compiler generates the

specific instances of myfunc() within main().

3.9 Applications
Applying Generic Functions

Generic functions are one of C++'s most useful features. They can be applied to all types of

situations. As mentioned earlier, whenever you have a function that defines a generalizable

algorithm, you can make it into a template function. Once you have done so, you may use it

with any type of data without having to recode it. Before moving on to generic classes, two

examples of applying generic functions will be given. They illustrate how easy it is to take

advantage of this powerful C++ feature.

A Generic Sort

Sorting is exactly the type of operation for which generic functions were designed. Within

wide latitude, a sorting algorithm is the same no matter what type of data is being sorted. The

following program illustrates this by creating a generic bubble sort. While the bubble sort is a

rather poor sorting algorithm, its operation is clear and uncluttered and it makes an easy-to-

understand example.

The bubble() function will sort any type of array. It is called with a pointer to the first element

in the array and the number of elements in the array.

// A Generic bubble sort.

#include <iostream>

using namespace std;

template <class X> void bubble(

X *items, // pointer to array to be sorted

int count) // number of items in array

{

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

94

register int a, b;

X t;

for(a=1; a<count; a++)

for(b=count-1; b>=a; b--)

if(items[b-1] > items[b]) {

// exchange elements

t = items[b-1];

items[b-1] = items[b];

items[b] = t;

}

}

int main()

{

int iarray[7] = {7, 5, 4, 3, 9, 8, 6};

double darray[5] = {4.3, 2.5, -0.9, 100.2, 3.0};

int i;

cout << "Here is unsorted integer array: ";

for(i=0; i<7; i++)

cout << iarray[i] << ' ';

cout << endl;

cout << "Here is unsorted double array: ";

for(i=0; i<5; i++)

cout << darray[i] << ' ';

cout << endl;

bubble(iarray, 7);

bubble(darray, 5);

cout << "Here is sorted integer array: ";

for(i=0; i<7; i++)

cout << iarray[i] << ' ';

cout << endl;

cout << "Here is sorted double array: ";

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

for(i=0; i<5; i++)

cout << darray[i] << ' ';

cout << endl;

return 0;

}

The output produced by the program is shown here.

Here is unsorted integer array: 7 5 4 3 9 8 6

Here is unsorted double array: 4.3 2.5 -0.9 100.2 3

Here is sorted integer array: 3 4 5 6 7 8 9

Here is sorted double array: -0.9 2.5 3 4.3 100.2

As you can see, the preceding program creates two arrays: one integer and one double. It then

sorts each. Because bubble() is a template function, it is automatically overloaded to

accommodate the two different types of data. You might want to try using bubble() to sort

other types of data, including classes that you create. In each case, the compiler will create the

right version of the function for you.

Compacting an Array

Another function that benefits from being made into a template is called compact(). This

function compacts the elements in an array. It is not uncommon to want to remove elements

from the middle of an array and then move the remaining elements down so that all unused

elements are at the end. This sort of operation is the same for all types of arrays because it is

independent of the type data actually being operated upon. The generic compact() function

shown in the following program is called with a pointer to the first element in the array, the

number of elements in the array, and the starting and ending indexes of the elements to be

removed. The function then removes those elements and compacts the array. For the purposes

of illustration, it also zeroes the unused elements at the end of the array that have been freed by

the compaction.

// A Generic array compaction function.

#include <iostream>

using namespace std;

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

96

template <class X> void compact(

X *items, // pointer to array to be compacted

int count, // number of items in array

int start, // starting index of compacted region

int end) // ending index of compacted region

{

register int i;

for(i=end+1; i<count; i++, start++)

items[start] = items[i];

/* For the sake of illustration, the remainder of

the array will be zeroed. */

for(; start<count; start++) items[start] = (X) 0;

}

int main()

{

int nums[7] = {0, 1, 2, 3, 4, 5, 6};

char str[18] = "Generic Functions";

int i;

cout << "Here is uncompacted integer array: ";

for(i=0; i<7; i++)

cout << nums[i] << ' ';

cout << endl;

cout << "Here is uncompacted string: ";

for(i=0; i<18; i++)

cout << str[i] << ' ';

cout << endl;

compact(nums, 7, 2, 4);

compact(str, 18, 6, 10);

cout << "Here is compacted integer array: ";

for(i=0; i<7; i++)

cout << nums[i] << ' ';

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

97

cout << endl;

cout << "Here is compacted string: ";

for(i=0; i<18; i++)

cout << str[i] << ' ';

cout << endl;

return 0;

}

This program compacts two different types of arrays. One is an integer array, and the other is a

string. However, the compact() function will work for any type of array.

The output from this program in shown here.

Here is uncompacted integer array: 0 1 2 3 4 5 6

Here is uncompacted string: G e n e r i c F u n c t i o n s

Here is compacted integer array: 0 1 5 6 0 0 0

Here is compacted string: G e n e r i c t i o n s

As the preceding examples illustrate, once you begin to think in terms of templates, many uses

will naturally suggest themselves. As long as the underlying logic of a function is independent

of the data, it can be made into a generic function.

3.10 Operator overloading using friend functions such as +, - ,

Pre-increment, post- increment, [] etc., overloading <<, >>.

Operator Overloading Using a Friend Function

You can overload an operator for a class by using a nonmember function, which is usually a

friend of the class. Since a friend function is not a member of the class, it does not have a this

pointer. Therefore, an overloaded friend operator function is passed the operands explicitly.

This means that a friend function that overloads a binary operator has two parameters, and a

friend function that overloads a unary operator has one parameter. When overloading a binary

operator using a friend function, the left operand is passed in the first parameter and the right

operand is passed in the second parameter.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

98

In this program, the operator+() function is made into a friend:

#include <iostream>

using namespace std;

class loc {

int longitude, latitude;

public:

loc() {} // needed to construct temporaries

loc(int lg, int lt) {

longitude = lg;

latitude = lt;

}

void show() {

cout << longitude << " ";

cout << latitude << "\n";

}

friend loc operator+(loc op1, loc op2); // now a friend

loc operator-(loc op2);

loc operator=(loc op2);

loc operator++();

};

// Now, + is overloaded using friend function.

loc operator+(loc op1, loc op2)

{

loc temp;

temp.longitude = op1.longitude + op2.longitude;

temp.latitude = op1.latitude + op2.latitude;

return temp;

}

// Overload - for loc.

loc loc::operator-(loc op2)

{

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

99

loc temp;

// notice order of operands

temp.longitude = longitude - op2.longitude;

temp.latitude = latitude - op2.latitude;

return temp;

}

// Overload assignment for loc

loc loc::operator=(loc op2)

{

longitude = op2.longitude;

latitude = op2.latitude;

return *this; // i.e., return object that generated call

}

// Overload ++ for loc.

loc loc::operator++()

{

longitude++;

latitude++;

return *this;

}

int main()

{

loc ob1(10, 20), ob2(5, 30);

ob1 = ob1 + ob2;

ob1.show();

return 0;

}

There are some restrictions that apply to friend operator functions. First, you may not overload

the =, (), [], or –> operators by using a friend function. Second, as explained in the next

section, when overloading the increment or decrement operators, you will need to use a

reference parameter when using a friend function.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

100

Using a Friend to Overload ++ or – –

If you want to use a friend function to overload the increment or decrement operators, you

must pass the operand as a reference parameter. This is because friend functions do not have

this pointers. Assuming that you stay true to the original meaning of the ++ and – – operators,

these operations imply the modification of the operand they operate upon. However, if you

overload these operators by using a friend, then the operand is passed by value as a parameter.

This means that a friend operator function has no way to modify the operand. Since the friend

operator function is not passed a this pointer to the operand, but rather a copy of the operand,

no changes made to that parameter affect the operand that generated the call. However, you can

remedy this situation by specifying the parameter to the friend operator function as a reference

parameter. This causes any changes made to the parameter inside the function to affect the

operand that generated the call.

For example, this program uses friend functions to overload the prefix versions of ++ and – –

operators relative to the loc class:

#include <iostream>

using namespace std;

class loc {

int longitude, latitude;

public:

loc() {}

loc(int lg, int lt) {

longitude = lg;

latitude = lt;

}

void show() {

cout << longitude << " ";

cout << latitude << "\n";

}

loc operator=(loc op2);

friend loc operator++(loc &op);

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

101

friend loc operator--(loc &op);

};

// Overload assignment for loc.

loc loc::operator=(loc op2)

{

longitude = op2.longitude;

latitude = op2.latitude;

return *this; // i.e., return object that generated call

}

// Now a friend; use a reference parameter.

loc operator++(loc &op)

{

op.longitude++;

op.latitude++;

return op;

}

// Make op-- a friend; use reference.

loc operator--(loc &op)

{

op.longitude--;

op.latitude--;

return op;

}

int main()

{

loc ob1(10, 20), ob2;

ob1.show();

++ob1;

ob1.show(); // displays 11 21

ob2 = ++ob1;

ob2.show(); // displays 12 22

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

102

--ob2;

ob2.show(); // displays 11 21

return 0;

}

If you want to overload the postfix versions of the increment and decrement operators using a

friend, simply specify a second, dummy integer parameter. For example, this shows the

prototype for the friend, postfix version of the increment operator relative to loc.

// friend, postfix version of ++

friend loc operator++(loc &op, int x);

Overloading Some Special Operators

C++ defines array subscripting, function calling, and class member access as operations. The

operators that perform these functions are the [], (), and –>, respectively. These rather exotic

operators may be overloaded in C++, opening up some very interesting uses. One important

restriction applies to overloading these three operators: They must be nonstatic member

functions. They cannot be friends.

Overloading []

In C++, the [] is considered a binary operator when you are overloading it. Therefore, the

general form of a member operator[]() function is as shown here:

type class-name::operator[](int i)

{

// . . .

}

Technically, the parameter does not have to be of type int, but an operator[]() function is

typically used to provide array subscripting, and as such, an integer value is generally used.

Given an object called O, the expression

O[3]

translates into this call to the operator[]() function:

O.operator[](3)

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

103

That is, the value of the expression within the subscripting operators is passed to the operator[

]() function in its explicit parameter. The this pointer will point to O, the object that generated

the call.

In the following program, atype declares an array of three integers. Its constructor initializes

each member of the array to the specified values. The overloaded operator[]() function

returns the value of the array as indexed by the value of its parameter.

#include <iostream>

using namespace std;

class atype {

int a[3];

public:

atype(int i, int j, int k) {

a[0] = i;

a[1] = j;

a[2] = k;

}

int operator[](int i) { return a[i]; }

};

int main()

{

atype ob(1, 2, 3);

cout << ob[1]; // displays 2

return 0;

}

You can design the operator[]() function in such a way that the [] can be used on both the

left and right sides of an assignment statement. To do this, simply specify the return value of

operator[]() as a reference. The following program makes this change and shows its use:

#include <iostream>

using namespace std;

class atype {

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

104

int a[3];

public:

atype(int i, int j, int k) {

a[0] = i;

a[1] = j;

a[2] = k;

}

int &operator[](int i) { return a[i]; }

};

int main()

{

atype ob(1, 2, 3);

cout << ob[1]; // displays 2

cout << " ";

ob[1] = 25; // [] on left of =

cout << ob[1]; // now displays 25

return 0;

}

Because operator[]() now returns a reference to the array element indexed by i, it can be used

on the left side of an assignment to modify an element of the array. (Of course, it may still be

used on the right side as well.) One advantage of being able to overload the [] operator is that

it allows a means of implementing safe array indexing in C++. As you know, in C++, it is

possible to overrun (or underrun) an array boundary at run time without generating a run-time

error message. However, if you create a class that contains the array, and allow access to that

array only through the overloaded [] subscripting operator, then you can intercept an out-of-

range index. For example, this program adds a range check to the preceding program and

proves that it works:

// A safe array example.

#include <iostream>

#include <cstdlib>

using namespace std;

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

105

class atype {

int a[3];

public:

atype(int i, int j, int k) {

a[0] = i;

a[1] = j;

a[2] = k;

}

int &operator[](int i);

};

// Provide range checking for atype.

int &atype::operator[](int i)

{

if(i<0 || i> 2) {

cout << "Boundary Error\n";

exit(1);

}

return a[i];

}

int main()

{

atype ob(1, 2, 3);

cout << ob[1]; // displays 2

cout << " ";

ob[1] = 25; // [] appears on left

cout << ob[1]; // displays 25

ob[3] = 44; // generates runtime error, 3 out-of-range

return 0;

}

In this program, when the statement

ob[3] = 44;

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

106

executes, the boundary error is intercepted by operator[](), and the program is terminated

before any damage can be done. (In actual practice, some sort of error-handling function would

be called to deal with the out-of-range condition; the program would not have to terminate.)

Overloading ()

When you overload the () function call operator, you are not, per se, creating a new way to call

a function. Rather, you are creating an operator function that can be passed an arbitrary number

of parameters.

Let's begin with an example. Given the overloaded

operator function declaration

double operator()(int a, float f, char *s);

and an object O of its class, then the statement

O(10, 23.34, "hi");

translates into this call to the operator() function.

O.operator()(10, 23.34, "hi");

In general, when you overload the () operator, you define the parameters that you want to pass

to that function. When you use the () operator in your program, the arguments you specify are

copied to those parameters. As always, the object that generates the call (O in this example) is

pointed to by the this pointer.

Here is an example of overloading () for the loc class. It assigns the value of its two

arguments to the longitude and latitude of the object to which it is applied.

#include <iostream>

using namespace std;

class loc {

int longitude, latitude;

public:

loc() {}

loc(int lg, int lt) {

longitude = lg;

latitude = lt;

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

107

}

void show() {

cout << longitude << " ";

cout << latitude << "\n";

}

loc operator+(loc op2);

loc operator()(int i, int j);

};

// Overload () for loc.

loc loc::operator()(int i, int j)

{

longitude = i;

latitude = j;

return *this;

}

// Overload + for loc.

loc loc::operator+(loc op2)

{

loc temp;

temp.longitude = op2.longitude + longitude;

temp.latitude = op2.latitude + latitude;

return temp;

}

int main()

{

loc ob1(10, 20), ob2(1, 1);

ob1.show();

ob1(7, 8); // can be executed by itself

ob1.show();

ob1 = ob2 + ob1(10, 10); // can be used in expressions

ob1.show();

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

108

return 0;

}

The output produced by the program is shown here.

10 20

7 8

11 11

Remember, when overloading (), you can use any type of parameters and return any type of

value. These types will be dictated by the demands of your programs. You can also specify

default arguments.

Overloading –>

The –> pointer operator, also called the class member access operator, is considered a unary

operator when overloading.

Its general usage is shown here:

object->element;

Here, object is the object that activates the call. The operator–>() function must return a

pointer to an object of the class that operator–>() operates upon. The element must be some

member accessible within the object.

The following program illustrates overloading the –> by showing the equivalence between ob.i

and ob–>i when operator–>() returns the this pointer:

#include <iostream>

using namespace std;

class myclass {

public:

int i;

myclass *operator->() {return this;}

};

int main()

{

myclass ob;

ob->i = 10; // same as ob.i

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

109

cout << ob.i << " " << ob->i;

return 0;

}

An operator–>() function must be a member of the class upon which it works. Overloading

the Comma Operator You can overload C++'s comma operator. The comma is a binary

operator, and like all overloaded operators, you can make an overloaded comma perform any

operation you want. However, if you want the overloaded comma to perform in a fashion

similar to its normal operation, then your version must discard the values of all operands

except the rightmost. The rightmost value becomes the result of the comma operation. This is

the way the comma works by default in C++.

Here is a program that illustrates the effect of overloading the comma operator.

#include <iostream>

using namespace std;

class loc {

int longitude, latitude;

public:

loc() {}

loc(int lg, int lt) {

longitude = lg;

latitude = lt;

}

void show() {

cout << longitude << " ";

cout << latitude << "\n";

}

loc operator+(loc op2);

loc operator,(loc op2);

};

// overload comma for loc

loc loc::operator,(loc op2)

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

110

{

loc temp;

temp.longitude = op2.longitude;

temp.latitude = op2.latitude;

cout << op2.longitude << " " << op2.latitude << "\n";

return temp;

}

// Overload + for loc

loc loc::operator+(loc op2)

{

loc temp;

temp.longitude = op2.longitude + longitude;

temp.latitude = op2.latitude + latitude;

return temp;

}

int main()

{

loc ob1(10, 20), ob2(5, 30), ob3(1, 1);

ob1.show();

ob2.show();

ob3.show();

cout << "\n";

ob1 = (ob1, ob2+ob2, ob3);

ob1.show(); // displays 1 1, the value of ob3

return 0;

}

This program displays the following output:

10 20

5 30

1 1

10 60

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

111

1 1

1 1

Notice that although the values of the left-hand operands are discarded, each expression is still

evaluated by the compiler so that any desired side effects will be performed. Remember, the

left-hand operand is passed via this, and its value is discarded by the operator,() function. The

value of the right-hand operation is returned by the function. This causes the overloaded

comma to behave similarly to its default operation. If you want the overloaded comma to do

something else, you will have to change these two features.

Overloading << and >>

As you know, the << and the >> operators are overloaded in C++ to perform I/O operations on

C++'s built-in types. You can also overload these operators so that they perform I/O operations

on types that you create. In the language of C++, the << output operator is referred to as the

insertion operator because it inserts characters into a stream. Likewise, the >> input operator is

called the extraction operator because it extracts characters from a stream. The functions that

overload the insertion and extraction operators are generally called inserters and extractors,

respectively.

Creating Your Own Inserters

It is quite simple to create an inserter for a class that you create. All inserter functions have this

general form:

ostream &operator<<(ostream &stream, class_type obj)

{

// body of inserter

return stream;

}

Notice that the function returns a reference to a stream of type ostream. (Remember, ostream

is a class derived from ios that supports output.) Further, the first parameter to the function is a

reference to the output stream. The second parameter is the object being inserted. (The second

parameter may also be a reference to the object being inserted.) The last thing the inserter must

do before exiting is return stream. This allows the inserter to be used in a larger I/O expression.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

112

Within an inserter function, you may put any type of procedures or operations that you want.

That is, precisely what an inserter does is completely up to you. However, for the inserter to be

in keeping with good programming practices, you should limit its operations to outputting

information to a stream. For example, having an inserter compute pi to 30 decimal places as a

side effect to an insertion operation is probably not a very good idea! To demonstrate a custom

inserter, one will be created for objects of type

phonebook, shown here.

class phonebook {

public:

char name[80];

int areacode;

int prefix;

int num;

phonebook(char *n, int a, int p, int nm)

{

strcpy(name, n);

areacode = a;

prefix = p;

num = nm;

}

};

This class holds a person's name and telephone number. Here is one way to create an inserter

function for objects of type phonebook.

// Display name and phone number

ostream &operator<<(ostream &stream, phonebook o)

{

stream << o.name << " ";

stream << "(" << o.areacode << ") ";

stream << o.prefix << "-" << o.num << "\n";

return stream; // must return stream

}

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

113

Here is a short program that illustrates the phonebook inserter function:

#include <iostream>

#include <cstring>

using namespace std;

class phonebook {

public:

char name[80];

int areacode;

int prefix;

int num;

phonebook(char *n, int a, int p, int nm)

{

strcpy(name, n);

areacode = a;

prefix = p;

num = nm;

}

};

// Display name and phone number.

ostream &operator<<(ostream &stream, phonebook o)

{

stream << o.name << " ";

stream << "(" << o.areacode << ") ";

stream << o.prefix << "-" << o.num << "\n";

return stream; // must return stream

}

int main()

{

phonebook a("Ted", 111, 555, 1234);

phonebook b("Alice", 312, 555, 5768);

phonebook c("Tom", 212, 555, 9991);

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

114

cout << a << b << c;

return 0;

}

The program produces this output:

Ted (111) 555-1234

Alice (312) 555-5768

Tom (212) 555-9991

In the preceding program, notice that the phonebook inserter is not a member of phonebook.

Although this may seem weird at first, the reason is easy to understand. When an operator

function of any type is a member of a class, the left operand (passed implicitly through this) is

the object that generates the call to the operator function. Further, this object is an object of the

class for which the operator function is a member. There is no way to change this. If an

overloaded operator function is a member of a class, the left operand must be an object of that

class. However, when you overload inserters, the left operand is a stream and the right operand

is an object of the class. Therefore, overloaded inserters cannot be members of the class for

which they are overloaded.

The variables name, areacode, prefix, and num are public in the preceding program so that

they can be accessed by the inserter The fact that inserters cannot be members of the class for

which they are defined seems to be a serious flaw in C++. Since overloaded inserters are not

members, how can they access the private elements of a class? In the foregoing program, all

members were made public. However, encapsulation is an essential component of object-

oriented programming. Requiring that all data that will be output be public conflicts with this

principle. Fortunately, there is a solution to this dilemma: Make the inserter a friend of the

class. This preserves the requirement that the first argument to the overloaded inserter be a

stream and still grants the function access to the private members of the class for which it is

overloaded.

Here is the same program modified to make the inserter into

a friend function:

#include <iostream>

#include <cstring>

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

115

using namespace std;

class phonebook {

// now private

char name[80];

int areacode;

int prefix;

int num;

public:

phonebook(char *n, int a, int p, int nm)

{

strcpy(name, n);

areacode = a;

prefix = p;

num = nm;

}

friend ostream &operator<<(ostream &stream, phonebook o);

};

// Display name and phone number.

ostream &operator<<(ostream &stream, phonebook o)

{

stream << o.name << " ";

stream << "(" << o.areacode << ") ";

stream << o.prefix << "-" << o.num << "\n";

return stream; // must return stream

}

int main()

{

phonebook a("Ted", 111, 555, 1234);

phonebook b("Alice", 312, 555, 5768);

phonebook c("Tom", 212, 555, 9991);

cout << a << b << c;

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

116

return 0;

}

When you define the body of an inserter function, remember to keep it as general as possible.

For example, the inserter shown in the preceding example can be used with any stream because

the body of the function directs its output to stream, which is the stream that invoked the

inserter. While it would not be technically wrong to have written

stream << o.name << " ";

as

cout << o.name << " ";

this would have the effect of hard-coding cout as the output stream. The original version will

work with any stream, including those linked to disk files. Although in some situations,

especially where special output devices are involved, you may want to hard-code the output

stream, in most cases you will not. In general, the more flexible your inserters are, the more

valuable they are.

The inserter for the phonebook class works fine unless the value of num is something like

0034, in which case the preceding zeroes will not be displayed. To fix this, you can either make

num into a string or you can set the fill character to zero and use the width() format function

to generate the leading zeroes. The solution is left to the reader as an exercise.Before moving

on to extractors, let's look at one more example of an inserter function. An inserter need not be

limited to handling only text. An inserter can be used to output data in any form that makes

sense. For example, an inserter for some class that is part of a CAD system may output plotter

instructions. Another inserter might generate graphics images. An inserter for a Windows-

based program could display a dialog box. To sample the flavor of outputting things other than

text, examine the following program, which draws boxes on the screen. (Because C++ does not

define a graphics library, the program uses characters to draw a box, but feel free to substitute

graphics if your system supports them.)

#include <iostream>

using namespace std;

class box {

int x, y;

public:

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

117

box(int i, int j) { x=i; y=j; }

friend ostream &operator<<(ostream &stream, box o);

};

// Output a box.

ostream &operator<<(ostream &stream, box o)

{

register int i, j;

for(i=0; i<o.x; i++)

stream << "*";

stream << "\n";

for(j=1; j<o.y-1; j++) {

for(i=0; i<o.x; i++)

if(i==0 || i==o.x-1) stream << "*";

else stream << " ";

stream << "\n";

}

for(i=0; i<o.x; i++)

stream << "*";

stream << "\n";

return stream;

}

int main()

{

box a(14, 6), b(30, 7), c(40, 5);

cout << "Here are some boxes:\n";

cout << a << b << c;

return 0;

}

The program displays the following:

Here are some boxes:

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

118

* *

* *

* *

* *

* *

* *

* *

* *

* *

**

* *

* *

* *

**

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

10CS36

119

UNIT 4

Inheritance – I

4.1 Base Class

4.2 Inheritance and protected members

4.3 Protected base class inheritance

4.4 Inheriting multiple base classes

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

120

4.1 Base Class

Base-Class Access Control

When a class inherits another, the members of the base class become members of the derived

class.

Class inheritance uses this general form:

class derived-class-name : access base-class-name {

// body of class

};

The access status of the base-class members inside the derived class is determined by access.

The base-class access specifier must be either public, private, or protected. If no access

specifier is present, the access specifier is private by default if the derived class is a class. If

the derived class is a struct, then public is the default in the absence of an explicit access

specifier. Let's examine the ramifications of using public or private access. (The protected

specifier is examined in the next section.) When the access specifier for a base class is public,

all public members of the base become public members of the derived class, and all protected

members of the base become protected members of the derived class. In all cases, the base's

private elements remain private to the base and are not accessible by members of the derived

class.

For example, as illustrated in this program, objects of type derived can directly access the

public members of base:

#include <iostream>

using namespace std;

class base {

int i, j;

public:

void set(int a, int b) { i=a; j=b; }

void show() { cout << i << " " << j << "\n"; }

};

class derived : public base {

int k;

public:

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

121

derived(int x) { k=x; }

void showk() { cout << k << "\n"; }

};

int main()

{

derived ob(3);

ob.set(1, 2); // access member of base

ob.show(); // access member of base

ob.showk(); // uses member of derived class

return 0;

}

When the base class is inherited by using the private access specifier, all public and protected

members of the base class become private members of the derived class.

For example, the following program will not even compile because both set() and show() are

now private elements of derived:

// This program won't compile.

#include <iostream>

using namespace std;

class base {

int i, j;

public:

void set(int a, int b) { i=a; j=b; }

void show() { cout << i << " " << j << "\n";}

};

// Public elements of base are private in derived.

class derived : private base {

int k;

public:

derived(int x) { k=x; }

void showk() { cout << k << "\n"; }

};

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

122

int main()

{

derived ob(3);

ob.set(1, 2); // error, can't access set()

ob.show(); // error, can't access show()

return 0;

}

When a base class' access specifier is private, public and protected members of the base

become private members of the derived class. This means that they are still accessible

bymembers of the derived class but cannot be accessed by parts of your program that are not

members of either the base or derived class.

4.2 Inheritance and protected members
Inheritance and protected Members

The protected keyword is included in C++ to provide greater flexibility in the inheritance

mechanism. When a member of a class is declared as protected, that member is not accessible

by other, nonmember elements of the program. With one important exception, access to a

protected member is the same as access to a private member—it can be accessed only by other

members of its class. The sole exception to this is when a protected member is inherited. In this

case, a protected member differs substantially from a private one. As explained in the

preceding section, a private member of a base class is not accessible by other parts of your

program, including any derived class. However, protected members behave differently. If the

base class is inherited as public, then the base class' protected members become protected

members of the derived class and are, therefore, accessible by the derived class. By using

protected, you can create class members that are private to their class but that can still be

inherited and accessed by a derived class. Here is an example:

#include <iostream>

using namespace std;

class base { protected:

int i, j; // private to base, but accessible by derived

public:

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

10CS36

123

void set(int a, int b) { i=a; j=b; }

void show() { cout << i << " " << j << "\n"; }

};

class derived : public base {

int k;

public:

// derived may access base's i and j

void setk() { k=i*j; }

void showk() { cout << k << "\n"; }

};

int main()

{

derived ob;

ob.set(2, 3); // OK, known to derived

ob.show(); // OK, known to derived

ob.setk();

ob.showk();

return 0;

}

In this example, because base is inherited by derived as public and because i and j are

declared as protected, derived's function setk() may access them. If i and j had been declared

as private by base, then derived would not have access to them, and the program would not

compile.

When a derived class is used as a base class for another derived class, any protected member of

the initial base class that is inherited (as public) by the first derived class may also be inherited

as protected again by a second derived class. For example, this program is correct, and

derived2 does indeed have access to i and j.

#include <iostream>

using namespace std;

class base

{

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

124

protected:

int i, j;

public:

void set(int a, int b) { i=a; j=b; }

void show() { cout << i << " " << j << "\n"; }

};

// i and j inherited as protected.

class derived1 : public base {

int k;

public:

void setk() { k = i*j; } // legal

void showk() { cout << k << "\n"; }

};

// i and j inherited indirectly through derived1.

class derived2 : public derived1 {

int m;

public:

void setm() { m = i-j; } // legal

void showm() { cout << m << "\n"; }

};

int main()

{

derived1 ob1;

derived2 ob2;

ob1.set(2, 3);

ob1.show();

ob1.setk();

ob1.showk();

ob2.set(3, 4);

ob2.show();

ob2.setk();

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

125

ob2.setm();

ob2.showk();

ob2.showm();

return 0;

} If, however, base were inherited as private, then all members of base would become private

members of derived1, which means that they would not be accessible by derived2. (However,

i and j would still be accessible by derived1.) This situation is illustrated by the following

program, which is in error (and won't compile).

The comments describe each error:

// This program won't compile.

#include <iostream>

using namespace std;

class base {

protected:

int i, j;

public:

void set(int a, int b) { i=a; j=b; }

void show() { cout << i << " " << j << "\n"; }

};

// Now, all elements of base are private in derived1.

class derived1 : private base {

int k;

public:

// this is legal because i and j are private to derived1

void setk() { k = i*j; } // OK

void showk() { cout << k << "\n"; }

};

// Access to i, j, set(), and show() not inherited.

class derived2 : public derived1 {

int m;

public:

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

126

// illegal because i and j are private to derived1

void setm() { m = i-j; } // Error

void showm() { cout << m << "\n"; }

};

int main()

{

derived1 ob1;

derived2 ob2;

ob1.set(1, 2); // error, can't use set()ob1.show(); // error, can't use show()

ob2.set(3, 4); // error, can't use set()

ob2.show(); // error, can't use show()

return 0;

}

Even though base is inherited as private by derived1, derived1 still has access to base's public

and protected elements. However, it cannot pass along this privilege.

4.3 Protected base class inheritance
Protected Base-Class Inheritance

It is possible to inherit a base class as protected. When this is done, all public and protected

members of the base class become protected members of the derived class.

For example,

#include <iostream>

using namespace std;

class base {

protected:

int i, j; // private to base, but accessible by derived

public:

void setij(int a, int b) { i=a; j=b; }

void showij() { cout << i << " " << j << "\n"; }

};

// Inherit base as protected.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

127

class derived : protected base{

int k;

public:

// derived may access base's i and j and setij().

void setk() { setij(10, 12); k = i*j; }

// may access showij() here

void showall() { cout << k << " "; showij(); }

};

int main()

{

derived ob;

// ob.setij(2, 3); // illegal, setij() is

// protected member of derived

ob.setk(); // OK, public member of derived

ob.showall(); // OK, public member of derived

// ob.showij(); // illegal, showij() is protected

// member of derived

return 0;

}

As you can see by reading the comments, even though setij() and showij() are public

members of base, they become protected members of derived when it is inherited using the

protected access specifier. This means that they will not be accessible inside main().

4.4 Inheriting multiple base classes
Inheriting Multiple Base Classes

It is possible for a derived class to inherit two or more base classes. For example, in this short

example, derived inherits both base1 and base2.

// An example of multiple base classes.

#include <iostream>

using namespace std;

class base1 {

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

128

protected:

int x;

public:

void showx() { cout << x << "\n"; }

};

class base2 {

protected:

int y;

public:

void showy() {cout << y << "\n";}

};

// Inherit multiple base classes.

class derived: public base1, public base2 {

public:

void set(int i, int j) { x=i; y=j; }

};

int main()

{

derived ob;

ob.set(10, 20); // provided by derived

ob.showx(); // from base1

ob.showy(); // from base2

return 0;

}

As the example illustrates, to inherit more than one base class, use a commaseparated list.

Further, be sure to use an access-specifier for each base inherited.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

129

UNIT 5

Inheritance – II

5.1 Constructors, Destructors and Inheritance

5.2 Passing parameters to base class constructors

5.3 Granting access

5.4 Virtual base classes

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

130

5.1 Constructors, Destructors and Inheritance

There are two major questions that arise relative to constructors and destructors when

inheritance is involved. First, when are base-class and derived-class constructors and

destructors called? Second, how can parameters be passed to base-class constructors? This

section examines these two important topics.

When Constructors and Destructors Are Executed

It is possible for a base class, a derived class, or both to contain constructors and/or destructors.

It is important to understand the order in which these functions are executed when an object of

a derived class comes into existence and when it goes out of existence.

To begin, examine this short program:

#include <iostream>

using namespace std;

class base {

public:

base() { cout << "Constructing base\n"; }

~base() { cout << "Destructing base\n"; }

};

class derived: public base {

public:

derived() { cout << "Constructing derived\n"; }

~derived() { cout << "Destructing derived\n"; }

};

int main()

{

derived ob;

// do nothing but construct and destruct ob

return 0;

}

As the comment in main() indicates, this program simply constructs and then destroys an

object called ob that is of class derived.

When executed, this program displays Constructing base

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

131

Constructing derived

Destructing derived

Destructing base

As you can see, first base's constructor is executed followed by derived's. Next (because ob is

immediately destroyed in this program), derived's destructor is called, followed by base's. The

results of the foregoing experiment can be generalized. When an object of a derived class is

created, the base class’ constructor will be called first, followed by the derived class’

constructor. When a derived object is destroyed, its destructor is called first, followed by the

base class' destructor. Put differently, constructors are executed in their order of derivation.

Destructors are executed in reverse order of derivation. If you think about it, it makes sense

that constructors are executed in order of derivation. Because a base class has no knowledge of

any derived class, any initialization it needs to perform is separate from and possibly

prerequisite to any initialization performed by the derived class. Therefore, it must be executed

first.

Likewise, it is quite sensible that destructors be executed in reverse order of derivation.

Because the base class underlies the derived class, the destruction of the base object implies the

destruction of the derived object. Therefore, the derived destructor must be called before the

object is fully destroyed. In cases of multiple inheritance (that is, where a derived class

becomes the base class for another derived class), the general rule applies: Constructors are

called in order of derivation, destructors in reverse order.

For example, this program

#include <iostream>

using namespace std;

class base {

public:

base() { cout << "Constructing base\n"; }

~base() { cout << "Destructing base\n"; }

};

class derived1 : public base {

public:

derived1() { cout << "Constructing derived1\n"; }

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

132

~derived1() { cout << "Destructing derived1\n"; }

};

class derived2: public derived1 {

public:

derived2() { cout << "Constructing derived2\n"; }

~derived2() { cout << "Destructing derived2\n"; }

};

int main()

{

derived2 ob;

// construct and destruct ob

return 0;

displays this output:

Constructing base

Constructing derived1

Constructing derived2

Destructing derived2

Destructing derived1

Destructing base

The same general rule applies in situations involving multiple base classes.

For example, this program

#include <iostream>

using namespace std;

class base1 {

public:

base1() { cout << "Constructing base1\n"; }

~base1() { cout << "Destructing base1\n"; }

};

class base2 {

public:

base2() { cout << "Constructing base2\n"; }

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

133

~base2() { cout << "Destructing base2\n"; }

};

class derived: public base1, public base2 {

public:

derived() { cout << "Constructing derived\n"; }

~derived() { cout << "Destructing derived\n"; }

};

int main()

{

derived ob;

// construct and destruct ob

return 0;

}

produces this output:

Constructing base1

Constructing base2

Constructing derived

Destructing derived

Destructing base2

Destructing base1

As you can see, constructors are called in order of derivation, left to right, as specified in

derived's inheritance list. Destructors are called in reverse order, right to left. This means that

had base2 been specified before base1 in derived's list, as shown here:

class derived: public base2, public base1 {

then the output of this program would have looked like this:

Constructing base2

Constructing base1

Constructing derived

Destructing derived

Destructing base1

Destructing base2

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

134

5.2 Passing parameters to base class constructors
Passing Parameters to Base-Class Constructors

So far, none of the preceding examples have included constructors that require arguments. In

cases where only the derived class' constructor requires one or more parameters, you simply

use the standard parameterized constructor syntax. However, how do you pass arguments to a

constructor in a base class? The answer is to use an expanded form of the derived class's

constructor declaration that passes along arguments to one or more base-class constructors. The

general form of this expanded derived-class constructor declaration is shown here:

derived-constructor(arg-list) : base1(arg-list),

base2(arg-list),

// ...

baseN(arg-list)

{

// body of derived constructor

}

Here, base1 through baseN are the names of the base classes inherited by the derived class.

Notice that a colon separates the derived class' constructor declaration from the base-class

specifications, and that the base-class specifications are separated from each other by commas,

in the case of multiple base classes. Consider this program:

#include <iostream>

using namespace std;

class base {

protected:

int i;

public:

base(int x) { i=x; cout << "Constructing base\n"; }

~base() { cout << "Destructing base\n"; }

};

class derived: public base {

int j;

public:

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

135

// derived uses x; y is passed along to base.

derived(int x, int y): base(y)

{ j=x; cout << "Constructing derived\n"; }

~derived() { cout << "Destructing derived\n"; }

void show() { cout << i << " " << j << "\n"; }

};

int main()

{

derived ob(3, 4);

ob.show(); // displays 4 3

return 0;

}

Here, derived's constructor is declared as taking two parameters, x and y. However, derived()

uses only x; y is passed along to base(). In general, the derived class' constructor must declare

both the parameter(s) that it requires as well as any required by the base class. As the example

illustrates, any parameters required by the base class are passed to it in the base class' argument

list specified after the colon.

Here is an example that uses multiple base classes:

#include <iostream>

using namespace std;

class base1 {

protected:

int i;

public:

base1(int x) { i=x; cout << "Constructing base1\n"; }

~base1() { cout << "Destructing base1\n"; }

};

class base2 {

protected:

int k;

public:

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

136

base2(int x) { k=x; cout << "Constructing base2\n"; }

~base2() { cout << "Destructing base1\n"; }

};

class derived: public base1, public base2 {

int j;

public:

derived(int x, int y, int z): base1(y), base2(z)

{ j=x; cout << "Constructing derived\n"; }

~derived() { cout << "Destructing derived\n"; }

void show() { cout << i << " " << j << " " << k << "\n"; }

};

int main()

{

derived ob(3, 4, 5);

ob.show(); // displays 4 3 5

return 0;

}

It is important to understand that arguments to a base-class constructor are passed via

arguments to the derived class' constructor. Therefore, even if a derived class' constructor does

not use any arguments, it will still need to declare one if the base class requires it. In this

situation, the arguments passed to the derived class are simply passed along to the base.

For example, in this program, the derived class' constructor takes no arguments, but base1()

and base2() do:

#include <iostream>

using namespace std;

class base1 {

protected:

int i;

public:

base1(int x) { i=x; cout << "Constructing base1\n"; }

~base1() { cout << "Destructing base1\n"; }

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

137

};

class base2 {

protected:

int k;

public:

base2(int x) { k=x; cout << "Constructing base2\n"; }

~base2() { cout << "Destructing base2\n"; }

};

class derived: public base1, public base2 {

public:

/* Derived constructor uses no parameter, but still must be declared as taking them to pass

them along to base classes. */

derived(int x, int y): base1(x), base2(y)

{ cout << "Constructing derived\n"; }

~derived() { cout << "Destructing derived\n"; }

void show() { cout << i << " " << k << "\n"; }

};

int main()

{

derived ob(3, 4);

ob.show(); // displays 3 4

return 0;

}

A derived class' constructor is free to make use of any and all parameters that it is declared as

taking, even if one or more are passed along to a base class. Put differently, passing an

argument along to a base class does not preclude its use by the derived class as well. For

example, this fragment is perfectly valid:

class derived: public base {

int j;

public:

// derived uses both x and y and then passes them to base.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

138

derived(int x, int y): base(x, y)

{ j = x*y; cout << "Constructing derived\n"; }

One final point to keep in mind when passing arguments to base-class constructors: The

argument can consist of any expression valid at the time. This includes function calls and

variables. This is in keeping with the fact that C++ allows dynamic initialization.

5.3 Granting access
Granting Access

When a base class is inherited as private, all public and protected members of that class

become private members of the derived class. However, in certain circumstances, you may

want to restore one or more inherited members to their original access specification. For

example, you might want to grant certain public members of the base class public status in the

derived class even though the base class is inherited as private. In Standard C++, you have two

ways to accomplish this. First, you can use a using statement, which is the preferred way. The

using statement is designed primarily to support namespaces and is discussed in Chapter 23.

The second way to restore an inherited member's access specification is to employ an access

declaration within the derived class. Access declarations are currently supported by Standard

C++, but they are deprecated. This means that they should not be used for new code. Since

there are still many, many existing programs that use access declarations, they will be

examined here.

An access declaration takes this general form:

base-class::member;

The access declaration is put under the appropriate access heading in the derived class'

declaration. Notice that no type declaration is required (or, indeed, allowed) in an access

declaration.

To see how an access declaration works, let's begin with this short fragment:

class base {

public:

int j; // public in base

};

// Inherit base as private.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

139

class derived: private base {

public:

// here is access declaration

base::j; // make j public again

.

.

.

};

Because base is inherited as private by derived, the public member j is made a private

member of derived. However, by including base::j;

as the access declaration under derived's public heading, j is restored to its public status.

You can use an access declaration to restore the access rights of public and protected members.

However, you cannot use an access declaration to raise or lower a member's access status. For

example, a member declared as private in a base class cannot be made public by a derived

class. (If C++ allowed this to occur, it would destroy its encapsulation mechanism!) The

following program illustrates the access declaration; notice how it uses access declarations to

restore j, seti(), and geti() to public status.

#include <iostream>

using namespace std;

class base {

int i; // private to base

public:

int j, k;

void seti(int x) { i = x; }

int geti() { return i; }

};

// Inherit base as private.

class derived: private base {

public:

/* The next three statements override

base's inheritance as private and restore j,

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

140

seti(), and geti() to public access. */

base::j; // make j public again - but not k

base::seti; // make seti() public

base::geti; // make geti() public

// base::i; // illegal, you cannot elevate access

int a; // public

};

int main()

{

derived ob;

//ob.i = 10; // illegal because i is private in derived

ob.j = 20; // legal because j is made public in derived

//ob.k = 30; // illegal because k is private in derived

ob.a = 40; // legal because a is public in derived

ob.seti(10);

cout << ob.geti() << " " << ob.j << " " << ob.a;

return 0;

}

Access declarations are supported in C++ to accommodate those situations in which most of an

inherited class is intended to be made private, but a few members are to retain their public or

protected status.

While Standard C++ still supports access declarations, they are deprecated. This means that

they are allowed for now, but they might not be supported in the future. Instead, the standard

suggests achieving the same effect by applying the using keyword.

5.4 Virtual base classes
Virtual Base Classes

An element of ambiguity can be introduced into a C++ program when multiple base classes are

inherited.

For example, consider this incorrect program:

// This program contains an error and will not compile.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

141

#include <iostream>

using namespace std;

class base {

public:

int i;

};

// derived1 inherits base.

class derived1 : public base {

public:

int j;

};

// derived2 inherits base.

class derived2 : public base {

public:

int k;

};

/* derived3 inherits both derived1 and derived2.

This means that there are two copies of base

in derived3! */

class derived3 : public derived1, public derived2 {

public:

int sum;

};

int main()

derived3 ob;

ob.i = 10; // this is ambiguous, which i???

ob.j = 20;

ob.k = 30;

// i ambiguous here, too

ob.sum = ob.i + ob.j + ob.k;

// also ambiguous, which i?

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

142

cout << ob.i << " ";

cout << ob.j << " " << ob.k << " ";

cout << ob.sum;

return 0;

}

As the comments in the program indicate, both derived1 and derived2 inherit base. However,

derived3 inherits both derived1 and derived2. This means that there are two copies of base

present in an object of type derived3. Therefore, in an expression like

ob.i = 10;

which i is being referred to, the one in derived1 or the one in derived2? Because there are two

copies of base present in object ob, there are two ob.is! As you can see, the statement is

inherently ambiguous.

There are two ways to remedy the preceding program. The first is to apply the scope resolution

operator to i and manually select one i. For example, this version of the program does compile

and run as expected:

// This program uses explicit scope resolution to select i.

#include <iostream>

using namespace std;

class base {

public:

int i;

};

// derived1 inherits base.

class derived1 : public base {

public:

int j;

};

// derived2 inherits base.

class derived2 : public base {

public:

int k;

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

143

};

/* derived3 inherits both derived1 and derived2.This means that there are two copies of base

in derived3! */

class derived3 : public derived1, public derived2 {

public:

int sum;

};

int main()

{

derived3 ob;

ob.derived1::i = 10; // scope resolved, use derived1's i

ob.j = 20;

ob.k = 30;

// scope resolved

ob.sum = ob.derived1::i + ob.j + ob.k;

// also resolved here

cout << ob.derived1::i << " ";

cout << ob.j << " " << ob.k << " ";

cout << ob.sum;

return 0;

}

As you can see, because the :: was applied, the program has manually selected derived1's

version of base. However, this solution raises a deeper issue: What if only one copy of base is

actually required? Is there some way to prevent two copies from being included in derived3?

The answer, as you probably have guessed, is yes. This solution is achieved using virtual base

classes.

When two or more objects are derived from a common base class, you can prevent multiple

copies of the base class from being present in an object derived from those objects by declaring

the base class as virtual when it is inherited. You accomplish this by preceding the base class'

name with the keyword virtual when it is inherited. For example, here is another version of the

example program in which derived3 contains only one copy of base:

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

144

// This program uses virtual base classes.

#include <iostream>

using namespace std;

class base {

public:

int i;

};

// derived1 inherits base as virtual.

class derived1 : virtual public base {

public:

int j;

};

// derived2 inherits base as virtual.

class derived2 : virtual public base {

public:

int k;

};

/* derived3 inherits both derived1 and derived2.

This time, there is only one copy of base class. */

class derived3 : public derived1, public derived2 {

public:

int sum;

};

int main()

{

derived3 ob;

ob.i = 10; // now unambiguous

ob.j = 20;

ob.k = 30;

// unambiguous

ob.sum = ob.i + ob.j + ob.k;

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

145

// unambiguous

cout << ob.i << " ";

cout << ob.j << " " << ob.k << " ";

cout << ob.sum;

return 0;

}

As you can see, the keyword virtual precedes the rest of the inherited class' specification. Now

that both derived1 and derived2 have inherited base as virtual, any multiple inheritance

involving them will cause only one copy of base to be present. Therefore, in derived3, there is

only one copy of base and ob.i = 10 is perfectly valid and unambiguous. One further point to

keep in mind: Even though both derived1 and derived2 specify base as virtual, base is still

present in objects of either type. For example, the following sequence is perfectly valid:

// define a class of type derived1

derived1 myclass;

myclass.i = 88;

The only difference between a normal base class and a virtual one is what occurs when an

object inherits the base more than once. If virtual base classes are used, then only one base

class is present in the object. Otherwise, multiple copies will be found.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

146

UNIT 6

Virtual functions, Polymorphism

6.1 Virtual function

6.2 Calling a Virtual function through a base class reference

6.3 Virtual attribute is inherited

6.4 Virtual functions are hierarchical

6.5 Pure virtual functions

6.6 Abstract classes Using virtual functions

6.7 Early and late binding.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

147

6.1 Virtual function

Virtual Functions

Avirtual function is a member function that is declared within a base class and redefined by a

derived class. To create a virtual function, precede the function's declaration in the base class

with the keyword virtual. When a class containing a virtual function is inherited, the derived

class redefines the virtual function to fit its own needs. In essence, virtual functions implement

the "one interface, multiple methods" philosophy that underlies polymorphism.

The virtual function within the base class defines the form of the interface to that function.

Each redefinition of the virtual function by a derived class implements its operation as it relates

specifically to the derived class. That is, the redefinition creates a specific method. When

accessed "normally," virtual functions behave just like any other type of class member

function. However, what makes virtual functions important and capable of supporting run-time

polymorphism is how they behave when accessed via a pointer. As discussed in earlier, a base-

class pointer can be used to point to an object of any class derived from that base. When a base

pointer points to a derived object that contains a virtual function, C++ determines which

version of that function to call based upon the type of object pointed to by the pointer. And this

determination is made at run time. Thus, when different objects are pointed to, different

versions of the virtual function are executed. The same effect applies to base-class references.

To begin, examine this short example:

#include <iostream>

using namespace std;

class base {

public:

virtual void vfunc() {

cout << "This is base's vfunc().\n";

}

};

class derived1 : public base {

public:

void vfunc() {

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

148

cout << "This is derived1's vfunc().\n";

}

};

class derived2 : public base {

public:

void vfunc() {

cout << "This is derived2's vfunc().\n";

}

};

int main()

{

base *p, b;

derived1 d1;

derived2 d2;

// point to base

p = &b;

p->vfunc(); // access base's vfunc()

// point to derived1

p = &d1;

p->vfunc(); // access derived1's vfunc()

// point to derived2

p = &d2;

p->vfunc(); // access derived2's vfunc()

return 0;

}

This program displays the following:

This is base's vfunc().

This is derived1's vfunc().

This is derived2's vfunc().

As the program illustrates, inside base, the virtual function vfunc() is declared.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

149

Notice that the keyword virtual precedes the rest of the function declaration. When vfunc() is

redefined by derived1 and derived2, the keyword virtual is not needed. (However, it is not an

error to include it when redefining a virtual function inside a derived class; it's just not needed.)

In this program, base is inherited by both derived1 and derived2. Inside each class definition,

vfunc() is redefined relative to that class. Inside main(), four variables are declared:

Name Type

p base class pointer

b object of base

d1 object of derived1

d2 object of derived2

Next, p is assigned the address of b, and vfunc() is called via p. Since p is pointing to an

object of type base, that version of vfunc() is executed. Next, p is set to the address of d1, and

again vfunc() is called by using p. This time p points to an object of type derived1. This

causes derived1::vfunc() to be executed. Finally, p is assigned the address of d2, and p

>vfunc() causes the version of vfunc() redefined inside derived2 to be executed. The key

point here is that the kind of object to which p points determines which version of vfunc() is

executed. Further, this determination is made at run time, and this process forms the basis for

run-time polymorphism. Although you can call a virtual function in the "normal" manner by

using an object's name and the dot operator, it is only when access is through a base-class

pointer (or reference) that run-time polymorphism is achieved.

For example, assuming the preceding example, this is syntactically valid:

d2.vfunc(); // calls derived2's vfunc()

Although calling a virtual function in this manner is not wrong, it simply does not take

advantage of the virtual nature of vfunc().

At first glance, the redefinition of a virtual function by a derived class appears similar to

function overloading. However, this is not the case, and the term overloading is not applied to

virtual function redefinition because several differences exist. Perhaps the most important is

that the prototype for a redefined virtual function must match exactly the prototype specified in

the base class. This differs from overloading a normal function, in which return types and the

number and type of parameters may differ. (In fact, when you overload a function, either the

number or the type of the parameters must differ! It is through these differences that C++ can

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

150

select the correct version of an overloaded function.) However, when a virtual function is

redefined, all aspects of its prototype must be the same. If you change the prototype when you

attempt to redefine a virtual function, the function will simply be considered overloaded by the

C++ compiler, and its virtual nature will be lost.

Another important restriction is that virtual functions must be nonstatic members of the classes

of which they are part. They cannot be friends. Finally, constructor functions cannot be virtual,

but destructor functions can. Because of the restrictions and differences between function

overloading and virtual function redefinition, the term overriding is used to describe virtual

function redefinition by a derived class.

6.2 Calling a Virtual function through a base class reference

Calling a Virtual Function Through a Base Class Reference

In the preceding example, a virtual function was called through a base-class pointer, but the

polymorphic nature of a virtual function is also available when called through a base-class

reference. As explained in Chapter 13, a reference is an implicit pointer. Thus, a base-class

reference can be used to refer to an object of the base class or any object derived from that

base. When a virtual function is called through a base-class reference, the version of the

function executed is determined by the object being referred to at the time of the call.The most

common situation in which a virtual function is invoked through a base class reference is when

the reference is a function parameter.

For example, consider the following variation on the preceding program.

/* Here, a base class reference is used to access

a virtual function. */

#include <iostream>

using namespace std;

class base {

public:

virtual void vfunc() {

cout << "This is base's vfunc().\n";

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

151

}

};

class derived1 : public base {

public:

void vfunc() {

cout << "This is derived1's vfunc().\n";

}

};

class derived2 : public base {

public:

void vfunc() {

cout << "This is derived2's vfunc().\n";

}

};

// Use a base class reference parameter.

void f(base &r) {

r.vfunc();

}

int main()

{

base b;

derived1 d1;

derived2 d2;

f(b); // pass a base object to f()

f(d1); // pass a derived1 object to f()

f(d2); // pass a derived2 object to f()

return 0;

}

This program produces the same output as its preceding version. In this example, the function

f() defines a reference parameter of type base. Inside main(), the function is called using

objects of type base, derived1, and derived2. Inside f(), the specific version of vfunc() that is

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

152

called is determined by the type of object being referenced when the function is called. For the

sake of simplicity, the rest of the examples in this chapter will call virtual functions through

base-class pointers, but the effects are same for base-class references..

6.3 Virtual attribute is inherited
The Virtual Attribute Is Inherited

When a virtual function is inherited, its virtual nature is also inherited. This means that when a

derived class that has inherited a virtual function is itself used as a base class for another

derived class, the virtual function can still be overridden. Put differently, no matter how many

times a virtual function is inherited, it remains virtual.

For example, consider this program:

#include <iostream>

using namespace std;

class base {

public:

virtual void vfunc() {

cout << "This is base's vfunc().\n";

}

};

class derived1 : public base {

public:

void vfunc() {

cout << "This is derived1's vfunc().\n";

}

};

/* derived2 inherits virtual function vfunc()

from derived1. */

class derived2 : public derived1 {

public:

// vfunc() is still virtual

void vfunc() {

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

153

cout << "This is derived2's vfunc().\n";

}

};

int main()

{

base *p, b;

derived1 d1;

derived2 d2;

// point to base

p = &b;

p->vfunc(); // access base's vfunc()

// point to derived1

p = &d1;

p->vfunc(); // access derived1's vfunc()

// point to derived2

p = &d2;

p->vfunc(); // access derived2's vfunc()

return 0;

}

As expected, the preceding program displays this output:

This is base's vfunc().

This is derived1's vfunc().

This is derived2's vfunc().

In this case, derived2 inherits derived1 rather than base, but vfunc() is still virtual.

6.4 Virtual functions are hierarchical
Virtual Functions Are Hierarchical

As explained, when a function is declared as virtual by a base class, it may be overridden by a

derived class. However, the function does not have to be overridden. When a derived class fails

to override a virtual function, then when an object of that derived class accesses that function,

the function defined by the base class is used.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

154

For example, consider this program in which derived2 does not override vfunc():

#include <iostream>

using namespace std;

class base {

public:

virtual void vfunc() {

cout << "This is base's vfunc().\n";

}

};

class derived1 : public base {

public:

void vfunc() {

cout << "This is derived1's vfunc().\n";

}

};

class derived2 : public base {

public:

// vfunc() not overridden by derived2, base's is used

};

int main()

{

base *p, b;

derived1 d1;

derived2 d2;

// point to base

p = &b;

p->vfunc(); // access base's vfunc()

// point to derived1

p = &d1;

p->vfunc(); // access derived1's vfunc()

// point to derived2

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

155

p = &d2;

p->vfunc(); // use base's vfunc()

return 0;

}

The program produces this output:

This is base's vfunc().

This is derived1's vfunc().

This is base's vfunc().

Because derived2 does not override vfunc(), the function defined by base is used when

vfunc() is referenced relative to objects of type derived2. The preceding program illustrates a

special case of a more general rule. Because inheritance is hierarchical in C++, it makes sense

that virtual functions are also hierarchical. This means that when a derived class fails to

override a virtual function, the first redefinition found in reverse order of derivation is used.

For example, in the following program, derived2 is derived from derived1, which is derived

from base.However, derived2 does not override vfunc(). This means that, relative to

derived2, the closest version of vfunc() is in derived1. Therefore, it is derived1::vfunc()

that is used when an object of derived2 attempts to call vfunc().

#include <iostream>

using namespace std;

class base {

public:

virtual void vfunc() {

cout << "This is base's vfunc().\n";

}

};

class derived1 : public base {

public:

void vfunc() {

cout << "This is derived1's vfunc().\n";

}

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

156

};

class derived2 : public derived1 {

public:

/* vfunc() not overridden by derived2.

In this case, since derived2 is derived from

derived1, derived1's vfunc() is used.

*/

};

int main()

{

base *p, b;

derived1 d1;

derived2 d2;

// point to base

p = &b;

p->vfunc(); // access base's vfunc()

// point to derived1

p = &d1;

p->vfunc(); // access derived1's vfunc()

// point to derived2

p = &d2;

p->vfunc(); // use derived1's vfunc()

return 0;

}

The program displays the following:

This is base's vfunc().

This is derived1's vfunc().

This is derived1's vfunc().

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

157

6.5 Pure virtual functions
Pure Virtual Functions

As the examples in the preceding section illustrate, when a virtual function is not redefined by

a derived class, the version defined in the base class will be used. However, in many situations

there can be no meaningful definition of a virtual function within a base class. For example, a

base class may not be able to define an object sufficiently to allow a base-class virtual function

to be created. Further, in some situations you will want to ensure that all derived classes

override a virtual function. To handle these two cases, C++ supports the pure virtual function.

A pure virtual function is a virtual function that has no definition within the base class.

To declare a pure virtual function, use this general form:

virtual type func-name(parameter-list) = 0;

When a virtual function is made pure, any derived class must provide its own definition. If the

derived class fails to override the pure virtual function, a compile-time error will result.

The following program contains a simple example of a pure virtual function. The base class,

number, contains an integer called val, the function setval(), and the pure virtual function

show(). The derived classes hextype, dectype, and octtype inherit number and redefine

show() so that it outputs the value of val in each respective number base (that is, hexadecimal,

decimal, or octal).

#include <iostream>

using namespace std;

class number {

protected:

int val;

public:

void setval(int i) { val = i; }

// show() is a pure virtual function

virtual void show() = 0;

};

class hextype : public number {

public:

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

158

void show() {

cout << hex << val << "\n";

}

};

class dectype : public number {

public:

void show() {

cout << val << "\n";

}

};

class octtype : public number {

public:

void show() {

cout << oct << val << "\n";

}

};

int main()

{

dectype d;

hextype h;

octtype o;

d.setval(20);

d.show(); // displays 20 - decimal

h.setval(20);

h.show(); // displays 14 – hexadecimal

o.setval(20);

o.show(); // displays 24 - octal

return 0;

}

Although this example is quite simple, it illustrates how a base class may not be able to

meaningfully define a virtual function. In this case, number simply provides the common

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

159

interface for the derived types to use. There is no reason to define show() inside number since

the base of the number is undefined. Of course, you can always create a placeholder definition

of a virtual function. However, making show() pure also ensures that all derived classes will

indeed redefine it to meet their own needs. Keep in mind that when a virtual function is

declared as pure, all derived classes must override it. If a derived class fails to do this, a

compile-time error will result.

6.6 Abstract classes Using virtual functions
Abstract Classes

A class that contains at least one pure virtual function is said to be abstract. Because an

abstract class contains one or more functions for which there is no definition (that is, a pure

virtual function), no objects of an abstract class may be created. Instead, an abstract class

constitutes an incomplete type that is used as a foundation for derived classes. Although you

cannot create objects of an abstract class, you can create pointers and references to an abstract

class. This allows abstract classes to support run-time polymorphism, which relies upon base-

class pointers and references to select the proper virtual function

Using Virtual Functions

One of the central aspects of object-oriented programming is the principle of "one interface,

multiple methods." This means that a general class of actions can be defined, the interface to

which is constant, with each derivation defining its own specific operations. In concrete C++

terms, a base class can be used to define the nature of the interface to a general class. Each

derived class then implements the specific operations as they relate to the type of data used by

the derived type.

One of the most powerful and flexible ways to implement the "one interface, multiple

methods" approach is to use virtual functions, abstract classes, and run-time polymorphism.

Using these features, you create a class hierarchy that moves from general to specific (base to

derived). Following this philosophy, you define all common features and interfaces in a base

class. In cases where certain actions can be implemented only by the derived class, use a

virtual function. In essence, in the base class you create and define everything you can that

relates to the general case. The derived class fills in the specific details. Following is a simple

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

160

example that illustrates the value of the "one interface, multiple methods" philosophy. A class

hierarchy is created that performs conversions from one system of units to another. (For

example, liters to gallons.) The base class convert declares two variables, val1 and val2, which

hold the initial and converted values, respectively. It also defines the functions getinit() and

getconv(), which return the initial value and the converted value. These elements of convert

are fixed and applicable to all derived classes that will inherit convert. However, the function

that will actually perform the conversion, compute(), is a pure virtual function that must be

defined by the classes derived from convert. The specific nature of compute() will be

determined by what type of conversion is taking place.

// Virtual function practical example.

#include <iostream>

using namespace std;

class convert {

protected:

double val1; // initial value

double val2; // converted value

public:

convert(double i) {

val1 = i;

}

double getconv() { return val2; }

double getinit() { return val1; }

virtual void compute() = 0;

};

// Liters to gallons.

class l_to_g : public convert {

public:

l_to_g(double i) : convert(i) { }

void compute() {

val2 = val1 / 3.7854;

}

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

161

};

// Fahrenheit to Celsius

class f_to_c : public convert {

public:

f_to_c(double i) : convert(i) { }

void compute() {

val2 = (val1-32) / 1.8;

}

};

int main()

{

convert *p; // pointer to base class

l_to_g lgob(4);

f_to_c fcob(70);

// use virtual function mechanism to convert

p = &lgob;

cout << p->getinit() << " liters is ";

p->compute();

cout << p->getconv() << " gallons\n"; // l_to_g

p = &fcob;

cout << p->getinit() << " in Fahrenheit is ";

p->compute();

cout << p->getconv() << " Celsius\n"; // f_to_c

return 0;

}

The preceding program creates two derived classes from convert, called l_to_g and f_to_c.

These classes perform the conversions of liters to gallons and Fahrenheit to Celsius,

respectively. Each derived class overrides compute() in its own way to perform the desired

conversion. However, even though the actual conversion (that is, method) differs between

l_to_g and f_to_c, the interface remains constant. One of the benefits of derived classes and

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

162

virtual functions is that handling a new case is a very easy matter. For example, assuming the

preceding program, you can add a conversion from feet to meters by including this class:

// Feet to meters

class f_to_m : public convert {

public:

f_to_m(double i) : convert(i) { }

void compute() {

val2 = val1 / 3.28;

}

};

An important use of abstract classes and virtual functions is in class libraries. You can create a

generic, extensible class library that will be used by other programmers. Another programmer

will inherit your general class, which defines the interface and all elements common to all

classes derived from it, and will add those functions specific to the derived class. By creating

class libraries, you are able to create and control the interface of a general class while still

letting other programmers adapt it to their specific needs. One final point: The base class

convert is an example of an abstract class. The virtual function compute() is not defined

within convert because no meaningful definition can be provided. The class convert simply

does not contain sufficient information for compute() to be defined. It is only when convert is

inherited by a derived class that a complete type is created.

6.7 Early and late binding.
Early vs. Late Binding

Before concluding this chapter on virtual functions and run-time polymorphism, there are two

terms that need to be defined because they are used frequently in discussions of C++ and

object-oriented programming: early binding and late binding. Early binding refers to events

that occur at compile time. In essence, early binding occurs when all information needed to call

a function is known at compile time. (Put differently, early binding means that an object and a

function call are bound during compilation.) Examples of early binding include normal

function calls (including standard library functions), overloaded function calls, and overloaded

operators.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

163

The main advantage to early binding is efficiency. Because all information necessary to call a

function is determined at compile time, these types of function calls are very fast. The opposite

of early binding is late binding. As it relates to C++, late binding refers to function calls that

are not resolved until run time. Virtual functions are used to achieve late binding. As you

know, when access is via a base pointer or reference, the virtual function actually called is

determined by the type of object pointed to by the pointer. Because in most cases this cannot

be determined at compile time, the object and the function are not linked until run time. The

main advantage to late binding is flexibility. Unlike early binding, late binding allows you to

create programs that can respond to events occurring while the program executes without

having to create a large amount of "contingency code." Keep in mind that because a function

call is not resolved until run time, late binding can make for somewhat slower execution times.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

164

UNIT 7

I/O System Basics, File I/0

7.1 C++ stream classes

7.2 Formatted I/O

7.3 I/O manipulators

7.4 fstream and the File classes

7.5 File operations

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

165

7.1 C++ stream classes

The C++ Stream Classes

As mentioned, Standard C++ provides support for its I/O system in <iostream>. In this header,

a rather complicated set of class hierarchies is defined that supports I/O operations. The I/O

classes begin with a system of template classes. As explained earlier, a template class defines

the form of a class without fully specifying the data upon which it will operate. Once a

template class has been defined, specific instances of it can be created. As it relates to the I/O

library, Standard C++ creates two specializations of the I/O template classes: one for 8-bit

characters and another for wide characters. This book will use only the 8-bit character classes

since they are by far the most common. But the same techniques apply to both.

The C++ I/O system is built upon two related but different template class hierarchies. The first

is derived from the low-level I/O class called basic_streambuf. This class supplies the basic,

low-level input and output operations, and provides the underlying support for the entire C++

I/O system. Unless you are doing advanced I/O programming, you will not need to use

basic_streambuf directly. The class hierarchy that you will most commonly be working with

is derived from basic_ios. This is a high-level I/O class that provides formatting, error

checking, and status information related to stream I/O. (A base class for basic_ios is called

ios_base, which defines several nontemplate traits used by basic_ios.) basic_ios is used as a

base for several derived classes, including basic_istream, basic_ostream, and

basic_iostream. These classes are used to create streams capable of input, output, and

input/output, respectively. As explained, the I/O library creates two specializations of the

template class hierarchies just described: one for 8-bit characters and one for wide characters.www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

166

Here is a list of the mapping of template class names to their character and wide-character

versions.
Template Class

basic_streambuf

basic_ios

basic_istream

basic_ostream

basic_iostream

basic_fstream

basic_ifstream

Characterbased Class
streambuf

ios

istream

ostream

iostream

fstream

ifstream

Wide-Characterbased Class
wstreambuf

wios

wistream

wostream

wiostream

wfstream

wifstream

basic_ofstream ofstream wofstream

The character-based names will be used throughout the remainder of this book, since they are

the names that you will normally use in your programs. They are also the same names that

were used by the old I/O library. This is why the old and the new I/O library are compatible at

the source code level.

One last point: The ios class contains many member functions and variables that control or

monitor the fundamental operation of a stream. It will be referred to frequently. Just remember

that if you include <iostream> in your program, you will have access to this important class.

C++'s Predefined Streams

When a C++ program begins execution, four built-in streams are automatically opened.

They are:

Stream

cin

cout

cerr

clog

Meaning Standard

input Standard output

Standard error output

Buffered version of cerr

Default Device

Keyboard

Screen

Screen

Screen

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

167

Streams cin, cout, and cerr correspond to C's stdin, stdout, and stderr.

By default, the standard streams are used to communicate with the console. However, in

environments that support I/O redirection (such as DOS, Unix, OS/2, and Windows), the

standard streams can be redirected to other devices or files. For the sake of simplicity, the

examples in this chapter assume that no I/O redirection has occurred. Standard C++ also

defines these four additional streams : win, wout, werr, and wlog. These are wide-character

versions of the standard streams. Wide characters are of type wchar_t and are generally 16-bit

quantities. Wide characters are used to hold the large character sets associated with some

human languages.

7.2 Formatted I/O
Formatted I/O

The C++ I/O system allows you to format I/O operations. For example, you can set a field

width, specify a number base, or determine how many digits after the decimal point will be

displayed. There are two related but conceptually different ways that you can format data.

First, you can directly access members of the ios class. Specifically, you can set various format

status flags defined inside the ios class or call various ios member functions. Second, you can

use special functions called manipulators that can be included as part of an I/O expression. We

will begin the discussion of formatted I/O by using the ios member functions and flags.

Formatting Using the ios Members

Each stream has associated with it a set of format flags that control the way information is

formatted. The ios class declares a bitmask enumeration called fmtflags in which the following

values are defined. These values are used to set or clear the format flags. If you are using an

older compiler, it may not define the fmtflags enumeration type. In this case, the format flags

will be encoded into a long integer. When the skipws flag is set, leading white-space characters

(spaces, tabs, and newlines) are discarded when performing input on a stream. When skipws is

cleared, white-space characters are not discarded.When the left flag is set, output is left

justified. When right is set, output is right justified. When the internal flag is set, a numeric

value is padded to fill a field by inserting spaces between any sign or base character. If none of

these flags are set, output is right justified by default.By default, numeric values are output in

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

168

decimal. However, it is possible to change the number base. Setting the oct flag causes output

to be displayed in octal. Setting the hex flag causes output to be displayed in hexadecimal. To

return output to decimal, set the dec flag.Setting showbase causes the base of numeric values

to be shown.

For example, if the conversion base is hexadecimal, the value 1F will be displayed as 0x1F. By

default, when scientific notation is displayed, the e is in lowercase. Also, when a hexadecimal

value is displayed, the x is in lowercase.

When uppercase is set, these characters are displayed in uppercase.

Setting showpos causes a leading plus sign to be displayed before positive values.

Setting showpoint causes a decimal point and trailing zeros to be displayed for all floating-

point output—whether needed or not.

By setting the scientific flag, floating-point numeric values are displayed using scientific

notation. When fixed is set, floating-point values are displayed using normal notation. When

neither flag is set, the compiler chooses an appropriate method. When unitbuf is set, the buffer

is flushed after each insertion operation. When boolalpha is set, Booleans can be input or

output using the keywords true and false. Since it is common to refer to the oct, dec, and hex

fields, they can be collectively referred to as basefield. Similarly, the left, right, and internal

fields can be referred to as adjustfield. Finally, the scientific and fixed fields can be

referenced as floatfield.

7.3 I/O manipulators
Each stream has associated with it a set of format flags that control the way information is

formatted. The ios_base class declares a bitmask enumeration called fmtflags in which the

following values are defined.

adjustfield basefield boolalpha dec

fixed floatfield hex internal

left oct right scientific

showbase showpoint showpos skipws

unitbuf uppercase

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

169

These values are used to set or clear the format flags, using functions such as setf() and

unsetf(). In addition to setting or clearing the format flags directly, you may alter the format

parameters of a stream through the use of special functions called manipulators, which can be

included in an I/O expression.

Several Data Types

In addition to the fmtflags type just described, the Standard C++ I/O system defines several

other types.

The streamsize and streamoff Types

An object of type streamsize is capable of holding the largest number of bytes that will be

transferred in any one I/O operation. It is typically some form of integer. An object of type

streamoff is capable of holding a value that indicates an offset position within a stream. It is

typically some form of integer. These types are defined in the header <ios>, which is

automatically included by the I/O system.

The streampos and wstreampos Types

An object of type streampos is capable of holding a value that represents a position within a

char stream. The wstreampos type is capable of holding a value that represents a position with

a wchar_t stream. These are defined in <iosfwd>, which is automatically included by the I/O

system.

The pos_type and off_type Types

The types pos_type and off_type create objects (typically integers) that are capable of holding

a value that represents the position and an offset, respectively, within a stream. These types are

defined by ios (and other classes) and are essentially the same as streamoff and streampos (or

their wide-character equivalents).

The openmode Type
The type openmode is defined by ios_base and describes how a file will be opened.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

170

The iostate Type
The current status of an I/O stream is described by an object of type iostate, which is an

enumeration defined by ios_base that includes these members.

Name Meaning

goodbit No errors occurred.

eofbit End-of-file is encountered.

Failbit A nonfatal I/O error has occurred.

Badbit A fatal I/O error has occurred.

The seekdir Type

The seekdir type describes how a random-access file operation will take place. It is

defined within ios_base. Its valid values are shown here.

beg Beginning-of-file

cur Current location

end End-of-file

The failure Class

In ios_base is defined the exception type failure. It serves as a base class for the types of

exceptions that can be thrown by the I/O system. It inherits exception (the standard exception

class). The failure class has the following constructor: explicit failure(const string &str); Here,

str is a message that describes the error. This message can be obtained from a failure object by

calling its what() function, shown here: virtual const char *what() const throw();

7.4 fstream and the File classes

<fstream> and the File Classes

To perform file I/O, you must include the header <fstream> in your program. It defines

several classes, including ifstream, ofstream, and fstream. These classes are derived from

istream, ostream, and iostream, respectively. Remember, istream, ostream, and iostream

are derived from ios, so ifstream, ofstream, and fstream also have access to all operations

defined by ios (discussed in the preceding chapter). Another class used by the file system is

filebuf, which provides low-level facilities to manage a file stream. Usually, you don't use

filebuf directly, but it is part of the other file classes.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

171

Opening and Closing a File
In C++, you open a file by linking it to a stream. Before you can open a file, you must first

obtain a stream. There are three types of streams: input, output, and input/output. To create an

input stream, you must declare the stream to be of class ifstream. To create an output stream,

you must declare it as class ofstream. Streams that will be performing both input and output

operations must be declared as class fstream. For example, this fragment creates one input

stream, one output stream, and one stream capable of both input and output:

ifstream in; // input

ofstream out; // output

fstream io; // input and output

Once you have created a stream, one way to associate it with a file is by using open(). This

function is a member of each of the three stream classes.

The prototype for each is

shown here:

void ifstream::open(const char *filename, ios::openmode mode = ios::in);

void ofstream::open(const char *filename, ios::openmode mode = ios::out | ios::trunc);

void fstream::open(const char *filename, ios::openmode mode = ios::in | ios::out);

Here, filename is the name of the file; it can include a path specifier. The value of mode

determines how the file is opened. It must be one or more of the following values defined by

openmode, which is an enumeration defined by ios (through its base class ios_base).

ios::app

ios::ate

ios::binary

ios::in

ios::out

ios::trunc

You can combine two or more of these values by ORing them together. Including ios::app

causes all output to that file to be appended to the end. This value can be used only with files

capable of output. Including ios::ate causes a seek to the end of the file to occur when the file

is opened. Although ios::ate causes an initial seek to end-of-file, I/O operations can still occur

anywhere within the file. The ios::in value specifies that the file is capable of input. The

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

172

ios::out value specifies that the file is capable of output. The ios::binary value causes a file to

be opened in binary mode. By default, all files are opened in text mode. In text mode, various

character translations may take place, such as carriage return/linefeed sequences being

converted into newlines. However, when a file is opened in binary mode, no such character

translations will occur. Understand that any file, whether it contains formatted text or raw data,

can be opened in either binary or text mode. The only difference is whether character

translations take place.

The ios::trunc value causes the contents of a preexisting file by the same name to be

destroyed, and the file is truncated to zero length. When creating an output stream using

ofstream, any preexisting file by that name is automatically truncated.

The following fragment opens a normal output file.

ofstream out;

out.open("test", ios::out);

However, you will seldom see open() called as shown, because the mode parameter provides

default values for each type of stream. As their prototypes show, for ifstream, mode defaults to

ios::in; for ofstream, it is ios::out | ios::trunc; and for fstream, it is ios::in | ios::out.

Therefore, the preceding statement will usually look like this:

out.open("test"); // defaults to output and normal file

Depending on your compiler, the mode parameter for fstream::open() may not default

to in | out. Therefore, you might need to specify this explicitly.

If open() fails, the stream will evaluate to false when used in a Boolean expression. Therefore,

before using a file, you should test to make sure that the open operation succeeded. You can do

so by using a statement like this:

if(!mystream) {

cout << "Cannot open file.\n";

// handle error

}

Although it is entirely proper to open a file by using the open() function, most of the time you

will not do so because the ifstream, ofstream, and fstream classes have constructors that

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

173

automatically open the file. The constructors have the same parameters and defaults as the

open() function.

Therefore, you will most commonly see a file opened as shown here:

ifstream mystream("myfile"); // open file for input

As stated, if for some reason the file cannot be opened, the value of the associated stream

variable will evaluate to false. Therefore, whether you use a constructor to open the file or an

explicit call to open(), you will want to confirm that the file has actually been opened by

testing the value of the stream. You can also check to see if you have successfully opened a file

by using the is_open() function, which is a member of fstream, ifstream, and ofstream. It

has this prototype:

bool is_open();

It returns true if the stream is linked to an open file and false otherwise.

For example,

the following checks if mystream is currently open:

if(!mystream.is_open())

{

cout << "File is not open.\n";

// ...

To close a file, use the member function close(). For example, to close the file linked

to a stream called mystream, use this statement:

mystream.close();

The close() function takes no parameters and returns no value.

Reading and Writing Text Files

It is very easy to read from or write to a text file. Simply use the << and >> operators the same

way you do when performing console I/O, except that instead of using cin and cout, substitute

a stream that is linked to a file.

For example, this program creates

a short inventory file that contains each item's name and its cost:

#include <iostream>

#include <fstream>

using namespace std;

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

174

int main()

{

ofstream out("INVNTRY"); // output, normal file

if(!out) {

cout << "Cannot open INVENTORY file.\n";

return 1;

}

out << "Radios " << 39.95 << endl;

out << "Toasters " << 19.95 << endl;

out << "Mixers " << 24.80 << endl;

out.close();

return 0;

}

The following program reads the inventory file created by the previous program and displays

its contents on the screen:

#include <iostream>

#include <fstream>

using namespace std;

int main()

{

ifstream in("INVNTRY"); // input

if(!in) {

cout << "Cannot open INVENTORY file.\n";

return 1;

}

char item[20];

float cost;

in >> item >> cost;

cout << item << " " << cost << "\n";

in >> item >> cost;

cout << item << " " << cost << "\n";

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

175

in >> item >> cost;

cout << item << " " << cost << "\n";

in.close();

return 0;

}

In a way, reading and writing files by using >> and << is like using the C-based functions

fprintf() and fscanf(). All information is stored in the file in the same format as it would be

displayed on the screen.

Following is another example of disk I/O. This program reads strings entered at the keyboard

and writes them to disk. The program stops when the user enters an exclamation point.

To use the program, specify the name of the output file on the command line.

#include <iostream>

#include <fstream>

using namespace std;

int main(int argc, char *argv[])

{

if(argc!=2) {

cout << "Usage: output <filename>\n";

return 1;

}

ofstream out(argv[1]); // output, normal file

if(!out) {

cout << "Cannot open output file.\n";

return 1;

}

char str[80];

cout << "Write strings to disk. Enter ! to stop.\n";

do {

cout << ": ";

cin >> str;

out << str << endl;

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

176

} while (*str != '!');

out.close();

return 0;

}

When reading text files using the >> operator, keep in mind that certain character translations

will occur. For example, white-space characters are omitted. If you want to prevent any

character translations, you must open a file for binary access and use the functions discussed in

the next section. When inputting, if end-of-file is encountered, the stream linked to that file

will evaluate as false. (The next section illustrates this fact.)

7.5 File operations
put() and get()
One way that you may read and write unformatted data is by using the member functions get()

and put(). These functions operate on characters. That is, get() will read a character and put(

) will write a character. Of course, if you have opened the file for binary operations and are

operating on a char (rather than a wchar_t stream), then these functions read and write bytes

of data.

The get() function has many forms, but the most commonly used version is shown

here along with put():

istream &get(char &ch);

ostream &put(char ch);

The get() function reads a single character from the invoking stream and puts that value in ch.

It returns a reference to the stream. The put() function writes ch to the stream and returns a

reference to the stream.

The following program displays the contents of any file, whether it contains text or binary data,

on the screen. It uses the get() function.

#include <iostream>

#include <fstream>

using namespace std;

int main(int argc, char *argv[])

{

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

177

char ch;

if(argc!=2) {

cout << "Usage: PR <filename>\n";

return 1;

}

ifstream in(argv[1], ios::in | ios::binary);

if(!in) {

cout << "Cannot open file.";

return 1;

}

while(in) { // in will be false when eof is reached

in.get(ch);

if(in) cout << ch;

}

return 0;

}

As stated in the preceding section, when the end-of-file is reached, the stream associated with

the file becomes false. Therefore, when in reaches the end of the file, it will be false, causing

the while loop to stop.

There is actually a more compact way to code the loop that reads and displays a file, as shown

here:

while(in.get(ch))

cout << ch;

This works because get() returns a reference to the stream in, and in will be false when the

end of the file is encountered.

The next program uses put() to write all characters from zero to 255 to a file called CHARS.

As you probably know, the ASCII characters occupy only about half the available values that

can be held by a char. The other values are generally called the extended character set and

include such things as foreign language and mathematical symbols. (Not all systems support

the extended character set, but most do.)

#include <iostream>

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

178

#include <fstream>

using namespace std;

int main()

{

int i;

ofstream out("CHARS", ios::out | ios::binary);

if(!out) {

cout << "Cannot open output file.\n";

return 1;

}// write all characters to disk

for(i=0; i<256; i++) out.put((char) i);

out.close();

return 0;

}

You might find it interesting to examine the contents of the CHARS file to see what extended

characters your computer has available.

read() and write()
Another way to read and write blocks of binary data is to use C++'s read() and write()

functions.

Their prototypes are

istream &read(char *buf, streamsize num);

ostream &write(const char *buf, streamsize num);

The read() function reads num characters from the invoking stream and puts them in the

buffer pointed to by buf. The write() function writes num characters to the invoking stream

from the buffer pointed to by buf. As mentioned in the preceding chapter, streamsize is a type

defined by the C++ library as some form of integer. It is capable of holding the largest number

of characters that can be transferred in any one I/O operation.

The next program writes a structure to disk and then reads it back in:

#include <iostream>

#include <fstream>

#include <cstring>

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

179

using namespace std;

struct status {

char name[80];

double balance;

unsigned long account_num;

};

int main()

{

struct status acc;

strcpy(acc.name, "Ralph Trantor");

acc.balance = 1123.23;

acc.account_num = 34235678;

// write data

ofstream outbal("balance", ios::out | ios::binary);

if(!outbal) {

cout << "Cannot open file.\n";

return 1;

}

outbal.write((char *) &acc, sizeof(struct status));

outbal.close();

// now, read back;

ifstream inbal("balance", ios::in | ios::binary);

if(!inbal) {

cout << "Cannot open file.\n";

return 1;

}

inbal.read((char *) &acc, sizeof(struct status));

cout << acc.name << endl;

cout << "Account # " << acc.account_num;

cout.precision(2);

cout.setf(ios::fixed);

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

180

cout << endl << "Balance: $" << acc.balance;

inbal.close();

return 0;

}

As you can see, only a single call to read() or write() is necessary to read or write the entire

structure. Each individual field need not be read or written separately. As this example

illustrates, the buffer can be any type of object.

More get() Functions

In addition to the form shown earlier, the get() function is overloaded in several different

ways.

The prototypes for the three most commonly used overloaded forms are shown here:

istream &get(char *buf, streamsize num);

istream &get(char *buf, streamsize num, char delim);

int get();

The first form reads characters into the array pointed to by buf until either num-1 characters

have been read, a newline is found, or the end of the file has been encountered. The array

pointed to by buf will be null terminated by get(). If the newline character is encountered in

the input stream, it is not extracted. Instead, it remains in the stream until the next input

operation.

The second form reads characters into the array pointed to by buf until either num-1 characters

have been read, the character specified by delim has been found, or the end of the file has been

encountered. The array pointed to by buf will be null terminated by get(). If the delimiter

character is encountered in the input stream, it is not extracted. Instead, it remains in the stream

until the next input operation.

The third overloaded form of get() returns the next character from the stream. It returns EOF

if the end of the file is encountered. This form of get() is similar to C's getc() function.

getline() Another function that performs input is getline(). It is a member of each input

stream class.

Its prototypes are shown here:

istream &getline(char *buf, streamsize num);

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

181

istream &getline(char *buf, streamsize num, char delim);

Detecting EOF

You can detect when the end of the file is reached by using the member function eof(), which

has this prototype:

bool eof();

It returns true when the end of the file has been reached; otherwise it returns false.

The following program uses eof() to display the contents of a file in both hexadecimal and

ASCII.

/* Display contents of specified file in both ASCII and in hex. */

#include <iostream>

#include <fstream>

#include <cctype>

#include <iomanip>

using namespace std;

int main(int argc, char *argv[])

{

if(argc!=2) {

cout << "Usage: Display <filename>\n";

return 1;

ifstream in(argv[1], ios::in | ios::binary);

if(!in) {

cout << "Cannot open input file.\n";

return 1;

}

register int i, j;

int count = 0;

char c[16];

cout.setf(ios::uppercase);

while(!in.eof()) {

for(i=0; i<16 && !in.eof(); i++) {

in.get(c[i]);

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

182

}

if(i<16) i--; // get rid of eof

for(j=0; j<i; j++)

cout << setw(3) << hex << (int) c[j];

for(; j<16; j++) cout << " ";

cout << "\t"; for(j=0; j<i;

j++) if(isprint(c[j])) cout <<

c[j]; else cout << ".";

cout << endl;

count++;

if(count==16) {

count = 0;

cout << "Press ENTER to continue: ";

cin.get();

cout << endl;

}

}

in.close();

return 0;

}

The ignore() Function

You can use the ignore() member function to read and discard characters from the input

stream.

It has this prototype:

istream &ignore(streamsize num=1, int_type delim=EOF);

It reads and discards characters until either num characters have been ignored (1 by default) or

the character specified by delim is encountered (EOF by default). If the delimiting character is

encountered, it is not removed from the input stream. Here, int_type is defined as some form

of integer.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

183

The next program reads a file called TEST. It ignores characters until either a space is

encountered or 10 characters have been read. It then displays the rest of the file.

#include <iostream>

#include <fstream>

using namespace std;

int main()

{

ifstream in("test");

if(!in) {

cout << "Cannot open file.\n";

return 1;

}

/* Ignore up to 10 characters or until first

space is found. */

in.ignore(10, ' ');

char c;

while(in) {

in.get(c);

if(in) cout << c;

}

in.close();

return 0;

}

peek() and putback()

You can obtain the next character in the input stream without removing it from that stream by

using peek().

It has this prototype:

int_type peek();

It returns the next character in the stream or EOF if the end of the file is encountered.

(int_type is defined as some form of integer.) You can return the last character read from a

stream to that stream by using putback().

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

184

Its prototype is

istream &putback(char c);

where c is the last character read.

flush()

When output is performed, data is not necessarily immediately written to the physical device

linked to the stream. Instead, information is stored in an internal buffer until the buffer is full.

Only then are the contents of that buffer written to disk. However, you can force the

information to be physically written to disk before the buffer is full by calling flush().

Its prototype is

ostream &flush();

Calls to flush() might be warranted when a program is going to be used in adverse

environments (for example, in situations where power outages occur frequently). Closing a file

or terminating a program also flushes all buffers.

Random Access

In C++'s I/O system, you perform random access by using the seekg() and seekp() functions.

Their most common forms are

istream &seekg(off_type offset, seekdir origin);

ostream &seekp(off_type offset, seekdir origin);

Here, off_type is an integer type defined by ios that is capable of containing the largest valid

value that offset can have. seekdir is an enumeration defined by ios that determines how the

seek will take place.

The C++ I/O system manages two pointers associated with a file. One is the get pointer, which

specifies where in the file the next input operation will occur. The other is the put pointer,

which specifies where in the file the next output operation will occur. Each time an input or

output operation takes place, the appropriate pointer is automatically sequentially advanced.

However, using the seekg() and seekp() functions allows you to access the file in a

nonsequential fashion.

The seekg() function moves the associated file's current get pointer offset number of characters

from the specified origin, which must be one of these three values:

ios::beg Beginning-of-file

ios::cur Current location

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

185

ios::end End-of-file

The seekp() function moves the associated file's current put pointer offset number of

characters from the specified origin, which must be one of the values just shown. Generally,

random-access I/O should be performed only on those files opened for binary operations. The

character translations that may occur on text files could cause a position request to be out of

sync with the actual contents of the file.

The following program demonstrates the seekp() function. It allows you to change a specific

character in a file. Specify a filename on the command line, followed by the number of the

character in the file you want to change, followed by the new character.

Notice that the file is opened for read/write operations.

#include <iostream>

#include <fstream>

#include <cstdlib>

using namespace std;

int main(int argc, char *argv[])

{

if(argc!=4) {

cout << "Usage: CHANGE <filename> <character> <char>\n";

return 1;

}

fstream out(argv[1], ios::in | ios::out | ios::binary);

if(!out) {

cout << "Cannot open file.";

return 1;

}

out.seekp(atoi(argv[2]), ios::beg);

out.put(*argv[3]);

out.close();

return 0;

}

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

186

For example, to use this program to change the twelfth character of a file called TEST to a Z,

use this command line: change test 12 Z

The next program uses seekg(). It displays the contents of a file beginning with the location

you specify on the command line.

#include <iostream>

#include <fstream>

#include <cstdlib>

using namespace std;

int main(int argc, char *argv[])

{

char ch;

if(argc!=3) {

cout << "Usage: SHOW <filename> <starting location>\n";

return 1;

}

ifstream in(argv[1], ios::in | ios::binary);

if(!in) {

cout << "Cannot open file.";

return 1;

}

in.seekg(atoi(argv[2]), ios::beg);

while(in.get(ch))

cout << ch;

return 0;

}

The following program uses both seekp() and seekg() to reverse the first <num> characters in

a file.

#include <iostream>

#include <fstream>

#include <cstdlib>

using namespace std;

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

187

int main(int argc, char *argv[])

{

if(argc!=3) {

cout << "Usage: Reverse <filename> <num>\n";

return 1;

}

fstream inout(argv[1], ios::in | ios::out | ios::binary);

if(!inout) {

cout << "Cannot open input file.\n";

return 1;

}

long e, i, j;

char c1, c2;

e = atol(argv[2]);

for(i=0, j=e; i<j; i++, j--) {

inout.seekg(i, ios::beg);

inout.get(c1);

inout.seekg(j, ios::beg);

inout.get(c2);

inout.seekp(i, ios::beg);

inout.put(c2);

inout.seekp(j, ios::beg);

inout.put(c1);

}

inout.close();

return 0;

}

To use the program, specify the name of the file that you want to reverse, followed by the

number of characters to reverse. For example, to reverse the first 10 characters of a file called

TEST, use this command line: reverse test 10

If the file had contained this:

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

188

This is a test.

it will contain the following after the program executes:

a si sihTtest.

Obtaining the Current File Position

You can determine the current position of each file pointer by using these functions:

pos_type tellg();

pos_type tellp();

Here, pos_type is a type defined by ios that is capable of holding the largest value that either

function can return. You can use the values returned by tellg() and tellp() as arguments to the

following forms of seekg() and seekp(), respectively.

istream &seekg(pos_type pos);

ostream &seekp(pos_type pos);

These functions allow you to save the current file location, perform other file operations, and

then reset the file location to its previously saved location.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

189

UNIT 8

Exception Handling, STL

8.1 Exception handling fundamentals

8.2 Exception handling options STL: An overview

8.3 containers

8.4 vectors

8.5 lists

8.6 maps

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

190

8.1 Exception handling fundamentals

Exception Handling Fundamentals

C++ exception handling is built upon three keywords: try, catch, and throw. In the most

general terms, program statements that you want to monitor for exceptions are contained in a

try block. If an exception (i.e., an error) occurs within the try block, it is thrown (using

throw). The exception is caught, using catch, and processed. The following discussion

elaborates upon this general description. Code that you want to monitor for exceptions must

have been executed from within a try block. (Functions called from within a try block may

also throw an exception.) Exceptions that can be thrown by the monitored code are caught by a

catch statement, which immediately follows the try statement in which the exception was

thrown.

The general form of try and catch are shown here.

try {

// try block

}

catch (type1 arg) {

// catch block

}

catch (type2 arg) {

// catch block

}

catch (type3 arg) {

// catch block

}...

catch (typeN arg) {

// catch block

}

The try can be as short as a few statements within one function or as allencompassing as

enclosing the main() function code within a try block (which effectively causes the entire

program to be monitored). When an exception is thrown, it is caught by its corresponding

catch statement, which processes the exception. There can be more than one catch statement

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

191

associated with a try. Which catch statement is used is determined by the type of the

exception. That is, if the data type specified by a catch matches that of the exception, then that

Catch statement is executed (and all others are bypassed). When an exception is caught, arg

will receive its value. Any type of data may be caught, including classes that you create. If no

exception is thrown (that is, no error occurs within the try block), then no catch statement is

executed.

The general form of the throw statement is shown here:

throw exception;

throw generates the exception specified by exception. If this exception is to be caught, then

throw must be executed either from within a try block itself, or from any function called from

within the try block (directly or indirectly). If you throw an exception for which there is no

applicable catch statement, an abnormal program termination may occur. Throwing an

unhandled exception causes the standard library function terminate() to be invoked. By

default, terminate() calls abort() to stop your program, but you can specify your own

termination handler, as described later in this chapter.

Here is a simple example that shows the way C++ exception handling operates.

// A simple exception handling example.

#include <iostream>

using namespace std;

int main()

{

cout << "Start\n";

try { // start a try block

cout << "Inside try block\n";

throw 100; // throw an error

cout << "This will not execute";

}

catch (int i) { // catch an error

cout << "Caught an exception -- value is: ";

cout << i << "\n";

}

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

192

cout << "End";

return 0;

}

This program displays the following output:

Start

Inside try block

Caught an exception -- value is: 100

End

Look carefully at this program. As you can see, there is a try block containing three statements

and a catch(int i) statement that processes an integer exception.Within the try block, only two

of the three statements will execute: the first cout statement and the throw. Once an exception

has been thrown, control passes to the catch expression and the try block is terminated. That

is, catch is not called. Rather, program execution is transferred to it. (The program's stack is

automatically reset as needed to accomplish this.) Thus, the cout statement following the

throw will never execute. Usually, the code within a catch statement attempts to remedy an

error by taking appropriate action. If the error can be fixed, execution will continue with the

statements following the catch. However, often an error cannot be fixed and a catch block will

terminate the program with a call to exit() or abort(). As mentioned, the type of the exception

must match the type specified in a catch statement. For example, in the preceding example, if

you change the type in the catch statement to double, the exception will not be caught and

abnormal termination will occur. This change is shown here.

// This example will not work.

#include <iostream>

using namespace std;

int main()

{

cout << "Start\n";

try { // start a try block

cout << "Inside try block\n";

throw 100; // throw an error

cout << "This will not execute";

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

193

}

catch (double i) { // won't work for an int exception

cout << "Caught an exception -- value is: ";

cout << i << "\n";

}

cout << "End";

return 0;

}

This program produces the following output because the integer exception will not be caught

by the catch(double i) statement. (Of course, the precise message describing abnormal

termination will vary from compiler to compiler.)

Start

Inside try block

Abnormal program termination

An exception can be thrown from outside the try block as long as it is thrown by a function

that is called from within try block. For example, this is a valid program.

/* Throwing an exception from a function outside the try block. */

#include <iostream>

using namespace std;

void Xtest(int test)

{

cout << "Inside Xtest, test is: " << test << "\n";

if(test) throw test;

}

int main()

{

cout << "Start\n";

try { // start a try block

cout << "Inside try block\n";

Xtest(0);

Xtest(1);

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

194

Xtest(2);

}

catch (int i) { // catch an error

cout << "Caught an exception -- value is: ";

cout << i << "\n";

}

cout << "End";

return 0;

}

This program produces the following output:

Start

Inside try block

Inside Xtest, test is: 0

Inside Xtest, test is: 1

Caught an exception -- value is: 1

End

A try block can be localized to a function. When this is the case, each time the function is

entered, the exception handling relative to that function is reset. For example, examine this

program.

#include <iostream>

using namespace std;

// Localize a try/catch to a function.

void Xhandler(int test)

{

try{

if(test) throw test;

}

catch(int i) {

cout << "Caught Exception #: " << i << '\n';

}

}

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

195

int main()

{

cout << "Start\n";

Xhandler(1);

Xhandler(2);

Xhandler(0);

Xhandler(3);

cout << "End";

return 0;

}

This program displays this output:

Start

Caught Exception #: 1

Caught Exception #: 2

Caught Exception #: 3

End

As you can see, three exceptions are thrown. After each exception, the function returns. When

the function is called again, the exception handling is reset. It is important to understand that

the code associated with a catch statement will be executed only if it catches an exception.

Otherwise, execution simply bypasses the catch altogether. (That is, execution never flows into

a catch statement.)

For example, in the following program, no exception is thrown, so the catch statement does

not execute.

#include <iostream>

using namespace std;

int main()

{

cout << "Start\n";

try { // start a try block

cout << "Inside try block\n";

cout << "Still inside try block\n";

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

196

}

catch (int i) { // catch an error

cout << "Caught an exception -- value is: ";

cout << i << "\n";

}

cout << "End";

return 0;

}

The preceding program produces the following output.

Start

Inside try block

Still inside try block

End

As you see, the catch statement is bypassed by the flow of execution.

8.2 Exception handling options STL: An overview

An Overview of the STL

Although the standard template library is large and its syntax can be intimidating, it is actually

quite easy to use once you understand how it is constructed and what elements it employs.

Therefore, before looking at any code examples, an overview of the STL is warranted. At the

core of the standard template library are three foundational items: containers, algorithms, and

iterators. These items work in conjunction with one another to provide off-the-shelf solutions

to a variety of programming problems.

Containers

Containers are objects that hold other objects, and there are several different types.For

example, the vector class defines a dynamic array, deque creates a double-ended queue, and

list provides a linear list. These containers are called sequence containers because in STL

terminology, a sequence is a linear list. In addition to the basic containers, the STL also defines

associative containers, which allow efficient retrieval of values based on keys. For example, a

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

197

map provides access to values with unique keys. Thus, a map stores a key/value pair and

allows a value to be retrieved given its key.

Each container class defines a set of functions that may be applied to the container. For

example, a list container includes functions that insert, delete, and merge elements. A stack

includes functions that push and pop values.

Algorithms

Algorithms act on containers. They provide the means by which you will manipulate the

contents of containers. Their capabilities include initialization, sorting, searching, and

transforming the contents of containers. Many algorithms operate on a range of elements

within a container.

Iterators

Iterators are objects that act, more or less, like pointers. They give you the ability to cycle

through the contents of a container in much the same way that you would use a pointer to cycle

through an array.

Other STL Elements
In addition to containers, algorithms, and iterators, the STL relies upon several other standard

components for support. Chief among these are allocators, predicates, comparison functions,

and function objects. Each container has defined for it an allocator. Allocators manage

memory allocation for a container. The default allocator is an object of class allocator, but you

can define your own allocators if needed by specialized applications. For most uses, the default

allocator is sufficient. Several of the algorithms and containers use a special type of function

called a predicate.

There are two variations of predicates: unary and binary. A unary predicate takes one

argument, while a binary predicate has two. These functions return true/false results. But the

precise conditions that make them return true or false are defined by you. For the rest of this

chapter, when a unary predicate function is required, it will be notated using the type UnPred.

When a binary predicate is required, the type BinPred will be used. In a binary predicate, the

arguments are always in the order of first, second. For both unary and binary predicates, the

arguments will contain values of the type of objects being stored by the container. Some

algorithms and classes use a special type of binary predicate that compares two elements.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

198

Comparison functions return true if their first argument is less than their second. Comparison

functions will be notated using the type Comp.

In addition to the headers required by the various STL classes, the C++ standard library

includes the <utility> and <functional> headers, which provide support for the STL. For

example, the template class pair, which can hold a pair of values, is defined in <utility>.

8.3 Containers

The Container Classes

As explained, containers are the STL objects that actually store data. The containers defined by

the STL are shown. Also shown are the headers necessary to use each container. The string

class, which manages character strings, is also a container, but it is discussed later. Since the

names of the generic placeholder types in a template class declaration are arbitrary, the

container classes declare typedefed versions of these types. This makes the type names

concrete.

Some of the most common typedef names are shown here:

size_type Some type of integer

reference A reference to an element

const_reference A const reference to an element

iterator An iterator

const_iterator A const iterator

reverse_iterator A reverse iterator

const_reverse_iterator A const reverse iterator

value_type The type of a value stored in a container

allocator_type The type of the allocator

key_type The type of a key

key_compare The type of a function that compares two keys

value_compare The type of a function that compares two values

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

199

8.4 vectors

Vectors

Perhaps the most general-purpose of the containers is vector. The vector class supports a

dynamic array. This is an array that can grow as needed. As you know, in C++ the size of an

array is fixed at compile time. While this is by far the most efficient way to implement arrays,

it is also the most restrictive because the size of the array cannot be adjusted at run time to

accommodate changing program conditions. A vector solves this problem by allocating

memory as needed. Although a vector is dynamic, you can still use the standard array subscript

notation to access its elements.

The template specification for vector is shown here:

template <class T, class Allocator = allocator<T> > class vector

Here, T is the type of data being stored and Allocator specifies the allocator, which defaults to

the standard allocator.

vector has the following constructors:

explicit vector(const Allocator &a = Allocator());

explicit vector(size_type num, const T &val = T (),

const Allocator &a = Allocator());

vector(const vector<T, Allocator> &ob);

template <class InIter> vector(InIter start, InIter end,

const Allocator &a = Allocator());

The first form constructs an empty vector. The second form constructs a vector that has num

elements with the value val. The value of val may be allowed to default. The third form

constructs a vector that contains the same elements as ob. The fourth form constructs a vector

that contains the elements in the range specified by the iterators

start and end.

For maximum flexibility and portability, any object that will be stored in a vector should

define a default constructor. It should also define the < and == operations. Some compilers

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

200

may require that other comparison operators be defined. (Since implementations vary, consult

your compiler's documentation for precise information.) All of the built-in types automatically

satisfy these requirements. Although the template syntax looks rather complex, there is nothing

difficult about declaring a vector.

Here are some examples:

vector<int> iv; // create zero-length int vector vector<char>

cv(5); // create 5-element char vector vector<char> cv(5,

'x'); // initialize a 5-element char vector vector<int> iv2(iv);

// create int vector from an int vector The following

comparison operators are defined for vector:

==, <, <=, !=, >, >=

The subscripting operator [] is also defined for vector. This allows you to access the elements

of a vector using standard array subscripting notation. Several of the member functions defined

by vectors. (Remember, Part Four contains a complete reference to the STL classes.) Some of

the most commonly used member functions are size(), begin(), end(), push_back(), insert(

), and erase().

The size() function returns the current size of the vector. This function is quite useful because

it allows you to determine the size of a vector at run time. Remember, vectors will increase in

size as needed, so the size of a vector must be determined during execution, not during

compilation. The begin() function returns an iterator to the start of the vector. The end()

function returns an iterator to the end of the vector. As explained, iterators are similar to

pointers, and it is through the use of the begin() and end() functions that you obtain an

iterator to the beginning and end of a vector.

The push_back() function puts a value onto the end of the vector. If necessary, the vector is

increased in length to accommodate the new element. You can also add elements to the middle

using insert(). A vector can also be initialized. In any event, once a vector contains elements,

you can use array subscripting to access or modify those elements. You can remove elements

from a vector using erase().

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

201

Here is a short example that illustrates the basic operation of a vector.

// Demonstrate a vector.

#include <iostream>

#include <vector>

#include <cctype>

using namespace std;

int main()

{

vector<char> v(10); // create a vector of length 10

unsigned int i;

// display original size of v

cout << "Size = " << v.size() << endl;

// assign the elements of the vector some values

for(i=0; i<10; i++) v[i] = i + 'a';

// display contents of vector

cout << "Current Contents:\n";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << "\n\n";

cout << "Expanding vector\n";

/* put more values onto the end of the vector,

it will grow as needed */

for(i=0; i<10; i++) v.push_back(i + 10 + 'a');

// display current size of v

cout << "Size now = " << v.size() << endl;

// display contents of vector

cout << "Current contents:\n";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << "\n\n";

// change contents of vector

for(i=0; i<v.size(); i++) v[i] = toupper(v[i]);

cout << "Modified Contents:\n";

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

202

for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << endl;

return 0;

}

The output of this program is shown here:

Size = 10

Current Contents:

a b c d e f g h i j

Expanding vector

Size now = 20

Current contents:

a b c d e f g h i j k l m n o p q r s t

Modified Contents:

A B C D E F G H I J K L M N O P Q R S T

Let's look at this program carefully. In main(), a character vector called v is created with an

initial capacity of 10. That is, v initially contains 10 elements. This is confirmed by calling the

size() member function. Next, these 10 elements are initialized to the characters a through j

and the contents of v are displayed. Notice that the standard array subscripting notation is

employed. Next, 10 more elements are added to the end of v using the push_back() function.

This causes v to grow in order to accommodate the new elements. As the output shows, its size

after these additions is 20. Finally, the values of v's elements are altered using standard

subscripting notation. There is one other point of interest in this program. Notice that the loops

that display the contents of v use as their target value v.size(). One of the advantages that

vectors have over arrays is that it is possible to find the current size of a vector. As you can

imagine, this can be quite useful in a variety of situations.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

203

8.5 Lists

Lists

The list class supports a bidirectional, linear list. Unlike a vector, which supports random

access, a list can be accessed sequentially only. Since lists are bidirectional, they may be

accessed front to back or back to front.

A list has this template specification:

template <class T, class Allocator = allocator<T> > class list

Here, T is the type of data stored in the list. The allocator is specified by Allocator, which

defaults to the standard allocator.

It has the following constructors:

explicit list(const Allocator &a = Allocator());

explicit list(size_type num, const T &val = T (),

const Allocator &a = Allocator());

list(const list<T, Allocator> &ob);

template <class InIter>list(InIter start, InIter end,

const Allocator &a = Allocator());

The first form constructs an empty list. The second form constructs a list that has numelements

with the value val, which can be allowed to default. The third form constructs a list that

contains the same elements as ob. The fourth form constructs a list that contains the elements

in the range specified by the iterators start and end.

The following comparison operators are defined for list:

==, <, <=, !=, >, >=

Some of the commonly used list member functions are Like vectors, elements may be put into

a list by using the push_back() function. You can put elements on the front of the list by using

push_front(). An element can also be inserted into the middle of a list by using insert(). Two

lists may be joined using splice(). One list may be merged into another using merge(). For

maximum flexibility and portability, any object that will be held in a list should define a

default constructor. It should also define the < operator, and possibly other comparison

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

204

operators. The precise requirements for an object that will be stored in a list vary from

compiler to compiler, so you will need to check your compiler's documentation.

Here is a simple example of a list.

// List basics.

#include <iostream>

#include <list>

using namespace std;

int main()

{

list<int> lst; // create an empty list

int i;

for(i=0; i<10; i++) lst.push_back(i);

cout << "Size = " << lst.size() << endl;

cout << "Contents: ";

list<int>::iterator p = lst.begin();

while(p != lst.end()) {

cout << *p << " ";

p++;

}

cout << "\n\n";

// change contents of list

p = lst.begin();

while(p != lst.end()) {

*p = *p + 100;

p++;

}

cout << "Contents modified: ";

p = lst.begin();

while(p != lst.end()) {

cout << *p << " ";

p++;

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

205

}

return 0;

}

The output produced by this program is shown here:

Size = 10

Contents: 0 1 2 3 4 5 6 7 8 9

Contents modified: 100 101 102 103 104 105 106 107 108 109

This program creates a list of integers. First, an empty list object is created. Next, 10 integers

are put into the list. This is accomplished using the push_back() function, which puts each

new value on the end of the existing list. Next, the size of the list and the list itself is displayed.

The list is displayed via an iterator, using the following code:

list<int>::iterator p = lst.begin();

while(p != lst.end()) {

cout << *p << " ";

p++;

}

Here, the iterator p is initialized to point to the start of the list. Each time through the loop, p is

incremented, causing it to point to the next element. The loop ends when p points to the end of

the list. This code is essentially the same as was used to cycle through a vector using an

iterator. Loops like this are common in STL code, and the fact that the same constructs can be

used to access different types of containers is part of the power of the STL.

8.6 Maps
Maps

The map class supports an associative container in which unique keys are mapped with values.

In essence, a key is simply a name that you give to a value. Once a value has been stored, you

can retrieve it by using its key. Thus, in its most general sense, a map is a list of key/value

pairs. The power of a map is that you can look up a value given its key. For example, you

could define a map that uses a person's name as its key and stores that person's telephone

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

206

number as its value. Associative containers are becoming more popular in programming. As

mentioned, a map can hold only unique keys. Duplicate keys are not allowed.

To create a map that allows nonunique keys, use multimap.

The map container has the following template specification:

template <class Key, class T, class Comp = less<Key>,

class Allocator = allocator<pair<const key, T> > class map

Here, Key is the data type of the keys, T is the data type of the values being stored (mapped),

and Comp is a function that compares two keys. This defaults to the standard less() utility

function object. Allocator is the allocator (which defaults to allocator) .

A map has the following constructors:

explicit map(const Comp &cmpfn = Comp(),

const Allocator &a = Allocator());

map(const map<Key, T, Comp, Allocator> &ob);

template <class InIter> map(InIter start, InIter end,

const Comp &cmpfn = Comp(), const Allocator &a = Allocator());

The first form constructs an empty map. The second form constructs a map that contains the

same elements as ob. The third form constructs a map that contains the elements in the range

specified by the iterators start and end. The function specified by cmpfn, if present, determines

the ordering of the map.In general, any object used as a key should define a default constructor

and overload the < operator and any other necessary comparison operators. The specific

requirements vary from compiler to compiler.

The following comparison operators are defined for map.

==, <, <=, !=, >, >=

key_type is the type of the key, and value_type represents pair<Key, T>.

Key/value pairs are stored in a map as objects of type pair, which has this template

specification.

template <class Ktype, class Vtype> struct pair {

typedef Ktype first_type; // type of key

typedef Vtype second_type; // type of value

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

207

Ktype first; // contains the key

Vtype second; // contains the value

// constructors

pair();

pair(const Ktype &k, const Vtype &v);

template<class A, class B> pair(const<A, B> &ob);

}

As the comments suggest, the value in first contains the key and the value in second contains

the value associated with that key. You can construct a pair using either one of pair's

constructors or by using make_pair(), which constructs a pair object based upon the types of

the data used as parameters. make_pair() is a generic function that has this prototype.

template <class Ktype, class Vtype>

pair<Ktype, Vtype>

make_pair(const Ktype &k, const Vtype &v);

As you can see, it returns a pair object consisting of values of the types specified by Ktype and

Vtype. The advantage of make_pair() is that the types of the objects bei stored are determined

automatically by the compiler rather than being explicitly specified by you.

The following program illustrates the basics of using a map. It stores key/value pairs that show

the mapping between the uppercase letters and their ASCII character codes. Thus, the key is a

character and the value is an integer. The key/value pairs stored are

A 65

B 66

C 67

and so on. Once the pairs have been stored, you are prompted for a key (i.e., a letter between A

and Z), and the ASCII code for that letter is displayed.

// A simple map demonstration.

#include <iostream>

#include <map>

using namespace std;

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

208

int main()

{

map<char, int> m;

int i;

// put pairs into map for(i=0; i<26;

i++) { m.insert(pair<char, int>('A'+i,

65+i));

}

char ch;

cout << "Enter key: ";

cin >> ch;

map<char, int>::iterator p;

// find value given key

p = m.find(ch);

if(p != m.end())

cout << "Its ASCII value is " << p->second;

else

cout << "Key not in map.\n";

return 0;

}

Notice the use of the pair template class to construct the key/value pairs. The data types

specified by pair must match those of the map into which the pairs are being inserted. Once

the map has been initialized with keys and values, you can search for a value given its key by

using the find() function. find() returns an iterator to the matching element or to the end of

the map if the key is not found. When a match is found, the value associated with the key is

contained in the second member of pair.

In the preceding example, key/value pairs were constructed explicitly, using pair<char, int>.

While there is nothing wrong with this approach, it is often easier to use make_pair(), which

constructs a pair object based upon the types of the data used as parameters. For example,

assuming the previous program, this line of code will also insert key/value pairs into m.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

209

m.insert(make_pair((char)('A'+i), 65+i)); Here, the cast to char is needed to override the

automatic conversion to int when i is added to 'A.' Otherwise, the type determination is

automatic.

Storing Class Objects in a Map

As with all of the containers, you can use a map to store objects of types that you create. For

example, the next program creates a simple phone directory. That is, it creates a map of names

with their numbers. To do this, it creates two classes called name and number. Since a map

maintains a sorted list of keys, the program also defines the < operator for objects of type

name. In general, you must define the < operator for any classes that you will use as the key.

(Some compilers may require that additional comparison operators be defined.)

// Use a map to create a phone directory.

#include <iostream>

#include <map>

#include <cstring>

using namespace std;

class name {

char str[40];

public:

name() { strcpy(str, ""); }

name(char *s) { strcpy(str, s); }

char *get() { return str; }

};

// Must define less than relative to name objects.

bool operator<(name a, name b)

{

return strcmp(a.get(), b.get()) < 0;

}

class phoneNum {

char str[80];

public:

phoneNum() { strcmp(str, ""); }

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

210

phoneNum(char *s) { strcpy(str, s); }

char *get() { return str; }

};

int main()

{

map<name, phoneNum> directory;

// put names and numbers into map

directory.insert(pair<name, phoneNum>(name("Tom"),

phoneNum("555-4533")));

directory.insert(pair<name, phoneNum>(name("Chris"),

phoneNum("555-9678")));

directory.insert(pair<name, phoneNum>(name("John"),

phoneNum("555-8195")));

directory.insert(pair<name, phoneNum>(name("Rachel"),

phoneNum("555-0809")));

// given a name, find number

char str[80];

cout << "Enter name: ";

cin >> str;

map<name, phoneNum>::iterator p;

p = directory.find(name(str));

if(p != directory.end())

cout << "Phone number: " << p->second.get();

else

cout << "Name not in directory.\n";

return 0;

}

Here is a sample run:

Enter name: Rachel

Phone number: 555-0809.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

211

In the program, each entry in the map is a character array that holds a null- terminated string.

Later in this chapter, you will see an easier way to write this program that uses the standard

string type.

www.a
lls

yll
ab

us
.co

m

vtu.allsyllabus.com www.allsyllabus.com

www.allsyllabus.com

