1. Surface temperature A. 5000 K	e of the sun is of the order B. 7000 K	r of C. 6000 K	D. 12000 K		
2. Two bodies A & B having masses in the ratio 1:4 have Kinetic energies in the ratio 4:1. The ratio of the linear momenta is					
A. 1:4	B. 1:2	C. 1:1	D. 1:15		
3. The function of base A. to stop the flow of C. to control the flow	electron	B. to stop the flow of current D. to transmit current			
4. Unidirectional prope	erty of p - n junction diode	e is used in			
A. rectifier	B. amplifier	C. transistor	D. oscillator		
5. A ²³⁸ U nucleus deca residual nucleus is (in	lys by emitting an alpha-jms ⁻¹)	particle of speed $v \text{ ms}^{-1}$.	The recoil speed of the		
A 4v/234	B. v/4	C 4v/238	D. 4v/234		
6. Continuous spectrum of X -rays are produced A. when electrons move from outer to inner orbits B. when electrons move from inner to outer orbits C. when electrons are accelerated by moving towards the nucleus 7. According to Bohr's model of hydrogen atom, the radius of stationary orbits characterised by the principal quantum number is proportional to A. n ⁻¹ B. n C. n ⁻² D. n ²					
8. When photons of energy 4.25 eV strike the surface of a metal A , the ejected photoelectrons have maximum kinetic energy T_A eV and De-Broglie wavelength λ_A . The maximum kinetic energy of the photoelectrons liberated from another metal B by photons of energy eV is $T_B = (T_A -1.5)$ eV. If the De-Broglie wavelength of these photoelectrons is $\lambda_B = 2\lambda_A$, then A. the work function of A is 3.25 eV B. the work function of B is 4.20 eV C. $T_A = 2.00$ eV D. $T_b = 2.75$ eV					
9. The magnifying pow A. $\propto f$	ver of simple microscope B. $\propto (1/f)$	e is $C.\infty \sqrt{f}$	D. $\propto (1/\sqrt{f})$		
10. Refractive index do	epends on B. wavelength of the light	C. intensity of light	D. frequency of light		
11. A ray is incident in glass at 31°42' on glass-water boundary. If the angle of deviation of the ray is 4.5 degree, the angle of refraction in water will be					

A. 27°12' 12. In Young's double a distance between the two the wavelength of light width of the fringe on the distance between screen A. 0.1 mm B. 1 cm	wo slits is 0.1 tused is 4 x 1 the screen is 4 n and slit is	mm, and 0^{-7} m. If the mm, the	C. 26°92'	D. 36°12'	
13. The reason of vario		-	-		
A. interference	B. visible li	ght	C. diffraction	D. none of these	
14. In a pure inductor of	circuit, what is	s the angle l	between potential and co	urrent?	
A. 0	Β. π		C. π/2	D. 2π	
15. In an LCR circuit,	Impedance is	minimum v	vhen		
A. $R = X_L$	$B. R = X_C$		$C. R = X_C + X_L$	D. R = Z	
16. An LCR series circ respectively. The impe $A.21\Omega$			and the reactances of C a $\rm C.13\Omega$	and L are 12Ω and 24Ω D. 5Ω	
17. In a transformer the current and the other 2:		-	ear one another. First ha through later will be	as 100 turns and 1A	
A. 1 A 18. If two straight long in the same direction, the each other will be		force on		D. 1/16 A	
A. B. repulsive attractive	C. zero	D. none of these			
19. If a particle is rotat depends upon	ing between t	two magneti	ic fields, with certain ve	locity, this velocity	
A. magnetic field			B. angular velocity		
C. torque			D. acceleration		
20. Two infinitely long, thin, insulated, straight wires lie in the x - y plane along the x and y axes respectively. Each wire carries a current I respectively in the positive x -direction and the positive y -direction. The magnetic field will be zero at all points on the straight line					
A. y = x	B. y = -x		C. $y = x - 1$	D. $y = -x + 1$	
21. Force acting on a c A. its mass C. its velocity	harge moving	g in a magne	etic field will not depend B. amount of charge D. intensity of magneti	~\\' <u>'</u>	
			աաս	J.questionpaperz.in	
				• 	

22. 200 W bulb works f	for 5 minutes, the energy	consumed is			
A. 70,000 J	B. 20,000 J	C. 63,000 J	D. 60,000 J		
23. A 20 volt battery has a capacity of 10^6 joules. How long it can supply a current of $10A$? A. 5×10^5 sec B. 5×10^3 sec C. 2×10^5 sec D. 2×10^8 sec					
24. The calories of heat		C. 2 X 10 SCC	D. 2 X 10 SCC		
heater in 7 minutes is es	<u>-</u>				
A. 15000 B. 100	C. 1000 D. 20000				
25 A h -11 '- 4h	4: - 11 1- :- £	Tr. 4-4-1	1		
A. remains constant thro	tically upwards in free spansation	pace. Its total mechanica	I energy		
	ent and decreases during	descent			
C. is zero at maximum l		desectiv			
	ergy at a point just below	v the maximum height			
26. In the circuit chown	, the current in the 20 oh	ms resistor if the DD a	arass VV is 50 valts is		
A. 0.04 A	B. 10 A				
C 25 A	D 10 A	X II	<u> </u>		
C. 2.5 A	D. 1.8 A	∢'' 4	o v 		
27 If current through 3	ohms resistor is 1.2 amp	then potential drop thro	ough 4 ohms resistor is		
A. 9.6 V	B. 2.6 V		and the state of t		
C. 2.4 V	D. 1.2 V	Γ	4Ω		
C. 2.4 V	D. 1.2 V	L	6 52		
28. The drift speed of el of the order of					
A. 10^{-3} m/s B. 10^{2} m/s	C. 10^{-10} m/s D. 10^{+8} m/s				
29. What will happen to introduced?	the capacity of a paralle	el plate capacitor in whic	th a conductor plate is		
A. Increase	B. Decrease	C. Remains same	D. None of these		
30. If charge remains constant, what will happen to the surface potential of a wire whose diameter is doubled but length remains same?					
A. Double	B. Half	C. One-third	D. Same		
21. 4		***************************************			
•	ted through a potential d				
A. 1 eV	B. 0	C. 2 eV	D. 4 eV		
32. Electric field intensity on the axis of an electric dipole when $(r/a) >> 1$, varies as:					
A. r	$B. r^2$	C. $1/r^2$	D. $1/r^3$		

	led into two parts q_1 and d when the ratio q_2/q_1 is	q_2 . The maximum coulor	mb repulsion between		
A. 1 34. Two bodies <i>A</i> and I	B. 2/3 B have thermal 1 0.81 respectively. The	C. 1/2	D. 1/4		
the same rate. The way corresponding to maximum the radiation differs from the temperature of A	num spectral radiancy in m that of A , by 1.00 μ m is 5802 K.				
A. the temperature of B is 17406 K	B. $\lambda_B = 1.5 \mu \text{ m}$				
15 17 100 11	D. the temperature of B is 2901 K				
35. What will be the ter	mperature when the r.m.s	s. velocity is double of th	nat at 300 K?		
A. 300 K	B. 600 K	C. 900 K	D. 1200 K		
	tion is valid and if V_p dermean-square velocity, the		speed, V the average		
$A. \ V < V_p < V_{rms}$	$B. \ V < V_{rms} < V_p$	$C. V_p < V < V_{rms}$	$D. \ V_p < V_{rms} < V$		
37. A cubical box with porous walls containing an equal number of O_2 and H_2 molecules is placed in a large evacuated chamber. The entire system is maintained at a constant temperature T . The ratio of the number of O_2 molecules to the number of H_2 molecules found in the chamber outside the box after a short interval, is					
A. $1/(2\sqrt{2})$	B. 1	C. 1/√ 2	D. √2		
38. Which of the follow	ving is not thermodynam	ical function?			
A. Work done 39. The absolute zero to	B. Gibb's energy emperature in Fahrenheit	C. Internal energy	D. Enthalpy		
scale is A273°F B32°F	C460°F D132°F				
40. $\lambda_1 = 100$ cm, $\lambda_2 = 90$ cm and velocity = 396 m/s. The number of beats are					
A. 41	B. 42	C. 34	D. 44		
41. One musical instrument has frequency 90 Hz; velocity of source = 1/10th of the velocity of light. What is the frequency of sound as heard by the observer?					
A. 90 Hz	B. 10 ⁻⁴ Hz	C. 900 Hz	$D. 10^4 Hz$		
•	n explains the shifting of	-	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
A. Red shift	B. White dwarf	C. Black hole	D. Neutron star		

	r are always longitudinal	because	
A. the density of air is B. this is an inherent c	very sman haracteristics of sound w	aves in all media	
C. air does not have a		aves in an media	
D. air is a mixture of s	_ ,		
	ressive wave is given by		
$y = \sin \pi \{ (t/5 - x/9) +$	•		
Then which of the foll	owing is correct?		
A. $V = 5 \text{cm/sec}$	B. $\lambda = 18$ cm	C. $A = 0.04$ cm	D. f = 50Hz
45. Energy of a particl	e executing SHM depend	ls upon:	
A. amplitude only	B. amplitude and	C. velocity only	D. frequency only
74. ampirtude omy	frequency	c. velocity only	D. frequency only
<u>*</u>	executing SHMs. The equ		re
	4); $y^2 = 25 \sin(\omega t + \sqrt{3})$	$8 \pi T/4$).	
What is the ratio of the	•		
A. 1 : 1	B. 2:5	C. 1:2	D. none of these
-	radius 1 x 10^{-4} m and of a a tank of water before a er = $9.8 \times 10^{-6} \text{ sec/m}^2$)	• •	• •
A. 18.4m	B. 20.4m	C. 22.4 m	D. 24.4 m
40 C	- 10 1 d 1 d 1 -		
A. is maximum	a liquid near the critical p	B. is minimum but non	-vanishing
		D. is maximum but not	9
C. vanishes		magnitude	greater than unity in
depend upon	y of a projectile does not		
A. mass of B. radius of ball earth	of D. none of	•	
ball earth	c. g these		
50. The momentum of	the body having kinetic	energy E is doubled. The	e new Kinetic energy is
A. E	B. 4E	C. 16E	D. 32E
-	ng around the sun in an el	ipitical orbit of semi-mea	asure and semi-minor
•	ely and time period T , is acting on the planet abou	t the sun is non zero	
• •	tum of the planet about the		
C.the arial velocity is	-	ie sun is constant	
· ·	th constant speed around	the cun	
D.the planet moves wi	ur constant speed around	the sun	
		,,,,,,,,,,	questionpaperz.in
		www	ı.yucəcıvıihahçı Z.III

Unfold Every Question

52. Kepler's law states that square of the time period of any planet about the sun is directly proportional to					
A. R	B. 1/R	C. R ³	D. $1/R^3$		
A. Axis of Rotation 54. A solid sphere, disc same mass and made up allowed to roll down (fin plane, then A. solid sphere reaches	rom rest) on an inclined B. solid sphere reaches	C. Angular Momentum	D. Angular Velocity		
the bottom first C. disc will reach the bottom first	D. all of them reach the bottom at the same time				
	ocity u strikes a wall norm of the body when it re	•	e same speed. What is		
Amu	B. <i>mu</i>	C. 2 mu	D. 0		
56. A man can throw a horizontal distance of:	ball to a maximum heigh	at of h. He can throw the	same ball to a maximum		
A. <i>h</i>	B. 2h	$C. h^2$	D. $2h^2$		
57. The velocity with w	which a projectile must be	e fired to escape from the	e earth does depend upon		
A. mass of earth	B. mass of projectile	C. radius of earth	D. none of these		
	ving quantities can be wr		$A^{-2}s^{-3}$?		
A. Resistance 59. Unit of impulse is A. ML ² T ⁻¹ B. ML ⁻² T ⁻²	B. Inductance C. ML ⁻¹ T D. MLT ⁻¹	C. Capacitance	D. Magnetic flux		
60. N-m ² /kg ² is unit of					
A. torque	B. gravitational constant	C. permittivity	D. surface tension		
61. A solution was prepared by mixing 50 ml of 0.2 M HCl and 50 ml of 0.10 M NaOH. The pH of the solution is					
A. 7.0	B. 2.0	C. 3.0	D. 1.2		
62. Which dye among the following is a vat dye?					
A. Martins yellow	B. Alizarin	C. Indigo	D. Malachite green		
63. The path of a beam	63. The path of a beam of light through smoke is visible because				

A. carbon dioxide in the smoke scatters light

B. carbon dioxide in the smoke absorbs light

C. colloidal particles in the smoke absorb light D. colloidal particles in the smoke scatter light

- 64. Which of the following statements is incorrect?
- A. Colloidal particles pass through the pores of filter paper
- B. Colloidal particles have large surface area
- C. Colloidal particles are charged particles
- D. Colloidal particles are neutral
- 65. The plastic household crockery is prepared using

A. malamine and tetrafluoroethene

B. malonic acid and hexamethyleneamine

C. malamine and vinyl acetate

D. malamine and formaldehyde

66. An isotope is formed when successive active emissions of an element are

 $A. \alpha. \beta, \alpha B. \beta. \beta, \alpha C. \beta. \beta, \beta D. \alpha. \alpha, \beta$

67. It is not true that

A. the wavelength associated with an

electron is longer than

that of proton, if they

have the same speed

B. violet radiations

have longer wavelength

than red radiations

C. the energy of light

with $\lambda = 600 \text{ Nm}$ is

lower than that with $\lambda =$

500 Nm

D. spectrum of an atom

is known as line

spectrum

68. It is true that

A. some complex metal oxides behave as super-conductors

B. zinc oxide can act as a super-conductor

C. an impurity of tetravalent germanium in trivalent gallium creates electron deficient

D. a Frenkel defect is formed when an ion is displaced from its lattice site to an interstitial site

69. Allyl cyanide has

A. 9σ and 4π bonds

B. 9σ , 3π and 2 non-bonding electrons

C. 8σ , 3π and 4 non-bonding electrons

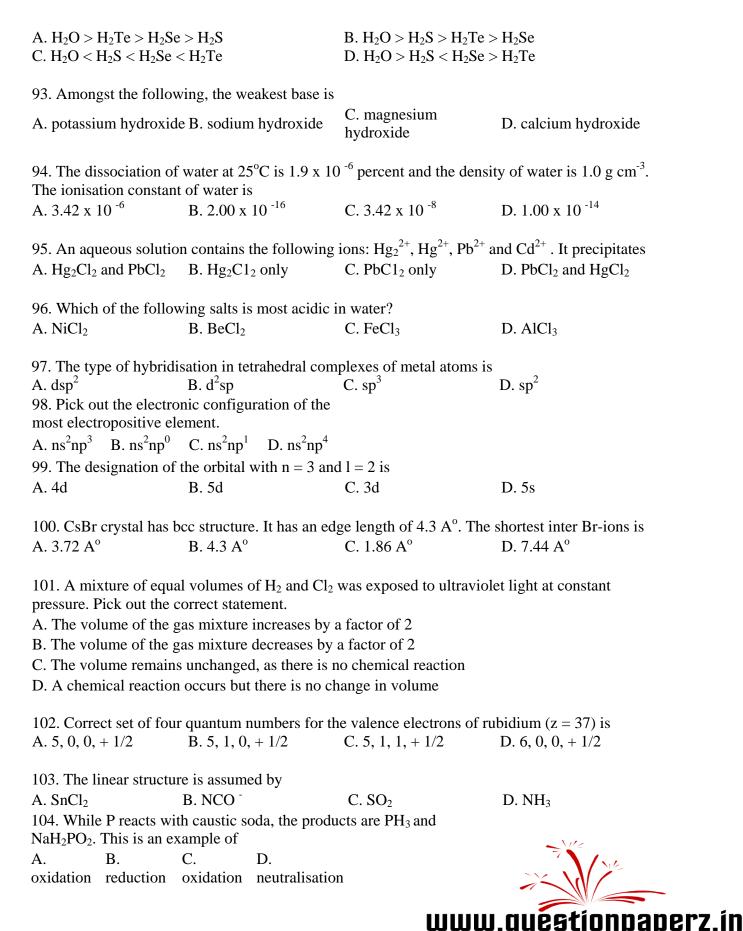
70. The chemical change in the reaction

 $CH_2COCH_3 + HCHO \rightarrow CH_2COCH_2CH_2$ is an

D. 8σ and 5π bonds

www.questionpaperz.in

Unfold Every Question


OXIGATION	one of above				
71. A fairly specific test for phenol is A. coupling with diazonium salt C. dissolution in aqueous alkali	B. decolourisation of b D. decolourisation of k				
72. The elevation in the boiling point would A. 0.08 M barium chloride C. 0.15 M potassium chloride	be highest for B. 0.10 M glucose D. 0.06 M calcium nitr	rate			
73. A 0.2 molal aqueous solution of weak ac solution is (Given $K_f = 1.86$ °C m ⁻¹ for water)		ne freezing point of this			
A 0.45°C B 0.53°C	C 0.90°C	D 0.31°C			
74. 6.0 g of urea (molecular weight = 60) wa pressure of pure water is P_0 , the vapour pressure of pure water is P_0 .		water. If the vapour			
A. 0.10 P _o B. 1.10 P _o 75. A molecule with the highest bond energy A. bromine B. fluorine C. chlorine D. iodin	C. 0.90 P _o	D. 0.99 P _o			
76. A substance is found to contain 7% nitro A. 700 B. 100	gen. The minimum molecu C. 200	lar weight of it is D. 70			
77. Sodium nitroprusside when added to an a coloration due to the formation of	alkaline solution of sulphid	e ions produces purple			
A. Na [Fe(H ₂ O) ₅ NOS] B. Na ₄ [Fe(CN) ₅ NO	S] C. Na ₃ [Fe(CN) ₅ NOS]	D. Na_4 [Fe(H_2O) ₅ NOS]			
78. The bond energy (k cal mol ⁻¹) of carbon-A. 59 B.100	-carbon bond in ethylene is C. 33	approximately equal to D. 150			
79. Which of the following molecule is plans	ar?				
A. n-hexane B. glycerine	C. cyclohexane	D. fumaric acid			
80. A mixture of butane, ethylene and dimethyl acetylene is passed through acidified permanganate solution. The gas that comes out is					
A. butane		e of butane and ethylene			
C. methyl acetylene 81. White lead is	D. a mixture	e of all compounds			
A. B. C.	D.	\// ₂			
PbCO ₃ Pb(OH) ₂ .2PbCO ₃ Pb(OH) ₂ .Pb(CH ₃ CO ₈ 2. When tin is boiled with concentrated nitr		ned is			
	www	ı.questionpaperz.in			
		—			

Unfold Every Question

A. stannous nitrate	B. stannic nitrate	C. m-stannic acid	D. stannic oxide	
83. All the metals form A. copper	oxides of the type MO e B. barium	except C. silver	D. lead	
84. The element exhibit	ting most stable + 2 oxid B. Fe	ation state from among t C. Pb	the following is D. Ag	
85. German silver is A. silver made in Germany	B. an alloy of silver	C. an alloy of copper	D. a silvery white paint	
86. Aluminium is obtained by A. heating red bauxite C. electrolysing a mixture of alumina and cryolite		B. heating alumina with carbonD. heating alumina in H₂ atmosphere		
A. reduces HBr 88. N ₂ is diamagnetic a Both the molecules hav electrons (N ₂ : 14; O ₂ :	we even number of 16). It is not true that to orbitals $\pi_x 2p_x$ and π_x and ed electrons in O_2 is 3	re HBr from NaBr beca C. oxidises HBr	use it D. disproportionates HBr	
89. Heavy water A. contains dissolved C C. is made up of ₁ H ² an		B. contains dissolved CD. is water with maxim		
90. It is not true that A. phosphine is more stable than ammonia C. HNO ₃ is stronger acid than HPO ₃		B. phosphorus is less reactive than nitrogenD. Nitrogen is more electronegative than phosphorus		
91. The number of elec A. 7	trons that are paired in an B. 14	n oxygen molecule is C. 8	D. 16	

92. Which is the correct arrangement of boiling points of the following compounds?

www.questionpaperz.in
Unfold Every Question

	and reduction wing compounds is cova	llent?			
A. H ₂	B. CaO	C. KCl	D. Na ₂ S		
106. The concentration	of solution remains inde	pendent of temperature i	n		
A. molarity	B. normality	C. formality	D. molality		
107. Precipitation takes A. equals their solubilit C. less than their solubi	• •	of concentration of ions B. exceeds their solubil D. none of the above	ity product		
108. Which one of the A. F	following elements has n B. Cl	naximum electron affinit C. Br	y? D. I		
109. Most probable vel A. 1: 1.128: 1.234	ocity, average velocity, a B. 1:1.234:1.128	and RMS velocity are rel C. 1.128 : 1 : 1.234	ated as D. 1.128: 1.234: 1		
110. Which of the follo dilute solution?	wing compounds corresp	oonds Vant Hoff's factor	(i) to be equal to 2 for		
value of K _{sp} at ordinary	B. Na ₂ SO ₄ wing hydroxides, the one temperature (about. 25° ₂ C. Ba(OH) ₂ D. Be(OH) ₂		D. MgSO ₄		
	n between A and B increds, the order of reaction	•	When the concentration		
A. 1	B. 2	C. 3	D. 4		
113. In a reversible reaction, a catalyst A. increases the rate of forward reaction B. increases the rate of backward reaction C. alters the rates of both reactions equally D. increases the rate of forward reaction more than that of backward reaction					
114. The cathodic reactA. oxidationC. both oxidation and react	ion in electrolysis of dil.	H ₂ SO ₄ with platinum ele B. reduction D. neutralisation	ectrode is		
115. The oxide that give A. PbO ₂ 116. A naturally occurr which a metal can be precalled	=	th a dilute acid is C. MnO ₂	D. TiO ₂		

D. flux A. mineral B. gangue C. ore 117. The metallic lustre exhibited by sodium is explained by A. diffusion of sodium ion B. oscillation of loose electrons C. excitation of free protons D. existence of body centred cubic lattice 118. A pair of compounds, which cannot exist together in solution, is C. NaHCO₃ and A. NaHCO₃ and NaOH B. NaHCO₃ and H₂O D. Na₂CO₃ and NaOH Na₂CO₃ 119. A solution of sodium metal in liquid ammonia is strongly reducing due to the presence of B. sodium hydride C. sodium amide D. solvated electron A. sodium atoms 120. If two compounds have the same crystal structure and analogous formulae, they are called A. allotropes B. isotopes C. isomers D. isobars 121. The line y = mx + 1 is a tangent to $y^2 = 4x$, first m equals A. -1 B. 1 C. 2 D. 4 122. If $Q = \{ x : x = 1/y, \text{ where } y \in N \}$, then A. $(2/3) \in Q$ $B.2 \in Q$ $C. 0 \in Q$ $D. 1 \in Q$ 123. Which of the following functions is periodic? A. f(x) = x - [x], where [x] denotes the largest integer less than or equal to the real number x B. $f(x) = \sin(1/x)$ for $x \ne 0$, f(0) = 0C. $f(x) = x \cos x$ D. none of the above 124. If $|2x + 5| \le x + 3$, then x lies in the interval C. [- 8/3, - 2] A. [5/2, 8/3] B. [- 5/2, - 2] D. [- 8/3, - 5/2] 125. The centre of a square ABCD is at $z_1 = 0$. The affix of the vertex A is z. Then the affix of the centroid of the triangle ABC is A. $(z_1/3) [\cos(\pi/2) \pm i \sin(\pi/2)]$ B. $z_1 [\cos(\pi/2) \pm i \sin(\pi/2)]$ C. $(z_1/3)$ (cos $\pi \pm i \sin \pi$) D. $z_1 (\cos \pi \pm i \sin \pi)$ 126. Angles made with the x-axis by two lines drawn through the point (1, 2) and cutting the line x + y = 4 at a distance $(1/3)\sqrt{6}$ from the

127. A circle is a limiting case of an ellipse whose eccentricity tends to

the above

A. $\pi/12$ and B. $\pi/8$ and C. $\pi/6$ and D. none of

 $\pi/3$

point (1, 2) are

 $3\pi/8$

 $5\pi/12$

A. a + b	B. 0	C. b	D. a
128. The gradient of or A. ± 2	the of the lines $x^2 + hxy + B = 3$	$2y^2 = 0$ is twice than that C. ± 1	at of the other, then $h = D. \pm 3/2$
	the point $[4\cos \phi, (16/\sqrt{11})]$ y ² - 2x = 15, then the val		$x^{23} + 11y^2 = 256$ is also a
A. $\pm \pi/4$	B. $\pm \pi/3$	C. $\pm \pi/6$	D. $\pm \pi/2$
	angle are 13, 14, 15, then		
A. 65/4	B. 67/8	C. 24	D. 4
A. $\theta = n\pi + [(-1)^n (\pi/4)]$		B. $\theta = 2n\pi \pm (\pi/4) - (\pi/4)$	12)
C. $\theta = n\pi + [(-1)^n (\pi/4)]$	$] + (\pi/12)$	$D. \theta = 2n\pi \pm (\pi/4) + (\pi/4)$	712)
132. The solution of the A. $[5\pi/4, 7\pi/4]$	e equation $\cos^2 \theta + \sin^2 \theta$ B. $[3\pi/4, 5\pi/4]$	$0 + 1 = 0$ lies in the interest. [$\pi/4$, $3\pi/4$]	val D. [- π/4, π/4]
133. The line $2x + y =$ normals at these points	3 cuts the ellipse $4x^2 + y^2$, then $\tan \theta =$	$^2 = 5$ at P and Q. If θ be	the angle between the
A. 3/4	B. 3/5	C. 1/2	D. 5
134. The value of sin ²	$75^{\circ} - \sin^2 15^{\circ}$ is		
A. 1/2	B. √3/2	C. 1	D. 0
135. The number of roo A. 0	ots of the equation $[(x + 2)]$	$\frac{2}{(x+5)} / [(x-3)(x+6)]$ C. 2	= (x - 2)/(x + 4) is D. 3
138. The next term of t A. 91	he sequence 1, 5, 14, 30, B. 85	55, is C. 90	D. 95
139. In a certain A.P.,	5 times the 5th term is eq		m, then its 13th term is
A13	B12	C1	D. 0
140. If x_1, x_2, \ldots, x_n as	re n non-zero real numbe	ers, such that $[{x_1}^2 + {x_2}^2 +$	+ $(x_{p-1})^2$](x_1^2 + x_3^2 +

..... $+ x_n^2$) $\leq (x_1x_2 + x_2x_3 + \dots + x_{n-1}x_n)^2$ then x_1, x_2, \dots x_n are in D. none of the above A. H.P. B. G.P. C. A.P. 141. $2/1! + 4/3! + 6/5! + \dots \infty$ is equal to A. e + 1B. e - 1 D. e 142. The maximum number of points into which 4 circles and 4 straight lines intersect is B. 56 C. 26 D. 72 A. 50 143. Out of 18 points in a plane, no three are in the same straight line except five points which are collinear. The number of straight lines that can be formed joining them is D. none of A. 153 B. 143 C. 144 the above 144. The sum of the series $\log_4 2$, $\log_8 2 + \log_{16} 2$ is D. 1 - log_e 2 B. $\log_e 2 + 1$ C. $\log_e 3 - 2$ 145. If ω is an imaginary cube root of unity, then $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \end{vmatrix}$ is equal to A. 0 B. -1 C. 1 D. none of the abov

146. The multiplicative inverse of $A = \begin{bmatrix} \cos\theta \\ \sin\theta \\ \cos\theta \end{bmatrix}$ is

A. $\begin{array}{ccc} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{array}$

B. $\begin{array}{ccc} -\cos\theta & -\sin\theta \\ \sin\theta & -\cos\theta \end{array}$

C.
$$\begin{array}{ccc} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{array}$$

D.
$$\begin{array}{ccc} -cos\theta & -sin\theta \\ -sin\theta & cos\theta \end{array}$$

B. 1/2

Let
$$A = \begin{bmatrix} 1^2 \\ 3 \end{bmatrix}$$
 and $A = \begin{bmatrix} 11 \\ 33 \end{bmatrix}$ and $A = \begin{bmatrix} 11 \\ 33 \end{bmatrix}$ and $A = \begin{bmatrix} 11 \\ 34 \end{bmatrix}$

A.
$$1/2$$
 $\begin{bmatrix} 2 & 4 \\ 3 & -5 \end{bmatrix}$ C. $\begin{bmatrix} 2 & 4 \\ 3 & -5 \end{bmatrix}$

$$148. \Delta = \begin{vmatrix} 1 & bc & a(b+c) \\ 1 & ca & b(c+a) \\ 1 & ab & c(a+b) \end{vmatrix}$$
 is equal to

A.
$$a^2 + b^2 + c^2$$
 B. $ab + bc + ca$ C. $a + b + c$

149. Equation of a plane parallel to x-axis is

A.
$$ax + cz + d = 0$$
 B. $by + cz + d = 0$ C. $ax + by + d = 0$ D. $ax + by + cz + d = 0$

150. The angle between the two lines (x - 1)/2 = (y + 3)/2 = (z - 4)/-1 and (x - 4)/1 = (y + 4)/2 =

$$(z + 1)/2$$
 is
A. $\cos^{-1}(2/9)$ B. $\cos^{-1}(4/9)$ C. $\cos^{-1}(1/9)$ D. $\cos^{-1}(3/9)$

151. A car completes the first half of its journey with a velocity v_1 and the rest half with a velocity v₂. Then the average velocity of the car for the whole journey is

D. none of the above

A.
$$(2 \ v_1v_2)/(v_1 + B. (v_1 + v_2)/2)$$
 B. $(v_1 + v_2)$ D. none of the above

152. The regression coefficient of y on x is 2/3 and of x on y is 4/3. If the acute angle between the regression lines is θ , then tan θ is equal to

A. 1/9

B. 2/9

C. 1/18

D. none of the above

153. Fifteen coupons are numbered 1 to 15. Seven coupons are selected at random, one at a time with replacement. The probability that the largest number appearing on a selected coupon be 9 is A. $(3/5)^7$ B. $(1/15)^7$ C. $(8/15)^7$ D. none of the above

154. Two dice are thrown, the probability that the sum of the points on two dice will be 7 is

A. 8/36

B. 7/36

C. 6/36

D. 5/36

155. Four positive integers are taken at random and are multiplied together. Then the probability that the product ends in an odd digit other than 5 is

A. 3/5

B. 609/625

C. 16/625

D. 2/5

156. If ${}^{n}C_{r-1} = 36$, ${}^{n}C_{r} = 84$, and ${}^{n}C_{r+1} = 126$, then r is equal to

A. 1

B. 2

C. 3

D. none of the above

157. Lim $(x/\tan^{-1}2x)$ is equal to

 $x \rightarrow 0$

A. 1/2

B. ∞

 \mathbf{C} . $\mathbf{0}$

D. 1

158. Let $f(x) = ax^2 + 1$ for x > 1 or x + a for $x \le 1$, then f derivable ar x = 1 if

A. a = 2

B. a = 1

C. a = 0

D. a = 1/2

159. If $y = \log[(1 - x^2)/(1 + x^2)]$, then dy/dx =

A. $4x^3/(1-x^4)$

B. $-4x/(1-x^4)$

C. $1/(4 - x^4)$

D. $-4x^3/(1-x^4)$

160. The smaller value of the polynomial x^3 - $18x^2$ + 96x in the interval [0, 9] is

A. 126

B. 135

C. 160

D. 0

161. The equation to the normal to the curve $y = \sin x$ at (0, 0) is

A. x - y = 0

B. x + y = 0

C. y = 0

D. x = 0

162. The general solution of the differential

equation dy/dx = y/x is

kx

A. $\log y = kx$ B. y = kx C. y = k/x D. y = k

A. log (4/e)

B. log (2/e)

C. log 4

D. log 2

164. If $\cos 2B = [\cos (A + C)]/[\cos (A - C)]$, then

are in H.P.

A. tan A, tan B, tan C B. tan A, tan B, tan C are in A.P.

C. tan A, tan B, tan C are in G.P.

D. none of the above

165. $\log_3 2$, $\log_6 2$, $\log_{12} 2$ are in

A. A.P.

B. G.P.

C. H.P.

D. none of the above

166. If the sum of the first n natural numbers is one-fifth of the sum of their squares, then n is

B. 6

C. 7

D. 8

167. Sum of coefficients in the expansion of (x

 $+2y + z)^{10}$ is

A. 2^{10}

B. 3^{10}

C. 1

D. none of the above

168. The locus of the point z satisfying the condition arg $[(z-1)/(z+1)] = \pi/3$ is

A. a straight line

B. a circle

C. a parabola

D. none of the above

169. $(-64)^{1/4}$ equals

A. $\pm 2 (1 + i)$

B. $\pm 2 (1 - i)$

C. $\pm 2 (1 \pm i)$

D. none of the above

170. Let $A = \sin^8 \theta + \cos^{14} \theta$, then for all c

 $A. A \ge 1$

B. $0 < A \le 1$

C. $1/2 < A \le 3/2$

D. none of the above

171. The minimum value of $(3 \cos x + 4 \sin x + 8)$ is

A. 5

B. 9

C. 7

D. 3

172. The sum of the series $1 + 1/2 + 1/2^2 + 1/2^3 + \dots \infty$ is equal to

A. 2

C. 0

D. 1

173. If $a^x = b$, $b^y = c$, $c^z = a$, then the value of xyz is

A. 0

C. 2

D. 3

174. The number $\log_2 7$ is

A. an integer B. a rational number C. an irrational number

D. a prime number

175. The function f(x) = 1/x on its domain is

A. increasing

B. decreasing

C. constant

D. information insufficient

176. Out of 800 boys in a school, 224 played cricket, 240 played hockey, and 336 played basketball. Of the total, 64 played both basketball and hockey, 80 played cricket and basketball, 40 played cricket and hockey, and 24 played all the three games. The number of boys who didn't play any game is

177. [a b c] is the scalar triple product of three vectors a, b, and c, then [a b c] is equal to

178. If $u = a \times (b \times c) + b \times (c \times a) + c \times (b \times a)$, then

B.
$$u = a + b + c$$

C.
$$u = 0$$

D.
$$u \neq 0$$

179. If the cube roots of unity are 1, ω , ω^2 , then the roots of equation $(x - 1)^3 + 8 = 0$ are

A. -1, 1 + B. -1, 1 -

$$2\omega$$
, 1 + $2\omega^2$ 2 ω , 1 - $2\omega^2$ C. -1, -1, -1 D. none of the above

180. Let $f: R \to R$, $g: R \to R$ be two functions given by f(x) = 2x - 3, $g(x) = x^3 + 5$. Then $(f \circ g)^{-1}$ (x) is equal to B. $[(x + 7)/2]^{1/3}$ C. $(x - 7/2)^{1/3}$ D. $[(x - 2)/7]^{1/3}$

A.
$$[(x-7)/2]^{1/3}$$

B.
$$[(x + 7)/2]^{1/3}$$

C.
$$(x - 7/2)^{1/3}$$

D.
$$[(x-2)/7]^{1/3}$$