

Booklet No.:

CH - 15

Chemical Engineering

Duration of Test: 2 Hours		Max. Marks: 120						
	Hall Ticket No.							
Name of the Candidate :								
Date of Examination:	OMR A	nswer Sheet No. :						
Signature of the Candidate		Signature of the Invigilator						

INSTRUCTIONS

- 1. This Question Booklet consists of **120** multiple choice objective type questions to be answered in **120** minutes.
- 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- 3. Each question carries **one** mark. There are no negative marks for wrong answers.
- 4. This Booklet consists of **16** pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- 5. Answer all the questions on the OMR Answer Sheet using **Blue/Black ball point pen only.**
- 6. Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- 9. No part of the Booklet should be detached under any circumstances.
- 10. The seal of the Booklet should be opened only after signal/bell is given.

CH-15-A

CHEMICAL ENGINEERING (CH)

- The value of k so that the equations x+y+3z=0, 4x+3y+kz=0 and 2x+y+2z=01. have nontrivial solution is
 - (A) 1
- (B) 0
- (C) 8
- (D) -4
- If $-\sqrt{5}$ and $\sqrt{5}$ are eigen values of the matrix $\begin{bmatrix} -1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{bmatrix}$ then the third eigen value is 2.
 - (A) 2
- (B) $\sqrt{5}$
- (C) 0
- (D) 1
- **3.** The percentage of error in the area of an ellipse when an error of +1 percentage is made in measuring the major and minor axis is
 - (A) -2
- (B) +2
- (C) 0
- (D) 1
- The curl of the vector field $\overline{A} = (x^2 + xy^2)i + (y^2 + x^2y)j$ is 4.
 - (A) $\hat{0}$
- (B) i-j (C) 2i+3j (D) -i
- The particular integral of the differential equation $(D^2 + 4)y = \cos 2x$ is 5.
 - (A) $\frac{x}{4}\sin 2x$ (B) $\frac{x}{4}\cos 2x$ (C) $\frac{1}{8}\sin 2x$ (D) $\frac{1}{4}\sin 2x$

- The Laplace transform of the function $\frac{1}{\sqrt{\pi t}}$ is 6.
 - (A) $\frac{1}{\sqrt{\pi}}$ (B) $\frac{\pi}{\sqrt{s}}$ (C) $\frac{1}{s^2}$ (D) $\frac{1}{\sqrt{s}}$

- The residue at the pole 2 of the function $\frac{2z+1}{z^2-z-2}$ 7.
- (B) $-\frac{3}{2}$ (C) $-\frac{1}{2}$
- 8. If P(A) = 0.4, P(B) = p and $P(A \cup B) = 0.6$, then the value of p so that A and B are independent is
 - (A) 0.7
- (B) $\frac{1}{2}$
- (C) 0.4 (D) $\frac{1}{3}$

	The order of convergence of the Newton Raphson method is											
9.	The (A)	order of con	vergence (B)	of the	e Newto	on Raph (C)	1son 1	nethod	is (D)	2^{nd}		
10.	If h	is the step	size and	f	f(x) is g	iven in	the	table t	hen by	Simpson	1/3 rd	method
	$\int_{x_0}^{x_5} y$	$dx = \int_{0}^{\infty} dx$ is equ	ıal to									
		-	x	x_0	x_1	x_2	x_3	X_4	<i>x</i> ₅			
			y(x)	y_0	y_1	y_2	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅			
									·			
	(A) $\frac{h}{2} \left[y_0 + 2(y_1 + y_3) + 4(y_2 + y_4) + y_5 \right]$											
	(B) $\frac{h}{3} \left[y_0 + 4(y_1 + y_3) + 2(y_2 + y_4) + y_5 \right]$											
	(C) $\frac{h}{2} \left[y_0 + 2(y_1 + y_2 + y_3 + y_4) + y_5 \right]$											
	(D)	$\frac{h}{3} \left[y_0 + 2 \right)$	$y_1 + y_3$) +	$-4(y_2)$	+ y ₄)+	y_5						
11.	The	pressure dif	Ference h	etwee	n incide	and or	ıtcide	of a lic	nuid dro	n ic		
11.	(A)	16σ/d	(B)	8σ /c		(C)	4σ /		(D)	-		
12.	Wei	ght of liquid	that rise	s in a o	capillar	y tube i	s sup	ported	by			
	(A)	horizontal					-	•	•			
	(B)	the Drag fo	orce									
	(C)	vertical co	mponent	of sur	face ten	sion						
	(D)	the viscous	force									
13.	The	continuity e	quation i	s a ma	themati	cal stat	emen	ıt of				
	(A)	law of con	servation	of en	ergy	(B)	law	of cons	servatio	n of mass		
	(C)	law of cons	servation	of mo	mentum	(D)	law	of cons	servatio	n of mass	and e	nergy
14.	The	ratio of iner	ial force	s to gr	avitatio	nal for	ces is	better !	known a	as		
	(A)	Reynolds r	number			(B)	Wel	er nun	nber			

(C) Euler number

- (A) the similarity of discharge
- (B) the similarity of forces

(D) Froude number

(C) the similarity of stream line patterns (D) the similarity of location

16.	Buo	Buoyant force acting on a floating/submerged body is											
	(A)	equal to the	weight	of liquid displ	aced a	nd acts vertical	lly dov	wnwards					
	(B)		_	·		surrounding fl							
	(C)			•	-	librium of the b	•						
	(D)	equal to the	weight	of liquid displ	aced a	nd acts vertical	lly upv	wards					
17.	The	ratio of pressu	re forc	es to inertial fo	orces i	s							
	(A)	Froude numb	oer		(B)	Weber number	er						
	(C)	Euler numbe	r		(D) Mach number								
18.	A bo	ody falls freely	for dis	stance S from 1	rest. It	s velocity v is							
	(A)	K (Sg) ^{0.5}	(B)	K (Sg)	(C)	$K (Sg)^2$	(D)	$K (Sg)^{1.5}$					
19.	The	ratio of point v	velocit	v to the maxim	num ve	elocity in lamin	ar flov	w through a pipe	is				
22.		$1 - (r/R)^2$		1 - (r/R)		•	(D)	(r/R)	10				
	` /	, ,	` '		` /	,	` '	,					
20.	In su	ıdden enlargen	nent in	a horizontal p	ipe, th	e velocity head	l is co	nverted to					
	(A)	potential hea	d (B)	kinetic head	(C)	not converted	(D)	pressure head					
21.	Navi	er–Stokes equ	ation i	s useful for									
	(A)	non-viscous	flow		(B)	Viscous flow							
	(C)	turbulent flo	W		(D)	in viscid flow	,						
22.	A sta	agnation point	is whe	re									
	(A)	the pressure	is zero		(B)	the flow veloc	city is	zero					
	(C)	the total ener	gy is z	ero	(D)	the flow resis	tance	is the maximum					
23.	A fo	ot valve is a											
	(A)	direction con	itrol va	lve	(B)	relief valve							
	(C)	pressure redu	icing v	alve	(D)	back pressure	valve						
24.	For	compressing a	nd mov	ving gases, the	pressi	ure difference p	roduc	ed is the maxim	um for				
	(A)	Fans			(B)	Vacuum Pum	ps						
	(C)	Blowers			(D)	Compressors							
25.	The	equivalent dia	meter (of a 6 cm x 12	cm co	nduit is,							
	(A)	2 cm	(B)	8 cm	(C)	72 cm	(D)	6 cm					
Set -	A				4				СН				

	(A)	$2^{1/2}$	(B)	1	(C)	<1	(D)	2	
27.		ratio of the actu series is	ual me	esh dimension	of any	screen to that	in the	next smaller scree	n in
	(A)	1.41	(B)	2	(C)	1.19	(D)	1.73	
28.	The	specific surface	e of sp	herical particle	es – di	ameter relation	is		
	(A)	proportional t	o dian	neter ²	(B)	directly propo	rtiona	.1	
	(C)	inversely prop	ortion	nal	(D)	proportional to	o equi	valent diameter ²	
29.	The	crushing efficie	ency o	f a machine wi	ill be a	lbout			
	(A)	20 %	(B)	80 %	(C)	10 %	(D)	2 %	
30.	Ritti	nger's law relat	tes the	work required	l in cru	ishing to			
	(A)	the number of	-		(B)				
	(C)	the hardness of	of the j	particles	(D)	the surface are	ea of t	he feed particles	
31.	The	mechanism of s	size re	duction in Ulti	ra fine	grinders is prin	narily		
	(A)	cutting	(B)	attrition	(C)	impact	(D)	compression	
32.	Criti	cal speed of a b	all mi	ll depends on	(r is ba	all radius and R	l is mi	ll radius)	
	(A)	only on mill r	adius,	R	(B)	Only on ball r	adius,	, r	
	(C)	Difference in	R and	r	(D)	$(R-r)^{1/2}$			
33.	A fil	ter aid in the sl	urry w	ill					
	(A)	increase the c	-	•	(B)	Decrease cake	-	•	
	(C)	increase cake	comp	ressibility	(D)	Decrease cake	e comp	pressibility	
34.	Duri	ng constant pre	ssure	filtration, the f	low ra	te of the filtrate	e		
	(A)	is constant	(B)	increases	(C)	is steady	(D)	decreases	
35.	The	dimensions of t	filter n	nedium resista	nce ar	e			
	(A)	ML^{-1}	(B)	L-1	(C)	$M^{-1}L$	(D)	$M^{-1}L^{-1}$	
36.	If a p	olot of time vs.	filtrate	e volume is pro	epared	, it will be a			
	(A)	parabola	(B)	straight line	(C)	hyperbola	(D)	exponential curve	
Set - [A				5				СН

For a cylindrical particle, whose L/D is one, the sphericity is

37.	Net j	positive suction head	d (NPSH) of a	centrif	ugal pump is d	lefined	as	
	(A)	velocity head + pro	essure head, at	suction	1			
	(B)	velocity head + pro	essure head, at	discha	rge			
	(C)	velocity head + pro	essure head, at	suction	n – vapor press	sure of	liquid	
	(D)	velocity head + pro	essure head, at	discha	rge – vapor pre	essure	of liquid	
38.	A pu	ımp normally prefer	red for pumpin	g slurr	ies			
	(A)	Centrifugal pump		(B)	Gear pump			
	(C)	Screw pump		(D)	Lobe pump			
39.	Van	e pumps						
	(A)	operate at low efficient	ciencies					
	(B)	cannot provide var	riable displacen	nent				
	(C)	do not depend on o	centrifugal force	e for th	neir operation			
	(D)	can have large disc	charge under hi	gh pre	ssures			
40.	In a	rotary drum filter, th	ne controlling re	esistan	ce is			
	(A)	the cake resistance	;	(B)	the filter med	lium re	esistance	
	(C)	the piping resistan	ce	(D)	All the above	e		
41.	Diffe	erential settling metl	nods depend on	l				
	(A)	Difference in dens	ities	(B)	Difference in	termi	nal velocities	
	(C)	Difference in parti	cle sizes	(D)	Difference in	liquid	l-solid density	
42.	Tem	perature and pressur	re levels recom	mende	d for $SO_2 + \frac{1}{2}$	$O_2 \rightarrow$	SO_3	
	(A)	Low temperature,	low pressure	(B)	Low tempera	iture, h	nigh pressure	
	C)	High temperature,	high pressure	(D)	High tempera	ature, l	ow pressure	
43.	Whi	ch of the following i	s a crystalline i	form o	f carbon ?			
	(A)	Charcoal (B)	Diamond	(C)	Lampblack	(D)	Soot	
44.	Whi	ch one among the fo	ollowing is ther	moplas	stic ?			
	(A)	Polyethylene (B)	Silicone	(C)	Bakelite	(D)	polyester	
45.	Tefle	on is a polymeric pro	oduct of					
	(A)	CF_4 (B)	$CH_2 = CHF$	(C)	C_2F_2	(D)	C_2F_4	
Set -	A			6				CH

Set -	A				7			СН
	(D)	increases bot	h with	increasing ten	nperat	ure and increa	sing ap	pparent bulk density
	(C)	increases wit density	h incr	easing tempera	ature b	out decreases	with in	creasing apparent bulk
	(B)			easing apparen		•		
	(A)	-		easing tempera		<u> </u>		
54.	Usua	ally, the therma	al cond	ductivity of a n	on–ho	mogeneous m	naterial	
	(C)	sphere			(D)	all will cool	at the	same rate
	(A)	circular plate	:		(B)			
	same	e mass, are av	ailabl	-	ature o	of 250 °C. W	hen th	ney are exposed to the
53.	A sp	ohere, a cube a	nd a tl	hin circular pla	ate, all	made of the	same r	naterial and having the
52.		rier number is a Convection		ated with Conduction	(C)	Radiation	(D)	none of the above
	(A)	CaCO ₃	(B)	CaCl ₂	(C)	Ca(OH) ₂	(D)	NaHCO ₃
51.	Tem	porary hardnes	ss of w	ater can be rer	noved	by adding		
	(C)	CH ₄ , CO and	$1 N_2$		(D)	CO ₂ , CO and	dH ₂	
	(A)	CH ₄ , CO ₂ an	d H ₂ O	1	(B)	CH ₄ , CO and	dH_2	
50.	The	ū		f coke oven gas	s are			
	(C)	Oxidation of	sodiui	m ions	(D)	Reduction of	f chlori	ine ions
	(A)	Oxidation of			(B)	Reduction of		
49.	The			e electrolysis o				
	(C)	Sodium tripo	lyphos	sphate	(D)	Sodium sulf	ate	
	(A)	_		ethyl cellulose		-		
48.	A sv	enthetic deterge	ent cor	nstituent, that p	revent	ts re–depositio	on of di	irt on the fabric, is
		Copper	(B)	Iron	(C)		(D)	Silver
47.	Cata	lvst normallv เ	ısed ir	n the hydrogena	ation o	of oils is a fine	elv divi	ded
	(D)	Moderate hea	ating f	ollowed by coo	oling			
	(C)	Cooling to 0	°C					
	(B)	Cooling follo	wed b	y moderate he	ating			
	(A)	Heating to bo	oiling					

Pasteurization of milk involves

Set -	A	8			СН							
	(D)	is characterized by a thin liquid film for	orr	ning over the entire surface								
	(C)	is characterized by high heat tran condensation	ısfe	er coefficients than that for drop	wise							
	(B)	occurs on non-wettable surfaces	_									
	(A)	is less common than drop wise conder	nsa	tion								
60.	Film	wise condensation										
	(D)	linear with radius for laminar flow										
	(C)	parabolic with radius for turbulent flo										
	(B)	linear with radius for both laminar and										
J7.		parabolic with radius for both laminar										
59.	The	distribution of shear stress in a stream of	of f	luid in a circular tube is								
	(D)	disappears										
	(C)	is thinner than the hydrodynamic bour	nda	ry layer								
	(B)	is thicker than the hydrodynamic bour	nda	ry layer								
	(A)	and hydrodynamic boundary layer are	•	• •								
58.	Whe	en the Prandtl number is greater than uni	ity.	the thermal boundary layer								
	(D)	none of the above										
	(C)	both A and B										
	(B)	buoyant forces arising from changes in	n d	ensity								
	(A)	surface tension forces										
57.	In na	atural convection, fluid moves under the	e in	fluence of								
	(C)	Stanton number (D))	Grashof number								
	(A)	Prandtl number (B)	3)	Rayleigh number								
56.	The	ratio of Buoyant forces to viscous force	es i	s better known as								
	(D)	the product of thermal conductivity an	nd l	neat transfer coefficient								
	(C)	the radius of the pipe										
	(B)	the ratio of heat transfer coefficient to	th	ermal conductivity								
	(A) the ratio of thermal conductivity to heat transfer coefficient											
<i>55.</i>	The	maximum heat loss from a pipe occurs	wh	en the radius of insulation equals								

61.	The	average heat tr	ansfer	coefficient for	drop	wise condensat	tion is		
	(A)	less than that	of film	n wise condens	sation				
	(B)	greater than the	hat of	drop wise cond	densat	ion			
	(C)	equal to that of	of film	wise condensa	ation				
	(D)	cannot be con	npareo	d					
62.	The	total emissive 1	oower	(E) of a grav b	odv a	t a surface tem	peratu	re of T is given by	
		-	-	$E = (1 - \varepsilon)\sigma T^4$	-	-			
62	Eon t	the same nucce	aa tan	amanatumas tha	matic	of I MTD in n	ا ما المسم	flow to the LMTD in	
63.		-		uid heat excha		-	агапе	I flow to the LMTD in	
	(A)	<1	(B)	=1	(C)	>1	(D)	∞	
64.	If so	me of the tubes	s in a l	neat exchanger	are se	aled, the effect	ive he	eat transfer area will	
	(A)	increase	(B)	remain same	(C)	decrease	(D)	none	
65.	A certain quantity of liquid is heated for 10 minutes by an electric resistor, which draws 3 amperes current at 200 volts. The liquid is continuously stirred by a paddle wheel, which was operated by a 200 W rating motor. The amount of energy transferred to the liquid is								
	(A)	480 kJ	(B)	360 kJ	(C)	800 kJ	(D)	240 kJ	
66.				of an ideal Rar me temperature			than	that of a Carnot cycle	
	(A)	energy rejecti	on do	es not take plac	ce at c	onstant temper	ature		
	(B)	the turbine is	not re	versible and ad	liabati	c			
	(C)	energy addition	on doe	es not take plac	e at co	onstant tempera	ature		
	(D)	the pump is n	ot rev	ersible and adia	abatic				
67.								initial state (P ₁ , V ₁) to work done on the gas	
	(A)	$n(P_1V_1 - P_2V_1)$	₂)		(B)	$\frac{P_2V_2 - P_1V_1}{1 - n}$			
	(C)	$\frac{P(V_1 - V_2)}{n}$			(D)	$\frac{P(V_1 - V_2)}{1 - n}$			
Set - [A				9			СН	

68.	Whe	n wet steam is	thrott	led to a low pro	essure	, its temperatu	re		
	(A)	increases			(B)	does not char	nge		
	(C)	gets halved			(D)	decreases			
69.		tify the correction			ations	made in the	therm	nodynamic analysis of	
	P.	The combusti	on pro	ocess is replace	ed by a	an equivalent e	energy	addition process	
	Q.	The working	fluid i	s a mixture of	carboi	n dioxide and	water v	apor	
	R.	The exhaust p	roces	s is replaced by	y an eo	quivalent energ	gy reje	ction process	
	S.	The working	fluids	have constant	heat c	apacities			
	(A)	P, R, S	(B)	P, R	(C)	R, S	(D)	P, Q, R	
70.	1000		If the	cost of electr			•	rate of 10 is used for annual cost of power	
	(A)	₹ 10000	(B)	₹ 5000	(C)	₹ 6000	(D)	₹12000	
71.	Activ	vity coefficient	is a p	artial molar pr	operty	with respect t	o		
	(A)	G ^R /RT	(B)	Δ G /RT	(C)	G ^E /RT	(D)	G/RT	
72.	The	coordinates of	Mollie	er diagram are					
	(A)	S & H	(B)	ln P & H	(C)	T & S	(D)	Т & Н	
73.	•	estem, going fr n direction if th		~				30 kJ of work. In the effect?	
	(A)	–70 kJ	(B)	– 100 kJ	(C)	-40 kJ	(D)	–130 kJ	
74.	The	meaning of sec	ond la	aw of thermody	ynami	es is			
	(A)	Work convers	sion to	heat impossib	ole				
	(B)	Heat conversi	on to	work impossib	ole				
	(C)	Work convers	sion to	heat is partial					
	(D)	Heat conversi	on to	work is partial					
75.	Wha	t is the mass of	CO c	contained in a c	contair	ner of volume	44.8 m	a ³ at STP?	
	(A)	28 kg	(B)	56 kg	(C)	14 kg	(D)	44 kg	
76.	Bina	ry Diffusion C	oeffic	ient for gases v	varv w	ith			
	(A)	temp	(B)	$(\text{temp})^{1.5}$	(C)	_	(D)	$(\text{temp})^{-1}$	
с , Г	(- -)	r	(-)	(r)	` ′	(r)	(-)		•
Set - [A				10			СН	l

Set -	A				11				СН
	(A)	0	(B)	1	(C)	3	(D)	2	
84.		nber of indep at azeotropic		variables a b	oinary 1	nixture in	vapour –l	liquid equili	ibrium will
	(C)	Wet bulb te	mperatu	ıre	(D)	Saturatio	on Tempera	ature	
	(A)	Bubble tem	_			Dew tem	-		
	press	sure and out o	of contac	ct with water	is	-		-	Constant
83.	The	temperature	at whic	h a gas–vapo	our mix	cture gets	saturated	on cooling	at constant
	(C)	$N_{St} N_{Sc}^{2/3} =$	= f/2		(D)	$N_{St} N_{Sc}^{-1}$	$^{/3} = f/8$		
	(A)	$N_{St} N_{Sc}^{2/3} =$	= f/8		(B)	$N_{St} N_{Sc}^{-1}$	$^{/3} = f/2$		
82.	Acco	ording to Chil	lton–Co	lburn analogy	for ma	ass transfe	r		
	(A)	$D_{AB}^{0.5}$	(B)	D_{AB}	(C)	$D_{AB}^{-1.5}$	(D)	$D_{AB}^{0.7}$	
81.	Acco	ording to surf	ace rene	ewal theory, n	nass tra	nsfer coef	ficient is p	roportional	to
	(C)	P = volume	x pressi	ure gradient	(D)	P = Diff	usivity / So	olubility	
			•	re gradient	` ′		•		
80.	Gas	Permeability	(P) is do	efined as					
	` ′		ŕ		, ,	• ` ` '	. •		
		(1-y)/y (1-	-x)			y (1–x)/	<i>x</i> (1–y)		
		y / (1–y)	1 /		(B)	y / x			
79.		tive volatility x that in the l		ned as (y is n	nole fra	ction of m	ore volatil	e componen	it in vapour
	(D)	none of the							
	(C)	momentum	diffusiv	ity to mass di	iffusivi	ty			
	(B)	momentum	diffusiv	ity to thermal	diffus	ivity			
	(A)			to mass diffus	sivity				
78.	Schr	nidt number i	is the rat	tio of					
	(D)	Mass transfe	er coeff	icient					
	(C)	Volumetric	mass tra	ansfer coeffic	ient				
	(B)	Diffusion co		nt					
//.	(A)	Film thickn	_	in nave the u	.1111011810	ons of teng	guirume		
77.	Whi	ch of the follo	wing w	ill have the d	imensi	ons of lens	oth/time		

85.		e activity coeff ry mixture char				le fraction of r	nore v	olatile co	mponent in	a
	(A)	•	-		(B)	the separation	is ea	sier		
	(C)	the separation			(D)					
86.	Abso	orption factor is	S							
	(A)	Slope of the o	lriving	g force line/ slo	pe of	the operating li	ine			
	(B)	Number of tra	ansfer	units/ number	of the	oretical plates				
	(C)	Slope of the e	quilib	rium curve / sl	ope of	f the operating	line			
	(D)	Slope of the o	perati	ng line / slope	of the	equilibrium cu	ırve			
87.	A ho	orizontal q–line	in Mo	cCabe –Thiele	proced	dure indicates t	hat th	e feed is a	l	
	(A)	Saturated liqu	ıid		(B)	Saturated Vaj	our			
	(C)	Vapour-liqui	d mix	ture	(D)	Unsaturated 1	iquid			
88.		e vapour pressu er, then the wate			•	olid is less tha	n the v	apour pro	essure of pur	æ
	(A)	Critical Mois	ture co	ontent	(B)	Free Moisture	e conte	ent		
	(C)	Bound Moist	ure		(D)	Equilibrium I	Moistu	ire conten	t	
89.		analytical expr ified separatior					ber of	stages r	equired for	a
	(A)	Rayleigh equ	ation		(B)	Kremser equa	ation			
	(C)	McCabe equa	ition		(D)	Fenske equati	ion			
90.	In fla	ashing, the fina	l pres	sure is						
	(A)	the bubble pr	essure		(B)	the dew press	ure			
	(C)	Between bub	ole an	d dew pressure	s (D)	above dew pr	essure	;		
91.		id A decomposition is 20 min.					on an	d the hal	f-life of th	is
	(A)	30 min	(B)	35 min	(C)	40 min	(D)	25 min		
92.		chemical reaction of the characteristic characteristics are characteristics that is the characteristics are characteristics and characteristics are characteristics are characteristics are characteristics and characteristics are characteristics ar				rate increases 4	l-fold,	as the co	ncentration	is
	(A)	1	(B)	2	(C)	1.5	(D)	4		
93.	The	dimensions of	rate co	onstant are (n is	s the o	order of the reac	ction)			
	(A)	time ⁻¹ (Conce	entrati	on)	(B)	time ⁻¹ (Conce	entrati	on) ⁿ		
	(C)	time (Concen	tration	$n)^{1-n}$	(D)	time ⁻¹ (Conce	entrati	on) ¹⁻ⁿ		
Set -	A				12				C	Ή

94.	Higher activation energy of a reaction indicates that the reaction is										
	(A)	Temperature	sensit	ive	(B)	Temperature	insens	itive			
	(C)	More Comple	ete		(D)	Higher tempe	rature	s are p	referable		
95.		action, $2A \rightarrow$ have a slope o		cts exhibit sec	ond or	der kinetics. A	plot	of t vs	$X_{A}/(1-X_{A})$	will	
	(A)	KC_{AO}	(B)	KC_{AO}^{2}	(C)	$1/(KC_{AO})$	(D)	C_{AO}			
96.		an isothermal g	_				onal c	hange i	in volume of	the	
	(A)	3	(B)	1	(C)	4	(D)	2			
97.		identical C _{AO} , CSTR to that c				ositive reaction	n orde	rs, the	ratio of volu	ıme	
	(A)	<1	(B)	>1	(C)	=1	(D)	= read	ction order		
98.	N plug flow reactors in series, each with a volume of V/N will give the same conversion as a single plug flow reactor of volume V, all else remaining the same. This is valid for										
	(A)	first order rea	ections		(B)	second order	reactio	ons			
	(C)	all reaction or	rders		(D)	Zero order rea	action	S			
99.	Exit	age distributio	n of fl	uid leaving a v	vessel i	s useful to					
	(A)	study the flow	w patte	ern in the react	or						
	(B)	study the read	ction n	nechanism and	l progr	ess					
	(C)	study the read	ction k	inetics							
	(D)	determine the	flow	rates							
100.	The	action of a cata	alyst is	due to its abi	lity to	change the					
	(A)	Activation En	nergy								
	(B)	Heat of reacti	ion								
	(C)	Equilibrium o	consta	nt							
	(D)	Temperature	& pre	ssure depende	nce						
101.		large values of				$(D)^{1/2}$), in case	of sol	id cata	lyzed first or	rder	
	(A)	$\varepsilon = 1$	(B)	1 / L(k/D)	(C)	$\varepsilon = 1 / L(k/D)$)1/2	(D)	$L(k/D)^{1/2}$		
Set - [A				13					СН	

102.	Whi	Which one of the following is a dynamic characteristic of a measuring instrument?									
	(A)	(A) Reproducibility				Speed of response					
	(C)	Sensitivity			(D)	Range and	span				
103.	As temperature is increased, refractive index of a liquid										
	(A)	decreases			(B)	increases					
	(C)) not affected				varies with square of temperature					
104.	An example for a natural second order system is										
	(A)	thermometer	r		(B)	two capacity liquid level system					
	(C)	Thermometer in a thermo well				U-tube Manometer					
105.		When a first order system(time constant T) is subjected to a ramp input(At) , the dynamic error is									
		$(AT)^{0.5}$	(B)	AT	(C)	0.5 AT	(D)	2 AT			
106.	Bolo	ometer is used	in the i	measurement	of						
	(A)	Pressure	(B)	Level	(C)	Flow	(D)	Temperatur	re		
107.	Ioniz	zation gauge i	s used t	o measure							
	(A)	<u> </u>			(B)	High press	ures				
	(C)	Near atmospheric pressures				Ionization	current				
108.	Phas	Phase angle of a second order system to a sinusoidal input is									
	(A)	between 0 and +90			(B)	between 0 and -180					
	(C)	between 0 and +180				between –90 and +90					
109.	A de	crease in prop	ortiona	al band of a co	ontrolle	r					
	(A)	(A) decreases decay ratio				improves the stability of a system					
	(C)) increases decay ratio				decreases offset					
110.	For a stable system, as per Bode stability criterion, the amplitude ratio at a phase angle of (-180°)										
	(A)	A) shall be greater than unity				shall be equal to zero					
	(C)	(C) shall be less than unity				shall be equal to unity					
111.	An e	An equal percentage valve is of									
	(A)) increasing sensitivity type			(B)	decreasing sensitivity type					
	(C)	constant sensitivity type				insensitive type					
Set -	A				14				СН		

112. Biochemical digestion of an effluent is basically a process of										
	(A)	Reduction	(B)	Hydration	(C)	Dehydration	(D)	Oxidation		
113.	A piece of equipment has an initial value of ₹ 25000, a service life of 8 years and finally a salvage value of ₹ 1000. What is the annual depreciation cost as per straight line method?								-	
	(A)	₹ 2400	(B)	₹ 2500	(C)	₹ 2600	(D)	₹ 3000		
114.	Grading of a complex fertilizer is based on the following:									
	(A)	N : P : K				$N: P_2O_5: K$				
	(C)	$N: P_2O_5: K_2$	О		(D)	$N:P:K_2O$				
115.	Which of the following hydrocarbon series is almost absent in crude petroleum?									
	(A)	Naphthenes		Aromatics	(C)		(D)	•		
116.	The o	emission of a β	–parti	cle causes the	e resulta	ant nucleus to h	ave			
	(A)	less atomic w	eight		(B)	less atomic nu	ımber			
	(C)	more atomic	weight	t	(D)	more atomic i	numbe	er		
117. The angle subtended by a vertical line to the point directly overhead o of the sun is called						ead on the line of sigh	ıt			
	(A)	latitude angle			(B)	declination an	igle			
	(D)	Incident angle	2		(D)	Zenith angle				
118.	118. Which method of depreciation computation will provide the low times						west book value at al	11		
	(A) Straight line method			d	(B)	Diminishing balance method				
	(C)	Sinking fund	metho	od	(D)	Sum of the ye	ars di	git methods		
119.	A dimensionless number used to modify capital cost required to erect a cher plant from a past date to a later time, is known as								ıl	
	(A)	Cost Index			(B)	Scale up facto	or			
	(C)	Six-tenth fact	tor		(D)	Inflation inde	X			
120.	A cylindrical vessel needs to be designed to store a highly volatile liquid, under high pressure. Which closure head do you recommend?								h	
	(A)	Hemispherica	ıl		(B)	Torispherical				
	(C)	Ellipsoidal			(D)	Flat end				
Set -	A				15	_		C	Н	
								C.	-4	

SPACE FOR ROUGH WORK