

Delhi | Hyderabad | Noida | Bhopal | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna

Director's Message

UPSC has introduced the sectional cutoffs of each paper and screening cut off in three objective papers (out of 600 marks). The conventional answer sheets of only those students will be evaluated who will qualify the screening cut offs.

In my opinion the General Ability Paper was easier than last year but Civil Engineering objective Paper-I and objective Paper-II both are little tougher/ lengthier. Hence the cut off may be less than last year. The objective papers of ME and EE branches are average but E&T papers are easier than last year.

Expected Minimum Qualifying Marks in Each OBJECTIVE Paper (out of 200 Marks)						
Category	GEN	OBC	SC	ST	PH	
Percentage	15%	15%	15%	15%	10%	
Marks	30	30	30	30	20	

Expected Minimum Qualifying Marks in Each CONVENTIONAL Paper (out of 200 Marks) Category GEN OBC SC ST PH Percentage 15% 15% 15% 15% 10% Marks 30 30 30 30 20

Expected Screening cut off out of 600 Marks (ESE 2016)						
Branch	GEN	OBC	SC	ST		
CE	225	210	160	150		
ME	280	260	220	200		
EE	310	290	260	230		
E&T	335	320	290	260		

Note: These are expected screening cut offs for ESE 2016. MADE EASY does not take guarantee if any variation is found in actual cutoffs.

B. Singh (Ex. IES) CMD , MADE EASY Group

MADE EASY team has tried to provide the best possible/closest answers, however if you find any discrepancy then contest your answer at **www.madeeasy.in** or write your query/doubts to MADE EASY at: **info@madeeasy.in**

MADE EASY owes no responsibility for any kind of error due to data insufficiency/misprint/human errors etc.

Roadmap for ESE 2017 Prelims

Paper-General Studies & Engineering Aptitude

66 MADE EASY offers well planned Classroom and Postal Study Course which is designed by senior and expert faculty members. MADE EASY announces exclusive batches for General Studies and Engineering Aptitude to cover the syllabus of Paper-I of Preliminary exam. The classes will be conducted by experienced faculties of MADE EASY focusing on new pattern of Engineering Services Examination, 2017. Latest and updated study material with effective presentation will be provided to score well in Paper-I. **9**

Paper-I : General Studies & Engineering Aptitude

Course content

- 1. Current Affairs: Current National and International issues, bilateral issues, current economic affairs, Defence, Science and Technology, Current Government Schemes, Persons in news, Awards & honours, current environment & wildlife, current sports, books & authors etc. Watch Video
- 2. Reasoning and Aptitude : Algebra and Geometry, Reasoning and Data Interpretation, Arithmetic, coding and decoding, Venn diagram, number system, ratio & proportion, percentage, profit & loss, simple interest & compound interest, time & work, time & distance, blood relationship, direction sense test, permutation & combinations etc. Watch Video
- **3. Engineering Mathematics :** Differential equations, complex functions, calculus, linear algebra, numerical methods, Laplace transforms, Fourier series, Linear partial differential equations, probability and statistics etc. **Watch Video**

- 4. General Principles of Design, Drawing, Importance of Safety : Engineering Drawing, Drawing instruments, drawing standard, geometric construction and curves, orthographic projections, methods of projection, profile planes side views, projection of points, projection of straight lines, positions of a straight line with respect to HP and VP, determining true length and true inclinations of a straight line, rotation methods, trace of a line, projection of planes, importance of safety etc. Watch Video
- 5. Standards and quality practices in production, construction, maintenance and services: ISO Standards, ISO-9000 Quality Management, ISO-14000 other, BIS Codes, ECBC, IS, TQM ME, TPM, PDCA, PDSA, Six Sigma, 5S System, 7 Quality Control Tools, ISHIKAWAS -7QC Tools, Kaizer Tools-3m, TQM : Most Importance, Deming's: 14 Principles, Lean Manufacturing ME, Quality Circles, Quality Control, Sampling. Watch Video
- 6. Basics of Energy and Environment: Renewable and non renewable energy resources, energy conservation, ecology, biodiversity, environmental degradation, environmental pollution, climate change, conventions on climate change, evidences of climate change, global warming, greenhouse gases, environmental laws for controlling pollution, ozone depletion, acid rain, biomagnification, carbon credit, benefits of EIA etc. Watch Video
- 7. Basics of Project Management: Project characteristics and types, Project appraisal and project cost estimations, project organization, project evaluation and post project evaluation, risk analysis, project financing and financial appraisal, project cost control etc. Watch Video
- 8. Basics of Material Science and Engineering: Introduction of material science, classification of materials, Chemical bonding, electronic materials, insulators, polar molecules, semi conductor materials, photo conductors, classification of magnetic materials, ceramics, polymers, ferrous and non ferrous metals, crystallography, cubic crystal structures, miller indices, crystal imperfections, hexagonal closed packing, dielectrics, hall effect, thermistors, plastics, thermoplastic materials, thermosetting materials, compounding materials, fracture, cast iron, wrought iron, steel, special alloys steels, aluminum, copper, titanium, tungsten etc. Watch Video
- **9.** Information and Communication Technologies : Introduction to ICT, Components of ICT, Concept of System Software, Application of computer, origin and development of ICT, virtual classroom, digital libraries, multimedia systems, e-learning, e-governance, network topologies, ICT in networking, history and development of internet, electronic mail, GPS navigation system, smart classes, meaning of cloud computing, cloud computing architecture, need of ICT in education, national mission on education through ICT, EDUSAT (Education satellite), network configuration of EDUSAT, uses of EDUSAT, wireless transmission, fibre optic cable etc. Watch Video
- **10. Ethics and values in engineering profession:** ethics for engineers, Ethical dilemma, elements of ethical dilemmas, indian ethics, ethics and sustainability, ethical theories, environmental ethics, human values, safety, risks, accidents, human progress, professional codes, responsibilities of engineers etc. (Watch Video)

	C	assroom Cours	e :Pap	er -1	
Course Details	s : General Stu	idies and Engineering	g Aptitud	e Batches	
Teaching Hours:2Timings::Study material::	250-300 hours Regular batches : 6-7 da	nths I Weekend batches : 3 mor ys a week and 4 hours a day. I W ensive study material including the e provided	eekend batche		
		Batch Commend	ement		
	Batch	Commencement Date	V	enue	Timing
Classroom Course _{Note}	Weekend Balch 2nd July, 2010 Sakel / Lado Safal (Deini) 8:00 a.m. to 0:00 p.m				
Postal Course Postal Study Course for GS & Engineering Aptitude Paper-I will be available after 15 th -July-2016 Buy online at : www.madeeasy.in					
		Fee Structu	ire		
		Ex. MA	DE EASY Stuc	lents	
Non-MADE EASY Students		ho were enrolled in Postal Stud nt, Conventional, G.S., Post GAT			nts who were enrolled in n classroom programs
Rs. 18,500/-		Rs. 15,500/-			Rs.12,500/-

Newly added technical subjects for ESE-2017

Interested students may join subjectwise classes for newly added technical subjects for ESE-2017

CE	ME		EE	E&T		
_	 Mechatronics & Robotics Renewable Source of Energy 	-	als & Systems nputer Fundamentals	 Advanced Electronics Basics of Electrical Engineering Advanced Communication 		
	Fee Structure					
	Non-MADE EASY Students		Ex. MADE EASY Students			
	Rs. 6,500/- per subject		Rs.4,500/- per subject			

Admission Open at all MADE EASY centres

Online admission facility available at : www.madeeasy.in

Corp. Office : 44 - A/1, Kalu Sarai, New Delhi - 110016; Ph: 011-45124612, 09958995830

ESE-2016 : Electronics Engg. Solutions of Objective Paper-I | Set-A Page

1.	matter?			irmation of the Crystalline state c
	(a) Shock compre(c) Conductivity r		(b) Photo er (d) X-ray dif	
Ans.	(d) X-ray diffraction: It is a rapid techni	que for analyzing	wide range of m	aterials. It can provide informatio
	about material ph		-	ions.
2.	The electrical cor (a) Proportional to (b) Increases exp (c) Decreases ex (d) Not altered wi	o temperature ponentially with te ponentially with te	mperature	End of Solution
Ans.	(a)			• • End of Solution
3.	 Resistance ca the current th Resistance is 	an be simply defi rough the condu a function of vol	ned as the ratio c ctor. This is, in fa tage and current	resistance of a conductor: of voltage across the conductor t ct, George Ohm's law.
	Which of the abo (a) 1 and 2 only (c) 1 and 3 only			only
Ans.		d by using Ohm's	law according to gh the conductor.	which it is a ratio of voltage acros
	$\rightarrow R = \rho \frac{L}{A}$			
	where,	L = Length	nce vity of material of conductor sectional area of c	conductor

	India's Best Institute for IES, GATE & PSUs	ESE-2016 : Electronics Engg. Solutions of Objective Paper-I Set-A	Pag 5
8.	The electrons and nucleii assume new geor are altered. This phenomenon is called (a) Electrostriction	d is applied the substance becomes polariz netrical positions and the mechanical dimensi (b) Hall-Effect (d) Magnetization	
Ans.	(a) Electrostriction: Change in the dimensional application of electric field is known as		
9.	In ferromagnetic materials, the net magn an applied field is : (a) Normal to the applied field (c) In line with magneto motive force		
Ans.	 (b) In ferromagnetic material, the total mag flux density due to applied field flux density due to magnetization i.e. B = μ₀H + μ₀M 	gnetic flux density is summation of	
10.			
Ans.	(a) Above ferromagnetic curie temperature, into its paramagnetic state.	ferromagnetism disappear and material ent	ers
		End of Solution	
11.		ot have paramagnetic properties? e shell)	tion

Rank Improvement Batches

MADE EASY offers rank improvement batches for ESE 2017 & GATE 2017. These batches are designed for repeater students who have already taken regular classroom coaching or prepared themselves and already attempted GATE/ESE Exams, but want to give next attempt for better result. The content of Rank Improvement Batch is designed to give exposure for solving different types of questions within fixed time frame. The selection of questions will be such that the Ex. MADE EASY students are best benefitted by new set of questions.

Features :

- Comprehensive problem solving sessions
- Smart techniques to solve problems
- Techniques to improve accuracy & speed
- Systematic & cyclic revision of all subjects
- Doubt clearing sessions
- Weekly class tests
- Interview Guidance

Syllabus Covered : Technical Syllabus of GATE-2017 & ESE-2017

Eligibility :

- Old students who have undergone classroom course from any centre of MADE EASY or any other Institute
- Top 6000 rank in GATE Exam
- Qualified in ESE written exam
- Qualified in any PSU written exam
- M. Tech from IIT/NIT/DTU with minimum 7.0 CGPA

Course Duration : Approximately 25 weeks (400 teaching hours)

Streams	Batch Type	Timing	Date	Venue
CE, ME	Weekend	Sat & Sun : 8:00 a.m to 5:00 p.m	2 nd July, 2016	Saket (Delhi)
EC, EE	Weekend	Sat & Sun : 8:00 a.m to 5:00 p.m	2 nd July, 2016	Lado Sarai (Delhi)
ME	Regular	8:00 a.m to 11:30 a.m (Mon-Fri)	4 th July, 2016	Saket (Delhi)

Fee Structure

		Ex. MADE EASY Students		
Batch	Non-MADE EASY Students	Those students who were enrolled in Postal Study Course, Rank Improvement, Conventional, G.S, Post GATE batches	Those students who were enrolled in long term classroom programs only	
Rank Improvement Batch	Rs. 26,500/-	Rs. 24,500/-	Rs. 22,500/-	
Rank Improvement Batch + General Studies & Engineering Aptitude Batch	Rs. 41,500/-	Rs. 36,500/-	Rs. 31,500/-	
For the inclusion of all some study methods have desired				

Fee is inclusive of classes, study material and taxes

Note: 1. These batches will be focusing on solving problems and doubt clearing sessions. Therefore if a student is weak in basic concepts & fundamentals then he/she is recommended to join regular classroom course.

- 2. Looking at the importance and requirements of repeater students, it is decided that the technical subjects which are newly added in ESE 2017 syllabus over ESE 2016 syllabus will be taught from basics and comprehensively.
- 3. The course fee is designed without Study Material/Books, General Studies and Online Test Series (OTS). However those subjects of technical syllabus which are added in ESE-2017 will be supplemented by study material. Study Material/ Books will be provided only for the technical syllabus which are newly added in ESE-2017.

Rank Improvement Batches will be conducted at Delhi Centre only.

ADMISSIONS OPEN

Documents required : M.Tech marksheet, PSUs/IES Interview call letter, GATE score card, MADE EASY I-card • 2 photos + ID proof

India's Best Institute for IES, GATE & PSUs

MADE	ESE-2016 : Electronics Engg. Solutions of Objective Paper-I Set-A
12.	 In a superconducting magnet, wires of superconducting material are embedded in the thick copper matrix, because while the material is in the superconducting state : (a) The leakage current passes through copper part (b) Copper part helps in conducting heat away from the superconductor (c) Copper part helps in overcoming the mechanical stress (d) Copper acts as an insulating cover for superconductor
Ans.	(c) Copper matrix helps in overcoming the mechanical stress when wire material is in superconducting state. When wire material enters to the normal state due to some accidental quarch than copper matrix takes over the job of wire material.
13.	 The crystal structure of some Ceramic materials may be thought of being composed of electrically charged Cations and Anions, instead of Atoms, and as such: (a) The Cations are negatively charged, because they have given up their valence electrons to Anions which are positively charged. (b) The Cations are positively charged, because they have given up their valence electrons to Anions which are negatively charged. (c) The Cations are positively charged, because they have added one electron to their valence electrons borrowing from Anions which are negatively charged. (d) The Cations are negatively charged, as they are non-metallic whereas Anions are positively charged being metallic.
Ans.	 (b) Ceramics are generally in organic compounds that consists of cations and anions. Cations are usually, metals with positive charge. Anions are usually non-metals with negative charge.
14.	Manganin alloy used for making resistors for laboratory instruments contains : (a) Copper, Aluminium and Manganese (b) Copper, Nickel and Manganese (c) Aluminium, Nickel and Manganese (d) Chromium, Nickel and Manganese
Ans.	(b) Manganin is an alloy of copper, Nickel and manganese.
15.	A rolled-paper capacitor of value 0.02 µF is to be constructed using two strips of aluminium of width 6 cm, and, wax impregnated paper of thickness 0.06 mm whose relative permittivity is 3. The length of foil strips should be (a) 0.3765 m (b) 0.4765 m (c) 0.5765 m (d) 0.7765 m

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-16 | Email : info@madeeasy.in | Visit: www.madeeasy.in

66 Classroom Course is designed for comprehensive preparation of ESE, GATE & PSUs. The main feature of the course is that all the subjects are taught from basic level to advance level. There is due emphasis on solving objective and numerical questions in the class. High quality study material is provided during the classroom course with sufficient theory and practice test papers for objective and conventional questions alongwith regular assignments for practice. Classes are taken by highly experienced professors and ESE qualified toppers. MADE EASY team has developed very effective methodology of teaching and advance techniques and shortcuts to solve objective questions in limited time.

Course Features : • Timely coverage of technical & non-technical syllabus • Books & Reading References

- Regular classroom tests followed by discussion Doubt clearing sessions GATE counseling session
- Interview Guidance Program
 All India ESE Classroom Test Series

Syllabus Covered: • All Technical Subjects along with 10 subjects of paper-I (as per revised syllabus of ESE 2017) Engineering Mathematics
 Reasoning & Aptitude

Books & Reading References : • Technical Subjects (Theory Book + Work Book) • Engineering Mathematics • Reasoning & Aptitude • Previous Years GATE Solved Papers • General English • Previous Years IES Solved Papers (Objective & Conventional)

Difference between Regular and Weekend Course :

In **Regular Course**, classes are conducted for 4 to 6 hours per day in a week for 8 to 9 months where as in **Weekend Courses** take 10 to 11 months for completion of syllabus as classes run nearly 8 to 9 hrs/day on every weekends and public holidays.

Streams Offered : CE, ME, EE, EC, CS, IN, PI

New Batches Commencing at Delhi Centres

Schedule	Schedule
CE : 30th May & 7th June, 2016	CE from 28th May'16
EE : 30th May & 5th June, 2016	ME from 28th May'16
EC : 30th May & 9th June, 2016	EC from 29th May'16
ME : 5th June, 2016	EC ITOTIT 29tt May 10
CS : 30th May, 2016	EE from 29th May'16
IN : 16th June, 2016	CS from 29th May'16

Noida

0120-6524612

Online Admissions Available Visit:www.madeeasy.in

ADMISSIONS OPEN at all MADE EASY centres,

To know more about upcoming batches, Fee Structure, timing & other details, visit:www.madeeasy.in

MADE EASY Centres

Delhi

Lucknow Indore 09919111168 0731-4029612

SUPER TALENT BATCHES for ESE, GATE & PSUs

India's Best Institute for IES. GATE & PSUs

Super Talent batches are designed for students with good academic records and who have secured good ranks in GATE/ESE or other national level competitive examinations. Super Talent batches are a kind of regular batches in which faculty, study material, tests, teaching pedagogy is similar to other batches. But due to eligibility criteria, the composition of students in this batch is homogeneous and better than other batches. Here students will get a chance to face healthy competitive environment and it is very advantageous for ambitious aspirants.

Eligibility (any one of the following)

- MADE EASY repeater students with 65% Marks in B.Tech Cleared any 3 PSUs written exam
- GATE rank upto 2000

• 60% marks in B.Tech from IIT's/NIT's/DTU

 70% marks in B.Tech from private engineering colleges

- GATE Qualified MADE EASY old students
- Cleared ESE written exam
- 65% marks in B.Tech from reputed colleges (See below mentioned colleges)

BITS-Pilani, BIT-Sindri, HBTI-Kanpur, JMI-Delhi, NSIT-Delhi, MBM-Jodhpur, Madan Mohan Malviya-Gorakhpur, College of Engg.-Roorkee, BIT-Mesra, College of Engg.-Pune, SGSITS-Indore, Jabalpur Engg. College, Thapar University-Punjab, Punjab Engg. College

Why most brilliant students prefer Super Talent Batches!

- Highly competitive environment
- Meritorious student's group
- Opportunity to solve more problems
- More number of tests
- In-depth coverage of the syllabus Motivational sessions
- Classes by senior faculty members Discussion & doubt clearing classes
 - Special attention for better performance

Note: 1. Final year or Pass out engineering students are eligible.

2. Candidate should bring original documents at the time of admission. (Mark sheet, GATE Score card, ESE/PSUs Selection Proof, 2 Photographs & ID Proof).

3. Admissions in Super Talent Batch is subjected to verification of above mentioned documents.

"MADE EASY is the only institute which has consistently produced toppers in ESE & GATE"

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-16 | Email : info@madeeasy.in | Visit: www.madeeasy.in

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-16 | Email : info@madeeasy.in | Visit: www.madeeasy.in

India's Best Institute for IES, GATE & PSUs

MADE EASY Students TOP in ESE-2015

CE 10 Selections in Top 10 Piyush Pathak AiR 2 AiR 3 AiR 3 AiR 4 AiR 5 AiR 5 AiR 5 AiR 6 AiR 6 AiR 7 AiR 8 AiR 7 AiR 8 AiR 9 AiR 10 Air 10 Air 4 Air 9 Air 10 Air 4 Air 5 Air 6 Air 5 Air 6 Air 7 Air 8 Air 6 Air 7 Air 8 Air 9 Air 10 Air 10 A
ME 10 Belections in Top 10 ME Prater Ashok Bansal Air 8 ME Prater Ashok Bansal Air 8 Ashok Bansal Air 8 Ashok Bansal Air 8 Air 8 Air 8 Air 8 Air 4 Air 8 Air 6 Air 6 Air 6 Air 6 Air 6 Air 6 Air 7 Air 8 Air 7 Air 8 Air 8 Air 8 Air 9 Air 10 Air 10 Air 8 Air 9 Air 10 Air 6 Air 10 Air 6 Air 10 Air 10
EE 9 seicctions in Top 10 E Stidblikh Hussain AIR 2 AIR 2 AIR 3 AIR 3 AIR 3 AIR 5 AIR 5 AIR 6 AIR 6 AIR 6 AIR 6 AIR 7 AIR 8 AIR 7 AIR 8 AIR 7 AIR 8 AIR 9 AIR 9 AIR 10 AIR 10
E&T 9 selections in Top 10 AIR 2 AIR 2 AIR 2 AIR 3 AIR 3 AIR 4 AIR 4 AIR 5 AIR 4 AIR 5 AIR 7 AIR 7 AIR 7 AIR 7 AIR 8 AIR 7 AIR 8 AIR 9 AIR 9 AIR 9 AIR 9 AIR 10 AIR 10 AIR 8 AIR 9 AIR 10 AIR 10 AIR 8 AIR 9 AIR 10 AIR 10
4 Streams 4 Toppers All 4 MADE EASY Students38 a in Top 1073 in Top 20352 Selections out of total 434
MADE EASY selections in ESE-2015 : 82% of Total Vacancies
GE Selections in Top 10 Selections in Top 20 MADE EASY Selections 120 Out of 151 Vacancies MADE EASY Percentage 79% ME Selections in Top 10 10 Selections in Top 20 18 MADE EASY Selections 83 Out of 99 Vacancies MADE EASY Percentage 83%
E Selections in Top 10 9 Selections in Top 20 16 MADE EASY Selections 67 Out of 86 Vacancies MADE EASY Percentage 78%
E&T Selections in Top 10 9 Selections in Top 20 19 MADE EASY Selections 82 Out of 98 Vacancies MADE EASY Percentage 84%

Detailed results are available at www.madeeasy.in

"MADE EASY is the only institute which has consistently produced toppers in ESE & GATE"

	India's Best Institute	EPSS for IES, GATE & PSUs	ESE-2016 : Electronics Engg. Solutions of Objective Paper-I Set-A	Pag 18		
Ans.	 (a) Laplace transform used for stability verifications, transient analysis and system synthesis. In signal processing (which basically means filtering) Fourier transform are used, as filtering requires information purely interms of frequency. 					
43.		le has a voltage-dep 2. Capacitance 3. ve is/are correct?	pendent:			
Ans.	(b) Varactor diode is also called variable capacitance diode by varying the the <i>RB</i> voltage, we can alternate the junction capacitance C_T .					
44.	 ● ● End of Solution The impulse response for the discrete-time system y[n] = 0.24 (x[n] + x[n - 1] + x[n - 2] + x[n - 3]) is given by (a) 0 for 0 ≤ n ≤ 3 and 0.24 otherwise (b) 0.24 for 0 ≤ n ≤ 3 and 0 otherwise (c) 0.24 for n = 0 to n = ∞ (d) 0 for n = 0 to n = ∞ 					
Ans.	(b) When input $x[n] = \delta[n]$, response $y[n] = h[n] \rightarrow$ unit impulse response					
	$h[n] = 0.24 [\delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]]$					
	i.e.	h[n] = 0.24 = 0	otherwise			
	 End of Solution The product of emitter efficiency (γ) and transport factor (β*) for a BJT is equal to (a) Small signal current gain (b) High frequency current gain (c) Power loss in the BJT (d) Large-signal current gain 					
45.	(c) Power loss in	. (d) For a BJT, $\alpha = \beta^* \gamma$ where α is is large signal current gain				

Postal Study Course

ESE-2017 & GATE-2017

On the revised pattern and syllabus of ESE-2017 and GATE-2017

Postal Study Course is the distance learning program designed to meet the needs of the college going students and working professionals who are unable to join our classroom courses. The study material is compact, effective and easy to understand. MADE EASY has made all efforts to provide an error free material introducing smart and shortcut techniques for better understanding. The study material is authored by experienced faculties supported by research and development wing of MADE EASY, considering the syllabus and standards of the competitive examinations.

Features of Postal Study Course :

- The content of new MADE EASY Postal Course 2017 covers all the basic fundamentals, solved examples, objective & conventional practice questions.
- The content is very much student friendly expressed in lucid language such that an average student can also understand the concepts easily. The content is self sufficient and there will be no need to refer several text books for any subject.

Content includes :

- Theory books with solved examples.
- Objective practice booklets.
- Conventional practice booklets (for ESE).
- Previous exam solved papers (15 to 25 years).
- General studies and Engineering Aptitude booklets (As per ESE-2017 syllabus).

Note:

- Postal Study Course for only General Studies and Engg. Aptitude paper (Paper-I of ESE-2017) is also available.
- Many students are selected every year in ESE, GATE & PSUs by reading Postal Study Course only.
- Postal Study course is also available at all centres of MADE EASY.
- Online purchase facility available at: www.madeeasy.in

Courses Offered :

GATE
 GATE + PSU
 ESE
 ESE, GATE and PSUs

Streams Offered: CE • ME/PI • EE • EC • CS • IN

Noida

0120-6524612

08860378009

 Jaipur
 Bhopal

 0141-4024612
 0755-4004612

 09166811228
 08120035652

Lucknow Indore 09919111168 0731-4029612 08400029422 07566669612 Bhubaneswar 0674-6999888 09040999888

 Pune

 88
 020-26058612

 88
 09168884343

Kolkata Patna 033-68888880 0612-2356615 08282888880 0612-2356616

$Y(s) = CX(s)$ $sX(s) = AX(s) + BU(s) \implies X(s)[s - A] = BU(s)$ $X(s) = (sI - A)^{-1} BU(s)$ $\frac{Y(s)}{U(s)} = C(sI - A)^{-1} B$ 54. $x(t) = \frac{1}{T_o} + \sum_{k=1}^{N} \frac{2}{T_o} \cos k \omega_o t$, is the combined trigonometric form of Fourier series for (a) Half rectified wave (b) Saw-tooth wave (c) Rectangular wave (d) Impulse train Ans. (d) Given that, $x(t) = \frac{1}{T_o} + \sum_{k=1}^{N} \frac{2}{T_o} \cos k \omega_o t$ $a_0 = \frac{1}{T_o}, a_k = \frac{2}{T_o}$ As the Fourier series coefficient a_n is independent of 'K' signal cannot be sawtoon half rectified (or) rectangular. Hence, impulse train. (or) The otherway is evaluating Fourier series coefficients are verifying. 55. A signal xn is given by $x_0 = 3, x_1 = 2, x_2 = 5, x_3 = 1, x_4 = 0, x_5 = 1, x_6 = 2, x_7 = 2, x_8 = 1$ where the subscript 'n' denotes time. The peak value of the auto correlation of x_{2n-1} (a) 0 (b) 10 (c) 54 (d) 64 Ans. (b)	Ans. (a)	Y(s) = CX(s)					
$Y(s) = CX(s)$ $sX(s) = AX(s) + BU(s) \implies X(s)[s - A] = BU(s)$ $\chi(s) = (sI - A)^{-1} BU(s)$ $\frac{Y(s)}{U(s)} = C(sI - A)^{-1} B$ 54. $x(t) = \frac{1}{T_o} + \sum_{k=1}^{N} \frac{2}{T_o} \cos k\omega_c t_i$ is the combined trigonometric form of Fourier series for (a) Half rectified wave (b) Saw-tooth wave (c) Rectangular wave (d) Impulse train Ans. (d) Given that, $x(t) = \frac{1}{T_o} + \sum_{k=1}^{N} \frac{2}{T_o} \cos k\omega_c t$ $a_0 = \frac{1}{T_o}, a_k = \frac{2}{T_o}$ As the Fourier series coefficient a_i is independent of 'K' signal cannot be sawtoo half rectified (or) rectangular. Hence, impulse train. (or) The otherway is evaluating Fourier series coefficients are verifying. 55. A signal xn is given by $x_0 = 3, x_1 = 2, x_2 = 5, x_3 = 1, x_4 = 0, x_5 = 1, x_6 = 2, x_7 = 2, x_8 = \frac{1}{3}$ (a) 0 (b) 10 (c) 54 (c) 54 (c) 64 Ans. (b) 56. A system has impulse response $h[n] = \cos(n)u[n]$. The system is (a) Causal and not stable (b) Non causal and stable (c) Non causal and not stable (c) Nultiplication by $u(n]$ en	(3)	Y(s) = CX(s)					
$X(s) = (sI - A)^{-1} BU(s)$ $\frac{Y(s)}{U(s)} = C(sI - A)^{-1} B$ 54. $x(t) = \frac{1}{T_0} + \sum_{k=1}^{N} \frac{2}{T_0} \cos k \omega_0 t$, is the combined trigonometric form of Fourier series for (a) Half rectified wave (b) Saw-tooth wave (c) Rectangular wave (d) Impulse train Ans. (d) Given that, $x(t) = \frac{1}{T_0} + \sum_{k=1}^{N} \frac{2}{T_0} \cos k \omega_0 t$ $a_0 = \frac{1}{T_0}, a_k = \frac{2}{T_0}$ As the Fourier series coefficient a_n is independent of 'K' signal cannot be sawtoo half rectified (or) rectangular. Hence, impulse train. (or) The otherway is evaluating Fourier series coefficients are verifying. 55. A signal xn is given by $x_0 = 3, x_1 = 2, x_2 = 5, x_3 = 1, x_4 = 0, x_5 = 1, x_6 = 2, x_7 = 2, x_8 =$ where the subscript 'n' denotes time. The peak value of the auto correlation of x_{2n} . (a) 0 (b) 10 (c) 54 (d) 64 Ans. (b) 56. A system has impulse response $h[n] = \cos(n)u[n]$. The system is (a) Causal and stable (b) Non causal and stable (c) Non causal and not stable (d) Causal and not stable (c) Non causal and not stable (d) Causal and not stable (f) Non causal and not stable (h) Reve, causal							
54. $x(t) = \frac{1}{t_o} + \sum_{k=1}^{N} \frac{2}{t_o} \cos k\omega_o t$, is the combined trigonometric form of Fourier series for (a) Half rectified wave (b) Saw-tooth wave (c) Rectangular wave (d) Impulse train Ans. (d) Given that, $x(t) = \frac{1}{t_o} + \sum_{K=1}^{N} \frac{2}{t_o} \cos k\omega_o t$ $a_0 = \frac{1}{t_o}, a_k = \frac{2}{t_o}$ As the Fourier series coefficient a_n is independent of 'K' signal cannot be sawtoo half rectified (or) rectangular. Hence, impulse train. (or) The otherway is evaluating Fourier series coefficients are verifying. 55. A signal xn is given by $x_0 = 3, x_1 = 2, x_2 = 5, x_3 = 1, x_4 = 0, x_5 = 1, x_6 = 2, x_7 = 2, x_8 = x_8 = x_8$ where the subscript 'n' denotes time. The peak value of the auto correlation of x_{2n-1} (a) 0 (b) 10 (c) 54 (d) 64 Ans. (b) 56. A system has impulse response $h[n] = \cos(n)u[n]$. The system is (a) Causal and stable (b) Non causal and stable (c) Non causal and not stable (d) Causal and not stable Ans. (d) $h[n] = \cos(n)u[n]$ • Multiplication by $u[n]$ ensures, h[n] = 0, n < 0 Hence, causal							
54. $x(t) = \frac{1}{T_o} + \sum_{k=1}^{N} \frac{2}{T_o} \cos k \omega_c t$, is the combined trigonometric form of Fourier series for (a) Half rectified wave (b) Saw-tooth wave (c) Rectangular wave (d) Impulse train Ans. (d) Given that, $x(t) = \frac{1}{T_o} + \sum_{K=1}^{N} \frac{2}{T_o} \cos K \omega_c t$ $a_0 = \frac{1}{T_o}, a_k = \frac{2}{T_o}$ As the Fourier series coefficient a_n is independent of 'K' signal cannot be sawtoo half rectified (or) rectangular. Hence, impulse train. (or) The otherway is evaluating Fourier series coefficients are verifying. 55. A signal xn is given by $x_0 = 3, x_1 = 2, x_2 = 5, x_3 = 1, x_4 = 0, x_5 = 1, x_6 = 2, x_7 = 2, x_8 =$ where the subscript 'n' denotes time. The peak value of the auto correlation of x_{2n} - is (a) 0 (b) 10 (c) 54 (d) 64 Ans. (b) 56. A system has impulse response $h[n] = \cos(n)u[n]$. The system is (a) Causal and stable (b) Non causal and stable (c) Non causal and not stable (d) Causal and not stable Ans. (d) $h[n] = \cos(n)u[n]$ • Multiplication by $U[n]$ ensures, h[n] = 0, n < 0 Hence, causal		$\frac{Y(s)}{U(s)} = C(sI - A)^{-1} B$					
(a) Half rectified wave (c) Rectangular wave (d) Impulse train Ans. (d) Given that, $x(t) = \frac{1}{T_o} + \sum_{K=1}^{N} \frac{2}{T_o} \cos K \omega_o t$ $a_0 = \frac{1}{T_o}, a_k = \frac{2}{T_o}$ As the Fourier series coefficient a_n is independent of 'K' signal cannot be sawtoo half rectified (or) rectangular. Hence, impulse train. (or) The otherway is evaluating Fourier series coefficients are verifying. 55. A signal xn is given by $x_0 = 3, x_1 = 2, x_2 = 5, x_3 = 1, x_4 = 0, x_5 = 1, x_6 = 2, x_7 = 2, x_8 =$ where the subscript 'n' denotes time. The peak value of the auto correlation of x_{2n-1} is (a) 0 (b) 10 (c) 54 (c) 54 (c) 64 Ans. (b) 56. A system has impulse response $h[n] = \cos(n)u[n]$. The system is (a) Causal and stable (c) Non causal and stable (c) Non causal and not stable (d) Causal and not stable Ans. (d) $h[n] = \cos(n) u[n]$ • Multiplication by $u[n]$ ensures, h[n] = 0, n < 0 Hence, causal			• • End of Solution				
(c) Rectangular wave (d) Impulse train Ans. (d) Given that, $x(t) = \frac{1}{T_o} + \sum_{k=1}^{N} \frac{2}{T_o} \cos k \omega_o t$ $a_0 = \frac{1}{T_o}, a_k = \frac{2}{T_o}$ As the Fourier series coefficient a_n is independent of 'K' signal cannot be sawtoo half rectified (or) rectangular. Hence, impulse train. (or) The otherway is evaluating Fourier series coefficients are verifying. 55. A signal xn is given by $x_0 = 3, x_1 = 2, x_2 = 5, x_3 = 1, x_4 = 0, x_5 = 1, x_6 = 2, x_7 = 2, x_8 = 0$ where the subscript 'n' denotes time. The peak value of the auto correlation of x_{2n} is (a) 0 (b) 10 (c) 54 (d) 64 Ans. (b) 56. A system has impulse response $h[n] = \cos(n)u[n]$. The system is (a) Causal and stable (b) Non causal and stable (c) Non causal and not stable (d) Causal and not stable Ans. (d) $h[n] = \cos(n) u[n]$ • Multiplication by $u[n]$ ensures, h[n] = 0, n < 0 Hence, causal	54 . <i>x</i> (<i>t</i>)	$x(t) = \frac{1}{T_0} + \sum_{k=1}^{N} \frac{2}{T_0} \cos k \omega_0 t$, is the combined trigonometric form of Fourier series for					
Given that, $x(t) = \frac{1}{T_o} + \sum_{K=1}^{N} \frac{2}{T_o} \cos K\omega_o t$ $a_0 = \frac{1}{T_o}, a_k = \frac{2}{T_o}$ As the Fourier series coefficient a_n is independent of 'K' signal cannot be sawtoo half rectified (or) rectangular. Hence, impulse train. (or) The otherway is evaluating Fourier series coefficients are verifying. 55. A signal xn is given by $x_0 = 3, x_1 = 2, x_2 = 5, x_3 = 1, x_4 = 0, x_5 = 1, x_6 = 2, x_7 = 2, x_8 = 0$ where the subscript 'n' denotes time. The peak value of the auto correlation of x_{2n-1} is (a) 0 (b) 10 (c) 54 (d) 64 Ans. (b) 56. A system has impulse response $h[n] = \cos(n)u[n]$. The system is (a) Causal and stable (b) Non causal and stable (c) Non causal and not stable (d) Causal and not stable Ans. (d) $h[n] = \cos(n)u[n]$ • Multiplication by $u[n]$ ensures, h[n] = 0, n < 0 Hence, causal	. ,						
$a_{0} = \frac{1}{T_{o}}, a_{k} = \frac{2}{T_{o}}$ As the Fourier series coefficient a_{n} is independent of 'K' signal cannot be sawtoo half rectified (or) rectangular. Hence, impulse train. (or) The otherway is evaluating Fourier series coefficients are verifying. 55. A signal xn is given by $x_{0} = 3, x_{1} = 2, x_{2} = 5, x_{3} = 1, x_{4} = 0, x_{5} = 1, x_{6} = 2, x_{7} = 2, x_{8} = 0$ where the subscript 'n' denotes time. The peak value of the auto correlation of x_{2n} is (a) 0 (b) 10 (c) 54 (c) 54 (c) 64 Ans. (b) 56. A system has impulse response $h[n] = \cos(n)u[n]$. The system is (a) Causal and stable (b) Non causal and stable (c) Non causal and not stable (d) Causal and not stable Ans. (d) $h[n] = \cos(n)u[n]$ • Multiplication by $u[n]$ ensures, h[n] = 0, n < 0 Hence, causal	Ans. (d)						
As the Fourier series coefficient a_n is independent of 'K' signal cannot be sawtoo half rectified (or) rectangular. Hence, impulse train. (or) The otherway is evaluating Fourier series coefficients are verifying. EndofSoluti 55. A signal xn is given by $x_0 = 3$, $x_1 = 2$, $x_2 = 5$, $x_3 = 1$, $x_4 = 0$, $x_5 = 1$, $x_6 = 2$, $x_7 = 2$, $x_8 = 0$ where the subscript 'n' denotes time. The peak value of the auto correlation of x_{2n-1} is (a) 0 (b) 10 (c) 54 (c) 64 Ans. (b) 56. A system has impulse response $h[n] = \cos(n)u[n]$. The system is (a) Causal and stable (b) Non causal and stable (c) Non causal and not stable (d) Causal and not stable Ans. (d) $h[n] = \cos(n)u[n]$ • Multiplication by $u[n]$ ensures, h[n] = 0, $n < 0$ Hence, causal	Giv						
half rectified (or) rectangular. Hence, impulse train. (or) The otherway is evaluating Fourier series coefficients are verifying. 55. A signal xn is given by $x_0 = 3$, $x_1 = 2$, $x_2 = 5$, $x_3 = 1$, $x_4 = 0$, $x_5 = 1$, $x_6 = 2$, $x_7 = 2$, $x_8 = 0$ where the subscript 'n' denotes time. The peak value of the auto correlation of x_{2n-1} is (a) 0 (b) 10 (c) 54 (c) 54 (c) 64 Ans. (b) 56. A system has impulse response $h[n] = \cos(n)u[n]$. The system is (a) Causal and stable (b) Non causal and stable (c) Non causal and not stable (c) Non causal and not stable Ans. (d) $h[n] = \cos(n) u[n]$ • Multiplication by $u[n]$ ensures, h[n] = 0, $n < 0$ Hence, causal		$a_0 = \frac{1}{T}, \ a_k = \frac{2}{T}$					
(or) The otherway is evaluating Fourier series coefficients are verifying. 55. A signal xn is given by $x_0 = 3$, $x_1 = 2$, $x_2 = 5$, $x_3 = 1$, $x_4 = 0$, $x_5 = 1$, $x_6 = 2$, $x_7 = 2$, $x_8 = 0$ where the subscript 'n' denotes time. The peak value of the auto correlation of x_{2n-1} is (a) 0 (b) 10 (c) 54 (c) 54 (c) 64 Ans. (b) 56. A system has impulse response $h[n] = \cos(n)u[n]$. The system is (a) Causal and stable (b) Non causal and stable (c) Non causal and not stable (c) Non causal and not stable Ans. (d) $h[n] = \cos(n) u[n]$ • Multiplication by $u[n]$ ensures, h[n] = 0, $n < 0$ Hence, causal		As the Fourier series coefficient a_n is independent of 'K' signal cannot be sawtooth					
55. A signal xn is given by $x_0 = 3$, $x_1 = 2$, $x_2 = 5$, $x_3 = 1$, $x_4 = 0$, $x_5 = 1$, $x_6 = 2$, $x_7 = 2$, $x_8 = 0$ where the subscript 'n' denotes time. The peak value of the auto correlation of x_{2n-1} is (a) 0 (b) 10 (c) 54 (c) 54 (c) 64 Ans. (b) 56. A system has impulse response $h[n] = \cos(n)u[n]$. The system is (a) Causal and stable (b) Non causal and stable (c) Non causal and not stable (d) Causal and not stable Ans. (d) $h[n] = \cos(n)u[n]$ • Multiplication by $u[n]$ ensures, h[n] = 0, $n < 0$ Hence, causal	naii						
55. A signal xn is given by $x_0 = 3$, $x_1 = 2$, $x_2 = 5$, $x_3 = 1$, $x_4 = 0$, $x_5 = 1$, $x_6 = 2$, $x_7 = 2$, $x_8 =$ where the subscript 'n' denotes time. The peak value of the auto correlation of x_{2n-1} is (a) 0 (b) 10 (c) 54 (d) 64 Ans. (b) 56. A system has impulse response $h[n] = \cos(n)u[n]$. The system is (a) Causal and stable (b) Non causal and stable (c) Non causal and not stable (d) Causal and not stable Ans. (d) $h[n] = \cos(n)u[n]$ • Multiplication by $u[n]$ ensures, h[n] = 0, $n < 0$ Hence, causal	The	e otherway is evaluating Fourier series	coefficients are verifying.				
where the subscript 'n' denotes time. The peak value of the auto correlation of x_{2n-is} (a) 0 (b) 10 (c) 54 (c) 54 (c) 64 Ans. (b) 56. A system has impulse response $h[n] = \cos(n)u[n]$. The system is (a) Causal and stable (b) Non causal and stable (c) Non causal and not stable (d) Causal and not stable Ans. (d) $h[n] = \cos(n)u[n]$ • Multiplication by $u[n]$ ensures, h[n] = 0, n < 0 Hence, causal			• • End of Solution				
(a) 0 (b) 10 (c) 54 (d) 64 Ans. (b) 56. A system has impulse response $h[n] = cos(n)u[n]$. The system is (a) Causal and stable (b) Non causal and stable (c) Non causal and not stable (d) Causal and not stable Ans. (d) h[n] = cos(n)u[n] • Multiplication by $u[n]$ ensures, h[n] = 0, n < 0 Hence, causal	whe	A signal xn is given by $x_0 = 3$, $x_1 = 2$, $x_2 = 5$, $x_3 = 1$, $x_4 = 0$, $x_5 = 1$, $x_6 = 2$, $x_7 = 2$, $x_8 = 4$ where the subscript 'n' denotes time. The peak value of the auto correlation of x_{2n-1}					
(c) 54 (d) 64 Ans. (b) 56. A system has impulse response $h[n] = \cos(n)u [n]$. The system is (a) Causal and stable (b) Non causal and stable (c) Non causal and not stable (d) Causal and not stable Ans. (d) $h[n] = \cos(n) u[n]$ • Multiplication by $u[n]$ ensures, h[n] = 0, n < 0 Hence, causal		0 (b) 10				
 56. A system has impulse response h[n] = cos(n)u [n]. The system is (a) Causal and stable (b) Non causal and stable (c) Non causal and not stable (d) Causal and not stable Ans. (d) h[n] = cos(n) u[n] Multiplication by u[n] ensures, h[n] = 0, n < 0 Hence, causal 							
 56. A system has impulse response h[n] = cos(n)u [n]. The system is (a) Causal and stable (b) Non causal and stable (c) Non causal and not stable (d) Causal and not stable Ans. (d) h[n] = cos(n) u[n] Multiplication by u[n] ensures, h[n] = 0, n < 0 Hence, causal 	Ans. (b)						
(a) Causal and stable (b) Non causal and stable (c) Non causal and not stable (d) Causal and not stable Ans. (d) $h[n] = \cos(n) u[n]$ • Multiplication by $u[n]$ ensures, h[n] = 0, n < 0 Hence, causal	FC 1 0		• • • End of Solution				
Ans. (d) $h[n] = \cos(n) u[n]$ • Multiplication by $u[n]$ ensures, h[n] = 0, n < 0 Hence, causal	(a)	Causal and stable (b) Non causal and stable				
$h[n] = \cos(n) u[n]$ • Multiplication by $u[n]$ ensures, h[n] = 0, n < 0 Hence, causal		Non causar and not stable (u					
• Multiplication by $u[n]$ ensures, h[n] = 0, n < 0 Hence, causal	Ans. (0)						
	•						
	·	nini must be absolutely summable					

All India

ONLINE for ESE - 2017

Preliminary Examination (Paper-I & Paper-II)

- 15 Part Syllabus Tests : GS & Engg. Aptitude (Paper-I)
- **17** Part Syllabus Tests : Engineering Discipline (Paper-II)
- 4 Full Syllabus Tests : GS & Engg. Aptitude (Paper-I)
- 4 Full Syllabus Tests : Engineering Discipline (Paper-II)

VIDEO SOLUTIONS

with explanations

FAST

server speed

TECHNICAL support team

COMPREHENSIVE result analysis

COMPETITION WITH

thousands of aspirants

Features of ESE Online Test Series :

- Questions are newly developed by R & D wing of MADE EASY.
- Series of part syllabus and full syllabus tests for better practicing.
- Test papers are designed as per ESE 2017 standard and pattern.
- High level of accuracy to make question papers error free.
- Fully explained & well illustrated video solutions for all questions.
- Comprehensive and detailed analysis report of test performance.
- Opportunity to win rewards/prizes for securing position in ESE 2017.
- Compete with thousands of ESE aspirants.
- Subjectwise analysis to know your weak areas.

Test series is likely to start in October, 2016 For online admission & other details, visit : www.madeeasy.in

MADE EA	ESE-2016 : Electronics Engg. Solutions of Objective Paper-I Set-A 26					
65.	For which one of the following measurements a thermistor can be used?(a) Velocity(b) Humidity(c) Displacement(d) Percent of CO2 in air					
Ans.	(a)					
66.	 According to network graphs, the network with 1. Only two odd vertices is traversable 2. No odd vertices is traversable 3. Two or more than two odd vertices are traversable Which of the above statements is/are correct? (a) 1 only (b) 2 only (c) 3 only (d) 1 and 2 					
Ans.	(d) A network graph is traversable only if the number of vertices with odd degree in network graph is exactly 2 (or) 0.					
67.	 End of Solution For any lumped network, for any cut sets and at any instant of time the algebraic sum of all branch currents traversing the cut-set branches is always : (a) One (b) Zero (c) Infinity (d) Greater than zero, but less than one 					
Ans.	(b)					
68.	 End of Solution Which one of the following statements concerning Tellegen's theorem is correct? (a) It is useful in determining the effects in all parts of a linear four-terminal network (b) It is applicable for any lumped network having elements which are linear or nonlinear, active or passive, time varying or time-invariant, and may contain independent or dependent sources (c) It can be applied to a branch, which is not coupled to other branches in a network (d) It states that the sum of powers taken by all elements of a circuit within constraints imposed by KCL and KVL is non-zero 					
Ans.	(b)					
69.	The open circuit input impedance of a 2-port network is (a) $\frac{A}{C}\Omega$ (b) $\frac{B}{D}\Omega$ (c) $\frac{D}{C}\Omega$ (d) $\frac{A}{B}\Omega$					
	$(C) \overline{C} \Sigma^{2} \qquad \qquad (C) \overline{B} \Sigma^{2}$					
	Corporate Office: 44-A/1, Kalu Sarai, New Delhi-16 Email : info@madeeasy.in Visit: www.madeeasy.in					

Features of GATE Online Test Series :

- Video solutions by senior faculty.
- Quality questions exactly similar to GATE standard and patten.
- Questions are newly designed by senior faculty and not taken from previous competitive exams.
- Basic level and Advanced level questions are designed having subjectwise and full syllabus tests.
- High level of accuracy to make question papers error free.
- Fully explained and well illustrated solutions to all the questions.
- Comprehensive and detailed analysis report of test performance.
- Opportunity to compare your performance among thousands of students including MADE EASY quality students.
- Feel of GATE exam i.e it is going to be a kind of mini GATE exam.
- Post GATE exam counseling & support for M. Tech & PSUs.
- Opportunity to win rewards and prizes for GATE-2017 top rankers.

Test series is likely to start in August, 2016 For online admission & other details, visit : www.madeeasy.in

Ans.	(a)
	$Z_{11} = \frac{V_1}{I_1}\Big _{I_2 = 0} = \frac{AV_2 - BI_2}{CV_2 - DI_2}\Big _{I_2 = 0} = \frac{A}{C}$
70.	 • • End of Solution Consider the following statements Two identical 2nd order Butterworth LP filters when connected in cascade will make
	a 4 th order Butterworth LP filter.
	 A high pass 2nd order filter will exhibit a peak if Q exceeds certain value. A band pass filter cannot be of order one.
	4. A network consists of an amplifier of real gain A and a β network in cascade with each other. The network will generate sinusoidal oscillations if the p network is a first order <i>LP</i> filter.
	Which of the above statements are correct?
	(a) 1 and 2 (b) 2 and 3 (c) 3 and 4 (d) 1 and 4
Ans.	(b)
	• • End of Solution
71.	The lowest and the highest critical frequencies of RC driving point admittance are,
	respectively : (a) a zero and a pole (b) a pole and a zero
	(c) a zero and a zero (d) a pole and a pole
Ans.	(a)
72.	The poles and zeros of a voltage function $v(t)$ are : zero at the origin and simple poles
	at -1, -3 and the scale factor is 5. The contribution of the pole at -3 to $v(t)$ is
	(a) $2.5 \in {}^{-3t}$ (b) $7.5 \in {}^{+3t}$ (c) $2.5 \in {}^{+3t}$ (d) $7.5 \in {}^{+3t}$
A D O	
Ans.	(b)
	$V(s) = \frac{5s}{(s+1)(s+3)} = \frac{A}{s+1} + \frac{B}{s+3}$
	$V(s) = \frac{-5/2}{s+1} + \frac{15/2}{s+3}$
	$\begin{array}{c} S+1 S+3 \\ \downarrow \\ 7.5 \in -3t \end{array}$
	7.5€ ⁻⁵¹
	• • • End of Solution

ADE EAS India's Best Institute for IES. GATE & PSUs

Crack in Attempt **ESE, GATE & PSUs**

Mr. B.Singh (Ex. IES) CMD, MADE EASY Group

Why most of the students prefer **MADE EASY**!

Comprehensive Coverage

- More than 1000 teaching hours
 - Freshers can easily understand
- Emphasis on fundamental concepts Basic level to advanced level
- Coverage of whole syllabus (Technical and Non technical)

Focused and Comprehensive Study Books

- Thoroughly revised and updated
- Comprehensive so that, there is no need of any other text book
- Designed by experienced & gualified R&D team of MADE EASY

Dedication and Commitment

- Professionally managed
- No cancellation of classes

• Focused and relevant to exam

- Pre-planned class schedule Subjects completed in continuity
- Starting and completion of classes on time Co-operation and discipline

Complete guidance for written and personality test

- MADE EASY has a dedicated team which provides round the year support for Interpersonal Skills
 - GD and Psychometric Skills
- Communication Skills
- Mock Interviews

Motivation & Inspiration Motivational Sessions by experts

- Expert Guidance Support
- Interaction with ESE & GATE toppers

Regular updation on Vacancies/Notifications

- Display on notice board and announcement in classrooms for vacancies notified by government departments
- Notification of ESE, GATE, PSUs and state services exams

Professionally Managed & Structured Organization

 MADE EASY has pool of well qualified, experienced and trained management staff

Best Pool of Faculty

- India's best brain pool · Full time and permanent Regular brain storming sessions and training Combination of senior professors and young energetic top rankers of ESE & GATE Consistent, Focused and Well planned course curriculum • Course planning and design directly under our CMD GATE & ESE both syllabus thoroughly covered Course coordination and execution directly monitored by our CMD **Best Infrastructure & Support** Well equipped audio-visual classrooms
 Clean and inspiring environment
- In campus facility of photocopy, bookshop and canteen
- Best quality teaching tools

Regular Assessment of Performance

- Self assessment tests (SAT)
- ESE all India Classroom Test Series
- Examination environment exactly similar to GATE & UPSC exams

Counseling Seminars and Guidance

- Full Time Interview support for ESE & PSUs

- 4-6 hrs classes per day
- Well designed course curriculum
- Syllabus completion much before the examination date

Maximum Selections with Top Rankers

- MADE EASY is the only institute which has consistently produced Toppers in ESE, GATE & PSUs Highest Selections in GATE Highest Selections in ESE
- Audio Visual Teaching | Hostel Support | Safe, Secured and Hygienic Campus Environment
- Corp. Office: 44-A/1, Kalu Sarai (Near Hauz Khas Metro Station) New Delhi-110016 Ph: 011-45124612

www.madeeasy.in

- GATE Online Test Series Subject-wise classroom tests with discussion

- Career counseling Techniques for efficient learning
- Post GATE counseling for M.Tech admissions

Timely completion of syllabus

MADE EA	MADE EASS India's Best Institute for IES, GATE & PSUs	ESE-2016 : Electronics Engg. Solutions of Objective Paper-I Set-A	Pa 3
78. Ans.	• •	arly with time	
		• • End of Solut	tion
79.	A charge Q is enclosed by a Gaussian then the outward flux is	spherical surface of radius R. If R is doub	led
		(b) Increased four times	
	(c) Reduced to a quarter	d) Remains unaltered	
Ans.	(d)		
80.	Divergence of a vector div D in the cyli	ndrical coordinate system is	tion
00.			
	(a) $\frac{1}{\rho} \frac{\partial}{\partial \rho} (D_{\rho}) + \frac{I}{\rho} \frac{\partial D_{\phi}}{\partial \phi} + \frac{\partial D_{z}}{\partial z}$		
	(c) $\frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho D_{\rho}) + \frac{I}{\rho} \frac{\partial D_{\phi}}{\partial \phi} + \frac{\partial D_{z}}{\partial z}$	(d) $\frac{\partial D_{\rho}}{\partial \rho} + \frac{\partial D_{\phi}}{\partial \phi} + \frac{\partial D_z}{\partial z}$	
Ans.	(c)		
		• • End of Solut	tion
81.		hove $a + 8$ nC charge from infinity to a point charge $Q = 1.5 \text{ m}^{2}$	oint
	<i>P</i> which is at 2 <i>m</i> distance from a poin (a) $180 \mu J$	(b) $180 \mu\text{J}$	
	(c) 18 µJ	(d) 18 nJ	
Ans.	(a)		
	Work done = $\omega = -Q \int_{\text{initial}}^{\text{final}} \vec{E}$	$\cdot \vec{dl} = Q \left[-\int_{\infty}^{\text{final}} \vec{E} \vec{dl} \right] = Q V$	
	Potential at 2 m distance from a point of	change Q at the origin is	
	$V = \frac{Q'}{4\pi t_0 r} = \frac{5 \times T}{2}$	$\frac{10^{-6}}{2}$ 9×10 ⁹	
	$W = QV = 8 \times 10^{\circ}$	$^{-9} \frac{5 \times 10^{-6}}{2} (9 \times 10^{9}) = 4 \times 5 \times 9 \times 10^{-6}$	
	= 180 µJ	2	
_		• • • End of Solut	tion

	MADE EASY India's Best Institute for IES, GATE & PSUs	ESE-2016 : Electronics Engg. Solutions of Objective Paper-I Set-A	Pa 3
82.	(b) Less apart and dielectric constant(c) More apart and dielectric constant	nt charges increases when they are of the medium between them decreases of the medium between them decreases of the medium between them increases of the medium between them increases	
Ans.	(b) Force between two point charges Q_1 a	and O is	
	$F = \frac{Q_1 Q_2}{4\pi \epsilon d^2}$		
	If d, \in both decreases than F increases	es.	
		• • End of Solu	
83.	A plane $Y = 2$ carries infinite sheet of force on a point charge of 10 mC loca	charge 6 nC/m ² . If medium is free space t ated at the origin is	ther
	(a) $-1080 \pi \bar{a}_y N$	(b) -108 πā _y N	
	(c) –10.8 πā _y N	(d) -1.08 πā _y N	
Ans.	(d)		
	Electric field at origin due to $P_s = 6\frac{r}{r}$	$\frac{dC}{dr^2}$ infinite sheet charge on $y = 2$ surface	is
	$\vec{E} = \frac{P_s}{2\epsilon_o} \hat{a}_N = -\frac{1}{2\epsilon_o} \hat{a}_N =$	$\frac{6 \times 10^{-9}}{\frac{1}{36\pi} \times 10^{-9}} (-\hat{a}_y) = 3 \times 36\pi (-\hat{a}_y)$	
	Force <i>m</i> 10 mC charge = $\vec{F} = Q\vec{E}$		
	$\vec{F} = 10 \times 10^{-3} [3]$	$3 \times 36\pi(-\hat{a}_y)] = 1.08\pi(-\hat{a}_y)$	
84.		• • • End of Solution ilateral triangle of side $r\sqrt{3}$ due to three each and placed at the vertices of the triangle we	qua
	(a) $\frac{q}{2\pi\epsilon_0 r}$	(b) $\frac{\sqrt{3}q}{8\pi\epsilon_0 r}$	
	(c) $\frac{3q}{4\pi\epsilon_0 r}$	(d) zero	

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-16 | Email : info@madeeasy.in | Visit: www.madeeasy.in

	India's Best Institute for IES, GATE & PSUs	ESE-2016 : Electronics Engg. Solutions of Objective Paper-I Set-A	Pag 32
Ans.	(c) If <i>a</i> is the side of the equilateral triang charges each having 'q' charge at co	gle than potential at the centre due to 3 po rners is	oint
	$V = \frac{3\sqrt{3} q}{4\pi \epsilon_o a}$		
	given side of equilateral triangle = a	$= r\sqrt{3}$	
	$V = \frac{3\sqrt{3}q}{4\pi\epsilon_or\sqrt{3}} =$	$=\frac{3q}{4\pi\epsilon_{o}r}$	
85.	The point form of the relation connecting J is	• • End of Solution of Solutio	
	(a) $\nabla \times A = J + \frac{\partial D}{\partial t}$	(b) $A = \int \frac{\mu_0 J}{4\pi \in R} dv$	
	(c) $\nabla^2 A = -\mu_0 J$	(d) $\frac{\partial A}{\partial} = -\frac{J}{\sigma}$	
Ans.	(c)		
86.	In the region $Z < 0$, $\epsilon_{r1} = 2$, $\overline{E}_1 = 3\overline{a}_x + 4$ \overline{E}_2 is	• • End of Soluti $4\overline{a}_y - 2\overline{a}_z$ V/m. For region $Z > 0$, where $\varepsilon_{r2} = 6$	
	(a) $-3\overline{a}_x + 4\overline{a}_y + \frac{6.5}{4}\overline{a}_z$ V/m	(b) $-3\overline{a}_x + 4\overline{a}_y + \frac{4}{6.5}\overline{a}_z$ V/m	
	(c) $-3\overline{a}_x + 4\overline{a}_y - \frac{6.5}{4}\overline{a}_z$ V/m	(d) $-3\overline{a}_x + 4\overline{a}_y - \frac{4}{6.5}\overline{a}_z$ V/m	
Ans.	(d) For $z = 0$ boundary \hat{a}_z component of	the vector is normal.	
	$\vec{E}_1 = -3\hat{a}_x + 4\hat{a}_y$	$-2\hat{a}_z$	
	$\vec{E}_{t_1} = -3\hat{a}_x + 4\hat{a}_y$; $\vec{E}_{N1} = -2\hat{a}_z$	
	First boundary condition $\Rightarrow \vec{E}_{t_1} = \vec{E}_{t_2}$		
	$\vec{E}_{t_2} = -3\hat{a}_x + 4\hat{a}_y$		
	$-t_2$ x y		

MADE EASY will conduct INTERVIEW GUIDANCE PROGRAM FOR ESE-2016 Soon after the announcement of written results

Interview is the most crucial stage which decides the selection or rejection of the candidate. As per the analysis, the ratio of finally selected candidates to written qualified candidates is 1:2.5 Obtaining 120 marks in engineering services interview is considered as impressive score, and over the years we have noticed that only few candidates managed to score above 120 marks. In previous engineering services examinations, numerous candidates from MADE EASY secured more than 140 marks which is an extraordinary achievement of qualitative training and sincere efforts of the aspirants.

ESE-2015 MADE EAST'S IOP TO Performers of Personality Test in all 4 Streams

Civil Engineering				
Rank	Name	Personality Test	Total Marks	
1	Palash Pagaria	150	783.67	
2	Piyush Pathak	150	783.67	
3	Amit Kumar Mishra	150	766.46	
21	Nishant Kumar	144	712.45	
59	Sandeep Singh Olla	144	678.23	
11	Raman Kunwar	142	732.88	
6	Pawan Jeph	140	745.57	
23	Ishan Shrivastava	140	709.24	
24	Abhishek Verma	140	705.12	
65	Yogendra Singh	140	676.44	

Electrical Engineering				
Rank	Name	Personality Test	Total Marks	
13	Neetesh Agrawal	150	708	
12	Pankaj Fauzdar	149	712	
11	Ankita Gupta	146	714	
22	Umesh Prasad Gupta	146	687	
2	Partha Sarathi Tripathy	141	772	
20	Apurva Srivastava	140	692	
1	Shaik Siddhikh Hussain	135	772	
3	Nikki Bansal	134	761	
31	Akhil Pratap Singh	134	673	
9	Sudhakar Kumar	132	718	

Noida

0120-6524612

lainur

09166811228

0141-

	Mechanical Engineering				
Rank	Name	Personality Test	Total Marks		
36	Rohit Singh	148	659		
56	Harmandeep Singh	148	640		
29	Anuj Kumar Mishra	146	675		
39	Anubhaw Mishra	142	657		
7	Sudhir Jain	140	708		
13	Kumar Sourav	140	699		
31	Saurabh Singh Lodhi	140	665		
41	Praseed Sahu	140	653		
54	Vedant Darbari	140	642		
74	Vinay Kumar	140	598		

Electronics & Telecommunication Engg. Personality Test Total Marks Name Rank 9 Shruti Kushwaha 144 754.88 1 Ijaz MYousuf 142 801.22 18 Hitesh 142 743.22 2 Saurabh Pratap Singh 140 791.57 13 Dhanesh Goel 140 747.22 Harshit Mittal 60 140 705.36 Shyam Sundar Sharma 136 14 745.57 43 Anshul Agarwal 136 713.21 49 Aman Chawla 136 709.98 8 Nidhi 132 754.77

MADE EASY Centres

Hyderahad 011-45124612

Delhi

Rhonal Lucknow 09919111168 0812003565

Indore 0731-402961 0756666061

Bhuhaneswar

Pune 09168884343 Kolkata Patna 0612-2356 0612-2356616

		—
	leeasy.	

MADE EA	India's Best Institute for	ERS, GATE & PSUS		D16 : Electronics Engg. s of Objective Paper-I Set-A	Pag 34
91.	If phasors $P_1 = 3 +$	i_{4} and $P_{2} = 6 - i_{5}$	3. then $ F $	$P_1 - P_2$ lis	
• • • •	(a) 5		(b) √ <u>5</u> 3	1 2	
	(c) $\sqrt{73}$		(d) √153		
Ans.	(d)				
		$=\sqrt{3^2+12^2}=$	√9 + 144 =	= √153	
				• • End of Sol	lution
92.		-		ntensity of 0.2 A/m in the Y-direc	
	and amplitude of the	-		frequency of 3 GHz. The wavele respectively :	ngui
	(a) 0.05 m and 75 V			m and 75 V/m	
	(c) 0.05 m and 150	V/m	(d) 0.10 r	m and 150 V/m	
Ans.	(b)	$\vec{H} = 0.2 \ a_v : f =$	3 GHz		
		· · · · · · · · · · · · · · · · · · ·			
		$\lambda = \frac{C}{f} = \frac{3 \times 10^8}{3 \times 10^9} =$	=0.1m		
		$\frac{E}{H} = 120\pi$ for free	space		
				: (0.2) = 24π = 75 V/m	
				• • End of Sol	lution
93.	For energy propagation	on in a lossless trar	nsmission	line, the characteristic impedand	ce of
	the line is expressed			tations have usual meanings).	
	(a) $\sqrt{LC} \Omega$		(b) $\sqrt{\frac{L}{C}} \Omega$	2	
	(c) $\sqrt{\frac{C}{l}} \Omega$		•		
	(c) $\sqrt{\frac{3}{L}} \Omega$		(d) $\sqrt{\frac{R+G}{G-G}}$	$\frac{1}{j\omega L} \Omega$	
Ans.	(b)				
				• • End of Sol	lution
94.				h a load of 200 Ω to a line with i	input
				e of the transformer would be	
	(a) 40 Ω(c) 400 Ω		(b) 100 Ω (d) 1000		
Ans.	(b)				
		$Z_q = \sqrt{(50)(200)} =$	= 100 Ω		
				• • End of Sol	lut <u>ion</u>

95.	For a lossless transmission line $L = 0.35 \mu$	$_{\rm H/m}$, C = 90 pF/m and frequency = 500 MHz.
	Then the magnitude of propagation cons	stant is
		b) 17.63 d) 21.20
Ans.	(b)	
	For lossless line, $r = j\omega\sqrt{LC}$	
	$ f = \omega \sqrt{LC} = 2\pi f_{N}$	<u>LC</u>
	$= 2\pi (500 \times 10^6)$	$\sqrt{0.35 \times 10^{-6} \times 90 \times 10^{-12}}$
	$= 2\pi(500 \times 10^{6})$ $= 176.32 \times 10^{-1}$	
	= 170.32 × 10	
96.	If an antenna has a main beam with be	• • End of Solution oth half-power beam widths equal to 20°, its
50.	directivity (D) is nearly:	sin nai power beam widths equal to 20, its
		b) 102.5 d) 226
Ans.	(b)	() 220
AII5.	$\theta_{HP\pi\omega} = 20^{\circ}$	
	D = Directivity =	$\frac{41253}{(\theta_{HPTC})^2} = \frac{4153}{(20)^2} = 103.13$
	Nearest option is (b).	$(\theta_{HP\pi\omega})^2$ (20) ²
		• • End of Solution
97.	An instrument always extracts some en	ergy from the measured medium. Thus the
	measured quantity is always disturbed by	the act of measurement, which makes a perfect
	(a) Skin-effect	nd it is due to : b) Inductive effect
		d) Lorenz effect
Ans.	(c)	
98.	The characteristic impedance η_0 of a free	• • • End of Solution
	(a) $\frac{\mu_0}{\epsilon_0}$ (b) $\sqrt{\frac{\mu_0}{\epsilon_0}}$
		d) $\mu_0 \epsilon_0$
A		α, μ ₀ ε ₀
Ans.	(b) $\eta_0 = \sqrt{\frac{\mu_0}{\epsilon_0}} = 120\pi$	

MADE E	ESE-2016 : Electronics Engg. Solutions of Objective Paper-I Set-A	
102.	Dynamic characteristics of instruments leading to variations during measurement are:1. Speed of response2. Fidelity3. Dynamic errorWhich of the above are correct?(a) 1 and 2 only(b) 1 and 3 only(c) 2 and 3 only(d) 1, 2 and 3	
Ans.	(a)	
103.	 The reliability of an instrument refers to: (a) Degree to which repeatability continues to remain within specified limits (b) The extent to which the characteristics remain linear (c) Accuracy of the instrument (d) Sensitivity of the instrument 	
Ans.	(a)	
104.	 AC Voltmeters use diodes with: (a) High forward current and low reverse current ratings (b) Low forward current and low reverse current ratings (c) Low forward current and high reverse current ratings (d) High forward current and high reverse current ratings 	
Ans.	(a)	
105.	The bridge circuit shown can be used to measure unknown lossy capacitor C_x with resistance R_x . At balance:	
	$C_{1} + \frac{1}{N^{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}} + \frac{1}{C_{X}} + \frac{1}{C$	
	(a) $R_X = \frac{C_1}{C_3}R_2$ and $C_X = \frac{R_1}{R_2}C_3$ (b) $R_X = \frac{C_3}{C_1}R_1$ and $C_X = \frac{R_2}{R_1}C_3$	

	·	
109.	The resolution of an indicating in 1. Variation in the meter reading 2. Detectable change in the defle 3. Detectable change in the outp Which of the above statements a (a) 1 only (c) 3 only	for the same applied input ection due to smallest change in the applied input put due to drifting of pointer
Ans.	(b)	
110.		e e End of Solution rence between the signals $v_1(t) = 10 \sin \omega t$ and $v_2(t)$ pattern observed on CRO is a circle. The value of α (b) π
	(c) $\frac{\pi}{2}$	(d) $\frac{\pi}{4}$
Ans.	(c)	4
		• • End of Solution
111.	The expected voltage across a re of 97 V. The relative error is:	esistor is 100 V. However, the voltmeter reads a value
	(a) 0.97 (c) 0.07	(b) 0.03(d) 3.00
Ans.	(b)	
	Measured voltage = V_m = True voltage = V_T =	
	Relative error = $\frac{V_m - V_m}{V_T}$	$\frac{V_T}{100} = \frac{97 - 100}{100} = -0.03$
		• • End of Solution
112.	device that prevents flow of current for the flow of current in the other	150 V has been applied to a circuit having a rectifying ent in one direction and offers a resistance of 15 Ω direction. If hot wire type and PMMC type instruments measure the electric current, their readings would
	(a) 3.18 A and 5 A (c) 3.18 A and 5 mA	(b) 5 A and 3.18 A (d) 5 A and 3.18 mA

Ans.	(b)	$V_m = 150 \text{ volt}$
	PMMC (A) \Rightarrow $I_{avg} = \frac{V_{av}}{R}$ $V_{avg} = \frac{V_{av}}{\pi}$	10
	Hot wire (A) \Rightarrow $I_{\text{RMS}} = \frac{V_{\text{RMS}}}{R}$ $I_{\text{RMS}} = \frac{150}{R}$	$\frac{0/\sqrt{2}}{15} = 7.07 \text{ amp}$
113.	A tachometer encoder can be (a) of false pulses because of (b) in forward and reverse dire (c) in one direction only (d) for single revolution in a m	ections
Ans.	(d)	
114.	A rotameter works on the princ (a) Pressure (c) Area	
Ans.	(c)	
115.	An input voltage required to deflect a beam through 3 cm in a Cathode Ray Tube having an anode voltage of 1000 V and parallel deflecting plates 1 cm long and 0.5 cm apart when screen is 30 cm from the centre of the plates is : (a) 300 V (b) 200 V (c) 100 V (d) 75 V	
Ans.	<i>l_d</i> = 1 c	$m = 3 \times 10^{-2} m$ $m = 1 \times 10^{-2} m$ $m = 0.5 \times 10^{-2} m$

MADE EA	
119.	 Strain gauges are constructed with Germanium chips because Germanium: (a) has a strong Hall Effect (b) is crystalline in nature (c) can be doped (d) has piezoelectric property
Ans.	(c)
120.	The advantages of an LVDT is/are: 1. Linearity 2. Infinite resolution 3. Low Hysteresis Which of the above advantages is/are correct? (a) 1 only (b) 2 only (c) 3 only (d) 1, 2 and 3
Ans.	(d)
	• • • End of Solution