
 jffrofeloo/leZtak

STUDY PACKAGE Subject: Mathematics Topic: Sequence \& Progression

 Available Online : www.MathsBySuhag.com

1. Theory
2. Short Revision
3. Exercise (Ex. $1+5=6$)
4. Assertion \& Reason
5. Que. from Compt. Exams
6. 39 Yrs. Que. from IIT-J EE(Advanced)
7. 15 Yrs. Que. from AIEEE (J EE Main)

Student's Name :
 Class Roll No.

Address: Plot No. 27, III- Floor, Near Patidar Studio,

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com Sequence \& Progression
Sequence : A sequence is a function whose domain is the set N of natural numbers. Since the domain for every sequence is the set N of natural numbers, therefore a sequence is represented by its range. If $f: N \rightarrow R$, then $f(n)=t n \in N$ is called a sequence and is denoted by

Real Sequence : A sequence whose range is a subset of R is called a real sequence.
Examples: (i) $2,5,8,11, \ldots \ldots \ldots \ldots \ldots \ldots$ (ii) $4,1,-2,-5$
(iii) $3,-9,27,-81$

Types of Sequence: On the basis of the number of terms there are two types of sequence.
(i) Finite sequences : A sequence is said to be finite if it has finite number of terms.
(ii) Infinite sequences: A sequenceis said to be infinite if it has infinite number of terms.
(i) $\frac{2^{n}}{n}$
(ii) $\frac{3+(-1)^{n}}{3^{n}}$

Solution.
(i) Let $t_{n}=\frac{2^{n}}{n}$
put $\mathrm{n}=1,2,3,4$, we get
$\mathrm{t}_{1}=2, \mathrm{t}_{2}=2, \mathrm{t}_{3}=\frac{8}{3}, \mathrm{t}_{4}=4$
$2,2, \frac{8}{3}, 4, \ldots \ldots$.
(ii) Let $t_{n}=\frac{3+(-1)^{n}}{3^{n}}$
put $\mathrm{n}=1,2,3,4, \ldots \ldots$
so the sequence is $\quad \frac{2}{3}, \frac{4}{9}, \frac{2}{27}, \frac{4}{81}$
Series By adding or substracting the terms of a sequence, we get an expression which is called a series. $a_{1}, a_{2}, a_{3}, \ldots \ldots . a_{n}$ is a sequence, then the expression $a_{1}+a_{2}+a_{3}+\ldots . .+a_{n}$ is a series.
Examplé.
(i) $\begin{aligned} & 1+2+3+4+\ldots \ldots \ldots \ldots \ldots \ldots+n \\ & \text { (i) } 1+4+8+16+\ldots \ldots \ldots \ldots\end{aligned}$

are described by some explicit formula for the $n^{\text {th }}$ term. Those sequences whose terms follow certain patterns are called progressions.

An arithmetic progression (A.P.) :

A.P. is a sequence whose terms increase or decrease by a fixed number. This fixed number is called the common difference. If a is the first term \& d the common difference, then A.P. can be written as a, $a+d, a+2 d, \ldots \ldots . a+(n-1) d$.
(i) $\quad \mathrm{n}^{\text {th }}$ term of an A.P.

Solution. Let a be the first term and d be the common difference
so $\quad t_{54}=a+53 d=-61$ \qquad
equation ${ }^{4}$ (i) - (ii)
$\Rightarrow \quad 50 d=-125$
$d=-\frac{5}{2} \quad \Rightarrow \quad a=\frac{143}{2}$
so $\quad t_{10}=\frac{143}{2}+9\left(-\frac{5}{2}\right)=49$
Solved Example \# 3 Find the number of terms in the sequence 4, 12, 20, .108.
Solution. $\quad a=4, d=8 \quad$ so $\quad 108=4+(n-1) 8 \quad \Rightarrow \quad n=14$
(ii) The sum of first n terms of are A.P.

If a is first term and d is common difference then

$$
\begin{aligned}
\mathrm{S}_{\mathrm{n}} & =\frac{\mathrm{n}}{2}[2 a+(\mathrm{n}-1) \mathrm{d}] \\
& =\frac{\mathrm{n}}{2}[a+\ell]=\mathrm{nt}\left(\frac{\mathrm{n}+1}{2}\right),
\end{aligned}
$$

where ℓ is the last term and $t_{\left(\frac{n+1}{2}\right)}$ is the middle term.
(iii) $r^{\text {th }}$ term of an A.P. when sum of first r terms is given is $t_{r}=s_{r}-S_{r-1}$.

Solved Example \# 4
Find the sum of all natural numbers divisible by 5 , but less than 100.
Solution. All those numbers are 5, 10, 15, 20,
Here $a=5 \quad \mathrm{n}=19 \quad \ell=95$ so $\mathrm{S}=\frac{19}{2}(5+95)=950$.
Successful People Replace the words like; "wish", "try" \& "should" with "I Will". Ineffective People don't.

Find the sum of all the three digit natural numbers which on division by 7 leaves remainder 3.
Solution. All these numbers are 101, 108, 115,997, to find n.

$$
997=101+(n-1) 7 \quad \Rightarrow \quad n=129
$$

so $\quad S=\frac{129}{2}[101+997]=70821$.
Solved Example \# 6 The sum of n terms of two A.Ps. are in ratio $\frac{7 n+1}{4 n+27}$. Find the ratio of their $11^{\text {th }}$ terms.
Sol. Let a_{1} and a_{2} be the first terms and d_{1} and d_{2} be the common differences of two A.P.s respectively then N

$$
\frac{\frac{n}{2}\left[2 a_{1}+(n-1) d_{1}\right]}{\frac{n}{2}\left[2 a_{1}+(n-1) d_{2}\right]}=\frac{7 n+1}{4 n+27} \Rightarrow \frac{a_{1}+\left(\frac{n-1}{2}\right) d_{1}}{a_{2}+\left(\frac{n-1}{2}\right) d_{2}}=\frac{7 n+1}{4 n+27}
$$

For ratio of $11^{\text {th }}$ terms

$$
\frac{n-1}{2}=10 \quad \Rightarrow \quad n=21
$$

so ratio of $11^{\text {th }}$ terms is $\frac{7(21)+1}{4(21)+27}$

$$
=\frac{148}{111}
$$

Solved Example \# 7 If sum of n terms of a sequence is given by $S_{n}=2 n^{2}+3 n$, find its $50^{\text {th }}$ term.
Solution. Let $t_{\text {i }}$ is $n^{\text {th }}$ term of the sequence so $t_{n}=s_{n}-s_{n-1}$.
$=2 n^{2}+3 n-2(n-1)^{2}-3(n-1)$
$=4 n+1$
so $t_{5}=201$.
Self Practice ${ }^{5}$ Problems :

1. Which term of the sequence 2005, 2000, 1995, 1990, 1985 contains the first negative term Ans. 403.
2. For an A.P. show that

$$
\mathrm{t}_{\mathrm{m}}+\mathrm{t}_{2 \mathrm{n}+\mathrm{m}}=2 \mathrm{t}_{\mathrm{m}}
$$

3. Find the maximum sum onf the A.P. 40, 38, 36, 34, 32,

Ans.
(i) The common difference can be zero, positive or negative.
(ii) If a, b, c are in A.P. $\Rightarrow 2 b=a+c \&$ if a, b, c, d are in A.P. $\Rightarrow a+d=b+c$.
(iii) Three numbers in A.P. can be taken as $a-d$, $a, a+d$; four numbers in A.P. can be taken as $a-3 d, a-d, a+d, a+3 d$; five numbers in A.P. are $a-2 d, a-d, a, a+d, a+2 d$ \& six terms in A.P. are $a-5 d, a-3 d, a-d, a+d, a+3 d, a+5 d$ etc.
(iv) The sum of the terms of an A.P. equidistant from the beginning \& end is constant and equal to the sum of first \& last terms.
(v) Any term of an A.P. (except the first) is equal to half the sum of terms which are equidistant from it. $a_{n}=1 / 2\left(a_{n-k}+a_{n+k}\right), k<n$. For $k=1, a_{n}=(1 / 2)\left(a_{n-1}+a_{n+1}\right)$; For $k=2, a_{n}=(1 / 2)\left(a_{n-2}^{+} a_{n+2}\right)$ and so on.
(vi) If each term of an A.P. is increased, decreased, multiplied or divided by the sA.M.e non zero number, then the resulting sequence is also an A.P..
Solved Example \#8 The sum of three numbers in A.P. is 27 and the sum of their squares is 293, find them Solution. Let the numbers be
$a-d, a, a+d$
so $\begin{gathered}3 a=27 \\ \text { Also }(a-d)^{2}+a^{2}+(a+d)^{2}=293 . \\ 3 a^{2}+2 d^{2}=293 \\ d^{2}=25\end{gathered} \Rightarrow \quad d= \pm 5$
therefore numbers are 4, 9, 14.
Solved Example \# 9 If $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ are in A.P. with common difference $\neq 0$, then find the value of $\sum_{i=1}^{5} a_{i}$ when $a_{3}=2$.
Solution. As $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$, are in A.P., we have
$a_{1}+a_{5}=a_{2}+a_{4}=2 a_{3}$.
Hence $\sum_{i=1}^{5} a_{i}=10$.
Solved Example \# 10 If $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P. prove that a^{2}, b^{2}, c^{2} are also in A.P.

Solution.
 $$
\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b} \text { are in A.P. }
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{c+a}-\frac{1}{b+c}=\frac{1}{a+b}-\frac{1}{c+a} \Rightarrow \quad \frac{b+c-c-a}{(c+a)(b+c)}=\frac{c+a-a-b}{(a+b)(c+a)} \\
& \Rightarrow \quad \frac{b-a}{b+c}=\frac{c-b}{a+b} \quad \Rightarrow \quad b^{2}-a^{2}=c^{2}-b^{2} \quad \Rightarrow \quad a^{2}, b^{2}, c^{2} \text { are in A.P. }
\end{aligned}
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Solved Example \# 11 If $\frac{b+c-a}{a}, \frac{c+a-b}{b}, \frac{a+b-c}{c}$ are in A.P., then $\frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are also in A.P.
Solution. Given $\frac{b+c-a}{a}, \frac{c+a-b}{b}, \frac{a+b-c}{c}$ are in A.P.
Add 2 to each term
$\Rightarrow \quad \frac{b+c+a}{a}, \frac{c+a+b}{b}, \frac{a+b+c}{c}$ are in A.P.
divide each by $\mathrm{a}+\mathrm{b}+\mathrm{c} \Rightarrow \frac{1}{\mathrm{a}}, \frac{1}{\mathrm{~b}}, \frac{1}{\mathrm{c}}$ are in A.P.
Arithmetic Mean (Mean or Average) (A.M.):
If three terms are in A.P. then the middle term is called the A.M. between the other two, so if a, b, c are in A.P., b is A.M. of a \& c.
(a) $\quad \mathrm{n}$ - Arithmetic Means Between Two Numbers:

If a, b are any two given numbers \& $a, A_{1}, A_{2}, \ldots, A_{n}, b$ are in A.P. then $A_{1}, A_{2}, \ldots A_{n}$ are the n A.M.'s between $\mathrm{a} \& \mathrm{~b}$.

$$
A_{1}=a+\frac{b-a}{n+1}, A_{2}=a+\frac{2(b-a)}{n+1}, \ldots \ldots, A_{n}=a+\frac{n(b-a)}{n+1}
$$

NOTE : Sum of n A.M.'s inserted between a \& b is equal to n times the single A.M. between $a \& b$
i.e. $\sum_{r=1}^{n} A_{r}=n A$ where A is the single A.M. between a \& b.

Solved Example \# 12 Between two numbers whose sum is $\frac{13}{6}$, an even number of A.M.s is inserted, the sum of these means exceeds their number by unity. Find the number of means.
Solution. Let a and b be two numbers and 2 n A.M. s are inserted between a and b then

$$
\left.\begin{array}{l}
\frac{2 n}{2}(a+b)=2 n+1 . \\
n\left(\frac{13}{6}\right)=2 n+1 . \\
n=6
\end{array} \quad \text { given } a+b=\frac{13}{6}\right]
$$

Solved $\overrightarrow{\text { Example }} \underset{\text { \# }}{ } 13$ insert 20 A.M. between 2 and 86 .
Solution. Here 2 is the first term and 86 is the $22^{\text {nd }}$ term of A.P. so $86=2+(21) \mathrm{d}$ $\Rightarrow \quad \mathrm{d}=4$
so the series is
Self Practice Problems:
82, 86 \qquad
required means are $6,10,14, \ldots 82$.
4. If A.M. between $\mathrm{p}^{\text {th }}$ and $\mathrm{q}^{\text {th }}$ terms of an A.P. be equal to the A.M. between $\mathrm{r}^{\text {th }}$ and $\mathrm{s}^{\text {th }}$ term of the A.P. then
5. If $n A . M . s$ are inserted between 20 and 80 such that first means
last mean $=1: 3$, find n.
Ans. $\quad \mathrm{n}=11$
6. For what value of $n, \frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}, a \neq b$ is the A.M. of a and b. Ans. $n=0$

Geometric Progression (G.P.)
G.P. is a sequence of numbers whose first term is non zero \& each of the succeeding terms is equal to the proceeding terms multiplied by a constant. Thus in a G.P. the ratio of successive terms is constant. This constant factor is called the common ratio of the series \& is obtained by dividing any term by that which immediately proceeds it. Therefore a, ar, $a r^{2}, a r^{3}, a r^{4}, \ldots \ldots$ is a G.P. with a as the first term $\& r$ as common ratio.
Example 2, 4, 8, 16 \qquad
Example $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \frac{1}{81}$ \qquad
(i) $\quad \mathrm{n}^{\text {th }}$ term $=a r^{\mathrm{n}-1}$

Sum of the first n terms i.e. $S_{n}=\left\{\begin{array}{cl}\frac{a\left(r^{n}-1\right)}{r-1} & , r \neq 1 \\ n a & , r=1\end{array}\right.$
(iii) Sum of an infinite G.P. when $|r|<1$. When $n \rightarrow \infty r^{n} \rightarrow 0$ if $|r|<1$ therefore, $S_{\infty}=\frac{a}{1-r}(|r|<1)$. Solved Example \# 14. If the first term of G.P. is 7, its $\mathrm{n}^{\text {th }}$ term is 448 and sum of first n terms is 889 , then find the fifth term of G.P.
Solution. Given $a=7$ the first term
Teko C

$$
\begin{aligned}
& t_{n}=a r^{n-1}=7(r)^{n-1}=448 . \\
& \Rightarrow \quad 7 r^{n}=448 r
\end{aligned}
$$

Also $\quad S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}=\frac{7\left(r^{n}-1\right)}{r-1} \quad \Rightarrow \quad 889=\frac{448 r-7}{r-1}$
$\Rightarrow \quad r=2$
Solved Example \# 15: The first term of an infinite G.P. is 1 and any term is equal to the sum of all the succeeding terms. Find the series.
Solution.
Let the G.P. be $1, r, r^{2}, r^{3}, \ldots \ldots \ldots$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
given condition $\Rightarrow r=\frac{r^{2}}{1-r} \quad \Rightarrow \quad r=\frac{1}{2}$,
Hence series is
$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}$, \qquad
Solved Example \# 16: Let $\mathrm{S}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+$ \qquad find the sum of
(i) first 20 terms of the series
(ii) infinite terms of the series.

Solution.
(i) $\mathrm{S}_{20}=\frac{\left(1-\left(\frac{1}{2}\right)^{20}\right)}{1-\frac{1}{2}}=\frac{2^{20}-1}{2^{19}}$.

Self Practice Problems :

1. Find the G.P. if the common ratio of G.P. is 3 , $n^{\text {th }}$ term is 486 and sum of first n terms is 728 .

Ans. 2, 6, 18, 54, 162, 486.
2. If the $p^{\text {th }}, q^{\text {th }}$, rth terms of a G.P. be a, b, c respectively, prove that $a^{q-r} b^{r-p} c^{p-q}=1$.
3. A G.P. consist of $2 n$ terms. If the sum of the terms occupying the odd places is S_{1} and that of the terms
4. The sum of infinite number of terms of a G.P. is 4 , and the sum of their cubes is 192 , find the series.

Ans.
$6,-3, \frac{3}{2}$
Properties of G.P.
(i) If a, b, c are in G.P. $\Rightarrow b^{2}=a c$, in general if $a_{1}, a_{2}, a_{3}, a_{4}, \ldots \ldots \ldots . . a_{n-1}, a_{n}$ are in G.P., then $a_{1} a_{n}=a_{1} a_{n-1}=a_{3} a_{n-2}=$.
(ii) Any three consecutive terms of a G.P. can be taken as $\frac{a}{r}$, a, ar, in general we take $\frac{a}{r^{k}}, \frac{a}{r^{k-1}}, \frac{a}{r^{k-2}}, \ldots \ldots . . . a, a r, a r^{2}, \ldots \ldots \ldots r^{k}$ in case we have to take $2 k+1$ terms in a G.P.
(iii) Any four consecutive terms of a G.P. can be taken as $\frac{a}{r^{3}}, \frac{a}{r}, a r, a r^{3}$, in general we take
(iv) If each term of a G.P. be multiplied or divided or raised to power by the some non-zero quantity, the resulting sequence is also a G.P..
(v) If $a_{1}, a_{2}, a_{3}, \ldots \ldots$. and $b_{1}, b_{2}, b_{3}, \ldots \ldots .$. are two G.P's with common ratio r_{1} and r_{2} respectively then the
 converse is also true.
Solved Example \# 17: Find three numbers in G.P. having sum 19 and product 216.
Solution. Let the three numbers be $\frac{a}{r}, a$, ar so $a\left[\frac{1}{r}+1+r\right]=19$
$\begin{array}{ll}\text { and } \\ \text { so from (i) } \quad \begin{array}{l}a^{3}=216 \\ 6 r^{2}-13 r\end{array} \quad \Rightarrow=0 . & a=6\end{array}$
$\Rightarrow \quad r=\frac{3}{2}, \frac{2}{3} \quad$ Hence the three numbers are 4, 6, 9.
Solved Example \# 18: Find the product of 11 terms in G.P. whose $6^{\text {th }}$ is 5 .
Solution.: Using the property

Solved Example \# 19:Using G.P. express $0 . \overline{3}$ and $1.2 \overline{3}$ as $\frac{p}{q}$ form.
Solution. Let $x=0 . \overline{3}=0.3333$

$$
\begin{aligned}
& =0.3+0.03+0.003+0.0003+. . \\
& =\frac{3}{10}+\frac{3}{100}+\frac{3}{1000}+\frac{3}{10000}+ \\
& =\frac{\frac{3}{10}}{1-\frac{1}{10}}=\frac{3}{9}=\frac{1}{3} .
\end{aligned}
$$

Let $\mathrm{y}=1.2 \overline{3}$

$$
=1.233333
$$

$$
\begin{aligned}
& =1.233333 \\
& =1.2+0.03+0.003+0.0003+
\end{aligned}
$$

$$
=1.2+\frac{3}{10^{2}}+\frac{3}{10^{3}}+\frac{3}{10^{4}}+
$$

\qquad

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

$$
=1.2+\frac{\frac{3}{10^{2}}}{1-\frac{1}{10}}=1.2+\frac{1}{30}=\frac{37}{30} .
$$

Solved Example \# 20
Evaluate $7+77+777+\ldots \ldots . .$. upto n terms.
Solution. Let $S=7+77+777+\ldots \ldots \ldots$.....upto n terms.

$$
\begin{aligned}
& =\frac{7}{9}[9+99+999+\ldots \ldots] \\
& =\frac{7}{9}\left[(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\ldots \ldots .+ \text { upto } n \text { terms }\right] \\
& =\frac{7}{9}\left[10+10^{2}+10^{3}+\ldots \ldots \ldots .+10^{n}-n\right] \\
& =\frac{7}{9}\left[10 \frac{\left(10^{n}\right)-1}{9}-n\right] \quad=\frac{7}{81}\left[10^{n+1}-9 n-10\right]
\end{aligned}
$$

Geometric Means (Mean Proportional) (G.M.):

If a, b, c are in G.P., b is the G.M. between $a \& c$.
$b^{2}=a c$, therefore $b=\sqrt{a c} ; a>0, c>0$.
(a) $\quad \mathbf{n}$-Geometric Means Between \mathbf{a}, \mathbf{b} :

If a, b are two given numbers \& $a, G_{1}, G_{2}, \ldots ., G_{n}, b$ are in G.P.. Then $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ are $n G . M . s$ between a \& b.
$G_{1}=a(b / a)^{1 / n+1}, G_{2}=a(b / a)^{2 / n+1}$
$G_{\eta}=a(b / a)^{n / n+1}$
NOTE: The product of n G.M.s between a \& b is equal to the nth power of the single G.M. between a \& b
i.e. $\pi_{r=1}^{n} G_{r}=(G)^{n}$ where G is the single G.M. between $a \& b$.

Solved Example \# 21 Insert 4 G.M.s between 2 and 486.
Solution. Common ratio of the series is given by $r=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}=(243)^{1 / 5}=3$ Hence four G.M.s are $6,18,54,162$.
Self Practice Problems :
2.
5, the products are in A.P. Find the numbers. Ans. 10, 20, 40 If $a=\underbrace{111 \ldots \ldots .1}_{\text {' } 55}, b=1+10+10^{2}+10^{3}+10^{4}$ and $c=1+10^{5}+10^{10}+\ldots .+10^{50}$, then prove that
$\begin{array}{ll}\text { (i) } & \text { (ii) } a=b c \text {. }\end{array}$
Harmonic Progression (H.P.) : A sequence is said to H.P. if the reciprocals of its terms are in A.P.. If the sequence $a_{1}, a_{2}, a_{3}, \ldots ., a_{n}$ is an H.P. then $1 / a_{1}, 1 / a_{2}, \ldots ., 1 / a_{n}$ is an A.P. \& converse. Here we do not have the formula for the sum of the n terms of a H.P.. For H.P. whose first term is a and second term is b, the $n^{\text {th }}$ term is $t_{n}=\frac{a b}{b+(n-1)(a-b)}$. If a, b, c are in H.P. $\Rightarrow b=\frac{2 a c}{a+c}$ or $\frac{a}{c}=\frac{a-b}{b-c}$.

NOTE : (i) If a, b, c are in A.P. $\Rightarrow \frac{a-b}{b-c}=\frac{a}{a}$
(ii) If a, b, c are in G.P. $\Rightarrow \frac{a-b}{b-c}=\frac{a}{b}$

Harmonic Mean (H.M.):

If a, b, c are in H.P., b is the H.M. between a \& c, then $b=2 a c /[a+c]$.
If $a_{1}, a_{2}, \ldots \ldots . a_{n}$ are ' n ' non-zero numbers then H.M. H of these numbers is given by
$\frac{1}{H}=\frac{1}{n}\left[\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots \ldots+\frac{1}{a_{n}}\right]$
Solved Example \# 22: If $m^{\text {th }}$ term of H.P. is n, while $n^{\text {th }}$ term is m, find its $(m+n)^{\text {th }}$ term.
Solution.: Given $T_{m}=n$ or $\frac{1}{a+(m-1) d}=n$; where a is the first term and d is the common difference of the corresponding A.P.
so $\quad a+(m-1) d=\frac{1}{n} \quad$ and $\quad a+(n-1) d=\frac{1}{m} \quad \Rightarrow(m-n) d=\frac{m-n}{m n}$ or $d=\frac{1}{m n}$
so

$$
a=\frac{1}{n}-\frac{(m-1)}{m n}=\frac{1}{m n}
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

Self Practice Problems : 1. If a, b, c be in H.P., show that $a: a-b=a+c: a-c$.
2.If the H.M. between two quantities is to their G.M.s as 12 to 13 , prove that the quantities are in ratio 4 to 9 .
3. If H be the harmonic mean of a and b then find the value of $\frac{H}{2 a}+\frac{H}{2 b}-1$. Ans. 0
4. If a, b, c, d are in H.P., the show that $a b+b c+c d=3 a d$

Relation between means :
(i) If A, G, H are respectively A.M., G.M., H.M. between $a \& b$ both being unequal $\&$ positive then, $\mathrm{G}^{2}=\mathrm{AH}$ i.e. A, G, H are in G.P.

Solved Example \# 25:The A. $$
\frac{6}{5} \text {; find the numbers. }
$$

Solution. Let the numbers be a and b, now using the relation

$$
\mathrm{G}^{2} \quad=\mathrm{A} \cdot \mathrm{H} .
$$

i.e. $\quad a b=36$

$$
\Rightarrow \quad G=6
$$

$$
\text { Hence the two numbers are } 3 \text { and } 12 .
$$

(ii) A.M. \geq G.M. \geq H.M.

Let $a_{1}, a_{2}, a_{3}, \ldots \ldots a_{n}$ be n positive real numbers, then we define their
A.M. $=\frac{a_{1}+a_{2}+a_{3}+\ldots \ldots .+a_{n}}{n}$, their
G.M. $=\left(a_{1} a_{2} a_{3} \ldots \ldots . . a_{n}\right)^{1 / n}$ and their H.M. $=\frac{n}{\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots \ldots+\frac{1}{a_{n}}}$ It can be shown that
A.M. \geq G.M. \geq H.M. and equality holds at either places iff
$\mathrm{a}_{1}=\mathrm{a}_{2}=\mathrm{a}_{3}=$ \qquad a_{n}
Solved Example \# 26
If $a, b, c,>0$ prove that $\frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq 3$
Solution.
Using the relation A.M. \geq G.M. we have

$$
\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{3} \geq\left(\frac{a}{b} \cdot \frac{b}{c} \cdot \frac{c}{a}\right)^{\frac{1}{3}} \quad \Rightarrow \quad \frac{a}{b}+\frac{b}{c}+\frac{c}{a} \geq 3
$$

Solved Example \# 27
For non-zero x, y, z prove that $(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \geq 9$
Solution. Using the relation A.M. \geq H.M.

$$
\begin{gathered}
\frac{x+y+z}{3} \geq \frac{3}{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}} \\
\Rightarrow \quad(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \geq 9
\end{gathered}
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

Sol. Ex. \# 28: If $a_{i}>0 \forall i \in N$ such that $\prod_{i=1}^{n} a_{i}=1$, then prove that $\left(1+a_{1}\right)\left(1+a_{2}\right)\left(1+a_{3}\right) \ldots \ldots . .\left(1+a_{n}\right) \geq 2^{n}$
Solution. Using A.M. \geq G.M.

$$
\begin{aligned}
& 1+a_{1} \geq 2 \sqrt{a_{1}} \\
& 1+a_{2} \geq 2 \sqrt{a_{2}} \\
& 1+a_{n} \geq 2 \sqrt{a_{n}} \quad \Rightarrow \quad\left(1+a_{1}\right)\left(1+a_{2}\right) \ldots \ldots \ldots\left(1+a_{n}\right) \geq 2^{n}\left(a_{1} a_{2} a_{3} \ldots \ldots \cdot a_{n}\right)^{1 / n}
\end{aligned}
$$

$$
\begin{gathered}
\text { As } a_{1} a_{2} a_{3} \ldots . . a_{n}=1 \\
\text { Hence }\left(1+a_{1}\right)\left(1+a_{2}\right) \ldots \ldots \ldots\left(1+a_{n}\right) \geq 2^{n} .
\end{gathered}
$$

Solved Example \# $29 \quad$ If $n>0$ prove that $2^{n}>1+n \sqrt{2^{n-1}}$
Solution. Using the relation A.M. \geq G.M. on the numbers 1, $2,2^{2}, 2^{3}$ \qquad 2^{n-1} we have
$\frac{1+2+2^{2}+\ldots \ldots+2^{n-1}}{n}>\left(1.22^{2} 2^{3}\right.$ \qquad $\left.2^{n-1}\right)^{1 / n}$

Equality does not hold as all the numbers are not equal.

$$
\begin{aligned}
& \Rightarrow \quad \frac{2^{n}-1}{2-1}>n\left(2^{\frac{(n-1) n}{2}}\right)^{\frac{1}{n}} \quad \Rightarrow \quad 2^{n}-1>n 2^{\frac{(n-1)}{2}} \\
& \Rightarrow \quad 2^{n}>1+n 2^{\frac{(n-1)}{2}}
\end{aligned}
$$

Sol. Ex. \# 30 Find the greatest value of $x y z$ for positive value of x, y, z subject to the condition $x y+y z+z x=12$.

$$
\frac{x y+y z+z x}{3} \geq\left(x^{2} y^{2} z^{2}\right)^{1 / 3} \quad 4 \geq(x y z)^{2 / 3} \quad \Rightarrow \quad x y z \leq 8
$$

Solved Example \# 32 If a, b, c are in H.P. and they are distinct and positive then prove that $a^{n}+c^{n}>2 b^{n}$

Solution.

$$
\text { Let } \mathrm{a}^{\mathrm{n}} \text { and } \mathrm{c}^{n} \text { be two numbers }
$$

then $\begin{aligned} & \frac{a^{n}+c^{n}}{2}>\left(a^{n} c^{n}\right)^{1 / 2} \\ & a^{n}+c^{n}>2(a c)^{n / 2} \ldots\end{aligned}$
Also G.M. >H.M.
i.e. $\sqrt{a c}>b \quad(a c)^{n / 2}>b^{n}$
(ii)
hence from (i) and (ii) $a^{n}+c^{n}>2 b^{n}$
Self Practice Problems:

1. If a, b, c are real and distinct then show that $a^{2}\left(1+b^{2}\right)+b^{2}\left(1+c^{2}\right)+c^{2}\left(1+a^{2}\right)>6 a b c$
2. Prove that $n^{n}>1.3 .5 \ldots \ldots . .(2 n-1)$

If a, b, c, d be four distinct positive quantities in G.P. then show that
(i)

$$
\begin{equation*}
a+d>b+c \tag{ii}
\end{equation*}
$$

$$
\frac{1}{a b}+\frac{1}{c d}>2\left(\frac{1}{b d}+\frac{1}{a c}-\frac{1}{a d}\right)
$$

4. Prove that $\triangle A B C$ is an equilateral triangle iff $\tan A+\tan B+\tan C=3 \sqrt{3}$
5. If $a, b, c>0$ prove that $[(1+a)(1+b)(1+c)]^{7}>7^{7} a^{4} b^{4} c^{4}$

Sum of \mathbf{n} terms of an Arithmetico-Geometric Series:

Let $S_{n}=a+(a+d) r+(a+2 d) r^{2}+\ldots . .+[a+(n-1) d] r^{n-1}$
then $S_{n}=\frac{a}{1-r}+\frac{d r\left(1-r^{n-1}\right)}{(1-r)^{2}}-\frac{[a+(n-1) d] r^{n}}{1-r}, r \neq 1$.
Sum To Infinity: If $|r|<1 \& n \rightarrow \infty$ then $\operatorname{Limit}_{n \rightarrow \infty} r^{n}=0 \Rightarrow S_{\infty}=\frac{a}{1-r}+\frac{d r}{(1-r)^{2}}$.
Solved Example \# $33 \quad$ Find the sum of the series

$$
1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+\ldots \ldots \text { to } n \text { terms. }
$$

Solution. Let $S=1+\frac{4}{5}+\frac{7}{5^{2}}+\frac{10}{5^{3}}+\ldots \ldots+\frac{3 n-2}{5^{n-1}}$

$$
\begin{equation*}
\left(\frac{1}{5}\right) S=\frac{1}{5}+\frac{4}{5^{2}}+\frac{7}{5^{3}}+\ldots \ldots+\frac{3 n-5}{5^{n-1}}+\frac{3 n-2}{5^{n}} \tag{ii}
\end{equation*}
$$

(i) - (ii) \Rightarrow
$\frac{4}{5} S=1+\frac{3}{5}+\frac{3}{5^{2}}+\frac{3}{5^{3}}+\ldots \ldots+\frac{3}{5^{n-1}}-\frac{3 n-2}{5^{n}}$.
$\frac{4}{5} S=1+\frac{\frac{3}{5}\left(1-\left(\frac{1}{5}\right)^{n-1}\right)}{1-\frac{1}{5}}-\frac{3 n-2}{5^{n}}$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

$$
\begin{aligned}
& =1+\frac{3}{4}-\frac{3}{4} \times \frac{1}{5^{n-1}}-\frac{3 n-2}{5^{n}} \\
& =\frac{7}{4}-\frac{12 n+7}{4.5 n} \quad \therefore \quad S=\frac{35}{16}-\frac{(12 n+7)}{16 \cdot 5^{n-1}} .
\end{aligned}
$$

Solved Example \# 35: Evaluate $1+2 x+3 x^{2}+4 x^{3}+$ \qquad upto infinity where $|x|<1$.
Solution. Let $S=1+2 x+3 x^{2}+4 x^{3}+\ldots$.
(i) - (ii) $\Rightarrow(1-x) S=1+x+x^{2}+x^{3}+$
or $\quad S=\frac{1}{(1-x)^{2}}$
Solved Example \# 36 Evaluate $\quad 1+(1+b) r+\left(1+b+b^{2}\right) r^{2}+\ldots \ldots \ldots$ to infinite terms for \mid br $\mid<1$.
Solution. Let $S=1+(1+b) r+\left(1+b+b^{2}\right) r^{2}+\ldots$.
$r S$
(i) $-(\mathrm{ii})$$\quad \Rightarrow \quad \begin{array}{r}r+(1+b) r^{2}+\ldots \ldots \ldots \\ (1-r) S \\ =1+b r+b^{2} r^{2}+b^{3} r^{3}+\ldots .\end{array}$ \qquad

$$
\begin{equation*}
\Rightarrow \quad S=\frac{1}{(1-b r)(1-r)} \tag{ii}
\end{equation*}
$$

Self Practice Problems :

1. Evaluate
$1.2+2.2^{2}+3.2^{3}+$ \qquad $+100.2^{100}$

Ans. $\quad 99.2^{101}+2$.
2. Evaluate
$1+3 x+6 x^{2}+10 x^{3}+$ upto infinite term where $|x|<1$.

Ans. $\frac{1}{(1-x)^{3}}$
3. Sum to n terms of the series $1+2\left(1+\frac{1}{n}\right)+3\left(1+\frac{1}{n}\right)^{2}+$ \qquad Ans. n^{2}
I mportant Results

$$
=\frac{2(n+1) n}{2}+n \quad=n^{2}+2 n \quad \text { or } \quad n(n+2)
$$

(i) $\sum_{r=1}^{n}\left(a_{r} \pm b_{r}\right)=\sum_{r=1}^{n} a_{r} \pm \sum_{r=1}^{n} b_{r}$.
(ii) $\quad \sum_{r=1}^{n} k a_{r}=k \sum_{r=1}^{n} a_{r}$.
(iii) $\sum_{r=1}^{n} k=k+k+k \ldots . . . n$ times $=n k$; where k is a constant.(iv) $\sum_{r=1}^{n} r$
(v) $\quad \sum_{r=1}^{n} r^{2}=1^{2}+2^{2}+3^{2}+$
$+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ (vi) $\sum_{r=1}^{n} r^{3}=1^{3}+2^{3}+3^{3}+$

(vii) $\quad 2 \sum_{i<j=1}^{n} a_{i} a_{j}=\left(a_{1}+a_{2}+\ldots \ldots .+a_{n}\right)^{2}-\left(a_{1}{ }^{2}+a_{2}{ }^{2}+\ldots \ldots+a_{n}{ }^{2}\right)$

Solved Example \# 37: Find the sum of the series to n terms whose general term is $2 n+1$.

$$
\begin{aligned}
& S_{n}=\Sigma T_{n}=\Sigma(2 n+1) \\
= & 2 \Sigma n^{n}+\Sigma 1
\end{aligned}
$$

$$
\text { Solved Example \# 38: } T_{k}=k^{2}+2^{k} \text { then find } \sum_{k=1}^{n} T_{k} \text {. }
$$

Solution.

$$
\begin{aligned}
& \sum_{k=1}^{n} T_{k}=\sum_{k=1}^{n} k^{2}+\sum_{k=1}^{n} 2^{k} \\
= & \frac{n(n+1)(2 n+1)}{6}+\frac{2\left(2^{n}-1\right)}{2-1} \quad=\frac{n(n+1)(2 n+1)}{6}+2^{n+1}-2 .
\end{aligned}
$$

Solved Example \# 39:
Find the value of the expression $\sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1$
Solution.: $\quad \sum_{i=1}^{n} \sum_{j=1}^{i} \sum_{k=1}^{j} 1=\sum_{i=1}^{n} \sum_{j=1}^{i} j$
$=\sum_{i=1}^{n} \frac{i(i+1)}{2}$
$=\frac{1}{2}\left[\sum_{i=1}^{n} i^{2}+\sum_{i=1}^{n} i\right]$
$=\frac{1}{2}\left[\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}\right]$
$=\frac{\mathrm{n}(\mathrm{n}+1)}{12}[2 \mathrm{n}+1+3]=\frac{\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)}{6}$.
METHOD OF DI FFERENCE
Type - 1
Let $u_{1}, u_{2}, u_{3} \ldots \ldots$. be a sequence, such that $u_{2}-u_{1}, u_{3}-u_{2}$, \qquad is either an A.P. or a G.P. then nth term u_{n} of this sequence is obtained as follows
$S=u_{1}+u_{2}+u_{3}+\ldots \ldots \ldots \ldots+u_{n}$
$S=u_{1}^{2}+u_{2}+\ldots \ldots \ldots . .+u_{n-1}+u_{n}$
(i)-(ii) $\Rightarrow u_{n}=u_{1}+\left(u_{2}-u_{1}\right)+\left(u_{3}^{n-1}-u_{2}\right)+\ldots \ldots \ldots \ldots+\left(u_{n}-u_{n-1}\right)$

Where the series $\left(u_{2}-u_{1}^{2}\right)+\left(u_{3}-u_{2}^{3}\right)+\ldots \ldots \ldots+\left(u_{n}-u_{n-1}\right)$ is

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
either in A.P. or in G.P. then we can find u_{n} and hence sum of this series as $S=\sum_{r=1}^{k} u_{r}$
Solved Example \# 40
Find the sum to n-terms $3+7+13+21$
Solution.
(i) - (ii) $\stackrel{S}{\Rightarrow}=T_{n}=3+4+6+8+$ \qquad $+{ }^{n}{ }^{+} \mathrm{T}^{+}$ $\mathrm{T}_{\mathrm{n}-1}$) (ii)
$=3+\frac{n-1}{2}[8+(n-2) 2]$ $=3+(n-1)(n+2)$
Hence $\begin{aligned} & S=\sum\left(n^{2}+n+1\right) \\ & =\sum n^{2}+\sum n+\sum 1\end{aligned}$

$$
\begin{array}{r}
=\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}+n \quad=\frac{n}{3}\left(n^{2}+3 n+5\right) \\
\text { Find the sum to } n \text {-terms } 1+4+10+22+ \tag{ii}
\end{array}
$$

$$
\text { So } \quad \mathrm{T}_{n}=3 \cdot \dot{T}_{n}=3 \sum 2^{n-1}-2
$$

$$
=3 \cdot\left(\frac{2^{n}-1}{2-1}\right)-2 n \quad=3.2^{n}-2 n-3
$$

Type - 2 If possible express $r^{\text {th }}$ term as difference of two terms as $t_{r}=f(r)-f(r \pm 1)$. This can be explained with the help of examples given below.
Solved Example \# 42 Find the sum to n-terms of the series $1.2+2.3+3.4+$
Solution. Let T be the general term of the series

$$
\text { So } \quad T_{r} \quad=r(r+1) \text {, }
$$

so $\quad T_{r} \quad=\frac{r}{3}(r+1)[(r+2)-(r-1)]$
$=\frac{1}{3}[r(r+1)(r+2)-(r-1) r(r+1)]$.
Let $f(r)=\frac{1}{3} r(r+1)(r+2)$
Now $S=\sum_{r=1}^{n} T_{r}=T_{1}+T_{2}+T_{3}+\ldots \ldots \ldots+T_{n}$

Solved Example \# 41

\qquad
(i) - (ii) $\stackrel{S}{\Rightarrow}=T_{n}=1+4+10+\ldots \ldots \ldots+T_{n-1}+T_{n}+.$.
$T_{n}=1+3\left(\frac{2^{n-1}-1}{2-1}\right)$
..(i)
(i) - (ii) $\Rightarrow T_{n}=1+\left(3+6+12+\ldots \ldots \ldots+T_{n}-T_{n-1}\right)$

$$
\text { So express } t_{r}=f(r)-f(r+1) \text { multiply and divide } t_{r} \text { by }[(r+2)-(r-1)]
$$

Hence sum of series is $f(n)-f(0)$.
Solved Example \# 43 Sum to n terms of the series $\frac{1}{(1+x)(1+2 x)}+\frac{1}{(1+2 x)(1+3 x)}+\frac{1}{(1+3 x)(1+4 x)}+$
Solution. Let T_{r} be the general term of the series

$$
\begin{aligned}
& T_{r}=\frac{1}{(1+r x)(1+(r+1) x)} \text { So } \quad T_{r}=\frac{1}{x}\left[\frac{[1+(r+1) x]-(1+r x)}{(1+r x)(1+(r+1) x)}\right] \\
& \quad=\frac{1}{x}\left[\frac{1}{1+r x}-\frac{1}{1+(r+1) x}\right] \\
& \begin{aligned}
& T_{r}=f(r)-f(r+1) \\
& \therefore=\sum T_{r}=T_{1}+T_{2}+T_{3}+\ldots \ldots \ldots+T_{n} \\
&=\frac{1}{x}\left[\frac{1}{1+x}-\frac{1}{1+(n+1) x}\right] \quad=\frac{n}{(1+x)[1+(n+1) x]}
\end{aligned}
\end{aligned}
$$

Solved Example \# 44 Sun to n terms of the series $\frac{4}{1.2 \cdot 3}+\frac{5}{2 \cdot 3 \cdot 4}+\frac{6}{3.4 .5}+$ \qquad
Solution. Let $T_{r}=\frac{r+3}{r(r+1)(r+2)}$

$$
\begin{aligned}
& =\frac{1}{(r+1)(r+2)}+\frac{3}{r(r+1)(r+2)}=\left[\frac{1}{r+1}-\frac{1}{r+2}\right]+\frac{3}{2}\left[\frac{1}{r(r+1)}-\frac{1}{(r+1)(r+2)}\right] \\
\therefore \quad S & =\left[\frac{1}{2}-\frac{1}{n+2}\right]+\frac{3}{2}\left[\frac{1}{2}-\frac{1}{(n+1)(n+2)}\right]
\end{aligned}
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com

$$
=\frac{5}{4}-\frac{1}{n+2}\left[1+\frac{3}{2(n+1)}\right] \quad=\frac{5}{4}-\frac{1}{2(n+1)(n+2)}[2 n+5]
$$

Note : It is not always necessary that the series of first order of differences i.e. $u_{2}-u_{1}, u_{3}-u_{2}, \ldots \ldots . u_{n}-u_{n-1}$, is always either in A.P. or in G.P. in such case let $u_{1}=T_{1}, u_{2}-u_{1}=T_{2}, u_{3}-u_{2}=T_{3} \ldots \ldots, u_{n}-u_{n-1}=T_{n}$.
So $\quad \begin{aligned} & u_{n}=T_{1}+T_{2}+\ldots \ldots \ldots \ldots+T_{n} \\ & \text { (i) }- \text { (ii) } \Rightarrow T_{n}\end{aligned} \Rightarrow=T_{1}+T_{2}+\ldots \ldots+T_{n-1}+T_{n}$
(i) - (ii) $\vec{T}_{n}^{n}=T_{1}+\left(T_{2}-T_{1}\right)+\left(T_{3}-T_{2}\right)+\ldots .+\left(T_{n}-T_{n-1}\right)$

Now, the series $\left(T_{2}-T_{1}\right)^{1}+\left(T_{3}-T_{2}\right)^{2}+\ldots . .+\left(T_{n}-T_{n-1}\right)^{-1}$ is series of second order of differences and when it is either in A.P. or in ${ }^{2}$ G.P., then $u_{n}=u_{1}+\sum T_{r}$
Otherwise in the similar way we find series of higher order of differences and the $\mathrm{n}^{\text {th }}$ term of the series. With the help of following example this can be explained.
Solved Example \# 45 Find the nth term and the sum of n term of the series
2,12,36,80,150,252
Solution. Let $S=2+12+36+80+150+252+$

(iii) - (iv) $\Rightarrow{ }^{n} T_{n}-T_{n-1}=2+8+14+20+26+$

$$
=\frac{n}{2}[4+(n-1) 6]=n[3 n-1]=T_{n}-T_{n-1}=3 n^{2}-n
$$

$\quad \begin{aligned} & \text { general term of given series is } \sum T_{n}-T_{n-1}=\sum 3 n \\ & S^{n}=\sum n^{3}+\sum n^{2}\end{aligned}$
Hence sum of this series is

$$
=\frac{n^{2}(n+1)^{2}}{4}+\frac{n(n+1)(2 n+1)}{6} \quad=\frac{n(n+1)}{12}\left(3 n^{2}+7 n+2\right)
$$

$$
\begin{equation*}
\frac{1}{12} n(n+1)(n+2)(3 n+1) \tag{i}
\end{equation*}
$$

Solved Example \# 46: Find the general term and sum of n terms of the series 9, 16, 29, 54, 103
Sol. Let $S=9+16+29+54+103+\ldots$

(iii) - (iv) $\Rightarrow T_{n}-T_{n-1}=9+(-2)+\underbrace{6+12+24+\ldots \ldots}_{(n-2) \text { terms }}=7+6\left[2^{n-2}-1\right]=6(2)^{n-2}+1$.
\therefore Also General term is $T_{n}=6(2)^{n-1}+n+2$
Älso sum $S=\Sigma T_{n}{ }^{n}=6\left(22^{n-1}+\Sigma n+\Sigma 2\right.$

$$
=6 \cdot \frac{\left(2^{n}-1\right)}{2-1}+\frac{n(n+1)}{2}+2 n \quad=6\left(2^{n}-1\right)+\frac{n(n+5)}{2}
$$

Self Practice Problems :

(i) $\frac{1}{1^{3}}+\frac{1+2}{1^{3}+2^{3}}+\frac{1+2+3}{1^{3}+2^{3}+3^{3}}$ Ans.

$$
\frac{2 n}{n+1}
$$

$$
\begin{equation*}
\frac{1}{1.3 .5}+\frac{1}{3.5 .7}+ \tag{ii}
\end{equation*}
$$

$$
+\frac{1}{5.7 .9}
$$

(iii)
$1.5 \cdot 9+2 \cdot 6 \cdot 10+3.7 .11$ \qquad
Ans. $\frac{1}{4}\left[\frac{1}{3}-\frac{1}{(2 n+1)(2 n+3)}\right]$
(iv) $4+14+30+52+82+114+\ldots \ldots \ldots .$.

Ans. $\quad \frac{\mathrm{n}}{4}(\mathrm{n}+1)(\mathrm{n}+8)(\mathrm{n}+9)$
(v) $2+5+12+31+86+\ldots \ldots \ldots \ldots .$.

Ans. $\quad n(n+1)^{2}$
Ans. $\frac{3^{n}+n^{2}+n-1}{2}$

DEFINITION : A sequence is a set of terms in a definite order with a rule for obtaining the terms.
e.g. $1,1 / 2,1 / 3$, , 1/n, \qquad is a sequence.
AN ARITHMETIC PROGRESSION (AP) :AP is a sequence whose terms increase or decrease by a fixed number. This fixed number is called the common difference. If a is the first term \& d the common difference, then AP can be written as $a, a+d, a+2 d$, \qquad $a+(n-1) d$, \qquad

NOTES :(i) If each term of an A.P. is increased, decreased, multiplied or divided by the same non zero number, then the resulting sequence is also an AP.
(ii) Three numbers in AP can be taken as $a-d, a, a+d$; four numbers in AP can be taken as a-3d, $a-d, a+d, a+3 d$; five numbers in AP are $a-2 d, a-d, a, a+d, a+2 d \&$ six terms in AP are $\mathrm{a}-5 \mathrm{~d}, \mathrm{a}-3 \mathrm{~d}, \mathrm{a}-\mathrm{d}, \mathrm{a}+\mathrm{d}, \mathrm{a}+3 \mathrm{~d}, \mathrm{a}+5 \mathrm{~d}$ etc.
(iii) The common difference can be zero, positive or negative.
(iv) The sum of the two terms of an AP equidistant from the beginning \& end is constant and equal to the sum of first \& last terms.
(v) Any term of an AP (except the first) is equal to half the sum of terms which are equidistant from it.
(vi) $\quad t_{r}=S_{r}-S_{r-1}$
(vii) If a, b, c are in $A P \Rightarrow 2 b=a+c$.

GEOMETRIC PROGRESSION (GP) : GP is a sequence of numbers whose first term is non zero \& each of the succeeding terms is equal to the proceeding terms multiplied by a constant. Thus in a GP the ratio of successive terms is constant. This constant factor is called the COMMON RATIO of the series \& is obtained by dividing any term by that which immediately proceeds it. Therefore $a, a r, \mathrm{ar}^{2}, \mathrm{ar}^{3}, \mathrm{ar}^{4}$,
(i) $\quad n^{\text {th }}$ term $=a r^{n-1}$
(ii) Sum of the $I^{\text {st }} n$ terms i.e. $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$, if $r \neq 1$.
(iii) Sum of an infinite GP when $|r|<1$ when $n \rightarrow \infty r^{n} \rightarrow 0$ if $|r|<1$ therefore, $S_{\infty}=\frac{a}{1-r}(|r|<1)$
(iv) If each term of a GP be multiplied or divided by the same non-zero quantity, the resulting sequence is also a GP.
(v) Any 3 consecutive terms of a GP can be taken as a / r, a, ar ; any 4 consecutive terms of a GP can be taken as $a / r^{3}, a / r, a r, a r^{3} \&$ so on.
(vi) If a, b, c are in $G P \Rightarrow b^{2}=a c$.

HARMONIC PROGRESSION (HP) : A sequence is said to HP if the reciprocals of its terms are in AP. If the sequence $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ is an HP then $1 / a_{1}, 1 / a_{2}, \ldots, 1 / a_{n}$ is an AP \& converse. Here we do not have the formula for the sum of the n terms of an HP. For HP ${ }_{\text {whose }}$ first term is a \& second term
is b, the $n^{\text {th }}$ term is $t_{n}=\frac{a b}{b+(n-1)(a-b)}$.
If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in $\mathrm{HP} \Rightarrow \mathrm{b}=\frac{2 \mathrm{ac}}{\mathrm{a}+\mathrm{c}}$ or $\frac{\mathrm{a}}{\mathrm{c}}=\frac{\mathrm{a}-\mathrm{b}}{\mathrm{b}-\mathrm{c}}$.

MEANS

$$
{ }^{s}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]=\frac{\mathrm{n}}{2}[\mathrm{a}+l] .
$$

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
$b^{2}=a c$, therefore $b=\sqrt{a c} ; a>0, c>0$.
n-GEOMETRIC MEANS BETWEEN a, b :
If a, b are two given numbers \& $a, G_{1}, G_{2}, \ldots . ., G_{n}$, b are in GP. Then
$\mathrm{G}_{1}, \mathrm{G}_{2}, \mathrm{G}_{3}, \ldots ., \mathrm{G}_{\mathrm{n}}$ are n GMs between $\mathrm{a} \& \mathrm{~b}$.

Note: The product of n GMs between $\mathrm{a} \& \mathrm{~b}$ is equal to the $\mathrm{n}^{\text {th }}$ power of the single GM between $\mathrm{a} \& \mathrm{~b}$
i.e. $\prod_{r=1}^{n} G_{r}=(G)^{n}$ where G is the single $G M$ between $a \& b$.

HARMONIC MEAN :If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in HP, b is the HM between $\mathrm{a} \& \mathrm{c}$, then $\mathrm{b}=2 \mathrm{ac} /[\mathrm{a}+\mathrm{c}]$.
THEOREM : IfA, G, H are respectively $\mathrm{AM}, \mathrm{GM}, \mathrm{HM}$ between $\mathrm{a} \& \mathrm{~b}$ both being unequal \& positive then,
(i) $\mathrm{G}^{2}=\mathrm{AH}$
(ii) $\mathrm{A}>\mathrm{G}>\mathrm{H}(\mathrm{G}>0)$. Note that $\mathrm{A}, \mathrm{G}, \mathrm{H}$ constitute a GP.

ARITHMETICO-GEOMETRIC SERIES :

A series each term of which is formed by multiplying the corresponding term of an AP \& GP is called the Arithmetico-Geometric Series. e.g. $1+3 \mathrm{x}+5 \mathrm{x}^{2}+7 \mathrm{x}^{3}+\ldots .$.
Here $1,3,5, \ldots$ are in AP \& $1, \mathrm{x}, \mathrm{x}^{2}, \mathrm{x}^{3} \ldots$. are in GP.
Standart appearance of an Arithmetico-Geometric Series is
Let $\mathrm{S}_{\mathrm{n}}=\mathrm{a}+(\mathrm{a}+\mathrm{d}) \mathrm{r}+(\mathrm{a}+2 \mathrm{~d}) \mathrm{r}^{2}+\ldots \ldots+[\mathrm{a}+(\mathrm{n}-1) \mathrm{d}] \mathrm{r}^{\mathrm{n}-1}$
SUM TO INFINITY: If $|r|<1 \& n \rightarrow \infty$ then $\underset{n \rightarrow \infty}{\operatorname{Limit}} r^{n}=0 . S_{\infty}=\frac{a}{1-r}+\frac{d r}{(1-r)^{2}}$.
SIGMA NOTATIONS
THEOREMS :(i) $\quad \sum_{r=1}^{n}\left(a_{r} \pm b_{r}\right)=\sum_{r=1}^{n} a_{r} \pm \sum_{r=1}^{n} b_{r}$. (ii) $\quad \sum_{r=1}^{n} k a_{r}=k \sum_{r=1}^{n} a_{r}$.
(iii) $\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{k}=\mathrm{nk}$; where k is a constant.
(i) $\quad \sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$ (sum of the first n natural nos.)
(ii) $\sum_{r=1}^{n} r^{2}=\frac{n(n+1)(2 n+1)}{6}$ (sum of the squares of the first n natural numbers)
(iii) $\sum_{r=1}^{n} r^{3}=\frac{n^{2}(n+1)^{2}}{4}\left[\sum_{r=1}^{n} r\right]^{2}$ (sum of the cubes of the first n natural numbers)
(iv) $\sum_{r=1}^{n} r^{4}=\frac{n}{30}(n+1)(2 n+1)\left(3 n^{2}+3 n-1\right)$

METHOD OF DIFFERENCE : If $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \ldots \ldots, \mathrm{~T}_{\mathrm{n}}$ are the terms of a sequence then some times the terms $\mathrm{T}_{2}-\mathrm{T}_{1}, \mathrm{~T}_{3}-\mathrm{T}_{2}$. constitute an AP/GP. n ${ }^{\text {th }}$ term of the series is determined \& the sum to n terms of the sequence can easily be obtained.
Remember that to find the sum of n terms of a series each term of which is composed of r factors in AP, the first factors of several terms being in the same AP, we "write down the nth term, affix the next factor at the end, divide by the number of factors thus increased and by the common difference and add a constant. Determine the value of the constant by applying the initial conditions".

EXERCI SE- 1

Q. 1 If the 10 th term of an HP is $21 \& 21^{\text {st }}$ term of the same HP is 10 , then find the $210^{\text {th }}$ term.
Q. 2 Show that $\ln (4 \times 12 \times 36 \times 108 \times$ \qquad up to n terms $)=2 n \ln 2+\frac{\mathrm{n}(\mathrm{n}-1)}{2} \ln 3$
Q. 3 There are nAM's between $1 \& 31$ such that 7 th mean : $(n-1)^{\text {th }}$ mean $=5: 9$, then find the value of n. Q. 4 Find the sum of the series, $7+77+777+\ldots .$. to n terms.
Q. 5 Express the recurring decimal $0.1 \overline{576}$ as a rational number using concept of infinite geometric series.
Q. 6 Find the sum of the n terms of the sequence $\frac{1}{1+1^{2}+1^{4}}+\frac{2}{1+2^{2}+2^{4}}+\frac{3}{1+3^{2}+3^{4}}+\ldots \ldots \ldots$.
Q. 7 The first term of an arithmetic progression is 1 and the sum of the first nine terms equal to 369 . The first ${ }^{\dagger}$ and the ninth term of a geometric progression coincide with the first and the ninth term of the arithmetic progression. Find the seventh term of the geometric progression.
Q. 8 If the $\mathrm{p}^{\text {th }}, \mathrm{q}^{\text {th }} \& \mathrm{r}^{\text {th }}$ terms of an AP are in GP. Show that the common ratio of the GP is $\frac{\mathrm{q}-\mathrm{r}}{\mathrm{p}-\mathrm{q}}$.
Q. 9 If one AM 'a' \& two GM's p \& q be inserted between any two given numbers then show that $\mathrm{p}^{3}+\mathrm{q}^{3}=2 \mathrm{apq}$.
Q. 10 The sum of n terms of two arithmetic series are in the ratio of $(7 n+1):(4 n+27)$. Find the ratio of their $\mathrm{n}^{\text {th }}$ term.
Q. 11 If S be the sum, P the product \& R the sum of the reciprocals of a GP, find the value of $P^{2}\left(\frac{R}{S}\right)^{n}$.
Q. 12 The first and last terms of an A.P. are a and b. There are altogether $(2 n+1)$ terms. A new series is formed by multiplying each of the first 2 n terms by the next term. Show that the sum of the new series is
$\frac{\left(4 \mathrm{n}^{2}-1\right)\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)+\left(4 \mathrm{n}^{2}+2\right) \mathrm{ab}}{6 \mathrm{n}}$.
Q. 13 In an AP of which ' a ' is the Ist term, if the sum of the Ist p terms is equal to zero, show that the sum of the next q terms is $-a(p+q) q /(p-1)$.
Q.14(a) The interior angles of a polygon are in AP. The smallest angle is $120^{\circ} \&$ the common difference is 5°. Find the number of sides of the polygon.
(b) The interior angles of a convex polygon form an arithmetic progression with a common difference of 4°. Determine the number of sides of the polygon if its largest interior angle is 172°.
Q. 15 An AP \& an HP have the same first term, the same last term \& the same number of terms ; prove that the product of the $\mathrm{r}^{\text {th }}$ term from the beginning in one series \& the $\mathrm{r}^{\text {th }}$ term from the end in the other is independent of r.
Q. 16 Find three numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ between $2 \& 18$ such that;
(i) their sum is 25 (ii) the numbers $2, \mathrm{a}, \mathrm{b}$ are consecutive terms of an AP \&
(iii) the numbers b, c, 18 are consecutive terms of a GP.
Q. 17 Given that $a^{x}=b^{y}=c^{z}=d^{u} \& a, b, c, d$ are in GP, show that x, y, z, u are in HP.
Q. 19 Find the sum of the first n terms of the sequence : $1+2\left(1+\frac{1}{\mathrm{n}}\right)+3\left(1+\frac{1}{\mathrm{n}}\right)^{2}+4\left(1+\frac{1}{\mathrm{n}}\right)^{3}+$
Q. 20 Find the nth term and the sum to n terms of the sequence :
(i) $1+5+13+29+61+\ldots \ldots$.
(ii) $6+13+22+33+\ldots \ldots$.
Q. 21 The AM of two numbers exceeds their GM by $15 \& H M$ by 27 . Find the numbers.
Q. 22 The harmonic mean of two numbers is 4 . The airthmetic mean A\& the geometric mean G satisfy the relation $2 \mathrm{~A}+\mathrm{G}^{2}=27$. Find the two numbers.
Q. 23 Sum the following series to n terms and to infinity:
(iii)
(i) $\frac{1}{1.4 .7}+\frac{1}{4.7 .10}+\frac{1}{7.10 .13}+$

$$
\begin{equation*}
\sum_{r=1}^{\mathrm{n}} r(\mathrm{r}+1)(\mathrm{r}+2)(\mathrm{r}+3) \tag{ii}
\end{equation*}
$$

(iv)
Q. 1 The series of natural numbers is divided into groups (1), (2, 3, 4), (5, 6, 7, 8, 9),\& so on. Show that the sum of the numbers in the $\mathrm{n}^{\text {th }}$ group is $(\mathrm{n}-1)^{3}+\mathrm{n}^{3}$.
Q. 2 The sum of the squares of three distinct real numbers, which are in GP is S^{2}. If their sum is αS, show that $\alpha^{2} \in(1 / 3,1) \cup(1,3)$.
Q. 3 If there be m AP's beginning with unity whose common difference is $1,2,3 \ldots$. m Show that the sum of their $\mathrm{n}^{\text {th }}$ terms is $(\mathrm{m} / 2)(\mathrm{mn}-\mathrm{m}+\mathrm{n}+1)$.
Q. 4 If S_{n} represents the sum to n terms of a GP whose first term \& common ratio are a \& r respectively, then prove that $\mathrm{S}_{1}+\mathrm{S}_{3}+\mathrm{S}_{5}+\ldots . .+\mathrm{S}_{2 \mathrm{n}-1}=\frac{\mathrm{an}}{1-\mathrm{r}}-\frac{\operatorname{ar}\left(1-\mathrm{r}^{2 \mathrm{n}}\right)}{(1-\mathrm{r})^{2}(1+\mathrm{r})}$.
Q. 5 A geometrical \& harmonic progression have the same $\mathrm{p}^{\text {th }}, \mathrm{q}^{\text {th }} \& \mathrm{r}^{\text {th }}$ terms $\mathrm{a}, \mathrm{b}, \mathrm{c}$ respectively. Show that $a(b-c) \log a+b(c-a) \log b+c(a-b) \log c=0$.
Q. 6 A computer solved several problems in succession. The time it took the computer to solve each successive problem was the same number of times smaller than the time it took to solve the preceding problem. How many problems were suggested to the computer if it spent 63.5 min to solve all the problems except for the first, 127 min to solve all the problems except for the last one, and 31.5 min to solve all the problems except for the first two?
Q. 7 If the sum of m terms of an $A P$ is equal to the sum of either the next n terms or the next p terms of the same AP prove that $(\mathrm{m}+\mathrm{n})[(1 / \mathrm{m})-(1 / \mathrm{p})]=(\mathrm{m}+\mathrm{p})[(1 / \mathrm{m})-(1 / \mathrm{n})](\mathrm{n} \neq \mathrm{p})$
Q. 8 If the roots of $10 \mathrm{x}^{3}-\mathrm{cx}^{2}-54 \mathrm{x}-27=0$ are in harmonic progression, then find $\mathrm{c} \&$ all the roots.

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
Q.9(a) Let $a_{1}, a_{2}, a_{3} \ldots \ldots a_{n}$ be an AP. Prove that

$$
\frac{1}{a_{1} a_{n}}+\frac{1}{a_{2} a_{n-1}}+\frac{1}{a_{3} a_{n-2}}+\ldots \ldots \ldots .+\frac{1}{a_{n} a_{1}}=\frac{2}{a_{1}+a_{n}}\left[\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\ldots \ldots \ldots .+\frac{1}{a_{n}}\right]
$$

(b) Show that in any arithmetic progression $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3} \ldots \ldots$.

$$
\mathrm{a}_{1}{ }^{2}-\mathrm{a}_{2}{ }^{2}+\mathrm{a}_{3}{ }^{2}-\mathrm{a}_{4}{ }^{2}+\ldots \ldots+\mathrm{a}^{2}{ }_{2 \mathrm{~K}-1}-\mathrm{a}^{2}{ }_{2 \mathrm{~K}}=[\mathrm{K} /(2 \mathrm{~K}-1)]\left(\mathrm{a}_{1}{ }^{2}-\mathrm{a}^{2}{ }_{2 \mathrm{~K}}\right) .
$$

Q. 10 Let $a_{1}, a_{2}, \ldots \ldots, a_{n}, a_{n+1}, \ldots \ldots$. be an A.P.

Let
$\mathrm{S}_{1}=\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}+\ldots \ldots \ldots \ldots .+\mathrm{a}_{\mathrm{n}}$
$\mathrm{S}_{2}=\mathrm{a}_{\mathrm{n}+1}+\mathrm{a}_{\mathrm{n}+2}+\ldots \ldots \ldots \ldots \ldots+\mathrm{a}_{2 \mathrm{n}}$
$S_{3}=a_{2 n+1}+a_{2 n+2}+\ldots \ldots \ldots \ldots+a_{3 n}$

Prove that the sequence $S_{1}, S_{2}, S_{3}, \ldots \ldots .$. is an arithmetic progression whose common difference is n^{2} times the common difference of the given progression.
Q. 11 If a, b, c are in HP, b, c, d are in GP \& c, d, e are in AP, Show that $e=a b^{2} /(2 a-b)^{2}$.
Q. 12 If a, b, c, d, e be 5 numbers such that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in AP; b, c, d are in GP \& c, d, e are in HP then:
(i) Prove that a, c, e are in GP. (ii) Prove that $e=(2 b-a)^{2} / a$.
(iii) If $a=2 \& e=18$, find all possible values of b, c, d.
Q. 13 The sequence $a_{1}, a_{2}, a_{3}, \ldots \ldots . . a_{98}$ satisfies the relation $a_{n+1}=a_{n}+1$ for $n=1,2,3, \ldots \ldots . . .97$ and has the sum equal to 4949. Evaluate $\sum_{k=1}^{49} \mathrm{a}_{2 \mathrm{k}}$.
Q. 14 If n is a root of the equation $x^{2}(1-a c)-x\left(a^{2}+c^{2}\right)-(1+a c)=0 \&$ if n HM's are inserted between $\mathrm{a} \& \mathrm{c}$, show that the difference between the first \& the last mean is equal to $\mathrm{ac}(\mathrm{a}-\mathrm{c})$.
Q. 15 (a) The value of $x+y+z$ is 15 if a, x, y, z, b are in AP while the value of; $(1 / x)+(1 / y)+(1 / z)$ is $5 / 3$ if a, x, y, z, b are in HP. Find a \& b .
\circ
0
0
0
0
0
0
0
0
0
0
0
(b) The values of xyz is $15 / 2$ or $18 / 5$ according as the series a, x, y, z, b is an AP or HP. Find the values of $\mathrm{a} \& \mathrm{~b}$ assuming them to be positive integer .
Q. 16 An AP, a GP \& a HP have 'a' \& 'b' for their first two terms. Show that their $(n+2)^{\text {th }}$ terms will be in GP if $\frac{b^{2 n+2}-a^{2 n+2}}{b a\left(b^{2 n}-a^{2 n}\right)}=\frac{n+1}{n}$.
Q. 17 Prove that the sum of the infinite series $\frac{1.3}{2}+\frac{3.5}{2^{2}}+\frac{5.7}{2^{3}}+\frac{7.9}{2^{4}}+\ldots . . \ldots . . \infty=23$
Q. 18 If there are n quantities in GP with common ratior $\& \mathrm{~S}_{\mathrm{m}}$ denotes the sum of the first mterms, show that the sum of the products of these m terms taken two $\&$ two together is $[\mathrm{r} /(\mathrm{r}+1)]\left[\mathrm{S}_{\mathrm{m}}\right]\left[\mathrm{S}_{\mathrm{m}-1}\right]$.
Q. 19 Find the condition that the roots of the equation $\mathrm{x}^{3}-\mathrm{px}^{2}+\mathrm{qx}-\mathrm{r}=0$ may be in A.P. and hence solve the equation $x^{3}-12 x^{2}+39 x-28=0$.
Q. 20 If $a x^{2}+2 b x+c=0 \& a_{1} x^{2}+2 b_{1} x+c_{1}=0$ have a common root $\& a / a_{1}, b / b_{1}, c / c_{1}$ are in AP, show that $\mathrm{a}_{1}, \mathrm{~b}_{1} \& \mathrm{c}_{1}$ are in GP.
Q. 21 If a, b, c be in GP \& $\log _{c} a, \log _{b} c, \log _{\mathrm{a}} \mathrm{b}$ be in AP, then show that the common difference of the AP must be $3 / 2$.
Q. 22 If $a_{1}=1 \&$ for $n>1, a_{n}=a_{n-1}+\frac{1}{a_{n-1}}$, then show that $12<a_{75}<15$.
Q. 23 Sum to n terms:
(i)
(ii) $\quad \frac{a_{1}}{1+a_{1}}+\frac{a_{2}}{\left(1+a_{1}\right)\left(1+a_{2}\right)}+\frac{a_{3}}{\left(1+a_{1}\right)\left(1+a_{2}\right)\left(1+a_{3}\right)}+\ldots . .$. ratio of the sum of all the terms without the first nine to the sum of all the terms without the last nine is 2 . Find the number of terms in the GP.
Q. 25 Given a three digit number whose digits are three successive terms of a G.P. If we subtract 792 fromit, we get a number written by the same digits in the reverse order. Now if we subtract four from the hundred's digit of the initial number and leave the other digits unchanged, we get a number whose digits are successive terms of an A.P. Find the number.

EXERCI SE- 3

Q. 1 For any odd integer $n \geq 1, n^{3}-(n-1)^{3}+\ldots . .+(-1)^{n-1} l^{3}=$ \qquad .
[JEE'96, 1]
Q. $2 \quad x=1+3 a+6 a^{2}+10 a^{3}+\ldots . .|a|<1$
$y=1+4 b+10 b^{2}+20 b^{3}+\ldots . .|b|<1$, find $S=1+3 a b+5(a b)^{2}+\ldots$. in terms of $x \& y$.
Q. 3 The real numbers x_{1}, x_{2}, x_{3} satisfying the equation $x^{3}-x^{2}+\beta x+\gamma=0$ are in A.P. Find the intervals in which β and γ lie.
[JEE '96, 3]
Q. 4 Let $\mathrm{p} \& \mathrm{q}$ be roots of the equation $\mathrm{x}^{2}-2 \mathrm{x}+\mathrm{A}=0$, and let $\mathrm{r} \& \mathrm{~s}$ be the roots of the equation $\mathrm{x}^{2}-18 \mathrm{x}+\mathrm{B}=0$. If $\mathrm{p}<\mathrm{q}<\mathrm{r}<\mathrm{s}$ are in arithmatic progression, then $\mathrm{A}=$ \qquad and $B=$ \qquad .
Q. $5 \quad a, b, c$ are the first three terms of a geometric series. If the harmonic mean of $a \& b$ is 12 and that of b
Q. 6 Select the correct alternative(s).
[JEE '98, 2 + 2 + 8]
(a) Let T_{r} be the $\mathrm{r}^{\text {th }}$ term of an AP, for $\mathrm{r}=1,2,3, \ldots$. If for some positive integers m, n we have $\mathrm{T}_{\mathrm{m}}=\frac{1}{\mathrm{n}} \& \mathrm{~T}_{\mathrm{n}}=\frac{1}{\mathrm{~m}}$, then T_{mn} equals :
(A) $\frac{1}{\mathrm{mn}}$
(B) $\frac{1}{\mathrm{~m}}+\frac{1}{\mathrm{n}}$
(C) 1
(D) 0
(b) If $x=1, y>1, z>1$ are in GP, then $\frac{1}{1+\ln x}, \frac{1}{1+\ln y}, \frac{1}{1+\ln z}$ are in :
(A) AP
(B) HP
(C) GP
(D) none of the above
(c) Prove that a triangle $A B C$ is equilateral if \& only if $\tan A+\tan B+\tan C=3 \sqrt{3}$.
Q.7(a) The harmonic mean of the roots of the equation $(5+\sqrt{2}) x^{2}-(4+\sqrt{5}) x+8+2 \sqrt{5}=0$ is
(A) 2
(B) 4
(C) 6
(D) 8
(b) Let $a_{1}, a_{2}, \ldots ., a_{10}$, be in A.P. \& $h_{1}, h_{2}, \ldots \ldots, h_{10}$ be in H.P. If $a_{1}=h_{1}=2 \& a_{10}=h_{10}=3$ then $a_{4} h_{7}$ is:
(A) 2
(B) 3
(C) 5
(D) 6
Q. 8 The sum of an infinite geometric series is 162 and the sum of its first n terms is 160 . If the inverse of its common ratio is an integer, find all possible values of the common ratio, n and the first terms of the series.
Q.9(a) Consider an infinite geometric series with first term 'a' and common ratio r. If the sum is 4 and the second term is $3 / 4$, then :
(A) $\mathrm{a}=\frac{7}{4}, \mathrm{r}=\frac{3}{7}$
(B) $\mathrm{a}=2, \mathrm{r}=\frac{3}{8}$
(C) $\mathrm{a}=\frac{3}{2}, \mathrm{r}=\frac{1}{2}$
(D) $\mathrm{a}=3, \mathrm{r}=\frac{1}{4}$
(b) If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are positive real numbers such that $\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}=2$, then $\mathrm{M}=(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})$ satisfies the relation:
(A) $0 \leq \mathrm{M} \leq 1$
(B) $1 \leq \mathrm{M} \leq 2$
(C) $2 \leq \mathrm{M} \leq 3$
(D) $3 \leq \mathrm{M} \leq 4$
(c) The fourth power of the common difference of an arithmetic progression with integer entries added to the product of any four consecutive terms of it. Prove that the resulting sum is the square of an integer.
Q. 10 Given that α, γ are roots of the equation, $A x^{2}-4 x+1=0$ and β, δ the roots of the equation, $B x^{2}-6 x+1=0$, find values of A and B, such that $\alpha, \beta, \gamma \& \delta$ are in H.P.
[REE 2000, 5 out of 100]
Q. 11 The sum of roots of the equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ is equal to the sum of squares of their reciprocals. Find whether bc^{2}, ca^{2} and ab^{2} in A.P., G.P. or H.P.?
[REE 2001, 3 out of 100]
Q. 12 Solve the following equations for x and y
$\log _{2} x+\log _{4} x+\log _{16} x+\ldots \ldots \ldots \ldots \ldots$.
$\frac{5+9+13+\ldots \ldots \ldots \ldots+(4 y+1)}{1+3+5+\ldots \ldots \ldots \ldots+(2 y-1)}=4 \log _{4} x$
[REE 2001, 5 out of 100]
Q.13(a) Let α, β be the roots of $\mathrm{x}^{2}-\mathrm{x}+\mathrm{p}=0$ and γ, δ be the roots of $\mathrm{x}^{2}-4 \mathrm{x}+\mathrm{q}=0$. If $\alpha, \beta, \gamma, \delta$ are in G.P., then the integral values of p and q respectively, are
(A) $-2,-32$
(B) $-2,3$
(C) $-6,3$
(D) $-6,-32$
(b) If the sum of the first $2 n$ terms of theA.P. $2,5,8, \ldots$. is equal to the sum of the first n nerms of the A.P. 57, 59, 61, \qquad then n equals
(A) 10
(B) 12
(C) 11
(D) 13
(c) Let the positive numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ be in A.P. Then abc, abd, acd, bcd are
(A) NOT in A.P./G.P./H.P.
(B) in A.P.
(C) in G.P.
(D) H.P. [JEE 2001, Screening, $1+1+1$ out of 35]
(d) Let $a_{1}, a_{2} \ldots \ldots . .$. . be positive real numbers in G.P. For each n, let A_{n}, G_{n}, H_{n}, be respectively, the arithmetic mean, geometric mean and harmonic mean of $a_{1}, a_{2}, a_{3}, \ldots a_{n}$. Find an expression for the G.M. of $\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots \ldots \ldots . \mathrm{G}_{\mathrm{n}}$ in terms of $\mathrm{A}_{1}, \mathrm{~A}_{2} \ldots \ldots \ldots \ldots . \mathrm{A}_{\mathrm{n}}, \mathrm{H}_{1}, \mathrm{H}_{2}, \ldots \ldots \ldots . \mathrm{H}_{\mathrm{n}}$.
Q.14(a) Suppose a, b, c are in A.P. and a^{2}, b^{2}, c^{2} are in G.P. If $a<b<c$ and $a+b+c=\frac{3}{2}$, then the value of a is
(A) $\frac{1}{2 \sqrt{2}}$
(B) $\frac{1}{2 \sqrt{3}}$
(C) $\frac{1}{2}-\frac{1}{\sqrt{3}}$
(D) $\frac{1}{2}-\frac{1}{\sqrt{2}}$
b) Let a, b be positive real numbers. If a, A_{1}, A_{2}, b are in A.P. ; a, a_{1}, a_{2}, b are in G.P. and $\mathrm{a}, \mathrm{H}_{1}, \mathrm{H}_{2}$, b are in H.P. , show that
$\frac{\mathrm{G}_{1} \mathrm{G}_{2}}{\mathrm{H}_{1} \mathrm{H}_{2}}=\frac{\mathrm{A}_{1}+\mathrm{A}_{2}}{\mathrm{H}_{1}+\mathrm{H}_{2}}=\frac{(2 \mathrm{a}+\mathrm{b})(\mathrm{a}+2 \mathrm{~b})}{9 \mathrm{ab}}$
[JEE 2002, Mains, 5 out of 60]
Q. 15 If a, b, c are in A.P., a^{2}, b^{2}, c^{2} are in H.P., then prove that either $a=b=c$ or $a, b,-\frac{c}{2}$ form a G.P.
Q. 16 The first term of an infinite geometric progression is x and its sum is 5 . Then
(A) $0 \leq x \leq 10$
(B) $0<x<10$
(C) $-10<x<0$
(D) $x>10$
Q. 17 If a, b, c are positive real numbers, then prove that $[(1+a)(1+b)(1+c)]^{7}>7^{7} a^{4} b^{4} c^{4}$.
Q.18(a) In the quadratic equation $a x^{2}+b x+c=0$, if $\Delta=b^{2}-4 a c$ and $\alpha+\beta, \alpha^{2}+\beta^{2}, \alpha^{3}+\beta^{3}$ are in G.P. where α, β are the roots of $a x^{2}+b x+c=0$, then
(A) $\Delta \neq 0$
(B) $\mathrm{b} \Delta=0$
(C) $\mathrm{c} \Delta=0$
(D) $\Delta=0$
(b) If total number of runs scored in n matches is $\left(\frac{\mathrm{n}+1}{4}\right)\left(2^{\mathrm{n}+1}-\mathrm{n}-2\right)$ where $\mathrm{n}>1$, and the runs scored in the $\mathrm{k}^{\text {th }}$ match are given by $\mathrm{k} \cdot 2^{\mathrm{n}+1-\mathrm{k}}$, where $1 \leq \mathrm{k} \leq \mathrm{n}$. Find n .
[JEE 2005 (Mains), 2]
(A) $[1,5]$
(B) $[2,5]$
(C) $[5,12]$
(D) $[12, \infty$)
2. If $x>1$ and $\left(\frac{1}{x}\right)^{a},\left(\frac{1}{x}\right)^{b},\left(\frac{1}{x}\right)^{c}$ are in G.P., then a, b, c are in
(A) A.P.
(B) G.P.
(C) H.P.
(D) none of these
3. If A, G \& H are respectively the A.M., G.M. \& H.M. of three positive numbers $a, b, \& c$, then the
equation whose roots are $a, b, \& c$ is given by:
(A) $x^{3}-3 A x^{2}+3 G^{3} x-G^{3}=0$
(B) $x^{3}-3 A x^{2}+3\left(G^{3} / H\right) x-G^{3}=0$
(C) $x^{3}+3 A x^{2}+3\left(G^{3} / H\right) x-G^{3}=0$
(D) $x^{3}-3 A x^{2}-3\left(G^{3} / H\right) x+G^{3}=0$
4. The sum $\sum_{r=2}^{\infty} \frac{1}{r^{2}-1}$ is equal to:
(D) none
5. If $a, a_{1}, a_{2}, a_{3}, \ldots, a_{2 n}, b$ are in A.P. and $a, g_{1}, g_{2}, g_{3}, \ldots \ldots g_{2 n}, b$ are in $G . P$. and h is the harmonic mean of a and b, then $\frac{a_{1}+a_{2 n}}{g_{1} g_{2 n}}+\frac{a_{2}+a_{2 n-1}}{g_{2} g_{2 n-1}}+\ldots+\frac{a_{n}+a_{n+1}}{g_{n} g_{n+1}}$ is equal to
(A) $\frac{2 n}{h}$
(B) 2 nh
(C) nh
(D) $\frac{n}{h}$
6. One side of an equilateral triangle is 24 cm . The mid-points of its sides are joined to form another. triangle whose mid - points are in turn joined to form still another triangle. This process continues indefinitely. Then the sum of the perimeters of all the triangles is
(A) 144 cm
(B) 212 cm
(C) 288 cm
(D) none of these
7. If p is positive, then the sum to infinity of the series, $\frac{1}{1+\mathrm{p}}-\frac{1-\mathrm{p}}{(1+\mathrm{p})^{2}}+\frac{(1-\mathrm{p})^{2}}{(1+\mathrm{p})^{3}}-\ldots \ldots$ is:
(A) $1 / 2$
(B) $3 / 4$
(C) 1
(D) none of these

In a G.P. of positive terms, any term is equal to the sum of the next two terms. The common ratio of the G.P. is
(A) $2 \cos 18^{\circ}$
(B) $\sin 18^{\circ}$
(C) $\cos 18^{\circ}$
(D) $2 \sin 18^{\circ}$
9. If $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+$
upto $\infty=\frac{\pi^{2}}{6}$, then $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+$ \qquad
(A) $\pi^{2 / 12}$
(B) $\pi^{2} / 24$
(C) $\pi^{2} / 8$
(D) none of these
10. The sum to 10 terms of the series $\sqrt{2}+\sqrt{6}+\sqrt{18}+\sqrt{54}+\ldots$ is
(A) $121(\sqrt{6}+\sqrt{2})$
(B) $\frac{121}{2}(\sqrt{3}+1)$
(C) $243(\sqrt{3}+1)$
(D) $243(\sqrt{3}-1)$
11. If $a_{1}, a_{2}, \ldots, a_{n}$ are in A.P. with common difference $d \neq 0$, then the sum of the series
(A) sec $a_{1}-\sec a_{n}$
(B) $\operatorname{cosec} a_{1}-\operatorname{cosec} a_{n}$
(C) $\cot a_{1}-\cot ^{n-1} a_{n}$
(D) $\tan a_{1}-\tan a_{n}$
12. Sum of the series
$S=1^{2}-2^{2}+3^{2}-4^{2}+\ldots .-2002^{2}+2003^{2}$ is
(A) 2007006
(B) 1005004
(C) 2000506
(D) none of these
13. If $\mathrm{H}_{\mathrm{n}}=1+\frac{1}{2}+\frac{1}{3}+$ \qquad $+\frac{1}{n}$, then value of $1+\frac{3}{2}+\frac{5}{3}+$ \qquad
(A) $2 n-H_{n}$
(B) $2 \mathrm{n}+\mathrm{H}_{\mathrm{n}}$
(C) $\mathrm{H}_{\mathrm{n}}-2 \mathrm{n}$
(D) $\mathrm{H}_{\mathrm{n}}+n$
14. The sum of the series $\frac{1}{\log _{2} 4}+\frac{1}{\log _{4} 4}+\frac{1}{\log _{8} 4}+\ldots \ldots+\frac{1}{\log _{2^{n}} 4}$ is
(A) $\frac{1}{2} n(n+1)$
(B) $\frac{1}{12} n(n+1)(2 n+1)$
(C) $\frac{1}{n(n+1)}$
(D) $\frac{1}{4} n(n+1)$

If S_{1}, S_{2}, S_{3} are the sums of first n natural numbers, their squares, their cubes respectively, then $\frac{S_{3}\left(1+8 S_{1}\right)}{S_{2}^{2}}$ is equal to
(A) 1
(B) 3
(C) 9
(D) 10 .
16. If p and q are respectively the sum and the sum of the squares of n successive integers beginning with
a, then $n q-p^{2}$ is
(A) independent of ' a '
(B) independent of ' n '
(C) dependent on ' a '
(D) none of these
17. Sum of n terms of the series $1+\frac{x}{a_{1}}+\frac{x\left(x+a_{1}\right)}{a_{1} a_{2}}+\frac{x\left(x+a_{1}\right)\left(x+a_{2}\right)}{a_{1} a_{2} a_{3}}+\ldots$ is
(A) $\frac{x\left(x+a_{1}\right) \ldots\left(x+a_{n-1}\right)}{a_{1} a_{2} \ldots a_{3}}$
(B) $\frac{\left(x+a_{1}\right)\left(x+a_{2}\right) \ldots .\left(x+a_{n-1}\right)}{a_{1} a_{2} \ldots a_{n-1}}$
(C) $\frac{x\left(x+a_{1}\right) \ldots\left(x+a_{n}\right)}{a_{1} a_{2} \ldots a_{n}}$
(D) none of these
18. $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are two sequences given by $a_{n}=(x)^{1 / 2^{n}}+(y)^{1 / 2^{n}}$ and $b_{n}=(x)^{1 / 2^{n}}-(y)^{1 / 2^{n}}$ for all $n \in N$. The value of $\mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3} \ldots \ldots . . . \mathrm{a}_{\mathrm{n}}$ is equal to
(A) $x-y$
(B) $\frac{x+y}{b_{n}}$
(C) $\frac{x-y}{b_{n}}$
(D) $\frac{x y}{b_{n}}$
19. If $a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots, a_{n}$ are positive real numbers whose product is a fixed number c , then the minimum value of $a_{1}+a_{2}+a_{3}+\ldots(B)+a_{n-1}+2 a_{n}$ is ${ }^{1 / 2}{ }^{(A)} n+1(2 C)^{1 / n}$
(C) $2 \mathrm{nc}^{1 / n}$
(D) $(n+1)(2 c)^{1 / n}$

Part : (B) May have more than one options correct

20. If $\sum_{r=1}^{n} r(r+1)(2 r+3)=a n^{4}+b n^{3}+c n^{2}+d n+e$, then
(A) $a+c=b+d$
(B) $\mathrm{e}=0$
(C) $a, b-2 / 3, c-1$ are in A.P. (D) c/a is an integer
21. The sides of a right triangle form a G.P. The tangent of the smallest angle is
(A) $\sqrt{\frac{\sqrt{5}+1}{2}}$
(B) $\sqrt{\frac{\sqrt{5}-1}{2}}$
(C) $\sqrt{\frac{2}{\sqrt{5}+1}}$
(D) $\sqrt{\frac{2}{\sqrt{5}-1}}$
22. Sum to n terms of the series $S=1^{2}+2(2)^{2}+3^{2}+2\left(4^{2}\right)+5^{2}+2\left(6^{2}\right)+\ldots$ is
(A) $\frac{1}{2} n(n+1)^{2}$ when n is even
(C) $\frac{1}{4} n^{2}(n+2)$ when n is odd
(B) $\frac{1}{2} n^{2}(n+1)$ when n is odd
(D) $\frac{1}{4} n(n+2)^{2}$ when n is even.
23. If a, b, c are in H.P., then:
(A) $\frac{a}{b+c-a}, \frac{b}{c+a-b}, \frac{c}{a+b-c}$ are in H.P.
(B) $\frac{2}{b}=\frac{1}{b-a}+\frac{1}{b-c}$
(D) $\frac{a}{b+c}, \frac{b}{c+a}, \frac{c}{a+b}$ are in H.P.
24. If $b_{1}, b_{2}, b_{3}\left(b_{i}>0\right)$ are three successive terms of $a G$.P. with common ratio r, the value of r for which the inequality $b_{3}>4 b_{2}-3 b_{1}$ holds is given by
(A) $r>3$
(B) $r<1$

EXERCISE-5

1. If a, b, c are in A.P., then show that:
(i) $a^{2}(b+c), b^{2}(c+a), c^{2}(a+b)$ are also in A.P.(ii) $b+c-a, c+a-b, a+b-c$ are in A.P. If a, b, c, d are in G.P., prove that:
(i) $\left(a^{2}-b^{2}\right),\left(b^{2}-c^{2}\right),\left(c^{2}-d^{2}\right)$ are in G.P.
(ii) $\frac{1}{\mathrm{a}^{2}+\mathrm{b}^{2}}, \frac{1}{\mathrm{~b}^{2}+\mathrm{c}^{2}}, \frac{1}{\mathrm{c}^{2}+\mathrm{d}^{2}}$ are in G.P.
2. Using the relation A.M. \geq G.M. prove that
(i) $\tan \theta+\cot \theta \geq 2$; if $0<\theta<\frac{\pi}{2}$
(ii) $\left(x^{2} y+y^{2} z+z^{2} x\right)\left(x y^{2}+y z^{2}+z x^{2}\right)>9 x^{2} y^{2} z^{2}$.
(iii) $\quad(a+b) \cdot(b+c) \cdot(c+a) \geq a b c$; if a, b, c are positive real numbers
3. Find the sum in the $\mathrm{n}^{\text {th }}$ group of sequence,

4. The sum of the first ten terms of an AP is 155 \& the sum of first two terms of a GP is 9 . The first term of the AP is equal to the common ratio of the GP \& the first term of the GP is equal to the common difference of the AP. Find the two progressions.
5. Find the sum of the series $\frac{5}{13}+\frac{55}{(13)^{2}}+\frac{555}{(13)^{3}}+\frac{5555}{(13)^{4}}+\ldots$ up to ∞
6. If $0<x<\pi$ and the expression

$$
\exp \left\{\left(1+|\cos x|+\cos ^{2} x+\left|\cos ^{3} x\right|+\cos ^{4} x+\ldots \ldots . \text { upto } \infty\right) \log _{e} 4\right\}
$$

satisfies the quadratic equation $y^{2}-20 y+64=0$ the find the value of x.
9. In a circle of radius R a square is inscribed, then a circle is inscribed in the square, a new square in the circle and so on for n times. Find the limit of the sum of areas of all the circles and the limit of the sum of areas of all the squares as $n \rightarrow \infty$.
10. The sum of the squares of three distinct real numbers, which are in GP is S^{2}. If their sum is $\alpha \mathrm{S}$, show that $\alpha^{2} \in(1 / 3,1) \cup(1,3)$.
11. Let $S_{1}, S_{2}, \ldots S_{p}$ denote the sum of an infinite G.P. with the first terms $1,2, \ldots, p$ and common ratios

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com
$1 / 2,1 / 3, \ldots, 1 /(p+1)$ respectively. Show that $S_{1}+S_{2}+\ldots+S_{p}=\frac{1}{2} p(p+3)$
12. Circles are inscribed in the acute angle α so that every neighbouring circles touch each other. If the radius of the first circle is R then find the sum of the radii of the first n circles in terms of R and α.
13. Given that α, γ are roots of the equation, $A x^{2}-4 x+1=0$ and β, δ the roots of the equation,
14. The airthmetic mean between m and n and the geometric mean between a and b are each equal to $\frac{m a+n b}{m+n}$: find the m and n in terms of a and b.
15. If a, b, c are positive real numbers then prove that (i) $b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}>a b c(a+b+c)$.
(ii) $(a+b+c)^{3}>27 a b c$. \quad (iii) $(a+b+c)^{3}>27(a+b-c)(c+a-b)(b+c-a)$
16. If ' s ' be the sum of ' n ' positive unequal quantities $a, b, c, \ldots \ldots$, then $\frac{s}{s-a}+\frac{s}{s-b}+\frac{s}{s-c}+\ldots>\frac{n^{2}}{n-1}$.
17. Sum the following series to n terms and to infinity:
(i) $\quad \sum_{r=1}^{n} r(r+1)(r+2)(r+3)$
(ii)
$\frac{1}{1+1^{2}+1^{4}}+\frac{2}{1+2^{2}+2^{4}}+\frac{3}{1+3^{2}+3^{4}}+$
(iii) $\frac{1}{3.5}$ $+\frac{32}{7^{2} \cdot 9^{2}}+\ldots \ldots$.
$+\frac{16}{3^{2} \cdot 5^{2}}+\frac{1}{5.7}+\frac{24}{5^{2} \cdot 7^{2}}$ $+\frac{1}{7.9}$
18. Let $a, b, c d$ be real numbers in G.P. If u, v, w, satisfy the system of equations
$u+2 v+3 w=6 ; \quad 4 u+5 v+6 w=12$
$6 u+9 v=4 \quad$ then show that the roots of the equation
$\left(\frac{1}{u}+\frac{1}{v}+\frac{1}{w}\right) x^{2}+\left[(b-c)^{2}+(c-a)^{2}+(d-b)^{2}\right] x+u+v+w=0$ and

$20 x^{2}+10(a-d)^{2} x-9=0$ are reciprocals of each other.

[IIT- 1999, 10]
19. The fourth power of the common difference of an arithmetic progression with integer entries added to the product of any four consecutive terms of it. Prove that the resulting sum is the square of an integer.
20. If $a, b \& c$ are in arithmetic progression and $a^{2}, b^{2} \& c^{2}$ are in harmonic progression, then prove that
either $\mathrm{a}=\mathrm{b}=\mathrm{c}$ or $\mathrm{a}, \mathrm{b} \&-\frac{\mathrm{c}}{2}$ are in geometric progression.
[IIT - 2003, 4]

ANSWER KEY

 EXERCISE-1Q3. $\mu=14$
Q 4. $S=(7 / 81)\left\{10^{n+1}-9 n-10\right\}$
Q 5. 35/222
Q 6. $n(n+1) / 2\left(n^{2}+n+1\right)$
Q 7. 27
Q 10. $(14 n-6) /(8 n+23)$
Q11. 1
14. (a) 9 ; (b) 12

Q 16. $\mathrm{a}=5, \mathrm{~b}=8, \mathrm{c}=12$
Q 19. n^{2}
20. (i) $2^{n+1}-3 ; 2^{n+2}-4-3 n$

Q 21. 120,30
Q ${ }^{2}(1 / 6) n(n+1)(2 n+13)+n$
Q 22. 6, 3
23. (i) $s_{n}=(1 / 24)-[1 /\{6(3 n+1)(3 n+4)\}] ; s_{\infty}=1 / 24$ (ii) $(1 / 5) n(n+1)(n+2)(n+3)(n+4)$
(iii) $n /(2 n+1)$
(iv) $\mathrm{S}_{\mathrm{n}}=2\left[\frac{1}{2}-\frac{1 \cdot 3 \cdot 5 \ldots .(2 \mathrm{n}-1)(2 \mathrm{n}+1)}{2 \cdot 4 \cdot 6 \ldots \ldots(2 \mathrm{n})(2 \mathrm{n}+2)}\right] ; \mathrm{S}_{\infty}=1$

Q 24. (a) $(6 / 5)\left(6^{\mathrm{n}}-1\right)$
(b) $[\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)] / 6$

EXERCISE-2

Q 6. 8 problems, 127.5 minutes
Q. $8 \mathrm{C}=9$; (3, -3/2, -3/5)

Q 12. (iii) $b=4, c=6, d=9$ or $b=-2, c=-6, d=-18$
Q. 132499

Q 15. (a) $\mathrm{a}=1, \mathrm{~b}=9$ or $\mathrm{b}=1, \mathrm{a}=9$; (b) $\mathrm{a}=1 ; \mathrm{b}=3$ or vice versa
Q. $192 p^{3}-9 p q+27 r=0$; roots are $1,4,7$

Q 23. (a) $1-\frac{x^{n}}{(x+1)(x+2) \ldots .(x+n)}$ (b) $1-\frac{1}{\left(1+a_{1}\right)\left(1+a_{2}\right) \ldots \ldots\left(1+a_{n}\right)}$
Q 24. $\mathrm{n}=38$
Q 25. 931

EXERCI SE- 3

Q 1. $\frac{1}{4}(2 n-1)(n+1)^{2}$

Q 2. $S=\frac{1+a b}{(1-a b)^{2}}$ Where $a=1-x^{-1 / 3} \& b=1-y^{-1 / 4}$
Q 4. $-3,77$
Q6. (a) C
(b) B

Get Solution of These Packages \& Learn by Video Tutorials on www.MathsBySuhag.com Q 8. $r= \pm 1 / 9 ; n=2 ; a=144 / 180$ OR $r= \pm 1 / 3 ; n=4 ; a=108$ OR $r=1 / 81 ; n=1 ; a=160$
Q 9. (a) D
(b) A

Q 10. $\mathrm{A}=3$; $\mathrm{B}=8$
Q 11. A.P.
Q 13. (a) A, (b) C
C, (c) D, (d) $\left[\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right.\right.$
Q 12. $\mathrm{x}=2 \sqrt{2}$ and $\mathrm{y}=3$
Q. 16 B
$\left.\left.A_{n}\right)\left(H_{1}, H_{2}, \ldots \ldots \ldots . . H_{n}\right)\right]^{\frac{1}{2 n}}$

1. D 2. A 3.

B 4
4. B
5. 11. C
12. A
13. A
14. D 15. C
9. \quad C Q. $19 \mathrm{n}_{0}=5$ 1. BC 22. $A B$ 23. $A B C D$ 24. $A B C D$

\section*{| EXERCISE- 4 |
| :---: |
| A 7. A 8. |
 6.
 | 6. $6 . A$ | 17. B | 8. | 18. |
| :--- | :--- | :--- | :--- |}

EXERCISE- 5

4. (i) $2^{n-2}\left(2^{n}+2^{n-1}-1\right)$
(ii) $(n-1)^{3}+n^{3}$
5. $(3+6+12+\ldots . .) ;.(2 / 3+25 / 3+625 / 6+\ldots \ldots)$
6. $\frac{65}{36}$
7. $\frac{\pi}{2}, \frac{2 \pi}{3}, \frac{\pi}{3}$
8. $2 \pi R^{2} ; 4 R^{2}$
9. $\frac{\mathrm{R}\left(1-\sin \frac{\alpha}{2}\right)}{2 \sin \frac{\alpha}{2}}\left[\left(\frac{1+\sin \frac{\alpha}{2}}{1-\sin \frac{\alpha}{2}}\right)^{\mathrm{n}}-1\right]$
10. $A=3 ; B=8$ 14. $m=\frac{2 \mathrm{~b} \sqrt{ } \mathrm{a}}{\sqrt{\mathrm{a}}+\sqrt{ } \mathrm{b}}, n=\frac{2 \mathrm{a} \sqrt{ } \mathrm{b}}{\sqrt{\mathrm{a}}+\sqrt{ } \mathrm{b}}$
11. (i) $(1 / 5) n(n+1)(n+2)(n+3)(n+4)$
(ii) $\frac{\mathrm{n}(\mathrm{n}+1)}{2\left(\mathrm{n}^{2}+\mathrm{n}+1\right)} ; \mathrm{s}_{\infty}=\frac{1}{2}$
(iii) $\frac{\mathrm{n}}{3(2 \mathrm{n}+3)}+\frac{4}{9} \frac{\mathrm{n}(\mathrm{n}+3)}{(2 \mathrm{n}+3)^{2}}$ 9 $3(2 n+3)+9(2 n+3)^{2}$

