
System Software 10CS52

Dept . of CSE,SJBIT Page 1

SYLLABUS

SYSTEM SOFTWARE

Subject Code: 10CS52 I.A. Marks : 25

Hours/Week : 04 Exam Hours: 03

Total Hours : 52 Exam Marks: 100

PART – A

UNIT – 1 6 Hours

Machine Architecture: Introduction, System Software and Machine Architecture,
Simplified Instructional Computer (SIC) - SIC Machine Architecture, SIC/XE Machine

Architecture, SIC Programming Examples.

UNIT – 2 6 Hours

Assemblers -1: Basic Assembler Function - A Simple SIC Assembler, Assembler
Algorithm and Data Structures, Machine Dependent Assembler Features - Instruction

Formats & Addressing Modes, Program Relocation.

UNIT – 3 6 Hours

Assemblers -2: Machine Independent Assembler Features – Literals, Symbol-Definition

Statements, Expression, Program Blocks, Control Sections and Programming Linking,

Assembler Design Operations - One-Pass Assembler, Multi-Pass Assembler,
Implementation Examples - MASM Assembler.

UNIT – 4 8 Hours

Loaders and Linkers: Basic Loader Functions - Design of an Absolute Loader, A Simple

Bootstrap Loader, Machine-Dependent Loader Features – Relocation, Program Linking,

Algorithm and Data Structures for a Linking Loader; Machine-Independent Loader

Features - Automatic Library Search, Loader Options, Loader Design Options - Linkage
Editor, Dynamic Linkage, Bootstrap Loaders, Implementation Examples - MS-DOS Linker.

PART – B

UNIT – 5 6 Hours

Editors and Debugging Systems: Text Editors - Overview of Editing Process, User

Interface, Editor Structure, Interactive Debugging Systems - Debugging Functions and

Capabilities, Relationship With Other Parts Of The System, User-Interface Criteria

UNIT – 6 8 Hours

Macro Processor: Basic Macro Processor Functions - Macro Definitions and Expansion,

Macro Processor Algorithm and Data Structures, Machine-Independent Macro Processor

Features - Concatenation of Macro Parameters, Generation of Unique Labels, Conditional

Macro Expansion, Keyword Macro Parameters, Macro Processor Design Options -

Recursive Macro Expansion, General-Purpose Macro Processors, Macro Processing Within

System Software 10CS52

Dept . of CSE,SJBIT Page 2

Language Translators, Implementation Examples - MASM Macro Processor, ANSI C

Macro Processor.

UNIT – 7 6 Hours

Lex and Yacc – 1: Lex and Yacc - The Simplest Lex Program, Recognizing Words With

LEX, Symbol Tables, Grammars, Parser-Lexer Communication, The Parts of Speech Lexer,

A YACC Parser, The Rules Section, Running LEX and YACC, LEX and Hand- Written

Lexers, Using LEX - Regular Expression, Examples of Regular Expressions, A Word
Counting Program, Parsing a Command Line.

UNIT – 8 6 Hours

Lex and Yacc - 2

Using YACC – Grammars, Recursive Rules, Shift/Reduce Parsing, What YACC Cannot

Parse, A YACC Parser - The Definition Section, The Rules Section, Symbol Values and

Actions, The LEXER, Compiling and Running a Simple Parser, Arithmetic Expressions

and Ambiguity, Variables and Typed Tokens.

Text Books:

1. Leland.L.Beck: System Software, 3
rd

 Edition, Addison-Wesley, 1997.

(Chapters 1.1 to 1.3, 2 (except 2.5.2 and 2.5.3), 3 (except 3.5.2 and 3.5.3), 4

(except 4.4.3))

2. John.R.Levine, Tony Mason and Doug Brown: Lex and Yacc, O'Reilly, SPD,

1998.

(Chapters 1, 2 (Page 2-42), 3 (Page 51-65))

Reference Books:

1. D.M.Dhamdhere: System Programming and Operating Systems, 2
nd

 Edition, Tata

McGraw - Hill, 1999.

System Software 10CS52

Dept . of CSE,SJBIT Page 3

TABLE OF CONTENTS

UNIT-1

MACHINE ARCHITECTURE 5-12

1.1.Introduction

1.2. System Software and Machine Architecture

1.3. The Simplified Instructional Computer (SIC)

1.4 SIC/XE Machine Architecture

1.5. Example Programs (SIC/XE)

UNIT – 2

ASSEMBLERS – 1 13-28

2.1. Basic Assembler Functions

2.2. Single-pass Assembler

2.3 Assembler Design

2. 4. Algorithms and Data structure

2.5. Machine-Dependent Features

2.6. Program Relocation

UNIT – 3

ASSEMBLERS – 2 32-47

3.1. Machine-Independent features

3.2. Symbol-Defining Statements

3.3 .Expressions

3.4 Program Blocks

3.5 Control Sections

3.6.Assembler design

UNIT – 4

LOADERS AND LINKERS 54-74

4.1. Introduction

4.2. Basic Loader Functions

4.3. Simple Bootstrap Loader

4.4. Machine-Dependent Loader Features

4.5. Algorithm and Data structures for a Linking Loader

4.6. Machine-independent Loader Features

4.7 Loader Design Options

4.8. Implementation Examples

System Software 10CS52

Dept . of CSE,SJBIT Page 4

UNIT – 5

EDITORS AND DEBUGGING SYSTEMS 76-82

5.1 Introduction

5.2. Overview of the editing process

5.3. User Interface

5.4. Editor Structure

5.5.Debugging Functions and Capabilities

5.6. Relationship with Other Parts of the System

5.7. User-Interface Criteria

UNIT–6

MACRO PROCESSOR 83-103

6.1. Basic Macro Processor Functions

6.2 Macro Processor Algorithm and Data Structure

6.3.Comparison of Macro Processor Design

6.4. Machine-independent Macro-Processor Features

6.5. Macro Processor Design Options

UNIT – 7

LEX AND YACC – 1 107-114

7.1.Introduction

7.2.Simple Lex Program and Structure

7.3.Regular Expression

7.4.How to Run Lex program

7.5.Lexer

7.6 Examples

UNIT – 8

LEX AND YACC – 2 122-138

8.1. Introduction

8.2. Grammars

8.3. Basic Specifications

8.4. Symbols and Actions

8.5. Lexical Analysis

8.6. How the Parser Works

8.7. Ambiguity and Conflicts

8.8. Precedence

8.9. Recursive rules

8.10. Running both Lexer and Parser

8.11. Examples

System Software 10CS52

Dept . of CSE,SJBIT Page 5

UNIT-1

MACHINE ARCHITECTURE

1.1. Introduction:

The Software is set of instructions or programs written to carry out certain task on

digital computers. It is classified into system software and application software. System

software consists of a variety of programs that support the operation of a computer.

Application software focuses on an application or problem to be solved. System software

consists of a variety of programs that support the operation of a computer.

Examples for system software are Operating system, compiler, assembler,

macro processor, loader or linker, debugger, text editor, database management systems

(some of them) and, software engineering tools. These software‟s make it possible for the

user to focus on an application or other problem to be solved, without needing to know

the details of how the machine works internally.

1.2. System Software and Machine Architecture:

One characteristic in which most system software differs from application

software is machine dependency.

-> System software – support operation and use of computer. Application

software - solution to a problem. Assembler translates mnemonic instructions into

machine code. The instruction formats, addressing modes etc., are of direct concern in

assembler design. Similarly,

Compilers must generate machine language code, taking into account such

hardware characteristics as the number and type of registers and the machine instructions

available. Operating systems are directly concerned with the management of nearly all of

the resources of a computing system.

-> There are aspects of system software that do not directly depend upon the type

of computing system, general design and logic of an assembler, general design and logic
of a compiler and code optimization techniques, which are independent of target

machines. Likewise, the process of linking together independently assembled

subprograms does not usually depend on the computer being used.

1.3. The Simplified Instructional Computer (SIC):

Simplified Instructional Computer (SIC) is a hypothetical computer that includes

the hardware features most often found on real machines. There are two versions of SIC,

they are, standard model (SIC), and, extension version (SIC/XE) (extra equipment or

extra expensive).

System Software 10CS52

Dept . of CSE,SJBIT Page 6

SIC Machine Architecture:

We discuss here the SIC machine architecture with respect to its Memory and

Registers, Data Formats, Instruction Formats, Addressing Modes, Instruction Set, Input

and Output

Memory :

There are 2

15
bytes in the computer memory, that is 32,768 bytes. It uses Little

Endian format to store the numbers, 3 consecutive bytes form a word , each location in

memory contains 8-bit bytes.

Registers:

There are five registers, each 24 bits in length. Their mnemonic, number and use

are given in the following table.

Mnemonic Number Use

A 0 Accumulator; used for arithmetic operations

X 1 Index register; used for addressing

L 2 Linkage register; JSUB

PC 8 Program counter

SW 9 Status word, including CC

Data Formats:

Integers are stored as 24-bit binary numbers. 2‟s complement representation is

used for negative values, characters are stored using their 8-bit ASCII codes.No floating-

point hardware on the standard version of SIC.

Instruction Formats:

Opcode(8) x Address (15)

All machine instructions on the standard version of SIC have the 24-bit format as

shown above

System Software 10CS52

Dept . of CSE,SJBIT Page 7

Addressing Modes:

There are two addressing modes available, which are as shown in the above table.

Parentheses are used to indicate the contents of a register or a memory location.

Instruction Set :

• SIC provides, load and store instructions (LDA, LDX, STA, STX, etc.). Integer

arithmetic operations: (ADD, SUB, MUL, DIV, etc.).

• All arithmetic operations involve register A and a word in memory, with the result

being left in the register. Two instructions are provided for subroutine linkage.

• COMP compares the value in register A with a word in memory, this instruction

sets a condition code CC to indicate the result. There are conditional jump

instructions: (JLT, JEQ, JGT), these instructions test the setting of CC and jump

accordingly.

• JSUB jumps to the subroutine placing the return address in register L, RSUB

returns by jumping to the address contained in register L.

Input and Output:

Input and Output are performed by transferring 1 byte at a time to or from the

rightmost 8 bits of register A (accumulator). The Test Device (TD) instruction tests

whether the addressed device is ready to send or receive a byte of data. Read Data (RD),

Write Data (WD) are used for reading or writing the data.

Data movement and Storage Definition

LDA, STA, LDL, STL, LDX, STX (A- Accumulator, L – Linkage Register,
X – Index Register), all uses 3-byte word. LDCH, STCH associated with characters uses

1-byte. There are no memory-memory move instructions.

Storage definitions are

• WORD - ONE-WORD CONSTANT

• RESW - ONE-WORD VARIABLE

• BYTE - ONE-BYTE CONSTANT

• RESB - ONE-BYTE VARIABLE

Mode Indication Target address calculation

Direct x = 0 TA = address

Indexed x = 1 TA = address + (x)

System Software 10CS52

Dept . of CSE,SJBIT Page 8

Example Programs (SIC):

Example 1: Simple data and character movement operation

LDA FIVE

STA ALPHA

LDCH CHARZ

STCH C1

.
ALPHA RESW 1

FIVE WORD 5

CHARZ BYTE C‟Z‟

C1 RESB 1

Example 2: Arithmetic operations

LDA ALPHA

ADD INCR

SUB ONE

STA BETA

……..

……..

……..

……..

ONE WORD 1

ALPHA RESW 1

BEETA RESW 1

INCR RESW 1

Example 3: Looping and Indexing operation

LDX ZERO ; X = 0

MOVECH LDCH STR1, X ; LOAD A FROM STR1

STCH STR2, X ; STORE A TO STR2

TIX ELEVEN ; ADD 1 TO X, TEST

JLT MOVECH

.

.

.

STR1 BYTE C „HELLO WORLD‟

STR2 RESB 11

ZERO WORD 0

ELEVEN WORD 11

System Software 10CS52

Dept . of CSE,SJBIT Page 9

Example 4: Input and Output operation

INLOOP TD INDEV : TEST INPUT DEVICE

JEQ INLOOP : LOOP UNTIL DEVICE IS READY

RD INDEV : READ ONE BYTE INTO A

STCH DATA : STORE A TO DATA

.

.

OUTLP TD OUTDEV : TEST OUTPUT DEVICE

JEQ OUTLP : LOOP UNTIL DEVICE IS READY

LDCH DATA : LOAD DATA INTO A

WD OUTDEV : WRITE A TO OUTPUT DEVICE

.

.

INDEV BYTE X „F5‟ : INPUT DEVICE NUMBER

OUTDEV BYTE X „08‟ : OUTPUT DEVICE NUMBER

DATA RESB 1 : ONE-BYTE VARIABLE

Example 5: To transfer two hundred bytes of data from input device to memory

LDX ZERO
CLOOP TD INDEV

JEQ CLOOP RD

INDEV

STCH RECORD, X

TIX B200

JLT CLOOP
.

.

INDEV BYTE X „F5‟

RECORD RESB 200

ZERO WORD 0

B200 WORD 200

1.4 SIC/XE Machine Architecture:

Memory

Maximum memory available on a SIC/XE system is 1 Megabyte (2
20

bytes).

Registers

Additional B, S, T, and F registers are provided by SIC/XE, in addition to the

registers of SIC.

Floating-point data type:

System Software 10CS52

Dept . of CSE,SJBIT Page 10

There is a 48-bit floating-point data type, F*2
(e-1024)

Instruction Formats:

The new set of instruction formats fro SIC/XE machine architecture are as follows.
Format 1 (1 byte): contains only operation code (straight from table).

Format 2 (2 bytes): first eight bits for operation code, next four for register 1 and

following four for register 2.

The numbers for the registers go according to the numbers indicated at the registers

section (ie, register T is replaced by hex 5, F is replaced by hex 6).

Format 3 (3 bytes): First 6 bits contain operation code, next 6 bits contain flags, last 12

bits contain displacement for the address of the operand. Operation code uses only 6 bits,

thus the second hex digit will be affected by the values of the first two flags (n and i). The

flags, in order, are: n, i, x, b, p, and e. Its functionality is explained in the next section.

The last flag e indicates the instruction format (0 for 3 and 1 for 4).

Format 4 (4 bytes): same as format 3 with an extra 2 hex digits (8 bits) for addresses that

require more than 12 bits to be represented.

Addressing modes & Flag Bits

Five possible addressing modes plus the combinations are as follows.

• Direct (x, b, and p all set to 0): operand address goes as it is. n and i are both set
to the same value, either 0 or 1. While in general that value is 1, if set to 0 for

format 3 we can assume that the rest of the flags (x, b, p, and e) are used as a part

of the address of the operand, to make the format compatible to the SIC format.

• Relative (either b or p equal to 1 and the other one to 0): the address of the

operand should be added to the current value stored at the B register (if b = 1) or
to the value stored at the PC register (if p = 1)

• Immediate(i = 1, n = 0): The operand value is already enclosed on the

instruction (ie. lies on the last 12/20 bits of the instruction)

• Indirect(i = 0, n = 1): The operand value points to an address that holds the
address for the operand value.

• Indexed (x = 1): value to be added to the value stored at the register x to obtain real address of
the operand. This can be combined with any of the previous modes except immediate.

The various flag bits used in the above formats have the following meanings

e - > e = 0 means format 3, e = 1 means format 4

System Software 10CS52

Dept . of CSE,SJBIT Page 11

Bits x,b,p : Used to calculate the target address using relative, direct, and indexed
addressing Modes

Bits i and n: Says, how to use the target address

b and p - both set to 0, disp field from format 3 instruction is taken to be the target

address. For a format 4 bits b and p are normally set to 0, 20 bit address is the target

address

x - x is set to 1, X register value is added for target address calculation

i=1, n=0 Immediate addressing, TA: TA is used as the operand value, no memory

reference

i=0, n=1 Indirect addressing, ((TA)): The word at the TA is fetched. Value of TA is taken

as the address of the operand value

i=0, n=0 or i=1, n=1 Simple addressing, (TA):TA is taken as the address of the operand

value

Two new relative addressing modes are available for use with instructions

assembled using format 3.

Target address calculation

TA=(B)+ disp

(0≤disp ≤4095)

TA=(PC)+ disp

(-2048≤disp ≤2047)

Instruction Set:

SIC/XE provides all of the instructions that are available on the standard version.

In addition we have, Instructions to load and store the new registers LDB, STB, etc,

Floating-point arithmetic operations, ADDF, SUBF, MULF, DIVF, Register move

instruction : RMO, Register-to-register arithmetic operations, ADDR, SUBR, MULR,

DIVR and, Supervisor call instruction : SVC.

Input and Output:

There are I/O channels that can be used to perform input and output while the

CPU is executing other instructions. Allows overlap of computing and I/O, resulting in

more efficient system operation. The instructions SIO, TIO, and HIO are used to start,

test and halt the operation of I/O channels.

Indication

b=1,p=0

b=0,p=1

Mode

Base relative

Program-counter
relative

System Software 10CS52

Dept . of CSE,SJBIT Page 12

1.5. Example Programs (SIC/XE)

Example 1: Simple data and character movement operation

LDA #5

STA ALPHA

LDA #90
STCH C1

.

.

ALPHA RESW 1

C1 RESB 1

 Example 2: Arithmetic operations

LDS INCR

LDA ALPHA

ADD S,A

SUB #1

STA BETA

………….

…………..

ALPHA RESW 1

BETA RESW 1

INCR RESW 1

Example 3: Looping and Indexing operation

LDT #11

LDX #0 : X = 0

MOVECH LDCH STR1, X : LOAD A FROM STR1

STCH STR2, X : STORE A TO STR2

TIXR T : ADD 1 TO X, TEST (T)

JLT MOVECH

……….

……….

………

STR1 BYTE C „HELLO WORLD‟

STR2 RESB 11

System Software 10CS52

Dept . of CSE,SJBIT Page 13

UNIT – 2

ASSEMBLERS – 1

2.1. Basic Assembler Functions:

The basic assembler functions are:

• Translating mnemonic language code to its equivalent object code.

• Assigning machine addresses to symbolic labels.

• The design of assembler can be to perform the following:

– Scanning (tokenizing)

– Parsing (validating the instructions)

– Creating the symbol table

– Resolving the forward references

– Converting into the machine language

• The design of assembler in other words:

– Convert mnemonic operation codes to their machine language equivalents

– Convert symbolic operands to their equivalent machine addresses

– Decide the proper instruction format Convert the data constants to internal machine

representations

– Write the object program and the assembly listing

So for the design of the assembler we need to concentrate on the machine architecture of

the SIC/XE machine. We need to identify the algorithms and the various data structures

to be used. According to the above required steps for assembling the assembler also has

to handle assembler directives, these do not generate the object code but directs the
assembler to perform certain operation. These directives are:

• SIC Assembler Directive:

– START: Specify name & starting address.

– END: End of the program, specify the first execution instruction.

– BYTE, WORD, RESB, RESW

– End of record: a null char(00)

End of file: a zero length record

The assembler design can be done:

SOURCE

PROGRAM

OBJECT

CODE

ASSEMBLER

System Software 10CS52

Dept . of CSE,SJBIT Page 14

• Single pass assembler

• Multi-pass assembler

2.2. Single-pass Assembler:

In this case the whole process of scanning, parsing, and object code conversion is

done in single pass. The only problem with this method is resolving forward reference.

This is shown with an example below:

10 1000 FIRST STL RETADR 141033

--

--

--

--

95 1033 RETADR RESW 1

In the above example in line number 10 the instruction STL will store the linkage

register with the contents of RETADR. But during the processing of this instruction the

value of this symbol is not known as it is defined at the line number 95. Since I single-

pass assembler the scanning, parsing and object code conversion happens simultaneously.

The instruction is fetched; it is scanned for tokens, parsed for syntax and semantic

validity. If it valid then it has to be converted to its equivalent object code. For this the

object code is generated for the opcode STL and the value for the symbol RETADR need

to be added, which is not available.

Due to this reason usually the design is done in two passes. So a multi-pass
assembler resolves the forward references and then converts into the object code. Hence

the process of the multi-pass assembler can be as follows:

Pass-1

• Assign addresses to all the statements

• Save the addresses assigned to all labels to be used in Pass-2

• Perform some processing of assembler directives such as RESW, RESB to find

the length of data areas for assigning the address values.

• Defines the symbols in the symbol table(generate the symbol table)

Pass-2

• Assemble the instructions (translating operation codes and looking up addresses).

• Generate data values defined by BYTE, WORD etc.

• Perform the processing of the assembler directives not done during pass-1.

• Write the object program and assembler listing.

System Software 10CS52

Dept . of CSE,SJBIT Page 15

2.3 Assembler Design:

The most important things which need to be concentrated is the generation of

Symbol table and resolving forward references.

• Symbol Table:

– This is created during pass 1

– All the labels of the instructions are symbols

– Table has entry for symbol name, address value.

• Forward reference:

– Symbols that are defined in the later part of the program are called

forward referencing.

– There will not be any address value for such symbols in the symbol table

in pass 1.

Example Program:

The example program considered here has a main module, two subroutines

• Purpose of example program

- Reads records from input device (code F1)

- Copies them to output device (code 05)

- At the end of the file, writes EOF on the output device, then RSUB to the

operating system
• Data transfer (RD, WD)

-A buffer is used to store record

-Buffering is necessary for different I/O rates

-The end of each record is marked with a null character (00)16

-The end of the file is indicated by a zero-length record

• Subroutines (JSUB, RSUB)

-RDREC, WRREC

-Save link register first before nested jump

System Software 10CS52

Dept . of CSE,SJBIT Page 16

System Software 10CS52

Dept . of CSE,SJBIT Page 17

The first column shows the line number for that instruction, second column shows

the addresses allocated to each instruction. The third column indicates the labels given to

the statement, and is followed by the instruction consisting of opcode and operand. The
last column gives the equivalent object code.

The object code later will be loaded into memory for execution. The simple object

program we use contains three types of records:

• Header record

- Col. 1 H

- Col. 2~7 Program name

- Col. 8~13 Starting address of object program (hex)

- Col. 14~19 Length of object program in bytes (hex)

• Text record

- Col. 1 T

- Col. 2~7 Starting address for object code in this record (hex)

- Col. 8~9 Length of object code in this record in bytes (hex)

- Col. 10~69 Object code, represented in hex (2 col. per byte)

• End record

- Col.1 E

- Col.2~7 Address of first executable instruction in object program (hex) “^” is only

for separation only

System Software 10CS52

Dept . of CSE,SJBIT Page 18

Object code for the example program:

1. Simple SIC Assembler

The program below is shown with the object code generated. The column named LOC

gives the machine addresses of each part of the assembled program (assuming the

program is starting at location 1000). The translation of the source program to the object

program requires us to accomplish the following functions:

1. Convert the mnemonic operation codes to their machine language equivalent.

2. Convert symbolic operands to their equivalent machine addresses.

3. Build the machine instructions in the proper format.

4. Convert the data constants specified in the source program into their internal

machine representations in the proper format.
5. Write the object program and assembly listing.

All these steps except the second can be performed by sequential processing of the source

program, one line at a time. Consider the instruction

10 1000 LDA ALPHA 00-----

This instruction contains the forward reference, i.e. the symbol ALPHA is used is

not yet defined. If the program is processed (scanning and parsing and object code

conversion) is done line-by-line, we will be unable to resolve the address of this symbol.

Due to this problem most of the assemblers are designed to process the program in two

passes.

In addition to the translation to object program, the assembler has to take care of

handling assembler directive. These directives do not have object conversion but giv es

direction to the assembler to perform some function. Examples of directives are the

statements like BYTE and WORD, which directs the assembler to reserve memory

locations without generating data values. The other directives are START which indicates

the beginning of the program and END indicating the end of the program.

The assembled program will be loaded into memory for execution. The simple

object program contains three types of records: Header record, Text record and end

record. The header record contains the starting address and length. Text record contains

the translated instructions and data of the program, together with an indication of the

addresses where these are to be loaded. The end record marks the end of the object

program and specifies the address where the execution is to begin.

The format of each record is as given below.

Header record:

Col 1 H

Col. 2-7 Program name

Col 8-13 Starting address of object program (hexadecimal)

Col 14-19 Length of object program in bytes (hexadecimal)

System Software 10CS52

Dept . of CSE,SJBIT Page 19

Text record:

Col. 1 T

Col 2-7. Starting address for object code in this record (hexadecimal)

Col 8-9 Length off object code in this record in bytes (hexadecimal)

Col 10-69 Object code, represented in hexadecimal (2 columns per byte of

object code)

End record:

Col. 1 E

Col 2-7 Address of first executable instruction in object program

(hexadecimal)

The assembler can be designed either as a single pass assembler or as a two pass

assembler. The general description of both passes is as given below:

• Pass 1 (define symbols)

– Assign addresses to all statements in the program

– Save the addresses assigned to all labels for use in Pass 2

– Perform assembler directives, including those for address assignment,

such as BYTE and RESW
• Pass 2 (assemble instructions and generate object program)

– Assemble instructions (generate opcode and look up addresses)

– Generate data values defined by BYTE, WORD

– Perform processing of assembler directives not done during Pass 1

– Write the object program and the assembly listing

2. 4. Algorithms and Data structure

The simple assembler uses two major internal data structures: the operation Code

Table (OPTAB) and the Symbol Table (SYMTAB).

OPTAB:

• It is used to lookup mnemonic operation codes and translates them to their
machine language equivalents. In more complex assemblers the table also

contains information about instruction format and length.

• In pass 1 the OPTAB is used to look up and validate the operation code in the

source program. In pass 2, it is used to translate the operation codes to machine

language. In simple SIC machine this process can be performed in either in pass

1 or in pass 2. But for machine like SIC/XE that has instructions of different

lengths, we must search OPTAB in the first pass to find the instruction length for
incrementing LOCCTR.

• In pass 2 we take the information from OPTAB to tell us which instruction

format to use in assembling the instruction, and any peculiarities of the object

System Software 10CS52

Dept . of CSE,SJBIT Page 20

code instruction.

• OPTAB is usually organized as a hash table, with mnemonic operation code as

the key. The hash table organization is particularly appropriate, since it provides

fast retrieval with a minimum of searching. Most of the cases the OPTAB is a

static table- that is, entries are not normally added to or deleted from it. In such

cases it is possible to design a special hashing function or other data structure to

give optimum performance for the particular set of keys being stored.

SYMTAB:

• This table includes the name and value for each label in the source program,
together with flags to indicate the error conditions (e.g., if a symbol is defined in

two different places).

• During Pass 1: labels are entered into the symbol table along with their assigned
address value as they are encountered. All the symbols address value should get
resolved at the pass 1.

• During Pass 2: Symbols used as operands are looked up the symbol table to obtain

the address value to be inserted in the assembled instructions.

• SYMTAB is usually organized as a hash table for efficiency of insertion and

retrieval. Since entries are rarely deleted, efficiency of deletion is the important

criteria for optimization.

• Both pass 1 and pass 2 require reading the source program. Apart from this an

intermediate file is created by pass 1 that contains each source statement together

with its assigned address, error indicators, etc. This file is one of the inputs to the
pass 2.

• A copy of the source program is also an input to the pass 2, which is used to retain

the operations that may be performed during pass 1 (such as scanning the

operation field for symbols and addressing flags), so that these need not be

performed during pass 2. Similarly, pointers into OPTAB and SYMTAB is

retained for each operation code and symbol used. This avoids need to repeat
many of the table-searching operations.

LOCCTR:

Apart from the SYMTAB and OPTAB, this is another important variable which helps in

the assignment of the addresses. LOCCTR is initialized to the beginning address

mentioned in the START statement of the program. After each statement is processed,

the length of the assembled instruction is added to the LOCCTR to make it point to the

next instruction. Whenever a label is encountered in an instruction the LOCCTR value

gives the address to be associated with that label.

System Software 10CS52

Dept . of CSE,SJBIT Page 21

The Algorithm for Pass 1:

Begin

read first input line

if OPCODE = „START‟ then begin

save #[Operand] as starting addr

initialize LOCCTR to starting address

write line to intermediate file

read next line

end(if START)

else
initialize LOCCTR to 0

While OPCODE != „END‟ do

begin

if this is not a comment line then

begin

if there is a symbol in the LABEL field then

begin
search SYMTAB for LABEL

if found then

set error flag (duplicate symbol)

else

(if symbol)

search OPTAB for OPCODE

if found then

add 3 (instr length) to LOCCTR

else if OPCODE = „WORD‟ then

add 3 to LOCCTR
else if OPCODE = „RESW‟ then

add 3 * #[OPERAND] to LOCCTR

else if OPCODE = „RESB‟ then

add #[OPERAND] to LOCCTR

else if OPCODE = „BYTE‟ then

begin

find length of constant in bytes

add length to LOCCTR

end

else

set error flag (invalid operation code)

end (if not a comment)

write line to intermediate file

read next input line

end { while not END}

write last line to intermediate file

Save (LOCCTR – starting address) as program length

End {pass 1}

System Software 10CS52

Dept . of CSE,SJBIT Page 22

• The algorithm scans the first statement START and saves the operand field (the

address) as the starting address of the program. Initializes the LOCCTR value to

this address. This line is written to the intermediate line.

• If no operand is mentioned the LOCCTR is initialized to zero. If a label is
encountered, the symbol has to be entered in the symbol table along with its

associated address value.

• If the symbol already exists that indicates an entry of the same symbol already

exists. So an error flag is set indicating a duplication of the symbol.

• It next checks for the mnemonic code, it searches for this code in the OPTAB. If

found then the length of the instruction is added to the LOCCTR to make it point

to the next instruction.

• If the opcode is the directive WORD it adds a value 3 to the LOCCTR. If it is

RESW, it needs to add the number of data word to the LOCCTR. If it is BYTE it
adds a value one to the LOCCTR, if RESB it adds number of bytes.

• If it is END directive then it is the end of the program it finds the length of the

program by evaluating current LOCCTR – the starting address mentioned in the
operand field of the END directive. Each processed line is written to the

intermediate file.

The Algorithm for Pass 2:

Begin

read 1st input line

if OPCODE = „START‟ then

begin

write listing line

read next input line
end

write Header record to object program

initialize 1st Text record

while OPCODE != „END‟ do

begin

if this is not comment line then

begin

search OPTAB for OPCODE

if found then

begin

if there is a symbol in OPERAND field then

begin

search SYMTAB for OPERAND field then

if found then
begin

System Software 10CS52

Dept . of CSE,SJBIT Page 23

store symbol value as operand address

else

begin

store 0 as operand address

set error flag (undefined symbol)

end
end (if symbol)

else store 0 as operand address

assemble the object code instruction

else if OPCODE = „BYTE‟ or „WORD” then

convert constant to object code

if object code doesn‟t fit into current Text record then

begin

Write text record to object code

initialize new Text record

end

add object code to Text record

end {if not comment}

write listing line

read next input line

end

write listing line

read next input line

write last listing line
End {Pass 2}

Here the first input line is read from the intermediate file. If the opcode is START, then

this line is directly written to the list file. A header record is written in the object program

which gives the starting address and the length of the program (which is calculated during

pass 1). Then the first text record is initialized. Comment lines are ignored. In the

instruction, for the opcode the OPTAB is searched to find the object code.

If a symbol is there in the operand field, the symbol table is searched to get the address

value for this which gets added to the object code of the opcode. If the address not found

then zero value is stored as operands address. An error flag is set indicating it as

undefined. If symbol itself is not found then store 0 as operand address and the object

code instruction is assembled.

If the opcode is BYTE or WORD, then the constant value is converted to its

equivalent object code(for example, for character EOF, its equivalent hexadecimal value

„454f46‟ is stored). If the object code cannot fit into the current text record, a new text

record is created and the rest of the instructions object code is listed. The text records are

System Software 10CS52

Dept . of CSE,SJBIT Page 24

written to the object program. Once the whole program is assemble and when the END

directive is encountered, the End record is written.

Design and Implementation Issues

Some of the features in the program depend on the architecture of the machine. If the

program is for SIC machine, then we have only limited instruction formats and hence

limited addressing modes. We have only single operand instructions. The operand is

always a memory reference. Anything to be fetched from memory requires more time.

Hence the improved version of SIC/XE machine provides more instruction formats and

hence more addressing modes. The moment we change the machine architecture the

availability of number of instruction formats and the addressing modes changes.

Therefore the design usually requires considering two things: Machine-dependent

features and Machine-independent features.

2.5. Machine-Dependent Features:

• Instruction formats and addressing modes

• Program relocation

1 .Instruction formats and Addressing Modes

The instruction formats depend on the memory organization and the size of the

memory. In SIC machine the memory is byte addressable. Word size is 3 bytes. So the

size of the memory is 2
12

bytes. Accordingly it supports only one instruction format. It

has only two registers: register A and Index register. Therefore the addressing modes

supported by this architecture are direct, indirect, and indexed. Whereas the memory of a

SIC/XE machine is 2
20

bytes (1 MB). This supports four different types of instruction

types, they are:

 1 byte instruction

 2 byte instruction

 3 byte instruction

 4 byte instruction



• Instructions can be:

– Instructions involving register to register

– Instructions with one operand in memory, the other in Accumulator

(Single operand instruction)

– Extended instruction format

• Addressing Modes are:

– Index Addressing(SIC): Opcode m, x

– Indirect Addressing: Opcode @m

– PC-relative: Opcode m

– Base relative: Opcode m
– Immediate addressing: Opcode #c

System Software 10CS52

Dept . of CSE,SJBIT Page 25

. Translations for the Instruction involving Register-Register addressing mode:

During pass 1 the registers can be entered as part of the symbol table itself. The value for

these registers is their equivalent numeric codes. During pass2, these values are

assembled along with the mnemonics object code. If required a separate table can be

created with the register names and their equivalent numeric values.

Translation involving Register-Memory instructions:

In SIC/XE machine there are four instruction formats and five addressing modes. For

formats and addressing modes

Among the instruction formats, format -3 and format-4 instructions are Register-

Memory type of instruction. One of the operand is always in a register and the other

operand is in the memory. The addressing mode tells us the way in which the operand

from the memory is to be fetched.

There are two ways: Program-counter relative and Base-relative. This addressing

mode can be represented by either using format-3 type or format-4 type of instruction

format. In format-3, the instruction has the opcode followed by a 12-bit displacement

value in the address field. Where as in format-4 the instruction contains the mnemonic

code followed by a 20-bit displacement value in the address field.

Program-Counter Relative:

In this usually format-3 instruction format is used. The instruction contains the opcode
followed by a 12-bit displacement value.

The range of displacement values are from 0 -2048. This displacement (should be small

enough to fit in a 12-bit field) value is added to the current contents of the program

counter to get the target address of the operand required by the instruction.

This is relative way of calculating the address of the operand relative to the program

counter. Hence the displacement of the operand is relative to the current program counter

value. The following example shows how the address is calculated:

System Software 10CS52

Dept . of CSE,SJBIT Page 26

Base-Relative Addressing Mode:

in this mode the base register is used to mention the displacement value. Therefore the

target address is
TA = (base) + displacement value

• This addressing mode is used when the range of displacement value is not
sufficient. Hence the operand is not relative to the instruction as in PC-relative

addressing mode. Whenever this mode is used it is indicated by using a directive

BASE.

• The moment the assembler encounters this directive the next instruction uses

base-relative addressing mode to calculate the target address of the operand.

• When NOBASE directive is used then it indicates the base register is no more

used to calculate the target address of the operand. Assembler first chooses PC-

relative, when the displacement field is not enough it uses Base-relative.

LDB #LENGTH (instruction)
BASE LENGTH (directive)

:

NOBASE

For example:

12 0003 LDB #LENGTH 69202D

13 BASE LENGTH

: :

100 0033 LENGTH RESW 1

105 0036 BUFFER RESB 4096

: :

160 104E STCH BUFFER, X 57C003

165 1051 TIXR T B850

System Software 10CS52

Dept . of CSE,SJBIT Page 27

In the above example the use of directive BASE indicates that Base-relative

addressing mode is to be used to calculate the target address. PC-relative is no longer

used. The value of the LENGTH is stored in the base register. If PC-relative is used then

the target address calculated is:

• The LDB instruction loads the value of length in the base register which 0033.

BASE directive explicitly tells the assembler that it has the value of
LENGTH.

BUFFER is at location (0036)16

(B) = (0033)16

disp = 0036 – 0033 = (0003)16

20 000A LDA LENGTH 032026

: :

175 1056 EXIT STX LENGTH 134000

Consider Line 175. If we use PC-relative

Disp = TA – (PC) = 0033 –1059 = EFDA

PC relative is no longer applicable, so we try to use BASE relative addressing mode.

 Immediate Addressing Mode

In this mode no memory reference is involved. If immediate mode is used the target

address is the operand itself.

If the symbol is referred in the instruction as the immediate operand then it is immediate

with PC-relative mode as shown in the example below:

System Software 10CS52

Dept . of CSE,SJBIT Page 28

Indirect and PC-relative mode:

In this type of instruction the symbol used in the instruction is the address of the location

which contains the address of the operand. The address of this is found using PC-relative
addressing mode. For example:

The instruction jumps the control to the address location RETADR which in turn has the

address of the operand. If address of RETADR is 0030, the target address is then 0003 as

calculated above.

2.6. Program Relocation

Sometimes it is required to load and run several programs at the same time. The system

must be able to load these programs wherever there is place in the memory. Therefore the

exact starting is not known until the load time.

Absolute Program

In this the address is mentioned during assembling itself. This is called Absolute

Assembly. Consider the instruction:

55 101B LDA THREE 00102D

• This statement says that the register A is loaded with the value stored at

location 102D. Suppose it is decided to load and execute the program at
location 2000 instead of location 1000.

System Software 10CS52

Dept . of CSE,SJBIT Page 29

Then at address 102D the required value which needs to be loaded in the
register A is no more available. The address also gets changed relative to the

displacement of the program. Hence we need to make some changes in the

address portion of the instruction so that we can load and execute the program

at location 2000.

• Apart from the instruction which will undergo a change in their operand

address value as the program load address changes. There exist some parts in

the program which will remain same regardless of where the program is being
loaded.

• Since assembler will not know actual location where the program will get
loaded, it cannot make the necessary changes in the addresses used in the

program. However, the assembler identifies for the loader those parts of the

program which need modification.

• An object program that has the information necessary to perform this kind of

modification is called the relocatable program.

• The above diagram shows the concept of relocation. Initially the program is
loaded at location 0000. The instruction JSUB is loaded at location 0006.

• The address field of this instruction contains 01036, which is the address of the

instruction labeled RDREC. The second figure shows that if the program is to be

loaded at new location 5000.

• The address of the instruction JSUB gets modified to new location 6036.

Likewise the third figure shows that if the program is relocated at location 7420,

System Software 10CS52

Dept . of CSE,SJBIT Page 30

the JSUB instruction would need to be changed to 4B108456 that correspond to

the new address of RDREC.

• The only part of the program that require modification at load time are those that

specify direct addresses. The rest of the instructions need not be modified. The

instructions which doesn‟t require modification are the ones that is not a memory

address (immediate addressing) and PC-relative, Base-relative instructions.

• From the object program, it is not possible to distinguish the address and constant
The assembler must keep some information to tell the loader. The object program
that contains the modification record is called a relocatable program.

• For an address label, its address is assigned relative to the start of the program

(START 0). The assembler produces a Modification record to store the starting

location and the length of the address field to be modified. The command for the

loader must also be a part of the object program. The Modification has the

following format:

Modification record

Col. 1 M

Col. 2-7 Starting location of the address field to be modified, relative to the

beginning of the program (Hex)

Col. 8-9 Length of the address field to be modified, in half-bytes (Hex)

One modification record is created for each address to be modified The length is stored

in half-bytes (4 bits) The starting location is the location of the byte containing the

leftmost bits of the address field to be modified. If the field contains an odd number of

half-bytes, the starting location begins in the middle of the first byte.

In the above object code the red boxes indicate the addresses that need modifications.

The object code lines at the end are the descriptions of the modification records for those
instructions which need change if relocation occurs. M00000705 is the modification

System Software 10CS52

Dept . of CSE,SJBIT Page 31

suggested for the statement at location 0007 and requires modification 5-half bytes.

Similarly the remaining instructions indicate.

System Software 10CS52

Dept . of CSE,SJBIT Page 32

UNIT – 3

ASSEMBLERS – 2

3.1. Machine-Independent features:

These are the features which do not depend on the architecture of the machine. These
are:

 Literals

 Expressions

 Program blocks

 Control sections



Literals:

A literal is defined with a prefix = followed by a specification of the literal value.
Example:

45 001A ENDFIL LDA =C‟EOF‟ 032
-

-

93 LTORG

002D * =C‟EOF‟ 454F46

The example above shows a 3-byte operand whose value is a character string

EOF. The object code for the instruction is also mentioned. It shows the relative

displacement value of the location where this value is stored. In the example the value is

at location (002D) and hence the displacement value is (010). As another example the

given statement below shows a 1-byte literal with the hexadecimal value „05‟.

215 1062 WLOOP TD =X‟05‟ E32011

It is important to understand the difference between a constant defined as a literal

and a constant defined as an immediate operand. In case of literals the assembler

generates the specified value as a constant at some other memory location In immediate
mode the operand value is assembled as part of the instruction itself. Example

55 0020 LDA #03 010003

All the literal operands used in a program are gathered together into one or more

literal pools. This is usually placed at the end of the program. The assembly listing of a

program containing literals usually includes a listing of this literal pool, which shows the

assigned addresses and the generated data values. In some cases it is placed at some other

010

System Software 10CS52

Dept . of CSE,SJBIT Page 33

location in the object program. An assembler directive LTORG is used. Whenever the

LTORG is encountered, it creates a literal pool that contains all the literal operands used

since the beginning of the program. The literal pool definition is done after LTORG is

encountered. It is better to place the literals close to the instructions.

A literal table is created for the literals which are used in the program. The literal

table contains the literal name, operand value and length. The literal table is usually

created as a hash table on the literal name.

Implementation of Literals:

During Pass-1:

The literal encountered is searched in the literal table. If the literal already exists,

no action is taken; if it is not present, the literal is added to the LITTAB and for the

address value it waits till it encounters LTORG for literal definition. When Pass 1

encounters a LTORG statement or the end of the program, the assembler makes a scan of

the literal table. At this time each literal currently in the table is assigned an address. As

addresses are assigned, the location counter is updated to reflect the number of bytes

occupied by each literal.

During Pass-2:

The assembler searches the LITTAB for each literal encountered in the instruction

and replaces it with its equivalent value as if these values are generated by BYTE or

WORD. If a literal represents an address in the program, the assembler must generate a

modification relocation for, if it all it gets affected due to relocation. The following figure

shows the difference between the SYMTAB and LITTAB

3.2. Symbol-Defining Statements:

EQU Statement:

Most assemblers provide an assembler directive that allows the programmer to

define symbols and specify their values. The directive used for this EQU (Equate). The
general form of the statement is

System Software 10CS52

Dept . of CSE,SJBIT Page 34

Symbol EQU value

This statement defines the given symbol (i.e., entering in the SYMTAB) and assigning to

it the value specified. The value can be a constant or an expression involving constants

and any other symbol which is already defined. One common usage is to define symbolic

names that can be used to improve readability in place of numeric values. For example

+LDT #4096

This loads the register T with immediate value 4096, this does not clearly what exactly

this value indicates. If a statement is included as:

MAXLEN EQU 4096 and then

+LDT #MAXLEN

Then it clearly indicates that the value of MAXLEN is some maximum length

value. When the assembler encounters EQU statement, it enters the symbol MAXLEN

along with its value in the symbol table. During LDT the assembler searches the

SYMTAB for its entry and its equivalent value as the operand in the instruction. The

object code generated is the same for both the options discussed, but is easier to

understand. If the maximum length is changed from 4096 to 1024, it is difficult to change

if it is mentioned as an immediate value wherever required in the instructions. We have to

scan the whole program and make changes wherever 4096 is used. If we mention this

value in the instruction through the symbol defined by EQU, we may not have to search

the whole program but change only the value of MAXLENGTH in the EQU statement

(only once).

Another common usage of EQU statement is for defining values for the general-

purpose registers. The assembler can use the mnemonics for register usage like a-register

A , X – index register and so on. But there are some instructions which requires numbers

in place of names in the instructions. For example in the instruction RMO 0,1 instead of

RMO A,X. The programmer can assign the numerical values to these registers using

EQU directive.

A EQU 0

X EQU 1 and so on

These statements will cause the symbols A, X, L… to be entered into the symbol

table with their respective values. An instruction RMO A, X would then be allowed. As

another usage if in a machine that has many general purpose registers named as R1,

R2,…, some may be used as base register, some may be used as accumulator. Their usage

may change from one program to another. In this case we can define these requirement

using EQU statements.

BASE EQU R1

INDEX EQU R2

System Software 10CS52

Dept . of CSE,SJBIT Page 35

COUNT EQU R3

One restriction with the usage of EQU is whatever symbol occurs in the right hand side

of the EQU should be predefined. For example, the following statement is not valid:

BETA EQU ALPHA

ALPHA RESW 1

As the symbol ALPHA is assigned to BETA before it is defined. The value of ALPHA is

not known.

ORG Statement:

This directive can be used to indirectly assign values to the symbols. The directive

is usually called ORG (for origin). Its general format is:
ORG value

Where value is a constant or an expression involving constants and previously defined

symbols. When this statement is encountered during assembly of a program, the

assembler resets its location counter (LOCCTR) to the specified value. Since the values

of symbols used as labels are taken from LOCCTR, the ORG statement will affect the

values of all labels defined until the next ORG is encountered. ORG is used to control

assignment storage in the object program. Sometimes altering the values may result in

incorrect assembly.

ORG can be useful in label definition. Suppose we need to define a symbol table

with the following structure:

SYMBOL 6 Bytes

VALUE 3 Bytes

FLAG 2 Bytes

The table looks like the one given below.

The symbol field contains a 6-byte user-defined symbol; VALUE is a one-word

System Software 10CS52

Dept . of CSE,SJBIT Page 36

representation of the value assigned to the symbol; FLAG is a 2-byte field specifies

symbol type and other information. The space for the ttable can be reserved by the
statement:

STAB RESB 1100

If we want to refer to the entries of the table using indexed addressing, place the
offset value of the desired entry from the beginning of the table in the index register. To

refer to the fields SYMBOL, VALUE, and FLAGS individually, we need to assign the

values first as shown below:

SYMBOL EQU STAB

VALUE EQU STAB+6

FLAGS EQU STAB+9

To retrieve the VALUE field from the table indicated by register X, we can write a

statement:

LDA VALUE, X

The same thing can also be done using ORG statement in the following way:

STAB RESB 1100

ORG STAB

SYMBOL RESB 6

VALUE RESW 1

FLAG RESB 2

ORG STAB+1100

The first statement allocates 1100 bytes of memory assigned to label STAB. In

the second statement the ORG statement initializes the location counter to the value of

STAB. Now the LOCCTR points to STAB. The next three lines assign appropriate

memory storage to each of SYMBOL, VALUE and FLAG symbols. The last ORG

statement reinitializes the LOCCTR to a new value after skipping the required number of

memory for the table STAB (i.e., STAB+1100).

While using ORG, the symbol occurring in the statement should be predefined as is

required in EQU statement. For example for the sequence of statements below:

ORG ALPHA

BYTE1 RESB 1

BYTE2 RESB 1

BYTE3 RESB 1

ORG

ALPHA RESB 1

System Software 10CS52

Dept . of CSE,SJBIT Page 37

The sequence could not be processed as the symbol used to assign the new location

counter value is not defined. In first pass, as the assembler would not know what value to

assign to ALPHA, the other symbol in the next lines also could not be defined in the

symbol table. This is a kind of problem of the forward reference.

3.3 .Expressions:

Assemblers also allow use of expressions in place of operands in the instruction.

Each such expression must be evaluated to generate a single operand value or address.

Assemblers generally arithmetic expressions formed according to the normal rules using

arithmetic operators +, - *, /. Division is usually defined to produce an integer result.

Individual terms may be constants, user-defined symbols, or special terms. The only

special term used is * (the current value of location counter) which indicates the value

of the next unassigned memory location. Thus the statement

BUFFEND EQU *

Assigns a value to BUFFEND, which is the address of the next byte following the buffer

area. Some values in the object program are relative to the beginning of the program and

some are absolute (independent of the program location, like constants). Hence,

expressions are classified as either absolute expression or relative expressions depending

on the type of value they produce.

Absolute Expressions: The expression that uses only absolute terms is absolute

expression. Absolute expression may contain relative term provided the relative terms
occur in pairs with opposite signs for each pair. Example:

MAXLEN EQU BUFEND-BUFFER

In the above instruction the difference in the expression gives a value that does not

depend on the location of the program and hence gives an absolute immaterial o the

relocation of the program. The expression can have only absolute terms. Example:

MAXLEN EQU 1000

Relative Expressions: All the relative terms except one can be paired as described in

“absolute”. The remaining unpaired relative term must have a positive sign. Example:

STAB EQU OPTAB + (BUFEND – BUFFER)

Handling the type of expressions: to find the type of expression, we must keep track the

type of symbols used. This can be achieved by defining the type in the symbol table

against each of the symbol as shown in the table below:

System Software 10CS52

Dept . of CSE,SJBIT Page 38

3.4 Program Blocks:

Program blocks allow the generated machine instructions and data to appear in the

object program in a different order by Separating blocks for storing code, data, stack, and

larger data block.

Assembler Directive USE:

USE [blockname]

At the beginning, statements are assumed to be part of the unnamed (default) block. If no

USE statements are included, the entire program belongs to this single block. Each

program block may actually contain several separate segments of the source program.

Assemblers rearrange these segments to gather together the pieces of each block and

assign address. Separate the program into blocks in a particular order. Large buffer area is

moved to the end of the object program. Program readability is better if data areas are

placed in the source program close to the statements that reference them.

In the example below three blocks are used :

Default: executable instructions
CDATA: all data areas that are less in length

CBLKS: all data areas that consists of larger blocks of memory

System Software 10CS52

Dept . of CSE,SJBIT Page 39

Example Code

System Software 10CS52

Dept . of CSE,SJBIT Page 40

Arranging code into program blocks:
Pass 1

• A separate location counter for each program block is maintained.

• Save and restore LOCCTR when switching between blocks.

• At the beginning of a block, LOCCTR is set to 0.

• Assign each label an address relative to the start of the block.

• Store the block name or number in the SYMTAB along with the assigned relative

address of the label

• Indicate the block length as the latest value of LOCCTR for each block at the end

of Pass1

• Assign to each block a starting address in the object program by concatenating the

program blocks in a particular order

Pass 2

• Calculate the address for each symbol relative to the start of the object program

by adding
 The location of the symbol relative to the start of its block

 The starting address of this block





3.5 Control Sections:

A control section is a part of the program that maintains its identity after

assembly; each control section can be loaded and relocated independently of the others.
Different control sections are most often used for subroutines or other logical

subdivisions. The programmer can assemble, load, and manipulate each of these control

sections separately.

System Software 10CS52

Dept . of CSE,SJBIT Page 41

Because of this, there should be some means for linking control sections together.

For example, instructions in one control section may refer to the data or instructions of

other control sections. Since control sections are independently loaded and relocated, the

assembler is unable to process these references in the usual way. Such references

between different control sections are called external references.

The assembler generates the information about each of the external references that

will allow the loader to perform the required linking. When a program is written using

multiple control sections, the beginning of each of the control section is indicated by an

assembler directive

– assembler directive: CSECT

The syntax

secname CSECT

– separate location counter for each control section

Control sections differ from program blocks in that they are handled separately by the

assembler. Symbols that are defined in one control section may not be used directly

another control section; they must be identified as external reference for the loader to

handle. The external references are indicated by two assembler directives:

EXTDEF (external Definition):

It is the statement in a control section, names symbols that are defined in this

section but may be used by other control sections. Control section names do not need to

be named in the EXTREF as they are automatically considered as external symbols.

EXTREF (external Reference):

It names symbols that are used in this section but are defined in some other

control section.

The order in which these symbols are listed is not significant. The assembler must

include proper information about the external references in the object program that will

cause the loader to insert the proper value where they are required.

System Software 10CS52

Dept . of CSE,SJBIT Page 42

System Software 10CS52

Dept . of CSE,SJBIT Page 43

Handling External Reference

Case 1

15 0003 CLOOP +JSUB RDREC 4B100000

• The operand RDREC is an external reference.

o The assembler has no idea where RDREC is
o inserts an address of zero

o can only use extended format to provide enough room (that is, relative

addressing for external reference is invalid)

• The assembler generates information for each external reference that will allow

the loader to perform the required linking.

Case 2

190 0028 MAXLEN WORD BUFEND-BUFFER 000000

• There are two external references in the expression, BUFEND and BUFFER.

• The assembler inserts a value of zero

• passes information to the loader

• Add to this data area the address of BUFEND

• Subtract from this data area the address of BUFFER

System Software 10CS52

Dept . of CSE,SJBIT Page 44

Case 3

On line 107, BUFEND and BUFFER are defined in the same control section and the

expression can be calculated immediately.

107 1000 MAXLEN EQU BUFEND-BUFFER

Object Code for the example program:

System Software 10CS52

Dept . of CSE,SJBIT Page 45

The assembler must also include information in the object program that will cause the

loader to insert the proper value where they are required. The assembler maintains two

new record in the object code and a changed version of modification record.

Define record (EXTDEF)

• Col. 1 D

• Col. 2-7 Name of external symbol defined in this control section

• Col. 8-13 Relative address within this control section (hexadecimal)

• Col.14-73 Repeat information in Col. 2-13 for other external symbols

Refer record (EXTREF)

• Col. 1 R

• Col. 2-7 Name of external symbol referred to in this control section

• Col. 8-73 Name of other external reference symbols

Modification record

• Col. 1 M

• Col. 2-7 Starting address of the field to be modified (hexadecimal)

• Col. 8-9 Length of the field to be modified, in half-bytes (hexadecimal)

• Col.11-16 External symbol whose value is to be added to or subtracted from

the indicated field

A define record gives information about the external symbols that are defined in this
control section, i.e., symbols named by EXTDEF.

A refer record lists the symbols that are used as external references by the control section,

i.e., symbols named by EXTREF.

The new items in the modification record specify the modification to be performed:

System Software 10CS52

Dept . of CSE,SJBIT Page 46

adding or subtracting the value of some external symbol. The symbol used for

modification my be defined either in this control section or in another section.

The object program is shown below. There is a separate object program for each

of the control sections. In the Define Record and refer record the symbols named in
EXTDEF and EXTREF are included.

In the case of Define, the record also indicates the relative address of each

external symbol within the control section.

For EXTREF symbols, no address information is available. These symbols are

simply named in the Refer record.

System Software 10CS52

Dept . of CSE,SJBIT Page 47

Handling Expressions in Multiple Control Sections:

The existence of multiple control sections that can be relocated independently of

one another makes the handling of expressions complicated. It is required that in an

expression that all the relative terms be paired (for absolute expression), or that all except

one be paired (for relative expressions).

When it comes in a program having multiple control sections then we have an
extended restriction that:

• Both terms in each pair of an expression must be within the same control section

o If two terms represent relative locations within the same control section ,

their difference is an absolute value (regardless of where the control
section is located.

• Legal: BUFEND-BUFFER (both are in the same control section)

o If the terms are located in different control sections, their difference has a

value that is unpredictable.

• Illegal: RDREC-COPY (both are of different control section) it is

the difference in the load addresses of the two control sections.

This value depends on the way run-time storage is allocated; it is

unlikely to be of any use.

• How to enforce this restriction

o When an expression involves external references, the assembler cannot
determine whether or not the expression is legal.

o The assembler evaluates all of the terms it can, combines these to form an
initial expression value, and generates Modification records.

o The loader checks the expression for errors and finishes the evaluation.

3.6. ASSEMBLER DESIGN

Here we are discussing

o The structure and logic of one-pass assembler. These assemblers are used when it
is necessary or desirable to avoid a second pass over the source program.

o Notion of a multi-pass assembler, an extension of two-pass assembler that allows
an assembler to handle forward references during symbol definition.

System Software 10CS52

Dept . of CSE,SJBIT Page 48

One-Pass Assembler

The main problem in designing the assembler using single pass was to resolve forward

references. We can avoid to some extent the forward references by:

• Eliminating forward reference to data items, by defining all the storage

reservation statements at the beginning of the program rather at the end.

• Unfortunately, forward reference to labels on the instructions cannot be avoided.

(forward jumping)

• To provide some provision for handling forward references by prohibiting

forward references to data items.

There are two types of one-pass assemblers:

• One that produces object code directly in memory for immediate execution

(Load-and-go assemblers).

• The other type produces the usual kind of object code for later execution.

Load-and-Go Assembler

• Load-and-go assembler generates their object code in memory for immediate
execution.

• No object program is written out, no loader is needed.

• It is useful in a system with frequent program development and testing

o The efficiency of the assembly process is an important consideration.

• Programs are re-assembled nearly every time they are run; efficiency of the
assembly process is an important consideration.

System Software 10CS52

Dept . of CSE,SJBIT Page 49

Forward Reference in One-Pass Assemblers: In load-and-Go assemblers when a
forward reference is encountered :

• Omits the operand address if the symbol has not yet been defined

• Enters this undefined symbol into SYMTAB and indicates that it is undefined

• Adds the address of this operand address to a list of forward references associated

with the SYMTAB entry

• When the definition for the symbol is encountered, scans the reference list and

inserts the address.

• At the end of the program, reports the error if there are still SYMTAB entries

indicated undefined symbols.

• For Load-and-Go assembler
o Search SYMTAB for the symbol named in the END statement and jumps

to this location to begin execution if there is no error

After Scanning line 40 of the program:

40 2021 J` CLOOP 302012

The status is that upto this point the symbol RREC is referred once at location 2013,

ENDFIL at 201F and WRREC at location 201C. None of these symbols are defined. The

figure shows that how the pending definitions along with their addresses are included in

the symbol table.

System Software 10CS52

Dept . of CSE,SJBIT Page 50

The status after scanning line 160, which has encountered the definition of RDREC

and ENDFIL is as given below:

System Software 10CS52

Dept . of CSE,SJBIT Page 51

If One-Pass needs to generate object code:

• If the operand contains an undefined symbol, use 0 as the address and write the

Text record to the object program.

• Forward references are entered into lists as in the load-and-go assembler.

• When the definition of a symbol is encountered, the assembler generates another
Text record with the correct operand address of each entry in the reference list.

• When loaded, the incorrect address 0 will be updated by the latter Text record

containing the symbol definition.

Object Code Generated by One-Pass Assembler:

Multi_Pass Assembler:

• For a two pass assembler, forward references in symbol definition are not
allowed:

ALPHA EQU BETA

BETA EQU DELTA

DELTA RESW 1

o Symbol definition must be completed in pass 1.

• Prohibiting forward references in symbol definition is not a serious
inconvenience.

o Forward references tend to create difficulty for a person reading the

program.

System Software 10CS52

Dept . of CSE,SJBIT Page 52

Implementation Issues for Modified Two-Pass Assembler:

Implementation Isuues when forward referencing is encountered in Symbol Defining

statements :

• For a forward reference in symbol definition, we store in the SYMTAB:

o The symbol name
o The defining expression

o The number of undefined symbols in the defining expression

• The undefined symbol (marked with a flag *) associated with a list of symbols

depend on this undefined symbol.

• When a symbol is defined, we can recursively evaluate the symbol expressions

depending on the newly defined symbol.

Multi-Pass Assembler Example Program

Multi-Pass Assembler (Figure 2.21 of Beck): Example for forward reference in

Symbol Defining Statements:

System Software 10CS52

Dept . of CSE,SJBIT Page 53

System Software 10CS52

Dept . of CSE,SJBIT Page 54

UNIT – 4

LOADERS AND LINKERS

 4.1. Introduction

The Source Program written in assembly language or high level language will be

converted to object program, which is in the machine language form for execution. This

conversion either from assembler or from compiler, contains translated instructions and

data values from the source program, or specifies addresses in primary memory where

these items are to be loaded for execution.

This contains the following three processes, and they are,

Loading - which allocates memory location and brings the object program into

memory for execution - (Loader)

Linking- which combines two or more separate object programs and supplies the

information needed to allow references between them - (Linker)

Relocation - which modifies the object program so that it can be loaded at an

address different from the location originally specified - (Linking Loader)

4.2. Basic Loader Functions :

A loader is a system program that performs the loading function. It brings object

program into memory and starts its execution. The role of loader is as shown in the

figure 4.1. Translator may be assembler/complier, which generates the object program

and later loaded to the memory by the loader for execution. In figure 4.2 the translator is

specifically an assembler, which generates the object loaded, which becomes inpu t to the

loader. The figure4.3 shows the role of both loader and linker.

System Software 10CS52

Dept . of CSE,SJBIT Page 55

Memory

Type of Loaders

The different types of loaders are, absolute loader, bootstrap loader, relocating

loader (relative loader), and, direct linking loader. The following sections discuss the

functions and design of all these types of loaders.

Design of Absolute Loader:

The operation of absolute loader is very simple. The object code is loaded to

specified locations in the memory. At the end the loader jumps to the specified address to

begin execution of the loaded program. The role of absolute loader The advantage of

absolute loader is simple and efficient. But the disadvantages are, the need for

programmer to specify the actual address, and, difficult to use subroutine libraries.

The algorithm for this type of loader is given here. The object program and, the

object program loaded into memory by the absolute loader are also shown. Each byte

of assembled code is given using its hexadecimal representation in character form. Easy

to read by human beings. Each byte of object code is stored as a single byte. Most

machine store object programs in a binary form, and we must be sure that our file and

device conventions do not cause some of the program bytes to be interpreted as control

characters.

Begin

read Header record

verify program name and length

read first Text record
while record type is <> „E‟ do

begin

{if object code is in character form, convert into internal representation}

move object code to specified location in memory

read next object program record

end

jump to address specified in End record

end

System Software 10CS52

Dept . of CSE,SJBIT Page 56

System Software 10CS52

Dept . of CSE,SJBIT Page 57

4.3. Simple Bootstrap Loader

When a computer is first turned on or restarted, a special type of absolute loader,

called bootstrap loader is executed. This bootstrap loads the first program to be run by

the computer -- usually an operating system. The bootstrap itself begins at address 0. It

loads the OS starting address 0x80. No header record or control information, the object

code is consecutive bytes of memory.

The algorithm for the bootstrap loader is as follows

Begin

X=0x80 (the address of the next memory location to be loaded

Loop

A←GETC (and convert it from the ASCII character

code to the value of the hexadecimal digit)

save the value in the high-order 4 bits of S

A←GETC

combine the value to form one byte A← (A+S)

store the value (in A) to the address in register X

X←X+1

End

It uses a subroutine GETC, which is

GETC A←read one character

if A=0x04 then jump to 0x80

if A<48 then GETC

A ← A-48 (0x30)

if A<10 then return

A ← A-7

return

4.4. Machine-Dependent Loader Features

Absolute loader is simple and efficient, but the scheme has potential

disadvantages One of the most disadvantage is the programmer has to specify the actual

starting address, from where the program to be loaded. This does not create difficulty, if

one program to run, but not for several programs. Further it is difficult to use subroutine

libraries efficiently.

This needs the design and implementation of a more complex loader. The loader

must provide program relocation and linking, as well as simple loading functions.

System Software 10CS52

Dept . of CSE,SJBIT Page 58

Relocation

The concept of program relocation is, the execution of the object program using

any part of the available and sufficient memory. The object program is loaded into

memory wherever there is room for it. The actual starting address of the object program

is not known until load time. Relocation provides the efficient sharing of the machine

with larger memory and when several independent programs are to be run together. It

also supports the use of subroutine libraries efficiently. Loaders that allow for program

relocation are called relocating loaders or relative loaders.

Methods for specifying relocation

Use of modification record and, use of relocation bit, are the methods available

for specifying relocation. In the case of modification record, a modification record M is

used in the object program to specify any relocation. In the case of use of relocation bit,

each instruction is associated with one relocation bit and, these relocation bits in a Text

record is gathered into bit masks.

Modification records are used in complex machines and is also called Relocation

and Linkage Directory (RLD) specification. The format of the modification record (M) is

as follows. The object program with relocation by Modification records is also shown

here.

Modification record

col 1: M

col 2-7: relocation address

col 8-9: length (halfbyte)

col 10: flag (+/-)
col 11-17: segment name

HΛCOPY Λ000000 001077

TΛ000000 Λ1DΛ17202DΛ69202DΛ48101036Λ…Λ4B105DΛ3F2FECΛ032010

TΛ00001DΛ13Λ0F2016Λ010003Λ0F200DΛ4B10105DΛ3E2003Λ454F46

TΛ001035 Λ1DΛB410ΛB400ΛB440Λ75101000Λ…Λ332008Λ57C003ΛB850

TΛ001053Λ1DΛ3B2FEAΛ134000Λ4F0000ΛF1Λ..Λ53C003ΛDF2008ΛB850

TΛ00070Λ07Λ3B2FEFΛ4F0000Λ05

MΛ000007Λ05+COPY

MΛ000014Λ05+COPY

MΛ000027Λ05+COPY

EΛ000000

The relocation bit method is used for simple machines. Relocation bit is 0: no

modification is necessary, and is 1: modification is needed. This is specified in the

columns 10-12 of text record (T), the format of text record, along with relocation bits is
as follows.

System Software 10CS52

Dept . of CSE,SJBIT Page 59

Text record:

col 1: T

col 2-7: starting address

col 8-9: length (byte)

col 10-12: relocation bits

col 13-72: object code

Twelve-bit mask is used in each Text record (col:10-12 – relocation bits), since

each text record contains less than 12 words, unused words are set to 0, and, any value

that is to be modified during relocation must coincide with one of these 3-byte segments.

For absolute loader, there are no relocation bits column 10-69 contains object code. The

object program with relocation by bit mask is as shown below. Observe FFC - means all

ten words are to be modified and, E00 - means first three records are to be modified.

000000 00107A

TΛ000000Λ1EΛFFCΛ140033Λ481039Λ000036Λ280030Λ300015Λ…Λ3C0003

TΛ00001EΛ15ΛE00Λ0C0036Λ481061Λ080033Λ4C0000Λ…Λ000003Λ000000

TΛ001039Λ1EΛFFCΛ040030Λ000030Λ…Λ30103FΛD8105DΛ280030Λ...

TΛ001057Λ0AΛ 800Λ100036Λ4C0000ΛF1Λ001000

TΛ001061Λ19ΛFE0Λ040030ΛE01079Λ…Λ508039ΛDC1079Λ2C0036Λ... EΛ000000

Program Linking

The Goal of program linking is to resolve the problems with external references

(EXTREF) and external definitions (EXTDEF) from different control sections.

EXTDEF (external definition) - The EXTDEF statement in a control section

names symbols, called external symbols, that are defined in this (present) control section
and may be used by other sections.

ex: EXTDEF BUFFER, BUFFEND, LENGTH

EXTDEF LISTA, ENDA

EXTREF (external reference) - The EXTREF statement names symbols used

in this (present) control section and are defined elsewhere.

ex: EXTREF RDREC, WRREC

EXTREF LISTB, ENDB, LISTC, ENDC

… Λ

HΛCOPY Λ

System Software 10CS52

Dept . of CSE,SJBIT Page 60

How to implement EXTDEF and EXTREF

The assembler must include information in the object program that will cause the

loader to insert proper values where they are required – in the form of Define record (D)
and, Refer record(R).

Define record

The format of the Define record (D) along with examples is as shown here.

Col. 1 D

Col. 2-7 Name of external symbol defined in this control section

Col. 8-13 Relative address within this control section (hexadecimal)

Col.14-73 Repeat information in Col. 2-13 for other external symbols

Example records

D LISTA 000040 ENDA 000054

D LISTB 000060 ENDB 000070

Refer record

The format of the Refer record (R) along with examples is as shown here.

Col. 1 R

Col. 2-7 Name of external symbol referred to in this control section

Col. 8-73 Name of other external reference symbols

Example records

R LISTB ENDB LISTC ENDC

R LISTA ENDA LISTC ENDC

R LISTA ENDA LISTB ENDB

Here are the three programs named as PROGA, PROGB and PROGC, which are

separately assembled and each of which consists of a single control section. LISTA,

ENDA in PROGA, LISTB, ENDB in PROGB and LISTC, ENDC in PROGC are

external definitions in each of the control sections. Similarly LISTB, ENDB, LISTC,

ENDC in PROGA, LISTA, ENDA, LISTC, ENDC in PROGB, and LISTA, ENDA,

LISTB, ENDB in PROGC, are external references. These sample programs given here

are used to illustrate linking and relocation. The following figures give the sample

programs and their corresponding object programs. Observe the object programs, which

contain D and R records along with other records.

System Software 10CS52

Dept . of CSE,SJBIT Page 61

0000 PROGA START 0

EXTDEF LISTA, ENDA

EXTREF LISTB, ENDB, LISTC, ENDC

………..

……….

0020 REF1 LDA LISTA 03201D

0023 REF2 +LDT LISTB+4 77100004

0027 REF3 LDX #ENDA-LISTA 050014

.

.

0040 LISTA EQU *

0054 ENDA EQU *

0054 REF4 WORD ENDA-LISTA+LISTC 000014

0057 REF5 WORD ENDC-LISTC-10 FFFFF6

005A REF6 WORD ENDC-LISTC+LISTA-1 00003F

005D REF7 WORD ENDA-LISTA-(ENDB-LISTB) 000014

0060 REF8 WORD LISTB-LISTA FFFFC0

END REF1

0000 PROGB START 0

EXTDEF LISTB, ENDB

EXTREF LISTA, ENDA, LISTC, ENDC

………..

……….

0036 REF1 +LDA LISTA 03100000

003A REF2 LDT LISTB+4 772027

003D REF3 +LDX #ENDA-LISTA 05100000

.

.
0060 LISTB EQU *

0070 ENDB EQU *

0070 REF4 WORD ENDA-LISTA+LISTC 000000

0073 REF5 WORD ENDC-LISTC-10 FFFFF6

0076 REF6 WORD ENDC-LISTC+LISTA-1 FFFFFF

0079 REF7 WORD ENDA-LISTA-(ENDB-LISTB) FFFFF0

007C REF8 WORD LISTB-LISTA 000060

END

System Software 10CS52

Dept . of CSE,SJBIT Page 62

0000 PROGC START 0

EXTDEF LISTC, ENDC

EXTREF LISTA, ENDA, LISTB, ENDB

………..

………..

0018 REF1 +LDA LISTA 03100000

001C REF2 +LDT LISTB+4 77100004

0020 REF3 +LDX #ENDA-LISTA 05100000

.

.
0030 LISTC EQU *

0042 ENDC EQU *

0042 REF4 WORD ENDA-LISTA+LISTC 000030

0045 REF5 WORD ENDC-LISTC-10 000008

0045 REF6 WORD ENDC-LISTC+LISTA-1 000011

004B REF7 WORD ENDA-LISTA-(ENDB-LISTB) 000000

004E REF8 WORD LISTB-LISTA 000000

END

H PROGA 000000 000063

D LISTA 000040 ENDA 000054

R LISTB ENDB LISTC ENDC

.

.

T 000020 0A 03201D 77100004 050014

.

.

T 000054 0F 000014 FFFF6 00003F 000014 FFFFC0

M000024 05+LISTB

M000054 06+LISTC

M000057 06+ENDC

M000057 06 -LISTC

M00005A06+ENDC

M00005A06 -LISTC

M00005A06+PROGA

M00005D06-ENDB

M00005D06+LISTB

M00006006+LISTB

M00006006-PROGA

E000020

System Software 10CS52

Dept . of CSE,SJBIT Page 63

H PROGB 000000 00007F

D LISTB 000060 ENDB 000070

R LISTA ENDA LISTC ENDC

.

T 000036 0B 03100000 772027 05100000

.

T 000007 0F 000000 FFFFF6 FFFFFF FFFFF0 000060

M000037 05+LISTA

M00003E 06+ENDA

M00003E 06 -LISTA

M000070 06 +ENDA

M000070 06 -LISTA

M000070 06 +LISTC

M000073 06 +ENDC

M000073 06 -LISTC

M000073 06 +ENDC

M000076 06 -LISTC

M000076 06+LISTA

M000079 06+ENDA

M000079 06 -LISTA

M00007C 06+PROGB

M00007C 06-LISTA
E

H PROGC 000000 000051

D LISTC 000030 ENDC 000042

R LISTA ENDA LISTB ENDB

.

T 000018 0C 03100000 77100004 05100000

.

T 000042 0F 000030 000008 000011 000000 000000

M000019 05+LISTA

M00001D 06+LISTB

M000021 06+ENDA

M000021 06 -LISTA

M000042 06+ENDA

M000042 06 -LISTA

M000042 06+PROGC

M000048 06+LISTA

M00004B 06+ENDA

M00004B 006-LISTA

M00004B 06-ENDB

M00004B 06+LISTB

M00004E 06+LISTB

M00004E 06-LISTA

E

System Software 10CS52

Dept . of CSE,SJBIT Page 64

The following figure shows these three programs as they might appear in memory

after loading and linking. PROGA has been loaded starting at address 4000, with PROG B

and PROGC immediately following.

For example, the value for REF4 in PROGA is located at address 4054 (the

beginning address of PROGA plus 0054, the relative address of REF4 within PROGA).

The following figure shows the details of how this value is computed.

System Software 10CS52

Dept . of CSE,SJBIT Page 65

The initial value from the Text record
T0000540F000014FFFFF600003F000014FFFFC0 is 000014. To this is added

the address assigned to LISTC, which is 4112 (the beginning address of PROGC plus
30). The result is 004126.

That is REF4 in PROGA is ENDA-LISTA+LISTC=4054-4040+4112=4126.

Similarly the load address for symbols LISTA: PROGA+0040=4040, LISTB:

PROGB+0060=40C3 and LISTC: PROGC+0030=4112

Keeping these details work through the details of other references and values of
these references are the same in each of the three programs.

System Software 10CS52

Dept . of CSE,SJBIT Page 66

4.5. Algorithm and Data structures for a Linking Loader

The algorithm for a linking loader is considerably more complicated than t he

absolute loader program, which is already given. The concept given in the program

linking section is used for developing the algorithm for linking loader. The modification

records are used for relocation so that the linking and relocation functions are performed
using the same mechanism.

Linking Loader uses two-passes logic. ESTAB (external symbol table) is the main

data structure for a linking loader.

Pass 1: Assign addresses to all external symbols

Pass 2: Perform the actual loading, relocation, and linking

ESTAB - ESTAB for the example (refer three programs PROGA PROGB and

PROGC) given is as shown below. The ESTAB has four entries in it; they are name of

the control section, the symbol appearing in the control section, its address and length of
the control section.

Address Length

4000 63

4040

4054

4063 7F

40C3

40D3

40E2 51

4112

4124

Program Logic for Pass 1

Pass 1 assign addresses to all external symbols. The variables & Data structures

used during pass 1 are, PROGADDR (program load address) from OS, CSADDR

(control section address), CSLTH (control section length) and ESTAB. The pass 1

processes the Define Record. The algorithm for Pass 1 of Linking Loader is given below.

Controlsection

PROGA

PROGB

PROGC

Sym bol

LISTA

ENDA

LISTB

ENDB

LISTC

ENDC

System Software 10CS52

Dept . of CSE,SJBIT Page 67

Program Logic for Pass 2

Pass 2 of linking loader perform the actual loading, relocation, and linking. It uses

modification record and lookup the symbol in ESTAB to obtain its address. Finally it

uses end record of a main program to obtain transfer address, which is a starting address

needed for the execution of the program. The pass 2 process Text record and

Modification record of the object programs. The algorithm for Pass 2 of Linking Loader
is given below.

System Software 10CS52

Dept . of CSE,SJBIT Page 68

Improve Efficiency, How?

The question here is can we improve the efficiency of the linking loader. Also

observe that, even though we have defined Refer record (R), we haven‟t made use of it.

The efficiency can be improved by the use of local searching instead of multiple searches

of ESTAB for the same symbol. For implementing this we assign a reference number to

each external symbol in the Refer record. Then this reference number is used in

Modification records instead of external symbols. 01 is assigned to control section name,

and other numbers for external reference symbols.

The object programs for PROGA, PROGB and PROGC are shown below, with

above modification to Refer record (Observe R records).

System Software 10CS52

Dept . of CSE,SJBIT Page 69

System Software 10CS52

Dept . of CSE,SJBIT Page 70

Symbol and Addresses in PROGA, PROGB and PROGC are as shown below.

These are the entries of ESTAB. The main advantage of reference number mechanism is

that it avoids multiple searches of ESTAB for the same symbol during the loading of a

control section

Ref No. Symbol

1 PROGB

2 LISTA

3 ENDA

4 LISTC

5 ENDC

Address

4063

4040

4054

4112

4124

76

System Software 10CS52

Dept . of CSE,SJBIT Page 71

4.6. Machine-independent Loader Features

Here we discuss some loader features that are not directly related to machine

architecture and design. Automatic Library Search and Loader Options are such

Machine-independent Loader Features.

Automatic Library Search

This feature allows a programmer to use standard subroutines without explicitly

including them in the program to be loaded. The routines are automatically retrieved from

a library as they are needed during linking. This allows programmer to use subroutines

from one or more libraries. The subroutines called by the program being loaded are

automatically fetched from the library, linked with the main program and loaded. The

loader searches the library or libraries specified for routines that contain the definitions of

these symbols in the main program.

Loader Options

Loader options allow the user to specify options that modify the standard processing.

The options may be specified in three different ways. They are, specified using a

command language, specified as a part of job control language that is processed by the

operating system, and an be specified using loader control statements in the source

program.

Here are the some examples of how option can be specified.

INCLUDE program-name (library-name) - read the designated object program
from a library

DELETE csect-name – delete the named control section from the set pf programs

being loaded

CHANGE name1, name2 - external symbol name1 to be changed to name2

wherever it appears in the object programs

LIBRARY MYLIB – search MYLIB library before standard libraries

NOCALL STDDEV, PLOT, CORREL – no loading and linking of unneeded
routines

Here is one more example giving, how commands can be specified as a part of
object file, and the respective changes are carried out by the loader.

LIBRARY UTLIB

INCLUDE READ (UTLIB)

INCLUDE WRITE (UTLIB)

System Software 10CS52

Dept . of CSE,SJBIT Page 72

DELETE RDREC, WRREC

CHANGE RDREC, READ

CHANGE WRREC, WRITE

NOCALL SQRT, PLOT

The commands are, use UTLIB (say utility library), include READ and WRITE

control sections from the library, delete the control sections RDREC and WRREC from

the load, the change command causes all external references to the symbol RDREC to be

changed to the symbol READ, similarly references to WRREC is changed to WRITE,

finally, no call to the functions SQRT, PLOT, if they are used in the program.

4.7 Loader Design Options

There are some common alternatives for organizing the loading functions,

including relocation and linking. Linking Loaders – Perform all linking and relocation at

load time. The Other Alternatives are Linkage editors, which perform linking prior to

load time and, Dynamic linking, in which linking function is performed at execution time

Linking Loaders

Object
Program(s)

Library

Memory

The above diagram shows the processing of an object program using Linking

Loader. The source program is first assembled or compiled, producing an object program.

A linking loader performs all linking and loading operations, and loads the program into
memory for execution.

Linking loader

System Software 10CS52

Dept . of CSE,SJBIT Page 73

Linkage Editors

The figure below shows the processing of an object program using Linkage

editor. A linkage editor produces a linked version of the program – often called a load

module or an executable image – which is written to a file or library for later execution.

The linked program produced is generally in a form that is suitable for processing by a

relocating loader.

Some useful functions of Linkage editor are, an absolute object program can be

created, if starting address is already known. New versions of the library can be included

without changing the source program. Linkage editors can also be used to build packages

of subroutines or other control sections that are generally used together. Linkage editors

often allow the user to specify that external references are not to be resolved by automatic

library search – linking will be done later by linking loader – linkage editor + linking

loader – savings in space

Object Program(s)

Library Linkage Editor

Linked
program

Relocating loader

Memory

System Software 10CS52

Dept . of CSE,SJBIT Page 74

Dynamic Linking

The scheme that postpones the linking functions until execution. A subroutine is

loaded and linked to the rest of the program when it is first called – usually called

dynamic linking, dynamic loading or load on call. The advantages of dynamic linking

are, it allow several executing programs to share one copy of a subroutine or library. In

an object oriented system, dynamic linking makes it possible for one object to be shared

by several programs. Dynamic linking provides the ability to load the routines only when

(and if) they are needed. The actual loading and linking can be accomplished using

operating system service request.

Bootstrap Loaders

If the question, how is the loader itself loaded into the memory ? is asked, then the

answer is, when computer is started – with no program in memory, a program present in

ROM (absolute address) can be made executed – may be OS itself or A Bootstrap loader,

which in turn loads OS and prepares it for execution. The first record (or records) is

generally referred to as a bootstrap loader – makes the OS to be loaded. Such a loader is

added to the beginning of all object programs that are to be loaded into an empty and idle

system.

4.8. Implementation Examples

This section contains brief description of loaders and linkers for actual computers.

They are, MS-DOS Linker - Pentium architecture, SunOS Linkers - SPARC architecture,

and, Cray MPP Linkers – T3E architecture.

MS-DOS Linker

This explains some of the features of Microsoft MS-DOS linker, which is a linker

for Pentium and other x86 systems. Most MS-DOS compilers and assemblers (MASM)

produce object modules, and they are stored in .OBJ files. MS-DOS LINK is a linkage

editor that combines one or more object modules to produce a complete executable

program - .EXE file; this file is later executed for results.

The following table illustrates the typical MS-DOS object module

Record Types Description

THEADR Translator Header

TYPDEF,PUBDEF, EXTDEF External symbols and references

LNAMES, SEGDEF, GRPDEF Segment definition and grouping

LEDATA, LIDATA Translated instructions and data

FIXUPP Relocation and linking information

System Software 10CS52

Dept . of CSE,SJBIT Page 75

MODEND End of object module

THEADR specifies the name of the object module. MODEND specifies the end of

the module. PUBDEF contains list of the external symbols (called public names).

EXTDEF contains list of external symbols referred in this module, but defined elsewhere.

TYPDEF the data types are defined here. SEGDEF describes segments in the object

module (includes name, length, and alignment). GRPDEF includes how segments are

combined into groups. LNAMES contains all segment and class names. LEDATA

contains translated instructions and data. LIDATA has above in repeating pattern.

Finally, FIXUPP is used to resolve external references.

System Software 10CS52

Dept . of CSE,SJBIT Page 76

UNIT – 5

EDITORS AND DEBUGGING SYSTEMS

5.1 Introduction

An Interactive text editor has become an important part of almost any computing

environment. Text editor acts as a primary interface to the computer for all type of

“knowledge workers” as they compose, organize, study, and manipulate computer-based

information.

An interactive debugging system provides programmers with facilities that aid in

testing and debugging of programs. Many such systems are available during these days.

Our discussion is broad in scope, giving the overview of interactive debugging systems –

not specific to any particular existing system.

Text Editors:

• An Interactive text editor has become an important part of almost any computing
environment. Text editor acts as a primary interface to the computer for all type of

“knowledge workers” as they compose, organize, study, and manipulate
computer-based information.

• A text editor allows you to edit a text file (create, modify etc…). For example the

Interactive text editors on Windows OS - Notepad, WordPad, Microsoft Word,
and text editors on UNIX OS - vi, emacs , jed, pico.

• Normally, the common editing features associated with text editors are, Moving

the cursor, Deleting, Replacing, Pasting, Searching, Searching and replacing,
Saving and loading, and, Miscellaneous(e.g. quitting).

5.2. Overview of the editing process

An interactive editor is a computer program that allows a user to create and revise

a target document. Document includes objects such as computer diagrams, text, equations

tables, diagrams, line art, and photographs. In text editors, character strings are the
primary elements of the target text.

Document-editing process in an interactive user-computer dialogue has four tasks:

- Select the part of the target document to be viewed and manipulated

- Determine how to format this view on-line and how to display it

- Specify and execute operations that modify the target document
- Update the view appropriately

The above task involves traveling, filtering and formatting. Editing phase involves

– insert, delete, replace, move, copy, cut, paste, etc…

System Software 10CS52

Dept . of CSE,SJBIT Page 77

- Traveling – locate the area of interest

- Filtering - extracting the relevant subset

- Formatting – visible representation on a display screen

There are two types of editors. Manuscript-oriented editor and program oriented

editors. Manuscript-oriented editor is associated with characters, words, lines, sentences

and paragraphs. Program-oriented editors are associated with identifiers, keywords,

statements. User wish – what he wants – formatted.

5.3. User Interface:

Conceptual model of the editing system provides an easily understood abstraction

of the target document and its elements. For example, Line editors – simulated the

world of the key punch – 80 characters, single line or an integral number of lines, Screen

editors – Document is represented as a quarter-plane of text lines, unbounded both down

and to the right.

The user interface is concerned with, the input devices, the output devices and,

the interaction language. The input devices are used to enter elements of text being

edited, to enter commands. The output devices, lets the user view the elements being

edited and the results of the editing operations and, the interaction language provides
communication with the editor.

Input Devices are divided into three categories:

o text devices
o button devices

o locator devices.

1. Text Devices are keyboard. Button Devices are special function keys,

symbols on the screen. Locator Devices are mouse, data tablet. There are

voice input devices which translates spoken words to their textual

equivalents.

2. Output Devices are Teletypewriters(first output devices), Glass teletypes

(Cathode ray tube (CRT) technology), Advanced CRT terminals, TFT

Monitors and Printers (Hard-copy).

3. The interaction language could be, typing oriented or text command

oriented and menu-oriented user interface. Typing oriented or text

command oriented interaction was with oldest editors, in the form of use
of commands, use of function keys, control keys etc.

4. Menu-oriented user interface has menu with a multiple choice set of text

strings or icons. Display area for text is limited. Menus can be turned on

or off.

System Software 10CS52

Dept . of CSE,SJBIT Page 78

5.4. Editor Structure:

Most text editors have a structure similar to that shown in the following figure.

That is most text editors have a structure similar to shown in the figure regardless of

features and the computers

Command language Processor accepts command, uses semantic routines –

performs functions such as editing and viewing. The semantic routines involve traveling,

editing, viewing and display functions.

input

Paging
Routines

Output

devices

Typical Editor Structure

Editing operations are specified explicitly by the user and display operations are

specified implicitly by the editor. Traveling and viewing operations may be
invoked either explicitly by the user or implicitly by the editing operations.

In editing a document, the start of the area to be edited is determined by the

current editing pointer maintained by the editing component. Editing component

is a collection of modules dealing with editing tasks. Current editing pointer can

be set or reset due to next paragraph, next screen, cut paragraph, paste paragraph

etc..,.

When editing command is issued, editing component invokes the editing filter –
generates a new editing buffer – contains part of the document to be edited from

Editing
component

Editing
buffer

Editing
filter

Viewing
filter

Main
memory

Traveling
component

Command
language
processor Viewing

component

Viewing
buffer

File

system

Display

component

Control

Data

•

•

•

System Software 10CS52

Dept . of CSE,SJBIT Page 79

current editing pointer. Filtering and editing may be interleaved, with no explicit
editor buffer being created.

• In viewing a document, the start of the area to be viewed is determined by the

current viewing pointer maintained by the viewing component. Viewing

component is a collection of modules responsible for determining the next view.

Current viewing pointer can be set or reset as a result of previous editing

operation.

• When display needs to be updated, viewing component invokes the viewing filter

– generates a new viewing buffer – contains part of the document to be viewed

from current viewing pointer. In case of line editors – viewing buffer may contain

the current line, Screen editors - viewing buffer contains a rectangular cutout of

the quarter plane of the text.

• Viewing buffer is then passed to the display component of the editor, which

produces a display by mapping the buffer to a rectangular subset of the screen –

called a window. Identical – user edits the text directly on the screen. Disjoint –

Find and Replace (For example, there are 150 lines of text, user is in 100th line,
decides to change all occurrences of „text editor‟ with „editor‟).

• The editing and viewing buffers can also be partially overlap, or one may be

completely contained in the other. Windows typically cover entire screen or a

rectangular portion of it. May show different portions of the same file or portions
of different file. Inter-file editing operations are possible.

• The components of the editor deal with a user document on two levels: In main

memory and in the disk file system. Loading an entire document into main

memory may be infeasible – only part is loaded – demand paging is used – uses

editor paging routines.

• Documents may not be stored sequentially as a string of characters. Uses separate

editor data structure that allows addition, deletion, and modification with a
minimum of I/O and character movement.

Types of editors based on computing environment

Editors function in three basic types of computing environments:

1. Time sharing

2. Stand-alone

3. Distributed.

Each type of environment imposes some constraints on the design of an
editor.

• In time sharing environment, editor must function swiftly within the context of

System Software 10CS52

Dept . of CSE,SJBIT Page 80

the load on the computer‟s processor, memory and I/O devices.

• In stand-alone environment, editors on stand-alone system are built with all the

functions to carry out editing and viewing operations – The help of the OS may
also be taken to carry out some tasks like demand paging.

• In distributed environment, editor has both functions of stand-alone editor, to run

independently on each user‟s machine and like a time sharing editor, contend for
shared resources such as files.

Interactive Debugging Systems:

An interactive debugging system provides programmers with facilities that aid in

testing and debugging of programs. Many such systems are available during these days.

Our discussion is broad in scope, giving the overview of interactive debugging systems –

not specific to any particular existing system.

Here we discuss

- Introducing important functions and capabilities of IDS
- Relationship of IDS to other parts of the system

- The nature of the user interface for IDS

5.5.Debugging Functions and Capabilities:

One important requirement of any IDS is the observation and control of the flow

of program execution. Setting break points – execution is suspended, use debugging

commands to analyze the progress of the program, résumé execution of the program.

Setting some conditional expressions, evaluated during the debugging session, program

execution is suspended, when conditions are met, analysis is made, later execution is

resumed.

A Debugging system should also provide functions such as tracing and traceback .

• Tracing can be used to track the flow of execution logic and data modifications.

The control flow can be traced at different levels of detail – procedure, branch,

individual instruction, and so on…

• Traceback can show the path by which the current statement in the program was

reached. It can also show which statements have modified a given variable or

parameter. The statements are displayed rather than as hexadecimal displacements

Program-Display capabilities

A debugger should have good program-display capabilities.

• Program being debugged should be displayed completely with statement numbers.

• The program may be displayed as originally written or with macro expansion.

• Keeping track of any changes made to the programs during the debugging

session. Support for symbolically displaying or modifying the contents of

System Software 10CS52

Dept . of CSE,SJBIT Page 81

any of the variables and constants in the program. Resume execution – after these
changes.

To provide these functions, a debugger should consider the language in which the

program being debugged is written. A single debugger – many programming languages –

language independent. The debugger- a specific programming language– language
dependent. The debugger must be sensitive to the specific language being debugged.

The context being used has many different effects on the debugging interaction.

The statements are different depending on the language

Cobol - MOVE 6.5 TO X

Fortran - X = 6.5
C - X = 6.5

Examples of assignment statements

Similarly, the condition that X be unequal to Z may be expressed as

Cobol - IF X NOT EQUAL TO Z

Fortran - IF (X.NE.Z)

C - IF (X <> Z)

Similar differences exist with respect to the form of statement labels, keywords and so

on…

The notation used to specify certain debugging functions varies according to the

language of the program being debugged. Sometimes the language translator itself has

debugger interface modules that can respond to the request for debugging by the user.

The source code may be displayed by the debugger in the standard form or as specified

by the user or translator.

It is also important that a debugging system be able to deal with optimized code.

Many optimizations like

- Invariant expressions can be removed from loops

- Separate loops can be combined into a single loop
- Redundant expression may be eliminated

- Elimination of unnecessary branch instructions

Leads to rearrangement of segments of code in the program. All these

optimizations create problems for the debugger, and should be handled carefully.

5.6. Relationship with Other Parts of the System:

• The important requirement for an interactive debugger is that it always be
available. Must appear as part of the run-time environment and an integral part of

the system.

System Software 10CS52

Dept . of CSE,SJBIT Page 82

• When an error is discovered, immediate debugging must be possible. The
debugger must communicate and cooperate with other operating system
components such as interactive subsystems.

• Debugging is more important at production time than it is at application-

development time. When an application fails during a production run, work

dependent on that application stops.

• The debugger must also exist in a way that is consistent with the security and
integrity components of the system.

• The debugger must coordinate its activities with those of existing and future

language compilers and interpreters.

5.7. User-Interface Criteria:

• Debugging systems should be simple in its organization and familiar in its

language, closely reflect common user tasks.

• The simple organization contribute greatly to ease of training and ease of use.

• The user interaction should make use of full-screen displays and windowing-
systems as much as possible.

• With menus and full-screen editors, the user has far less information to enter and

remember. There should be complete functional equivalence between commands

and menus – user where unable to use full-screen IDSs may use commands.

• The command language should have a clear, logical and simple syntax.

• command formats should be as flexible as possible.

• Any good IDSs should have an on-line HELP facility. HELP should be accessible

from any state of the debugging session.

System Software 10CS52

Dept . of CSE,SJBIT Page 83

UNIT–6

MACRO PROCESSOR

A Macro represents a commonly used group of statements in the source programming

language.

• A macro instruction (macro) is a notational convenience for the programmer

o It allows the programmer to write shorthand version of a program (module
programming)

• The macro processor replaces each macro instruction with the corresponding

group of source language statements (expanding)

o Normally, it performs no analysis of the text it handles.

o It does not concern the meaning of the involved statements during macro

expansion.

• The design of a macro processor generally is machine independent!

• Two new assembler directives are used in macro definition

o MACRO: identify the beginning of a macro definition
o MEND: identify the end of a macro definition

• Prototype for the macro

o Each parameter begins with „&‟
 name MACRO parameters

:

body

:
MEND

o Body: the statements that will be generated as the expansion of the macro.

6.1. Basic Macro Processor Functions:

• Macro Definition and Expansion

• Macro Processor Algorithms and Data structures

Macro Definition and Expansion:

The figure shows the MACRO expansion. The left block shows the MACRO

definition and the right block shows the expanded macro replacing the MACRO call with

its block of executable instruction.

M1 is a macro with two parameters D1 and D2. The MACRO stores the contents

of register A in D1 and the contents of register B in D2. Later M1 is invoked with the

System Software 10CS52

Dept . of CSE,SJBIT Page 84

parameters DATA1 and DATA2, Second time with DATA4 and DATA3. Every call of
MACRO is expended with the executable statements.

Fig 4.1

The statement M1 DATA1, DATA2 is a macro invocation statements that gives the

name of the macro instruction being invoked and the arguments (M1 and M2) to be used

in expanding. A macro invocation is referred as a Macro Call or Invocation.

Macro Expansion:

The program with macros is supplied to the macro processor. Each macro

invocation statement will be expanded into the statement s that form the body of the

macro, with the arguments from the macro invocation substituted for the parameters in

the macro prototype. During the expansion, the macro definition statements are deleted

since they are no longer needed.

The arguments and the parameters are associated with one another according to

their positions. The first argument in the macro matches with the first parameter in the
macro prototype and so on.

After macro processing the expanded file can become the input for the Assembler.

The Macro Invocation statement is considered as comments and the statement generated

from expansion is treated exactly as though they had been written directly by the
programmer.

The difference between Macros and Subroutines is that the statement s from the

body of the Macro is expanded the number of times the macro invocation is encountered,

whereas the statement of the subroutine appears only once no matter how many times the

subroutine is called. Macro instructions will be written so that the body of the macro
contains no labels.

System Software 10CS52

Dept . of CSE,SJBIT Page 85

• Problem of the label in the body of macro:

o If the same macro is expanded multiple times at different places in the
program …

o There will be duplicate labels, which will be treated as errors by the
assembler.

• Solutions:

 Do not use labels in the body of macro.

o Explicitly use PC-relative addressing instead.

• Ex, in RDBUFF and WRBUFF macros,

o JEQ *+11
o JLT *-14

• It is inconvenient and error-prone.

The following program shows the concept of Macro Invocation and Macro

Expansion.

System Software 10CS52

Dept . of CSE,SJBIT Page 86

Fig 4.2

6.2 Macro Processor Algorithm and Data Structure:

Design can be done as two-pass or a one-pass macro. In case of two-pass

assembler.

Two-pass macro processor

• You may design a two-pass macro processor

o Pass 1:
 Process all macro definitions

o Pass 2:
 Expand all macro invocation statements

• However, one-pass may be enough

o Because all macros would have to be defined during the first pass before
any macro invocations were expanded.

 The definition of a macro must appear before any statements that

invoke that macro.

• Moreover, the body of one macro can contain definitions of the other macro

• Consider the example of a Macro defining another Macro.

• In the example below, the body of the first Macro (MACROS) contains statement

that define RDBUFF, WRBUFF and other macro instructions for SIC machine.

• The body of the second Macro (MACROX) defines the se same macros for
SIC/XE machine.

• A proper invocation would make the same program to perform macro invocation

to run on either SIC or SIC/XEmachine.

System Software 10CS52

Dept . of CSE,SJBIT Page 87

MACROS for SIC machine

Fig 4.3(a)

MACROX for SIC/XE Machine

Fig 4.3(b)

• A program that is to be run on SIC system could invoke MACROS whereas a
program to be run on SIC/XE can invoke MACROX.

• However, defining MACROS or MACROX does not define RDBUFF and
WRBUFF.

• These definitions are processed only when an invocation of MACROS or
MACROX is expanded.

System Software 10CS52

Dept . of CSE,SJBIT Page 88

One-Pass Macro Processor:

• A one-pass macro processor that alternate between macro definition and macro

expansion in a recursive way is able to handle recursive macro definition.

• Restriction

o The definition of a macro must appear in the source program before any
statements that invoke that macro.

o This restriction does not create any real inconvenience.

The design considered is for one-pass assembler. The data structures required are:

• DEFTAB (Definition Table)

o Stores the macro definition including macro prototype and macro body

o Comment lines are omitted.

o References to the macro instruction parameters are converted to a

positional notation for efficiency in substituting arguments.

• NAMTAB (Name Table)

o Stores macro names

o Serves as an index to DEFTAB

 Pointers to the beginning and the end of the macro definition
(DEFTAB)

• ARGTAB (Argument Table)

o Stores the arguments according to their positions in the argument list.
o As the macro is expanded the arguments from the Argument table are

substituted for the corresponding parameters in the macro body.

o The figure below shows the different data structures described and their
relationship.

Fig 4.4

System Software 10CS52

Dept . of CSE,SJBIT Page 89

• The above figure shows the portion of the contents of the table during the

processing of the program in page no. 3. In fig 4.4(a) definition of RDBUFF is

stored in DEFTAB, with an entry in NAMTAB having the pointers to the

beginning and the end of the definition. The arguments referred by the
instructions are denoted by the their positional notations. For example,

TD =X‟?1‟

• The above instruction is to test the availability of the device whose number is

given by the parameter &INDEV. In the instruction this is replaced by its

positional value? 1.

• Figure 4.4(b) shows the ARTAB as it would appear during expansion of the

RDBUFF statement as given below:

CLOOP RDBUFF F1, BUFFER, LENGTH

• For the invocation of the macro RDBUFF, the first parameter is F1 (input device

code), second is BUFFER (indicating the address where the characters read are

stored), and the third is LENGTH (which indicates total length of the record to be

read). When the ?n notation is encountered in a line fro DEFTAB, a simple

indexing operation supplies the proper argument from ARGTAB.

• The algorithm of the Macro processor is given below. This has the procedure

DEFINE to make the entry of macro name in the NAMTAB, Macro Prototype in

DEFTAB. EXPAND is called to set up the argument values in ARGTAB and

expand a Macro Invocation statement. Procedure GETLINE is called to get the

next line to be processed either from the DEFTAB or from the file itself.

• When a macro definition is encountered it is entered in the DEFTAB. The normal
approach is to continue entering till MEND is encountered. If there is a program
having a Macro defined within another Macro.

• While defining in the DEFTAB the very first MEND is taken as the end of the
Macro definition. This does not complete the definition as there is another outer

Macro which completes the difintion of Macro as a whole. Therefore the DEFINE

procedure keeps a counter variable LEVEL.

Every time a Macro directive is encountered this counter is incremented by 1. The

moment the innermost Macro ends indicated by the directive MEND it starts decreasing

the value of the counter variable by one. The last MEND should make the counter value

set to zero. So when LEVEL becomes zero, the MEND corresponds to the original

MACRO directive.

Most macro processors allow thr definitions of the commonly used instructions to

appear in a standard system library, rather than in the source program. This makes the use

of macros convenient; definitions are retrieved from the library as they are needed during

macro processing.

System Software 10CS52

Dept . of CSE,SJBIT Page 90

Fig 4.5

System Software 10CS52

Dept . of CSE,SJBIT Page 91

Algorithms

System Software 10CS52

Dept . of CSE,SJBIT Page 92

Fig 4.6

6.3.Comparison of Macro Processor Design

• One-pass algorithm

o Every macro must be defined before it is called
o One-pass processor can alternate between macro definition and macro

expansion

o Nested macro definitions are allowed but nested calls are not allowed.

• Two-pass algorithm

o Pass1: Recognize macro definitions

o Pass2: Recognize macro calls

o Nested macro definitions are not allowed

System Software 10CS52

Dept . of CSE,SJBIT Page 93

6.4. Machine-independent Macro-Processor Features.

The design of macro processor doesn‟t depend on the architecture of the machine.
We will be studying some extended feature for this macro processor. These features are:

• Concatenation of Macro Parameters

• Generation of unique labels

• Conditional Macro Expansion

• Keyword Macro Parameters

 Concatenation of unique labels:

• Most macro processor allows parameters to be concatenated with other character

strings. Suppose that a program contains a series of variables named by the

symbols XA1, XA2, XA3,…, another series of variables named XB1, XB2,

XB3,…, etc. If similar processing is to be performed on each series of labels, the
programmer might put this as a macro instruction.

• The parameter to such a macro instruction could specify the series of variables to

be operated on (A, B, etc.). The macro processor would use this parameter to
construct the symbols required in the macro expansion (XA1, Xb1, etc.).

• Suppose that the parameter to such a macro instruction is named &ID. The body
of the macro definition might contain a statement like

 LDA X&ID1

















Fig 4.7

& is the starting character of the macro instruction; but the end of the parameter is not

marked. So in the case of &ID1, the macro processor could deduce the meaning that was

intended.

• If the macro definition contains contain &ID and &ID1 as parameters, the
situation would be unavoidably ambiguous.

• Most of the macro processors deal with this problem by providing a special
concatenation operator. In the SIC macro language, this operator is the character

→. Thus the statement LDA X&ID1 can be written as

System Software 10CS52

Dept . of CSE,SJBIT Page 94

LDA X&ID→

Fig 4.8

The above figure shows a macro definition that uses the concatenation operator as

previously described. The statement SUM A and SUM BETA shows the invocation
statements and the corresponding macro expansion.

Generation of Unique Labels

• it is not possible to use labels for the instructions in the macro definition,
since every expansion of macro would include the label repeatedly which

is not allowed by the assembler.

• This in turn forces us to use relative addressing in the jump instructions.

Instead we can use the technique of generating unique labels for every

macro invocation and expansion.

• During macro expansion each $ will be replaced with $XX, where xx is a

System Software 10CS52

Dept . of CSE,SJBIT Page 95

two-character alphanumeric counter of the number of macro instructions

expansion.

For example,

XX = AA, AB, AC…

This allows 1296 macro expansions in a single program.

The following program shows the macro definition with labels to the instruction.

The following figure shows the macro invocation and expansion first time.

System Software 10CS52

Dept . of CSE,SJBIT Page 96

If the macro is invoked second time the labels may be expanded as $ABLOOP
$ABEXIT.

 Conditional Macro Expansion

There are applications of macro processors that are not related to assemblers or

assembler programming.

Conditional assembly depends on parameters provides

MACRO &COND

……..

IF (&COND NE „‟)

part I

ELSE

part II

ENDIF

………

ENDM

Part I is expanded if condition part is true, otherwise part II is expanded. Compare

operators: NE, EQ, LE, GT.

Macro-Time Variables:

Macro-time variables (often called as SET Symbol) can be used to store working

System Software 10CS52

Dept . of CSE,SJBIT Page 97

values during the macro expansion. Any symbol that begins with symbol & and not a

macro instruction parameter is considered as macro-time variable. All such variables are

initialized to zero.

Fig 4.9(a)

Figure 4.5(a) gives the definition of the macro RDBUFF with the parameters &INDEV,

&BUFADR, &RECLTH, &EOR, &MAXLTH. According to the above program if

&EOR has any value, then &EORCK is set to 1 by using the directive SET, otherwise it

retains its default value 0.

System Software 10CS52

Dept . of CSE,SJBIT Page 98

Fig 4.9(b) Use of Macro-Time Variable with EOF being NOT NULL

Fig 4.9(c) Use of Macro-Time conditional statement with EOF being NULL

System Software 10CS52

Dept . of CSE,SJBIT Page 99

Fig 4.9(d) Use of Time-variable with EOF NOT NULL and MAXLENGTH being NULL

The above programs show the expansion of Macro invocation statements with different

values for the time variables. In figure 4.9(b) the &EOF value is NULL. When the macro

invocation is done, IF statement is executed, if it is true EORCK is set to 1, otherwise

normal execution of the other part of the program is continued.

The macro processor must maintain a symbol table that contains the value of all macro -

time variables used. Entries in this table are modified when SET statements are

processed. The table is used to look up the current value of the macro-time variable
whenever it is required.

When an IF statement is encountered during the expansion of a macro, the specified

Boolean expression is evaluated.

If the value of this expression TRUE,

• The macro processor continues to process lines from the DEFTAB until it
encounters the ELSE or ENDIF statement.

• If an ELSE is found, macro processor skips lines in DEFTAB until the next
ENDIF.

• Once it reaches ENDIF, it resumes expanding the macro in the usual way.

If the value of the expression is FALSE,

• The macro processor skips ahead in DEFTAB until it encounters next ELSE or
ENDIF statement.

• The macro processor then resumes normal macro expansion.

System Software 10CS52

Dept . of CSE,SJBIT Page 100

The macro-time IF-ELSE-ENDIF structure provides a mechanism for either

generating(once) or skipping selected statements in the macro body. There is another

construct WHILE statement which specifies that the following line until the next ENDW

statement, are to be generated repeatedly as long as a particular condition is true. The

testing of this condition, and the looping are done during the macro is under expansion.

The example shown below shows the usage of Macro-Time Looping statement.

WHILE-ENDW structure

• When an WHILE statement is encountered during the expansion of a macro, the

specified Boolean expression is evaluated.

• TRUE

o The macro processor continues to process lines from DEFTAB until it
encounters the next ENDW statement.

o When ENDW is encountered, the macro processor returns to the preceding

WHILE, re-evaluates the Boolean expression, and takes action based
on the new value.

• FALSE

o The macro processor skips ahead in DEFTAB until it finds the next

ENDW statement and then resumes normal macro expansion.

System Software 10CS52

Dept . of CSE,SJBIT Page 101

Keyword Macro Parameters

• All the macro instruction definitions used positional parameters.

Parameters and arguments are matched according to their positions in the
macro prototype and the macro invocation statement.

• The programmer needs to be careful while specifying the arguments. If an

argument is to be omitted the macro invocation statement must contain a

null argument mentioned with two commas.

• Positional parameters are suitable for the macro invocation. But if the

macro invocation has large number of parameters, and if only few of the

values need to be used in a typical invocation, a different type of
parameter specification is required

Ex: XXX MACRO &P1, &P2, …., &P20, ….

XXX A1, A2,,,,,,,,,,…,,A20,…..
Null arguments

Keyword parameters

• Each argument value is written with a keyword that names the corresponding

parameter.

• Arguments may appear in any order.

System Software 10CS52

Dept . of CSE,SJBIT Page 102

• Null arguments no longer need to be used.

• Ex: XXX P1=A1, P2=A2, P20=A20.

• It is easier to read and much less error-prone than the positional method.

System Software 10CS52

Dept . of CSE,SJBIT Page 103

Fig 4.10 Example showing the usage of Keyword Parameter

6.5. Macro Processor Design Options

Recursive Macro Expansion

We have seen an example of the definition of one macro instruction by another. But we

have not dealt with the invocation of one macro by another. The following example

shows the invocation of one macro by another macro.

System Software 10CS52

Dept . of CSE,SJBIT Page 104

Problem of Recursive Expansion

• Previous macro processor design cannot handle such kind of recursive macro
invocation and expansion

o The procedure EXPAND would be called recursively, thus the invocation
arguments in the ARGTAB will be overwritten. (P.201)

o The Boolean variable EXPANDING would be set to FALSE when the

“inner” macro expansion is finished, i.e., the macro process would forget
that it had been in the middle of expanding an “outer” macro.

• Solutions
o Write the macro processor in a programming language that allows

recursive calls, thus local variables will be retained.

o If you are writing in a language without recursion support, use a stack to
take care of pushing and popping local variables and return addresses.

System Software 10CS52

Dept . of CSE,SJBIT Page 105

The procedure EXPAND would be called when the macro was recognized. The
arguments from the macro invocation would be entered into ARGTAB as follows:

The Boolean variable EXPANDING would be set to TRUE, and expansion of the macro

invocation statement would begin. The processing would proceed normally until
statement invoking RDCHAR is processed. This time, ARGTAB would look like

At the expansion, when the end of RDCHAR is recognized, EXPANDING would be set

to FALSE. Thus the macro processor would „forget‟ that it had been in the middle of

expanding a macro when it encountered the RDCHAR statement. In addition, the

arguments from the original macro invocation (RDBUFF) would be lost because the

value in ARGTAB was overwritten with the arguments from the invocation of

RDCHAR.

 General-Purpose Macro Processors

• Macro processors that do not dependent on any particular programming language,
but can be used with a variety of different languages

• Pros

o Programmers do not need to learn many macro languages.
o Although its development costs are somewhat greater than those for a

language specific macro processor, this expense does not need to be
repeated for each language, thus save substantial overall cost.

• Cons

o Large number of details must be dealt with in a real programming
language

 Situations in which normal macro parameter substitution should

not occur, e.g., comments.
 Facilities for grouping together terms, expressions, or statements

 Tokens, e.g., identifiers, constants, operators, keywords

 Syntax had better be consistent with the source programming

language

Macro Processing within Language Translators

• The macro processors we discussed are called “Preprocessors”.

o Process macro definitions
o Expand macro invocations

o Produce an expanded version of the source program, which is then used as
input to an assembler or compiler

• You may also combine the macro processing functions with the language
translator:

o Line-by-line macro processor
o Integrated macro processor

System Software 10CS52

Dept . of CSE,SJBIT Page 106

Line-by-Line Macro Processor

• Used as a sort of input routine for the assembler or compiler

o Read source program
o Process macro definitions and expand macro invocations

o Pass output lines to the assembler or compiler

• Benefits

o Avoid making an extra pass over the source program.

o Data structures required by the macro processor and the language translator

can be combined (e.g., OPTAB and NAMTAB)

o Utility subroutines can be used by both macro processor and the language
translator.
 Scanning input lines

 Searching tables
 Data format conversion

o It is easier to give diagnostic messages related to the source statements

i. Integrated Macro Processor

• An integrated macro processor can potentially make use of any information about

the source program that is extracted by the language translator.

o Ex (blanks are not significant in FORTRAN)
 DO 100 I = 1,20

• a DO statement
 DO 100 I = 1

• An assignment statement

• DO100I: variable (blanks are not significant in FORTRAN)

• An integrated macro processor can support macro instructions that depend upon

the context in which they occur.

System Software 10CS52

Dept . of CSE,SJBIT Page 107

UNIT – 7

LEX AND YACC – 1

7.1.INTRODUCTION:

Lex is a program generator designed for lexical processing of character input streams. It

accepts a high-level, problem oriented specification for character string matching, and

produces a program in a general purpose language which recognizes regular expressions.

The regular expressions are specified by the user in the source specifications given to

Lex.

The Lex written code recognizes these expressions in an input stream and partitions

the input stream into strings matching the expressions. At the boundaries between strings

program sections provided by the user are executed. The Lex source file associates the

regular expressions and the program fragments. As each expression appears in the input

to the program written by Lex, the corresponding fragment is executed.

Lex turns the user's expressions and actions (called source in this memo) into the host

general-purpose language; the generated program is named yylex. The yylex program

will recognize expressions in a stream (called input in this memo) and perform the
specified actions for each expression as it is detected. See Figure 1.

+-------+

Source -> | Lex | -> yylex

+-------+

+-------+

Input -> | yylex | -> Output

+-------+

7.2.SIMPLEST LEX PROGRAM AND LEX STRUCTURE:

The structure of a lex file is intentionally similar to that of a yacc file; files are divided up

into three sections, separated by lines that contain only two percent signs, as follows:

Definition section

%%

Rules section
%%

C code section

• The definition section is the place to define macros and to import header files

written in C. It is also possible to write any C code here, which will be copied

verbatim into the generated source file.

System Software 10CS52

Dept . of CSE,SJBIT Page 108

• The rules section is the most important section; it associates patterns with C

statements. Patterns are simply regular expressions. When the lexer sees some

text in the input matching a given pattern, it executes the associated C code. This

is the basis of how lex operates.

• The C code section contains C statements and functions that are copied verbatim

to the generated source file. These statements presumably contain code called by

the rules in the rules section. In large programs it is more convenient to place this

code in a separate file and link it in at compile time.

Example:

/*** Definition section ***/

%{

/* C code to be copied verbatim */

#include <stdio.h>

%}

/* This tells lex to read only one input file */

%%

/*** Rules section ***/

/* [0-9]+ matches a string of one or more digits */

[0-9]+ {

/* yytext is a string containing the matched text. */

printf("Saw an integer: %s\n", yytext);

}

. { /* Ignore all other characters. */ }

%%

/*** C Code section ***/

int main(void)

{

/* Call the lexer, then quit. */

yylex();

return 0;

7.3. REGULAR EXPRESSIONS:

regular expression specifies a set of strings to be matched. It contains tex t characters and

operator characters The letters of the alphabet and the digits are always text characters;

thus the regular expression integer matches the string integer wherever it appears and
the expression

a57D

looks for the string a57D.

System Software 10CS52

Dept . of CSE,SJBIT Page 109

Operators:

The operator characters are

" \ [] ^ - ? . * + | () $ / { } % < >

and if they are to be used as text characters, an escape should be used. The quotation

mark operator (") indicates that whatever is contained between a pair of quotes is to be

taken as text characters.
Thus

xyz"++"

matches the string xyz++ when it appears.

• Note that a part of a string may be quoted. It is harmless but unnecessary to quote

an ordinary text character; the expression
"xyz++"

is the same as the one above. Thus by quoting every non-alphanumeric character being
used as a text character, the user can avoid remembering the list above of current operator
characters, and is safe should further extensions to Lex lengthen the list.

• An operator character may also be turned into a text character by preceding it

with \ as in

xyz\+\+

which is another, less readable, equivalent of the above expressions.

Another use of the quoting mechanism is to get a blank into an expression; blanks or tabs

end a rule. Any blank character not contained within []must be quoted.

• Several normal C escapes with \ are recognized: \n is newline, \t is tab, and \b is

backspace. To enter \ itself, use \\. Since newline is illegal in an expression, \n
must be used; it is not required to escape tab and backspace. Every character but

blank, tab, newline and the list above is always a text character.

• Character classes. Classes of characters can be specified using the operator pair

[]. The construction [abc] matches a single character, which may be a, b, or c.

Within square brackets, most operator meanings are ignored. Only three

characters are special: these are \ - and ^. The - character indicates ranges.

For example:

[a-z0-9<>_]indicates the character class containing all the lower case letters, the digits,
the angle brackets, and underline. Ranges may be given in either order.

• Using - between any pair of characters which are not both upper case letters, both
lower case letters, or both digits is implementation dependent and will get a

warning message. If it is desired to include the character - in a character class, it

should be first or last; thus

[-+0-9]

System Software 10CS52

Dept . of CSE,SJBIT Page 110

matches all the digits and the two signs.

In character classes, the ^ operator must appear as the first character after the left bracket;

it indicates that the resulting string is to be complemented with respect to the computer

character set. Thus , [^abc] matches all characters except a, b, or c, including all
special or control characters

or [^a-zA-Z]

is any character which is not a letter. The \ character provides the usual escapes

within character class brackets.

• Optional expressions.: The operator ? indicates an optional element of an
expression. Thus ab?c

matches either ac or abc.

• Repeated expressions: Repetitions of classes are indicated by the operators * and
+.

Ex: a*

is any number of consecutive a characters, including zero, while a+ is one or more
instances of a.

For example [a-z]+

is all strings of lower case letters.

A-Z, 0-9, a-z Characters and numbers that form part of the pattern.

. Matches any character except \n.

- Used to denote range. Example: A-Z implies all characters from A

to Z.

[] A character class. Matches any character in the brackets. If the first

character is ^ then it indicates a negation pattern. Example: [abC]

matches either of a, b, and C.

* Match zero or more occurrences of the preceding pattern.

+ Matches one or more occurrences of the preceding pattern.

? Matches zero or one occurrences of the preceding pattern.

$ Matches end of line as the last character of the pattern.

{ } Indicates how many times a pattern can be present. Example:

A{1,3} implies one or three occurrences of A may be present.

\ Used to escape meta characters. Also used to remove the special

meaning of characters as defined in this table.

^ Negation.

System Software 10CS52

Dept . of CSE,SJBIT Page 111

Tokens in Lex are declared like variable names in C. Every token has an associated

expression. (Examples of tokens and expression are given in the following table.) Using

the examples in our tables, we'll build a word-counting program. Our first task will be to
show how tokens are declared.

7.4. HOW TO RUN LEX PROGRAM:

If lex.l is the file containing the lex specification, the C source for the lexical analyzer is

produced by running lex with the following command:

lex lex.l

lex produces a C file called lex.yy.c.

Options

There are several options available with the lex command. If you use one or more of
them, place them between the command name lex and the filename argument.

The -t option sends lex's output to the standard output rather than to the file lex.yy.c.

Regular expression Meaning

joke[rs] Matches either jokes or joker.

A{1,2}shis+ Matches AAshis, Ashis, AAshi, Ashi.

(A[b-e])+ Matches zero or one occurrences of A followed by any character

from b to e.

| Logical OR between expressions.

"<some symbols>" Literal meanings of characters. Meta characters hold.

/ Look ahead. Matches the preceding pattern only if followed by the

succeeding expression. Example: A0/1 matches A0 only if A01 is

the input.

() Groups a series of regular expressions.

System Software 10CS52

Dept . of CSE,SJBIT Page 112

The -v option prints out a small set of statistics describing the so-called finite automata that lex
produces with the C program lex.yy.c.

In this section we can add C variable declarations. We will declare an integer variable

here for our word-counting program that holds the number of words counted by the
program. We'll also perform token declarations of Lex.

Declarations for the word-counting program

%{
int wordCount = 0;

%}

chars [A-za-z_\'\.\"]

numbers ([0-9])+

delim [" "\n\t]

whitespace {delim}+

words {chars}+

%%

The double percent sign implies the end of this section and the beginning of the second of

the three sections in Lex programming.

Lex rules for matching patterns

Let's look at the Lex rules for describing the token that we want to match. (We'll use C to

define what to do when a token is matched.) Continuing with our word-counting
program, here are the rules for matching tokens.

Lex rules for the word-counting program

{words} { wordCount++; /*

increase the word count by one*/ }

{whitespace} { /* do

nothing*/ }

{numbers} { /* one may

want to add some processing here*/ }

%%

C code

The third and final section of programming in Lex covers C function declarations (and

occasionally the main function) Note that this section has to include the yywrap()

function. Lex has a set of functions and variables that are available to the user. One of

them is yywrap. Typically, yywrap() is defined as shown in the example below.

C code section for the word-counting program

void main()

{
yylex(); /* start the analysis*/
printf(" No of words:

%d\n", wordCount);

}

System Software 10CS52

Dept . of CSE,SJBIT Page 113

int yywrap()

{

return 1;

}

7.5. LEXER

lexical analysis is the process of converting a sequence of characters into a sequence of

tokens. A program or function which performs lexical analysis is called a lexical

analyzer, lexer or scanner. A lexer often exists as a single function which is called by a

parser or another function

Token

A token is a string of characters, categorized according to the rules as a symbol (e.g.

IDENTIFIER, NUMBER, COMMA, etc.). The process of forming tokens from an input

stream of characters is called tokenization and the lexer categorizes them according to a

symbol type. A token can look like anything that is useful for processing an input text

stream or text file.

A lexical analyzer generally does nothing with combinations of tokens, a task left for a

parser. For example, a typical lexical analyzer recognizes parenthesis as tokens, but does

nothing to ensure that each '(' is matched with a ')'.

Consider this expression in the C programming language:

sum=3+2;

Tokenized in the following table:

lexeme token type

sum Identifier

= Assignment operator

3 Number

+ Addition operator

2 Number

; End of statement

Tokens are frequently defined by regular expressions, which are understood by a lexical

analyzer generator such as lex. The lexical analyzer (either generated automatically by a

tool like lex, or hand-crafted) reads in a stream of characters, identifies the lexemes in the

stream, and categorizes them into tokens. This is called "tokenizing." If the lexer finds an

invalid token, it will report an error.

System Software 10CS52

Dept . of CSE,SJBIT Page 114

Following tokenizing is parsing. From there, the interpreted data may be loaded into data
structures for general use, interpretation, or compiling.

7.6 Examples:

1. Write a Lex source program to copy an input file while adding 3 to every positive number

divisible by 7.

%%

int k;

[0-9]+ {

k = atoi(yytext);

if (k%7 == 0)

printf("%d", k+3);

else

printf("%d",k);

}

to do just that. The rule [0-9]+ recognizes strings of digits; atoi converts the digits to binary and

stores the result in k. The operator % (remainder) is used to check whether k is divisible by 7; if it

is, it is incremented by 3 as it is written out. It may be objected that this program will alter such

input items as 49.63 or X7. Furthermore, it increments the absolute value of all negative numbers

divisible by 7. To avoid this, just add a few more rules after the active one, as here:

%%

int k;

-?[0-9]+ {

k = atoi(yytext);

printf("%d",

k%7 == 0 ? k+3 : k);

}

-?[0-9.]+ ECHO;

[A-Za-z][A-Za-z0-9]+ ECHO;

Numerical strings containing a “.'' or preceded by a letter will be picked up by one of the

last two rules, and not changed. The if-else has been replaced by a C conditional expression to

save space; the form a?b:c means “if a then b else c''.

2. Write a Lex program that histograms the lengths of words, where a word is defined as a

string of letters.

int lengs[100];

%%

[a-z]+ lengs[yyleng]++;

. |

\n ;

%%

yywrap()

System Software 10CS52

Dept . of CSE,SJBIT Page 115

{

int i;

printf("Length No. words\n");

for(i=0; i<100; i++)

if (lengs[i] > 0)

printf("%5d%10d\n",i,lengs[i]);

return(1);

}

3.. Write a lex program to find the number of vowels and consonants.

%{

/* to find vowels and consonents*/

int vowels = 0;

int consonents = 0;

%}

%%

[\t\n]+

[aeiouAEIOU] vowels++;

[bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ]

consonents++;

.

%%

main()

{

yylex();

printf(" The number of vowels = %d\n", vowels);

printf(" number of consonents = %d \n", consonents);

return(0);

}

The same program can be executed by giving alternative grammar. It is as follows: Here

a file is opened which is given as a argument and reads to text and counts the number of vowels

and consonants.

%{

unsigned int vowelcount=0;

unsigned int consocount=0;

%}

vowel [aeiouAEIOU]

consonant [bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ]

eol \n

%%

{vowel} { vowelcount++;}

{consonant} { consocount++; }

%%

main(int argc,char *argv[])

{

if(argc > 1)

{

FILE *fp;

fp=fopen(argv[1],"r");

if(!fp)

{

System Software 10CS52

Dept . of CSE,SJBIT Page 116

fprintf(stderr,"could not open %s\n",argv[1]);

exit(1);

}

yyin=fp;

}

yylex();

printf(" vowelcount=%u consonantcount=%u\n ",vowelcount,consocount);

return(0);

}

4. Write a Lex program to count the number of words, characters,

blanks and lines in a given text.

%{

unsigned int charcount=0;

int wordcount=0;

int linecount=0;

int blankcount =0;

%}

word[^ \t\n]+

eol \n

%%

[] blankcount++;

{word} { wordcount++; charcount+=yyleng;}

{eol} {charcount++; linecount++;}

. { ECHO; charcount++;}

%%

main(argc, argv)

int argc;

char **argv;

{

if(argc > 1)

{

FILE *file;

file = fopen(argv[1],"r");

if(!file)

{

fprintf(stderr, "could not open %s\n", argv[1]);

exit(1);

}

yyin = file;

yylex();

printf("\nThe number of characters = %u\n", charcount);

printf("The number of wordcount = %u\n", wordcount);

printf("The number of linecount = %u\n", linecount);

printf("The number of blankcount = %u\n", blankcount);

return(0);

}

else

printf(" Enter the file name along with the program \n");

}

5. Write a lex program to find the number of positive integer,

System Software 10CS52

Dept . of CSE,SJBIT Page 117

negative integer, positive floating positive number and negative

floating point number.

int posnum = 0;

int negnum = 0;

int posflo = 0;

int negflo = 0;

%}

%%

[\n\t];

([0-9]+) {posnum++;}

-?([0-9]+) {negnum++; }

([0-9]*\.[0-9]+) { posflo++; }

-?([0-9]*\.[0-9]+) { negflo++; }

. ECHO;

%%

main()

{

yylex();

printf("Number of positive numbers = %d\n", posnum);

printf("number of negative numbers = %d\n", negnum);

printf("number of floting positive number = %d\n", posflo);

printf("number of floating negative number = %d\n", negflo);

}

6. Write a lex program to find the given c program has right number

of brackets. Count the number of comments. Check for while loop.

%{

/* find main, comments, {, (,), } */

int comments=0;

int opbr=0;

int clbr=0;

int opfl=0;

int clfl=0;

int j=0;

int k=0;

%}

%%

"main()" j=1;

"/*"[\t].*[\t]"*/" comments++;

"while("[0-9a-zA-Z]*")"[\t]*\n"{"[\t]*.*"}" k=1;

^[\t]*"{"[\t]*\n

^[\t]*"}" k=1;

"(" opbr++;

")" clbr++;

"{" opfl++;

"}" clfl++;

[^ \t\n]+

. ECHO;

%%

main(argc, argv)

int argc;

char *argv[];

{

System Software 10CS52

Dept . of CSE,SJBIT Page 118

if (argc > 1)

{

FILE *file;

file = fopen(argv[1], "r");

if (!file)

{

printf("error opeing a file \n");

exit(1);

}

yyin = file;

}

yylex();

if(opbr != clbr)

printf("open brackets is not equal to close brackets\n");

if(opfl != clfl)

printf("open flower brackets is not equal to close flower

brackets\n");

printf(" the number of comments = %d\n",comments);

if (!j)

printf("there is no main function \n");

if (k)

printf("there is loop\n");

else printf("there is no valid for loop\n");

return(0);

}

6. Write a lex program to replace scanf with READ and printf with WRITE

statement also find the number of scanf and printf.

%{

int pc=0,sc=0;

%}

%%

printf fprintf(yyout,"WRITE");pc++;

scanf fprintf(yyout,"READ");sc++;

. ECHO;

%%

main(int argc,char* argv[])

{

if(argc!=3)

{

printf("\nUsage: %s <src> <dest>\n",argv[0]);

return;

}

yyin=fopen(argv[1],"r");

yyout=fopen(argv[2],"w");

yylex();

printf("\nno. of printfs:%d\nno. of scanfs:%d\n",pc,sc);

}

7. Write a lex program to find whether the given expression is valid.

System Software 10CS52

Dept . of CSE,SJBIT Page 119

%{

#include <stdio.h>

int valid=0,ctr=0,oc = 0;

%}

NUM [0-9]+

OP [+*/-]

%%

{NUM}({OP}{NUM})+ {

valid = 1;

for(ctr = 0;yytext[ctr];ctr++)

{

switch(yytext[ctr])

{

case '+':

case '-':

case '*':

case '/': oc++;

}

}

}

{NUM}\n {printf("\nOnly a number.");}

\n { if(valid) printf("valid \n operatorcount = %d",oc);

else printf("Invalid");

valid = oc = 0;ctr=0;

}

%%

main()

{

yylex();

}

/* Another solution for the same problem */

%{

int oprc=0,digc=0,top=-1,flag=0;

char stack[20];

%}

digit [0-9]+

opr [+*/-]

%%

[\n\t]+

['('] {stack[++top]='(';}

[')'] {flag=1;

if(stack[top]=='('&&(top!=-1))

top--;

else

{

printf("\n Invalid expression\n");

exit(0);

}

}

{digit} {digc++;}

{opr}/['('] { oprc++; printf("%s",yytext);}

{opr}/{digit} {oprc++; printf("%s",yytext);}

System Software 10CS52

Dept . of CSE,SJBIT Page 120

. {printf("Invalid "); exit(0);}

%%

main()

{

yylex();

if((digc==oprc+1||digc==oprc) && top==-1)

{

printf("VALID");

printf("\n oprc=%d\n digc=%d\n",oprc,digc);

}

else

printf("INVALID");

}

8.Write a lex program to find the given sentence is simple or compound.

%{

int flag=0;

%}

%%

(" "[aA][nN][dD]" ")|(" "[oO][rR]" ")|(" "[bB][uU][tT]" ") flag=1;

. ;

%%

main()

{yylex();

if (flag==1)

printf("COMPOUND SENTENCE \n");

else

printf("SIMPLE SENTENCE \n");

}

9. Write a lex program to find the number of valid identifiers.

%{

int count=0;

%}

%%

(" int ")|(" float ")|(" double ")|(" char ")

{

int ch; ch = input();

for(;;)

{

if (ch==',') {count++;}

else

if(ch==';') {break;}

ch = input();

}

count++;

}

%%

main(int argc,char *argv[])

System Software 10CS52

Dept . of CSE,SJBIT Page 121

{

yyin=fopen(argv[1],"r");

yylex();

printf("the no of identifiers used is %d\n",count);

}

System Software 10CS52

Dept . of CSE,SJBIT Page 122

UNIT - 8

LEX AND YACC – 2

8.1. Introduction

Yacc provides a general tool for describing the input to a computer program. The

Yacc user specifies the structures of his input, together with code to be invoked as

each such structure is recognized. Yacc turns such a specification into a

subroutine that handles the input process; frequently, it is convenient and

appropriate to have most of the flow of control in the user's application handled by

this subroutine.

The input subroutine produced by Yacc calls a user-supplied routine to return the

next basic input item. Thus, the user can specify his input in terms of individual

input characters or in terms of higher level constructs such as names and numbers.

The user supplied routine may also handle idiomatic features such as comment

and continuation conventions, which typically defy easy grammatical

specification. Yacc is written in portable C.

Yacc provides a general tool for imposing structure on the input to a computer

program. User prepares a specification of the input process; this includes rules

describing the input structure, code to be invoked when these rules are recognized,

and a low-level routine to do the basic input.

8.2. Grammars:

The heart of the input specification is a collection of grammar rules. Each rule

describes an allowable structure and gives it a name. For example, one grammar

rule might be

date : month_name day ',' year

Here, date, month_name, day, and year represent structures of interest in

the input process; presumably, month_name, day, and year are defined elsewhere.

The comma ``,'' is enclosed in single quotes; this implies that the comma is to

appear literally in the input. The colon and semicolon merely serve as punctuation

System Software 10CS52

Dept . of CSE,SJBIT Page 123

in the rule, and have no significance in controlling the input. Thus, with proper

definitions, the input

July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This

user routine reads the input stream, recognizing the lower level structures, and

communicates these tokens to the parser. For historical reasons, a structure

recognized by the lexical analyzer is called a terminal symbol, while the structure

recognized by the parser is called a nonterminal symbol. To avoid confusion,

terminal symbols will usually be referred to as tokens.

8.3. Basic Specifications:

Every specification file consists of three sections: the declarations,

(grammar) rules, and programs. The sections are separated by double percent

``%%'' marks. (The percent ``%'' is generally used in Yacc specifications as an

escape character.)

In other words, a full specification file looks like

declarations

%%

rules

%%

programs

The declaration section may be empty. Moreover, if the programs section is

omitted, the second %% mark may be omitted also; thus, the smallest legal Yacc

specification is

%%

rules

Blanks, tabs, and newlines are ignored except that they may not appear in names

or multi-character reserved symbols. Comments may appear wherever a name is

legal; they are enclosed in /* . . . */, as in C and PL/I.

The rules section is made up of one or more grammar rules.

System Software 10CS52

Dept . of CSE,SJBIT Page 124

A grammar rule has the form:

A : BODY ;

A represents a nonterminal name, and BODY represents a sequence of zero or

more names and literals. The colon and the semicolon are Yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot ``.'',

underscore ``_'', and non-initial digits. Upper and lower case letters are distinct.

The names used in the body of a grammar rule may represent tokens or

nonterminal symbols.

8.4. SYMBOLS AND ACTIONS:

A literal consists of a character enclosed in single quotes ``'''. As in C, the

backslash ``\'' is an escape character within literals, and all the C escapes are

recognized. Thus

'\n' newline

'\r' return

'\'' single quote ``'''

'\\' backslash ``\''

'\t' tab

'\b' backspace

'\f' form feed

'\xxx' ``xxx'' in octal

For a number of technical reasons, the NUL character ('\0' or 0) should never be

used in grammar rules.

If there are several grammar rules with the same left hand side, the vertical bar

``|'' can be used to avoid rewriting the left hand side. In addition, the semicolon at

the end of a rule can be dropped before a vertical bar. Thus the grammar rules

A : B C D ;

A : E F ;

A : G ;

can be given to Yacc as

A : B C D

| E F

| G

;

System Software 10CS52

Dept . of CSE,SJBIT Page 125

• It is not necessary that all grammar rules with the same left side appear

together in the grammar rules section, although it makes the input much

more readable, and easier to change.

• If a nonterminal symbol matches the empty string, this can be indicated in

the obvious way:

• empty : ;

• Names representing tokens must be declared; this is most simply done by

writing

• %token name1, name2 . . .

in the declarations section. Every name not defined in the declarations

section is assumed to represent a non-terminal symbol. Every non-terminal

symbol must appear on the left side of at least one rule.

• Of all the nonterminal symbols, one, called the start symbol, has particular

importance. The parser is designed to recognize the start symbol; thus,

this symbol represents the largest, most general structure described by the

grammar rules. By default, the start symbol is taken to be the left hand

side of the first grammar rule in the rules section.

• It is possible, and in fact desirable, to declare the start symbol explicitly in

the declarations section using the % start keyword:

• %start symbol

• The end of the input to the parser is signaled by a special token, called the

endmarker. If the tokens up to, but not including, the endmarker form a

structure which matches the start symbol, the parser function returns to its

caller after the end-marker is seen; it accepts the input. If the endmarker is

seen in any other context, it is an error.

• It is the job of the user-supplied lexical analyzer to return the

endmarker when appropriate; see section 3, below. Usually the

endmarker represents some reasonably obvious I/O status, such as ``end-

of-file'' or ``end-of-record''.

Actions:

• With each grammar rule, the user may associate actions to be Yacc: Yet

Another Compiler-Compiler performed each time the rule is recognized in

the input process.

• These actions may return values, and may obtain the values returned by

previous actions. Moreover, the lexical analyzer can return values for

tokens, if desired.

System Software 10CS52

Dept . of CSE,SJBIT Page 126

• An action is an arbitrary C statement, and as such can do input and output,

call subprograms, and alter external vectors and variables. An action is

specified by one or more statements, enclosed in curly braces ``{'' and ``}''.

For example,

A : '(' B ')'

{ hello(1, "abc"); }

and

XXX : YYY ZZZ

{ printf("a message\n");

flag = 25; }

are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action

statements are altered slightly. The symbol ``dollar sign'' ``$'' is used as a signal to

Yacc in this context.

To return a value, the action normally sets the pseudo-variable ``$$'' to some

value. For example, an action that does nothing but return the value 1 is

{ $$ = 1; }

To obtain the values returned by previous actions and the lexical analyzer, the

action may use the pseudo-variables $1, $2, . . ., which refer to the values returned

by the components of the right side of a rule, reading from left to right. Thus,

if the rule is

A : B C D ;

for example, then $2 has the value returned by C, and $3 the value returned by

D.

As a more concrete example, consider the rule

expr : '(' expr ')' ;

The value returned by this rule is usually the value of the expr in

parentheses. This can be indicated by

expr : '(' expr ')' { $$ = $2 ; }

By default, the value of a rule is the value of the first element in it ($1). Thus,

grammar rules of the form

A : B ;

frequently need not have an explicit action.

System Software 10CS52

Dept . of CSE,SJBIT Page 127

In the examples above, all the actions came at the end of their rules. Sometimes,

it is desirable to get control before a rule is fully parsed. Yacc permits an action

to be written in the middle of a rule as well as at the end.

The user may define other variables to be used by the actions. Declarations

and definitions can appear in the declarations section, enclosed in the marks ``%{''

and ``%}''. These declarations and definitions have global scope, so they are

known to the action statements and the lexical analyzer. For example,

%{ int variable = 0; %}

could be placed in the declarations section, making variable accessible to all

of the actions. The Yacc parser uses only names beginning in ``yy''; the user

should avoid such names.

In these examples, all the values are integers: a discussion of values of other types

will be found in Section 10.

8.5. Lexical Analysis

The user must supply a lexical analyzer to read the input stream and communicate

tokens (with values, if desired) to the parser. The lexical analyzer is an integer-

valued function called yylex. The user must supply a lexical analyzer to read the

input stream and communicate tokens (with values, if desired) to the parser. The

lexical analyzer is an integer-valued function called yylex. The parser and the

lexical analyzer must agree on these token numbers in order for communication

between them to take place. The numbers may be chosen by Yacc, or chosen by

the user. In either case, the ``# define'' mechanism of C is used to allow the lexical

analyzer to return these numbers symbolically. For example, suppose that the

token name DIGIT has been defined in the declarations section of the Yacc

specification file. The relevant portion of the lexical analyzer might look like:

yylex(){

extern int yylval;

int c;

. . .

c = getchar();

. . .

switch(c) {

. . .

case '0':

case '1':

. . .

case '9':

yylval = c-'0';

return(DIGIT);

. . .

System Software 10CS52

Dept . of CSE,SJBIT Page 128

}

. . .

• The intent is to return a token number of DIGIT, and a value equal to the

numerical value of the digit. Provided that the lexical analyzer code is

placed in the programs section of the specification file, the identifier

DIGIT will be defined as the token number associated with the token

DIGIT.

• This mechanism leads to clear, easily modified lexical analyzers; the

only pitfall is the need to avoid using any token names in the grammar that

are reserved or significant in C or the parser;

• For example, the use of token names „if‟ or „while‟ will almost certainly

cause severe difficulties when the lexical analyzer is compiled. The

token name error is reserved for error handling, and should not be used

naively.

• The token numbers may be chosen by Yacc or by the user. In the default

situation, the numbers are chosen by Yacc.

• The default token number for a literal character is the numerical value of

the character in the local character set. Other names are assigned token

numbers starting at 257.

8.6. How the Parser Works :

Yacc turns the specification file into a C program, which parses the input

according to the specification given. The algorithm used to go from the

specification to the parser is complex. however, is relatively simple, and

understanding how it works, while not strictly necessary, will nevertheless make

treatment of error recovery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a finite state machine with a stack. The

parser is also capable of reading and remembering the next input token (called the

lookahead token). The current state is always the one on the top of the stack. The

states of the finite state machine are given small integer labels; initially, the

machine is in state 0, the stack contains only state 0, and no lookahead token has

been read.

The machine has only four actions available to it, called shift, reduce, accept, and

error. A move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead

token to decide what action should be done; if it needs one, and does not have

one, it calls yylex to obtain the next token.

System Software 10CS52

Dept . of CSE,SJBIT Page 129

2. Using the current state, and the lookahead token if needed, the parser decides

on its next action, and carries it out. This may result in states being pushed onto

the stack, or popped off the stack, and in the lookahead token being processed or

left alone.

The shift action is the most common action the parser takes. Whenever a shift

action is taken, there is always a lookahead token. For example, in state 56 there

may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is

pushed down on the stack, and state 34 becomes the current state (on the top of

the stack). The look ahead token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce

actions are appropriate when the parser has seen the right hand side of a

grammar rule, and is prepared to announce that it has seen an instance of the

rule, replacing the right hand side by the left hand side. It may be necessary to

consult the lookahead token to decide whether to reduce, but usually it is not; in

fact, the default action (represented by a ``.'') is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules

are also given small integer numbers, leading to some confusion. The action

. reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34. Suppose the rule being reduced is

A : x y z ;

The reduce action depends on the left hand symbol (A in this case), and the

number of symbols on the right hand side (three in this case). To reduce, first pop

off the top three states from the stack (In general, the number of states popped

equals the number of symbols on the right side of the rule).

In effect, these states were the ones put on the stack while recognizing

x, y, and z, and no longer serve any useful purpose. After popping these states, a

state is uncovered which was the state the parser was in before beginning to

process the rule. Using this uncovered state, and the symbol on the left side

of the rule, perform what is in effect a shift of A. A new state is obtained, pushed

onto the stack, and parsing continues.

The reduce action is also important in the treatment of user-supplied

actions and values. When a rule is reduced, the code supplied with the rule is

executed before the stack is adjusted. In addition to the stack holding the

states, another stack, running in parallel with it, holds the values returned from

the lexical analyzer and the actions. When a shift takes place, the external

variable yylval is copied onto the value stack. After the return from the user

code, the reduction is carried out. When the goto action is done, the external

System Software 10CS52

Dept . of CSE,SJBIT Page 130

variable yyval is copied onto the value stack. The pseudo-variables $1, $2, etc.,

refer to the value stack.

8.7. Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can

be structured in two or more different ways. For example, the grammar rule

expr : expr '-' expr

is a natural way of expressing the fact that one way of forming an arithmetic

expression is to put two other expressions together with a minus sign between

them. Unfortunately, this grammar rule does not completely specify the way that

all complex inputs should be structured. For example, if the input is

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or as

expr - (expr - expr)

(The first is called left association, the second right association).

Yacc detects such ambiguities when it is attempting to build the parser. It is

instructive to consider the problem that confronts the parser when it is given an

input such as

expr - expr - expr

When the parser has read the second expr, the input that it has seen:

expr - expr

matches the right side of the grammar rule above. The parser could reduce the

input by applying this rule; after applying the rule; the input is reduced to expr

(the left side of the rule). The parser would then read the final part of the input:

- expr

and again reduce. The effect of this is to take the left associative interpretation.

Alternatively, when the parser has seen

expr - expr

it could defer the immediate application of the rule, and continue reading the

System Software 10CS52

Dept . of CSE,SJBIT Page 131

input until it had seen

expr - expr - expr

It could then apply the rule to the rightmost three symbols, reducing them to expr

and leaving

expr - expr

Now the rule can be reduced once more; the effect is to take the right associative

interpretation. Thus, having read

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way of

deciding between them. This is called a shift / reduce conflict.

It may also happen that the parser has a choice of two legal reductions; this is

called a reduce / reduce conflict. Note that there are never any ``Shift/shift''

conflicts.

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a

parser. It does this by selecting one of the valid steps wherever it has a choice. A

rule describing which choice to make in a given situation is called a

disambiguating rule.

Yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar

rule (in the input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in

favor of shifts. Rule 2 gives the user rather crude control over the behavior of the

parser in this situation, but reduce/reduce conflicts should be avoided whenever

possible.

Yacc always reports the number of shift/reduce and reduce/reduce

conflicts resolved by Rule 1 and Rule 2.

As an example of the power of disambiguating rules, consider a fragment

from a programming language involving an ``if-then-else'' construction:

stat : IF '(' cond ')' stat

| IF '(' cond ')' stat ELSE stat

;

System Software 10CS52

Dept . of CSE,SJBIT Page 132

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing

conditional (logical) expressions, and stat is a nonterminal symbol describing

statements. The first rule will be called the simple-if rule, and the second the if-

else rule.

These two rules form an ambiguous construction, since input of the form

EXAMPLE:

IF (C1) IF (C2) S1 ELSE S2

can be structured according to these rules in two ways:

IF (C1) {

IF (C2) S1

} ELSE

S2

or

IF (C1) {

IF (C2) S1

ELSE S2

}

• The second interpretation is the one given in most programming languages

having this construct. Each ELSE is associated with the last preceding

``un-ELSE'd'' IF. In this example, consider the situation where the parser

has seen

IF (C1) IF (C2) S1

and is looking at the ELSE. It can immediately reduce by the simple-if rule to

get

IF (C1) stat

and then read the remaining input,

ELSE S2

and reduce

System Software 10CS52

Dept . of CSE,SJBIT Page 133

IF (C1) stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.

• On the other hand, the ELSE may be shifted, S2 read, and then the right

hand portion of

IF (C1) IF (C2) S1 ELSE S2

can be reduced by the if-else rule to get

IF (C1) stat

which can be reduced by the simple-if rule.

• Once again the parser can do two valid things - there is a shift/reduce

conflict. The application of disambiguating rule 1 tells the parser to shift

in this case, which leads to the desired grouping.

• This shift/reduce conflict arises only when there is a particular current

input symbol, ELSE, and particular inputs already seen, such as

IF (C1) IF (C2) S1

• In general, there may be many conflicts, and each one will be associated

with an input symbol and a set of previously read inputs. The

previously read inputs are characterized by the state of the parser.

stat : IF '(' cond ')' stat

• Once again, notice that the numbers following ``shift'' commands refer to

other states, while the numbers following ``reduce'' commands refer to

grammar rule numbers. In the y.output file, the rule numbers are

printed after those rules which can be reduced.

8.8. Precedence

There is one common situation where the rules given above for resolving

conflicts are not sufficient; this is in the parsing of arithmetic expressions. Most

of the commonly used constructions for arithmetic expressions can be naturally

described by the notion of precedence levels for operators, together with

information about left or right associatively. It turns out that ambiguous

grammars with appropriate disambiguating rules can be used to create parsers

that are faster and easier to write than parsers constructed from unambiguous

grammars.

System Software 10CS52

Dept . of CSE,SJBIT Page 134

• The basic notion is to write grammar rules of the form

expr : expr OP expr

and

expr : UNARY expr

for all binary and unary operators desired. This creates a very

ambiguous grammar, with many parsing conflicts. As disambiguating

rules, the user specifies the precedence, or binding strength, of all

the operators, and the associativity of the binary operators.

• This information is sufficient to allow Yacc to resolve the parsing

conflicts in accordance with these rules, and construct a parser that realizes

the desired precedences and associativities.

• The precedences and associativities are attached to tokens in the

declarations section. This is done by a series of lines beginning with a

Yacc keyword: %left, %right, or %nonassoc, followed by a list of

tokens.

• All of the tokens on the same line are assumed to have the same

precedence level and associativity; the lines are listed in order of

increasing precedence or binding strength. Thus,

%left '+' '-'

%left '*' '/'

• describes the precedence and associativity of the four arithmetic operators.

Plus and minus are left associative, and have lower precedence than star

and slash, which are also left associative.

• The keyword %right is used to describe right associative operators, and

the keyword %nonassoc is used to describe operators

%right '='

%left '+' '-'

• %left '*' '/'

• %%

• expr : expr '=' expr

o | expr '+' expr

o | expr '-' expr

o | expr '*' expr

o | expr '/' expr

o | NAME

System Software 10CS52

Dept . of CSE,SJBIT Page 135

might be used to structure the input

a = b = c*d - e - f*g

as follows

a = (b = (((c*d)-e) - (f*g)))

• When this mechanism is used, unary operators must, in general, be given

a precedence. Sometimes a unary operator and a binary operator have

the same symbolic representation, but different precedences.

o An example is unary and binary '-'; unary minus may be given the

same strength as multiplication, or even higher, while binary

minus has a lower strength than multiplication. The keyword,

%prec, changes the precedence level associated with a particular

grammar rule. %prec appears immediately after the body of the

grammar rule, before the action or closing semicolon, and is

followed by a token name or literal.

o It causes the precedence of the grammar rule to become that of the

following token name or literal. For example, to make unary

minus have the same precedence as multiplication the rules might

resemble:

%left '+' '-'

%left '*' '/'

%%

expr : expr '+' expr

| expr '-' expr

| expr '*' expr

| expr '/' expr

| '-' expr %prec '*'

| NAME

;

A token declared by %left, %right, and %nonassoc need not be, but may be,

declared by %token as well.

The precedence and associatively are used by Yacc to resolve parsing

conflicts; they give rise to disambiguating rules. Formally, the rules work as

follows:

System Software 10CS52

Dept . of CSE,SJBIT Page 136

. The precedences and associativities are recorded for those tokens and

literals that have them.

2. A precedence and associativity is associated with each grammar rule; it

is the precedence and associativity of the last token or literal in the

body of the rule. If the %prec construction is used, it overrides this

default. Some grammar rules may have no precedence and

associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce

conflict and either the input symbol or the grammar rule has no

precedence and associativity, then the two disambiguating rules

given at the beginning of the section are used, and the conflicts are

reported.

3. If there is a shift/reduce conflict, and both the grammar rule and the

input character have precedence and associativity associated with them,

then the conflict is resolved in favor of the action (shift or reduce)

associated with the higher precedence. If the precedences are the same,

then the associativity is used; left associative implies reduce, right

associative implies shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of

shift/reduce and reduce/reduce conflicts reported by Yacc. This means that

mistakes in the specification of precedences may disguise errors in the input

grammar; it is a good idea to be sparing with precedences, and use them in

an essentially ``cookbook'' fashion, until some experience has been gained. The

y.output file is very useful in deciding whether the parser is actually doing what

was intended.

8.9. Recursive rules:

The algorithm used by the Yacc parser encourages so called ``left recursive''

grammar rules: rules of the form

name : name rest_of_rule ;

These rules frequently arise when writing specifications of sequences and

lists:

list : item

| list ',' item

System Software 10CS52

Dept . of CSE,SJBIT Page 137

;

and

seq : item

| seq item

;

In each of these cases, the first rule will be reduced for the first item only, and

the second rule will be reduced for the second and all succeeding items.

With right recursive rules, such as

seq : item

| item seq

;

the parser would be a bit bigger, and the items would be seen, and reduced,

from right to left. More seriously, an internal stack in the parser would be in

danger of overflowing if a very long sequence were read. Thus, the user should

use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any

meaning, and if so, consider writing the sequence specification with an empty

rule:

seq : /* empty */

| seq item

;

Once again, the first rule would always be reduced exactly once, before the first

item was read, and then the second rule would be reduced once for each item

read

8.10. RUNNING BOTH LEXER AND PARSER:

The yacc program gets the tokens from the lex program. Hence a lex program

has be written to pass the tokens to the yacc. That means we have to follow

different procedure to get the executable file.

i. The lex program <lexfile.l> is fist compiled using lex compiler to get

lex.yy.c.

ii. The yacc program <yaccfile.y> is compiled using yacc compiler to get

y.tab.c.

iii. Using c compiler b+oth the lex and yacc intermediate files are

compiled with the lex library function. cc y.tab.c lex.yy.c –ll.

iv. If necessary out file name can be included during compiling with –o

option.

System Software 10CS52

Dept . of CSE,SJBIT Page 138

8.11. Examples

1. Write a Yacc program to test validity of a simple expression with +, - , /,

and *.

/* Lex program that passes tokens */

%{

#include "y.tab.h"

extern int yyparse();

%}

%%

[0-9]+ { return NUM;}

[a-zA-Z_][a-zA-Z_0-9]* { return IDENTIFIER;}

[+-] {return ADDORSUB;}

[*/] {return PROORDIV;}

[)(] {return yytext[0];}

[\n] {return '\n';}

%%

int main()

{

yyparse();

}

/* Yacc program to check for valid expression */

%{

#include<stdlib.h>

extern int yyerror(char * s);

extern int yylex();

%}

%token NUM

%token ADDORSUB

%token PROORDIV

%token IDENTIFIER

%%

input :

| input line

;

line : '\n'

| exp '\n' { printf("valid"); }

| error '\n' { yyerrok; }

;

exp : exp ADDORSUB term

| term

;

term : term PROORDIV factor

System Software 10CS52

Dept . of CSE,SJBIT Page 139

| factor

;

factor : NUM

| IDENTIFIER

| '(' exp ')'

;

%%

int yyerror(char *s)

{

printf("%s","INVALID\n");

}

/* yacc program that gets token from the c porogram */

%{

#include <stdio.h>

#include <ctype.h>

%}

%token NUMBER LETTER

%left '+' '-'

%left '*' '/'

%%

line:line expr '\n' {printf("\nVALID\n");}

| line '\n'

|

|error '\n' { yyerror ("\n INVALID"); yyerrok;}

;

expr:expr '+' expr

|expr '-' expr

|expr '*'expr

|expr '/' expr

| NUMBER

| LETTER

;

%%

main()

{

yyparse();

}

yylex()

System Software 10CS52

Dept . of CSE,SJBIT Page 140

{

char c; while((c=getchar())=='

'); if(isdigit(c)) return

NUMBER; if(isalpha(c))

return LETTER; return c;

}

yyerror(char *s)

{

printf("%s",s);

}

2. Write a Yacc program to recognize validity of a nested ‘IF’ control

statement and display levels of nesting in the nested if.

/* Lex program to pass tokens */

%{

#include “y.tab.h”

%}

digit [0-9]

num {digit} + (“.” {digit}+)?

binopr [+-/*%^=> <&|”= =”| “!=” | “>=” | “<=”

unopr [~!]

char [a-zA-Z_]

id {char}({digit} | {char})*

space [\t]

%%

{space} ;

{num} return num;

{ binopr } return binopr;

{ unopr } return unopr;

{ id} return id

“if” return if

. return yytext[0];

%%

NUMBER {DIGIT}+

/* Yacc program to check for the valid expression */

%{

#include<stdio.h>

System Software 10CS52

Dept . of CSE,SJBIT Page 141

int cnt;

%}

%token binopr

%token unop

%token num

%token id

%token if

%%

foo: if_stat { printf(“valid: count = %d\n”, cnt); cnt = 0;

exit(0);

}

| error { printf(“Invalid \n”); }

if_stat: token_if „(„ cond „)‟ comp_stat {cnt++;}

cond: expr

;

expr: sim_exp

| „(„ expr „)‟

| expr binop factor

| unop factor

;

factor: sim_exp

| „(„ expr „)‟

;

sim_exp: num

| id

;

sim_stat: expr „;‟

| if

;

stat_list: sim_stat

| stat_list sim_stat

;

comp_stat: sim_stat

| „{„ stat_list „}‟

;

%%

main()

{

yyparse();

}

yyerror(char *s)

{

printf(“%s\n”, s);

exit(0);

}

System Software 10CS52

Dept . of CSE,SJBIT Page 142

3. Write a Yacc program to recognize a valid arithmetic expression that uses

+, - , / , *.

%{

#include<stdio.h>

#include <type.h>

%}

% token num

% left '+' '-'

% left '*' '/'

%%

st : st expn '\n' {printf ("valid \n"); }

|

| st '\n'

| error '\n' { yyerror ("Invalid \n"); }

;

%%

void main()

{

yyparse (); return 0 ;

}

yylex()

{

char c;

while (c = getch ()) == ' ')

if (is digit (c))

return num;

return c;

}

yyerror (char *s)

{

printf("%s", s);

}

4. Write a yacc program to recognize an valid variable which starts with

letter followed by a digit. The letter should be in lowercase only.

/* Lex program to send tokens to the yacc program */

%{

#include "y.tab.h"

%}

%%

[0-9] return digit;

System Software 10CS52

Dept . of CSE,SJBIT Page 143

[a-z] return letter;

[\n] return yytext[0];

. return 0;

%%

/* Yacc program to validate the given variable */

%{

#include<type.h>

%}

% token digit letter ;

%%

ident : expn '\n' { printf ("valid\n"); exit (0); }

;

expn : letter

| expn letter

| expn digit

| error { yyerror ("invalid \n"); exit (0); }

;

%%

main()

{

yyparse();

}

yyerror (char *s)

{

printf("%s", s);

}

/* Yacc program which has c program to pass tokens */

%{

#include <stdio.h>

#include <ctype.h>

%}

%token LETTER DIGIT

%%

st:st LETTER DIGIT '\n' {printf("\nVALID");}

| st '\n'

|

| error '\n' {yyerror("\nINVALID");yyerrok;}

;

%%

main()

{

yyparse();

System Software 10CS52

Dept . of CSE,SJBIT Page 144

}

yylex()

{

char c; while((c=getchar())=='

'); if(islower(c)) return

LETTER; if(isdigit(c)) return

DIGIT; return c;

}

yyerror(char *s)

{

printf("%s",s);

}

5.Write a yacc program to evaluate an expression (simple calculator

program).

/* Lex program to send tokens to the Yacc program */

%{

#include" y.tab.h"

expern int yylval;

%}

%%

[0-9] digit

char[_a-zA-Z]

id {char} ({ char } | {digit })*

%%

{digit}+ {yylval = atoi (yytext);

return num;

}

{id} return name

[\t] ;

\n return 0;

. return yytext [0];

%%

/* Yacc Program to work as a calculator */

%{

#include<stdio.h>

#include <string.h>

#include <stdlib.h>

%}

% token num name

% left '+' '-'

% left '*' '/'

System Software 10CS52

Dept . of CSE,SJBIT Page 145

% left unaryminus

%%

st : name '=' expn

| expn { printf ("%d\n" $1); }

expn : num { $$ = $1 ; }

| expn '+' num { $$ = $1 + $3; }

| expn '-' num { $$ = $1 - $3; }

| expn '*' num { $$ = $1 * $3; }

| expn '/' num { if (num == 0)

{ printf ("div by zero \n");

exit (0);

}

else

{ $$ = $1 / $3; }

| '(' expn ')' { $$ = $2; }

;

%%

main()

{

yyparse();

}

yyerror (char *s)

{

printf("%s", s);

}

Write a yacc program to recognize the grammar { a
n
b for n >= 0}.

/* Lex program to pass tokens to yacc program */

%{

#include "y.tab.h"

%}

[a] { return a ; printf("returning A to yacc \n"); }

[b] return b

[\n] return yytex[0];

. return error;

%%

/* Yacc program to check the given expression */

%{

System Software 10CS52

Dept . of CSE,SJBIT Page 146

#include<stdio.h>

%}

% token a b error

%%

input : line

| error

;

line : expn '\n' { printf(" valid new line char \n"); }

;

expn : aa expn bb

| aa

;

aa : aa a

| a

;

bb : bb b

| b

;

error : error { yyerror (" ") ; }

%%

main()

{

yyparse();

}

yyerror (char *s)

{

printf("%s", s);

}

/* Yacc to evaluate the expression and has c program for tokens */

%{

/* 6b.y {A^NB N >=0} */

#include <stdio.h>

%}

%token A B

%%

st:st reca endb '\n' {printf("String belongs to grammar\n");}

| st endb '\n' {printf("String belongs to grammar\n");}

| st '\n'

| error '\n' {yyerror ("\nDoes not belong to grammar\n");yyerrok;}

;

reca: reca enda | enda;

System Software 10CS52

Dept . of CSE,SJBIT Page 147

enda:A;

endb:B;

%%

main()

{

yyparse();

}

yylex()

{

char c;

while((c=getchar())==' ');

if(c=='a')

return A;

if(c=='b')

return B;

return c;

}

yyerror(char *s)

{

fprintf(stdout,"%s",s);

}

7. Write a program to recognize the grammar { a

n
b

n
| n >= 0 }

/* Lex program to send tokens to yacc program */

%{

#include "y.tab.h"

%}

[a] {return A ; printf("returning A to yacc \n"); }

[b] return B

[\n] return yytex[0];

. return error;

%%

/* yacc program that evaluates the expression */

%{

#include<stdio.h>

%}

% token a b error

%%

input : line

| error

;

System Software 10CS52

Dept . of CSE,SJBIT Page 148

line : expn '\n' { printf(" valid new line char \n"); }

;

expn : aa expn bb

|

;

error : error { yyerror (" ") ; }

%%

main()

{

yyparse();

}

yyerror (char *s)

{

printf("%s", s);

}

/* Yacc program which has its own c program to send tokens */

%{

/* 7b.y {A^NB^N N >=0} */

#include <stdio.h>

%}

%token A B

%%

st:st reca endb '\n' {printf("String belongs to grammar\n");}

| st '\n' {printf("N value is 0,belongs to grammar\n");}

|

| error '\n'

{yyerror ("\nDoes not belong to grammar\n");yyerrok;}

reca: enda reca endb | enda;

enda:A;

endb:B;

%%

main()

{

yyparse();

}

yylex()

{

char c;

while((c=getchar())==' ');

if(c=='a')

return A;

System Software 10CS52

Dept . of CSE,SJBIT Page 149

if(c=='b')

return B;

return c;

}

yyerror(char *s)

{

fprintf(stdout,"%s",s);

}

8. Write a Yacc program t identify a valid IF statement or IF-THEN-ELSE

statement.

/* Lex program to send tokens to yacc program */

%{

#include "y.tab.h"

%}

CHAR [a-zA-Z0-9]

%x CONDSTART

%%

<*>[] ;

<*>[\t\n]+ ;

<*><<EOF>> return 0;

if return(IF);

else return(ELSE);

then return(THEN);

\({BEGIN(CONDSTART);return('(');}

<CONDSTART>{CHAR}+ return COND;

<CONDSTART>\) {BEGIN(INITIAL);return(')');}

{CHAR}+ return(STAT) ;

%%

/* Yacc program to check for If and IF Then Else statement */

%{

#include<stdio.h>

%}

%token IF COND THEN STAT ELSE

%%

System Software 10CS52

Dept . of CSE,SJBIT Page 150

Stat:IF '(' COND ')' THEN STAT {printf("\n VALId Statement");}

| IF '(' COND ')' THEN STAT ELSE STAT {printf("\n VALID Statement");}

|

;

%%

main()

{

printf("\n enter statement ");

yyparse();

}

yyerror (char *s)

{

printf("%s",s);

}

/* Yacc program that has c program to send tokens */

%{

#include <stdio.h>

#include <ctype.h>

%}

%token if simple

% noassoc reduce

% noassoc else

%%

start : start st „\n‟

|

;

st : simple

| if_st

;

if_st : if st %prec reduce { printf (“simple\n”); }

| if st else st {printf (“if_else \n”); }

;

%%

int yylex()

{

int c;

c = getchar();

switch (c)

System Software 10CS52

Dept . of CSE,SJBIT Page 151

{

case „i‟ : return if;

case „s‟ : return simple;

case „e‟ : return else;

default : return c;

}

}

main ()

{

yy parse();

}

yyerror (char *s)

{

printf("%s", s);

}

