

Department of Electronics & communication Engineering

BMS College of Engineering, Bangalore

Scheme and Syllabus: III and IV Semester Academic Year: 2015- 2016

AUTONOMOUS COLLEGE UNDER VTU

BMS COLLEGE OF ENGINEERING, BENGALURU

Autonomous College under VTU

BMS COLLEGE OF ENGINEERING, BENGALURU					
VISION		MISSION			
PROMOTING PROSPERITY OF	ACCOMPL	ISH EXCELLENCE IN THE			
MANKIND BY AUGMENTING HUMAN	FIELD O	TECHNICAL EDUCATION			
RESOURCE CAPITAL THROUGH	THROUGH	EDUCATION, RESEARCH			
QUALITY TECHNICAL EDUCATION &	AND SERV	ICE NEEDS OF SOCIETY			
TRAINING					

Department of Electronics and communication Engineering

Scheme and Syllabus: III and IV Semester

Academic Year: 2015- 2016

BMS COLLEGE OF ENGINEERING BENGALURU

AUTONOMOUS COLLEGE UNDER VTU

Table of Contents

Content	Page No.
Abbreviations	
Academic Rules and Regulations	
Vision-Mission of the department	
Program Educational Objectives	
Program Outcomes	
Course Code Nomenclature	
Scheme of Instructions for III and IV semester	
Syllabus for Advanced Engineering Mathematics	
Syllabus for Linear Circuit Analysis	
Syllabus for Analog Microelectronics	
Syllabus for Digital Electronics	
Syllabus for Fields and Waves	
Syllabus for Simulation Laboratory-I	
Syllabus for Discrete Mathematics and Probability	
Syllabus for Verilog HDL Programming	
Syllabus for Analog Integrated Circuits	
Syllabus for Microcontrollers	
Syllabus for Signals and Systems	
Syllabus for Simulation Laboratory-II	

AUTONOMOUS COLLEGE UNDER VTU

AY	Academic Year	
AAT	Alternate Assessment Tools	
BOE	Board of Examiners	
BOS	Board of Studies	
CBCS	Choice Based Credit System	
CGPA	Cumulative Grade Point Average	
CIE	Continuous Internal Evaluation	
СО	Course Outcome	
DC	Department Core Course	
GC	Group Core Course	
HSS	Humanities and Social Science Course	
IC	Institute Core Course	
IE	Institute Elective Course	
LTPS	Lecture-Tutorial-Practical-Self-Study	
NFTE	Not Fit for Technical Education	
РСС	Professional Core Course	
PEO	Program Educational Objective	
РО	Program Outcome	
SEE	Semester End Examination	
SGPA	Semester Grade Point Average	
ST	Studio	
EC	Electronics and Communication Engineering	

AUTONOMOUS COLLEGE UNDER VTU

ACADEMIC REGULATIONS

(Amended in June 2015; Applicable for all Autonomous batches)

1. SHORT TITLE AND COMMENCEMENT

- 1.1 The regulations listed under this head are common for all degree level undergraduate programmes (both B.E. and B.Arch.) offered.
- 1.2 The regulations are subject to amendments as may be made by the Academic Council of the college from time to time, keeping the recommendations of the Board of Studies in view. Any or all such amendments will be effective from such date and to such batches of candidates including those already undergoing the programme, as may be decided by the Academic Council.

2. DEFINITIONS

- (a) "University" means Visvesvaraya Technological University (VTU)
- (b) "College" means BMS College of Engineering (BMSCE).
- (c) "Commission" means University Grants Commission (UGC)
- (d) "Council" means All India Council for Technical Education (AICTE)
- (e) "COA" means Council of Architecture
- (f) "Statute" means VTU Autonomous College Statute, 2006
- (g) "Academic Autonomy" means freedom granted by the University to the College in all aspects of conducting its academic programmes for promoting academic excellence
- (h) "Autonomous College" means a college notified as an autonomous college as per the VTU Autonomous College Statute, 2006
- (i) "Regular Students" means students who are admitted to B.E. or B.Arch. Programmes after PUC (10+2) or equivalent
- (j) "Lateral Entry" means students who are admitted to the third semester Engineering (second year) programme after completing Diploma Course in the respective discipline
- (k) "Branch" means specialization in a programme like B.E. degree programme in Civil Engineering or B.E. degree programme in Computer Science and Engineering or B.Arch. degree programme in Architecture etc.
- (I) "Course" means a subject either theory or practical identified by its title and code number. For example, Engineering Mathematics-I is a course offered in the first semester & its code is 14MA1ICMAT.

AUTONOMOUS COLLEGE UNDER VTU

3. NOMENCLATURE OF ACADEMIC PROGRAMMES

- 3.1 The nomenclature and the corresponding abbreviations shown below, shall continue to be used for the degree programmes under the University, as required by the Commission, Council and COA:
 - (i) Bachelor of Engineering (B.E.)
 - (ii) Bachelor of Architecture (B. Arch.)

Besides, the branch / programme of specialization, if any, shall be indicated in brackets after the abbreviation.

For example, engineering degree in Mechanical Engineering programme is abbreviated as B.E. (Mechanical Engineering).

3.2 Undergraduate degree programmes offered by the College:

SNo	Title of the UG programme	Abbreviation
1	Civil Engineering	CV
2	Mechanical Engineering	ME
3	Electrical and Electronics Engineering	EE
4	Electronics and Communication Engineering	EC
5	Industrial Engineering and Management	IM
6	Computer Science and Engineering	CS
7	Telecommunication Engineering	TE
8	Information Science and Engineering	IS
9	Electronics & Instrumentation Engineering*	EI
10	Medical Electronics	ML
11	Chemical Engineering	CH
12	Biotechnology	BT
13	Architecture	AT

**Earlier titled and offered as Instrumentation Technology*

4. DURATION OF THE ACADEMIC PROGRAMMES

As a flexible credit system is followed, it is to be noted that the programme duration shall be dictated by the period in which a student earns the prescribed credits for the award of degree. Hence, it is possible for an outstanding student to qualify for the award of degree in a shorter time than that of the duration specified for the concerned programme.

4.1. Normal Duration

- 4.1.1 The duration of an academic programme shall be four years for B.E. programme
- 4.1.2 The duration of an academic programme shall be three years for B.E. lateral entry programme
- 4.1.3 The duration of an academic programme shall be five years for B.Arch. Programme

AUTONOMOUS COLLEGE UNDER VTU

4.2. Maximum Duration

- 4.2.1 The maximum period which a student can take to complete a full time academic programme shall be twice the normal duration of the programme, i.e., eight years for B.E., ten years for B.Arch. and six years for lateral entry (diploma students).
- 4.2.2 The maximum period for a programme shall also be dictated by the fact that a student has to demonstrate the prescribed minimum academic performance by registering for the prescribed minimum number of credits in every semester, for continuing with the programme. This period can be equal to or lesser than the maximum period indicated as in 4.2.1.

4.3 Admission of Students

- 4.3.1 The admission of students to various UG degree programmes listed under Section 3.1 & 3.2, shall be made by following the State Government and/or University Policies/Practices.
- 4.3.2 The candidates with a diploma or any other equivalent qualification approved by the Council and the Commission are eligible to join the degree programmes at the beginning of the second year (third semester), as per the prevailing practice in the University (Lateral Entry).
- 4.3.3 The students can migrate from one branch or specialization to another branch or specialization in the same College or at another Autonomous/ Affiliated College under the University at the beginning of the second year (third semester) following the AICTE/COA/VTU/State Government norms in vogue and as amended from time to time.
- 4.3.4 The eligibility criteria for admission of students to UG degree programmes shall be the same as those prescribed by the University from time to time.
- 4.3.5 The eligibility criteria for admission of students from a non-Autonomous College to an Autonomous College, from one Autonomous College to another Autonomous College and from University Scheme at an Autonomous College to its Autonomous scheme, shall be as fixed by the Academic Council. The eligibility criteria for admission of students from other Universities to an Autonomous College shall be fixed by the Academic Council by getting the individual cases examined through the concerned Board(s) of Studies, after which, the names of eligible candidates (qualifying for admission as per norms laid down by the University from time to time) are recommended to the University for its approval.

4.4. Semester Scheme

The semester scheme is being adopted since it provides several benefits to technical education programmes in contrast to the annual scheme of learning.

AUTONOMOUS COLLEGE UNDER VTU

4.5 Academic Calendar

An academic year consists of two regular semesters and a fast track semester; the details of which are shown in Table 1.

SNo	Activity	Des	cription	
1	Number of semesters in an academic year	Two regular semesters (Odd & Even) and a Fast Track Semester		
2	Duration of Regular Semester	19 weeks		
3	Duration of Fast Track Semester	08 weeks		
4	Academic activities (duration in weeks)	Regular Semester(s)	Fast Track Semester	
	Course Registration	0.5	0.1	
	Course Work	15.5	7.0	
	Examination preparation	1.0	0.2	
	Examination (SEE)	1.0	0.2	
	Declaration of Results	1.0	0.5	
		Semester End Exa have equal weigh performance in Cour other activities	amination (SEE), bot tage in the student' rse/Laboratory Work and	
6	Other Items	academic year shal	of working days in an I be ~ 180	
		Academic schedule College shall be st the concerned	es prescribed by the rictly adhered to by all	
		Students failing in register for the sa and shall secure (each course(s). until a pass gra said course(s).	n any Course(s) shall me again (re-register) CIE and SEE afresh in This shall continue de is obtained in the	
7	Fast Track Semester	Fast Track Semeste conducted for the b clear their failed cou	r (<i>refer Regulation-12.8</i> enefit of the students to rses, if any.	

5. **PROCTOR SYSTEM**

5.1 Introduction

The faculty advisory system (Proctoring system) is to help the students to complete their studies successfully & comfortably. A faculty is called as proctor and the student as proctee

AUTONOMOUS COLLEGE UNDER VTU

- 5.2 Objective(s):
 - 5.2.1 To advice the students in their academic requirements
 - 5.2.2 To guide/mentor the students appropriately from time to time
 - 5.2.3 To provide supportive care to the students from time to time
- 5.3. Role & Responsibilities:
- 5.3.1 The proctor shall pay complete attention in respect of the student who fails to satisfy minimum attendance (85%) in all courses & internal marks (50%) in each of the laboratories, drawings and workshops etc as per the regulations.
- 5.3.2 The proctor shall get their copy of proctor diary updated and ensure that student proctor diary is also completed in all respects from time to time.
- 5.3.3 The proctor shall arrange for a meeting with the students at least twice in a month and submit the proceedings to the concerned HOD.
- 5.3.4 The proctor shall invite the parent for discussion at least once in every semester to update the academic progress of their ward.
- 5.3.5 The Proctor should arrange to send the progress reports to the parent furnishing the details of attendance, class marks, examination results, etc. These reports shall be sent twice in a semester (preferably after the conduction of Test1 & Test2) to the parents/guardians of all the concerned students.
- 5.3.6 Proctor shall ensure that the students should not partake in any sort of ragging activity in & outside of the campus/hostel and they shall not indulge in any anti-social activities and acts unbecoming of a student.

5.4 **Expected Outcome:**

Reduce the failure rate, motivate the students & improve the overall performance and quality of the student.

6. CREDIT SYSTEM

6.1 General

6.1.1 The institution follows a Choice Based Credit System (CBCS) from the academic year 2008-09 onwards. The students have an option of choosing from a wide range of electives (department, cluster and institutional) and complete the programme at their own pace. Value added courses are also offered as a part of extended learning in inter-disciplinary and multi-disciplinary domains. Thus the CBCS facilities continuous learning and assessment.

Credit System has many advantages over the conventional system of organizing academic programmes; in particular the CBCS for the various programmes will provide a great opportunity to the students in their preparation to meet the challenging opportunities ahead.

6.1.2 In the Credit System, the course work of students is unitized and one credit is assigned to each unit after a student completes the teaching-learning process as prescribed for that unit (credit) and is successful in its assessment.

AUTONOMOUS COLLEGE UNDER VTU

6.1.3 Credit Definition

One unit of course work is assigned one credit in the regular semester (odd/even) for:

- a) Theory Course conducted for one hour/week/semester
- b) Tutorials and Practical classes (Laboratory Courses) conducted for Two hours/Week/Semester
- c) Self-Study in a Course, for four hours/week/semester

However, in case of fast track semester, the Course load is multiplied by two. These guidelines form the basis to fix semester course load & weekly contact hours in the regular/fast track semesters.

Note: Other student activities like practical training (except in B.Arch. Programme), study tours, industrial visits, guest lectures shall not carry any credits.

6.1.4 **Course Registration**

A student shall register for the courses to earn credits for meeting the requirements of the degree programme. Such courses together with their grades and the credits earned will be included in the Grade Card issued by the College at the end of each semester and it forms the basis for determining the student's academic performance in that semester.

6.1.5 Audit/Value Added Courses

In addition, a student can register for courses such as value added courses for audit only with a view to supplement his/her knowledge and/or skills. But, these shall not be taken into account in determining the students' academic performance in the semester.

6.2 Credit Structure

6.2.1 A typical Credit Structure for course work (hrs/wk/sem) in B.E. Programme is shown in Table 2:

Course	Credits			Hours				Total Contact Hours			
	L	Т	Ρ	S	Tot	L	Т	P	S	Tot	
ABC	3	1	0	1	5	3	2	0	4	9	5
PQR	2	0	1	1	4	2	0	2	4	8	4
XYZ	3	1	0	2	6	3	2	0	8	13	5

Table- 2

7 Course Load in regular semester(s):

- 7.1 The course load is fixed at 25 credits per semester from the academic year 2015-16.
- 7.2 In the first two semesters, a prescribed course load per semester is mandated. Withdrawal/dropping of courses in the first year (first two semesters) is not allowed.
- 7.3 In higher semesters, the applicable course load per semester may vary from a minimum of 20 credits to a maximum of 30 credits. The variation in credits depends on CGPA in the previous semesters. This flexibility enables students (from 3rd semester onwards) to cope-up with the course work and helps in improving their academic performance and optimizes the learning outcome.

AUTONOMOUS COLLEGE UNDER VTU

- 7.4 As mentioned in the Rule 7.3, the students can register for more number of credits i.e. > 25 and \leq 30 (from 3rd semester onwards). This provision is provided based on the CGPA, proctors advice and is subject to satisfying the following conditions:
 - a) The student has secured a CGPA ≥ 8.5
 - b) The student doesn't have more than two backlogs from the previous semesters
 - c) The student shall ensure that there is no overlapping in time-table for the period and obtain concurrence from the Proctor.
 - d) The student shall submit a copy of documentary evidence in respect of the above (a,b,c) while seeking approval from the concerned HOD.
- 7.6 The total number of credits required to be earned by a student to qualify for the award of the degree in respect of Engineering (both regular and lateral entry) & Architecture is as shown in the following table:

Programme	Norma	al Duration	Total number of credits to be earned	
	Years	Semester		
B.E.	4	8	200	
B.E. (Lateral Entry)	3	6	150	
B.Arch.	5	10	250	

8. Course load in Fast Track Semester:

The Fast Track semester is provided for helping students who have failed in their examinations. The Fast Track semester is provided to help the student to avoid losing an academic year. The department/college may offer some courses based on the availability of resources in hand.

It is the discretion of the department/College whether to offer the fast track semester or not. Fast Track semester is a special semester and the student cannot demand it as a matter of right.

The student has to pay a special fee prescribed by the College to register for a course in the Fast Track semester.

8.1 Course Load:

A student is permitted to register for a maximum of **16 credits and 40 contact hours** or less per week. All courses are not offered. A student has to opt from those courses offered by the department in a given Fast Track Semester.

8.1.1. Course load for Architecture Students

With regard to B.Arch. programme, during the Fast Track semester, a student is permitted to register for one Architectural Design course (I to VII semester) only and shall not be permitted to register for any other course. However, in case students don't register for Architectural Design course, they can register for other courses subject to a maximum of 16 credits and 40 contact hours per week.

Note: The "Architectural Design Project" course will not to be offered during Fast Track Semester.

AUTONOMOUS COLLEGE UNDER VTU

9 Curriculum Framework

- **9.1** Contact Hours: The maximum number of contact hours for the students is to be set at 35 hrs/week. This will be of help to students in getting enough time and opportunity to develop their creative talents and abilities, benefitting from Add-On courses and also those taken for audit, in addition to the ones prescribed for credit under a Programme and preparing them for challenging and exciting careers ahead.
- **9.2** Curriculum framework is important in setting the right direction for a degree programme, as it takes into account the type and quantum of knowledge necessary to be acquired by a student to qualify for award of a particular degree in his/her chosen branch or subject area.
- **9.3** Besides, this also helps in assigning the credits for each course, sequencing the courses semester-wise and finally arriving at the total number of courses to be studied and the total number of credits to be earned by a student to fulfill the requirements for a particular conferment.

9.4 B.E. Degree Programme

Table-4 shows a typical Curriculum framework for B.E. degree programme:

SNo	Subject Area	Average No. of Credits
1	Basic Science Core courses	30
2	Engineering Science	30
3	Humanities & Social Science courses	10
4	Professional Core courses	80
5	Professional Elective courses	30
6	Major Project / Seminar, etc.	20
	Total	200

Table-4

9.5 B.Arch. Degree Programme

Table-5 shows a typical Curriculum framework for B.Arch. degree programme:

Table	9-5
-------	-----

SNo	Subject Area	Average No.
		of Credits
1	Humanities and Social Science courses	04
2	Professional Core courses	176
3	Professional Elective courses	04
4	Departmental/Programme Major project	18
5	Professional Training	48
	Total	250

10 Mandatory Courses for B.E. programme

The UG degree programmes also require the inclusion of certain courses like proficiency in a language, Constitution of India, bridge courses and additional courses suggested by respective BOS for the completion of programme as mandatory courses. Mandatory courses will not carry any credits; but, a pass in each such course after attaining required CIE or SEE requirements during the programme shall be a necessary requirement for the student to qualify for the award of Degree.

AUTONOMOUS COLLEGE UNDER VTU

10.1 Mandatory Courses for the students admitted under lateral entry

- 10.1.1 The student shall compulsorily pass two bridge courses in Mathematics (one in 3rd and one in 4th semester);
- 10.1.2 The student must clear the bridge courses before advancing to the 7th semester of the programme.
- 10.1.3 The student shall pass the following non-credit mandatory/HSS courses for the award of the degree.

Table-6: Mandatory and HSS Courses for lateral entry

Mandatory Courses	HSS Courses
Functional English	Constitution of India and Professional Ethics
Kannada Language	Environmental Studies
	Personality Development and Communication

10.2 Mandatory Courses for B. Arch. programme

The B.Arch. programme requires the inclusion of courses like Kannada language, Study tour/vacation assignment and Constitution Law suggested by respective BOS for the completion of B.Arch. programme as mandatory courses. These courses will not carry any credits; but, a pass in each such course after attaining required CIE or SEE requirements during the programme shall be a necessary requirement for the student to qualify for the award of Degree.

11 ASSESSMENT

The College has effective examination and assessment system for each activity.

11.1 Achievement Testing

- 11.1.1 The assessment of student's performance during and/or at the conclusion of a programme has to be done using examinations. In general, an examination may have different objectives, like achievement testing, prediction testing, endurance testing, testing of creativity and testing for ranking.
- 11.1.2 Typically achievement testing is done in two parts as follows:
 - a) Sessional: Involving Continuous Internal Evaluation (CIE), to be conducted by the subject teacher all through the semester; and, to include mid-term tests, weekly/fortnightly class tests, homework assignments, problem solving, group discussions, quiz, seminar, mini- project and other means.
 - b) Terminal: Covering Semester End Examination (SEE), to be conducted by the subject teacher jointly with an external examiner at the end of a semester, on dates to be fixed at the College level; and to include a written examination for theory courses and practical/design examination with built-in oral part for laboratory/design courses.
 - c) Both CIE and SEE have equal (50:50) weightage. Student's performance in a course shall be judged by taking into account the results of CIE and SEE individually and also together.

AUTONOMOUS COLLEGE UNDER VTU

11.2 Question Papers

- 11.2.1 **Achievement Testing:** For an effective achievement testing of the students in a course, a good question paper needs to be used as the principle tool. This makes it necessary for the question papers used at CIE and SEE to:
 - Cover all sections of the course syllabus uniformly;
 - Be unambiguous and free from any defects/errors;
 - Emphasize knowledge testing, problem solving & quantitative methods;
 - Contain adequate data / other information on the problems assigned;
 - Have clear and complete instructions to the candidates.
- 11.2.2 **Question Paper Planning:** Question Paper to cover the entire syllabus, with a provision for the students to answer questions from the full syllabus. As students need to be given some choice in the questions included in the Paper, it is preferred for the Question Papers at SEE, in particular, to have built in choice. This factor shall be taken note of by the Board of Examiners (BOE), while planning for the Question Papers.
- 11.2.3 Besides, it is also necessary for the course syllabit to be well drafted, be defect-free and be properly unitized (or modularized) to enable the setting of good question papers covering the whole syllabus. These aspects have to be taken into account, in particular, by the Board of Studies (BOS).
- 11.2.4 Typical Question Paper: The questions to be included in the Question Papers at CIE and SEE can be of two types as follows and the subject teachers as well as the external examiners shall have to be well trained to set them:
 - (i) Multiple Choice questions, having each question to be answered by tick marking the correct answer from the choices (commonly four) given against it; such a question paper to be useful in the testing of knowledge, skills, comprehension, application, analysis, synthesis, evaluation and understanding of the students; however, Question Papers for CIE and SEE to include no more than 15-20% of the questions of this type.
 - (ii) Comprehensive questions that have to be answered in detail. Such a question paper to be useful in the testing of overall achievement and maturity of the students in a subject, through long questions relating to theoretical / practical knowledge, derivations, problem solving, application and quantitative evaluation.

11.3 Examinations/Assessment

11.3.1 **Continuous Internal Evaluation (CIE):** The CIE shall be conducted exclusively by the faculty handling the Course. The Course teacher/instructor to spell out the components (test, quiz, assignment etc.) of CIE and its assessment (type, pattern, rubrics etc.) to students well in advance, maintain transparency in its operation, announce the evaluation results in time; also the faculty is expected to solve questions from the test papers during the class/tutorials for the benefit of students.

AUTONOMOUS COLLEGE UNDER VTU

11.3.2 **Types of Courses:**

There are three types of courses – Regular/normal, integrated and Comprehensive

- 1. Regular/normal Courses are those courses which have either a theory or a practical component
- 2. Integrated Courses are those which have both theory and practical components
- 3. Comprehensive Courses are those courses which have all the three components namely theory, practical and self-study

11.3.3 Alternative Assessment:

The faculty members have been provided with freedom to use innovative methods while delivering the course and design own method of internal evaluation (CIE) i.e., assessing the outcomes which are indicators of students learning. This is known as application of **Alternative Assessment Tool (AAT).** The AATs enhance autonomy of individual faculty and enables creation of innovative pedagogical practices. If properly applied, the AATs convert the classroom into an effective learning space. The various AATs are seminar, assignments, term paper, open ended experiments, mini-projects, two minute videos, MOOCs etc.

The AATs have been given a maximum weightage of 40% (approved in the 9^{th} ACM).

It is however mandated for a faculty to obtain prior permission from the concerned HOD for implementing AAT; and mandated to announce the same in the respective class before the commencement of a course.

11.3.4 CIE assessment patterns for various courses with 20% weightage for AAT.

11.3.4.1 Assessment pattern for Regular/Normal courses:

The weightages of various components of CIE for **regular/normal courses** considering weightage of **20% to Quiz/AAT** i.e. 10 out of 50 marks are shown in table-7.

	_				
Component	Test-1	Test-2	Quiz-1 or	Quiz-2 or	Total
			AAT	AAT	Marks
Max. Marks	40	40	10	10	100
Reduced-CIE	20	20	5	5	50

Table-7

11.3.4.2 Assessment pattern for Integrated Courses:

The weightages of various components of CIE for integrated courses considering weightage of **20% to Quiz/AAT** i.e. 10 out of 50 marks are shown in table-8.

Table 0

Component	Theory (50%)			Prac	/o)	Total			
	Test-1	Test-2	Quiz/	Records&	Lab	Viva-	Marks		
			AAT	Performance	Test	voce/AAT			
Max. Marks	20	20	10	20	20	10	100		
Reduced-CIE	10	10	05	10	10	5	50		

AUTONOMOUS COLLEGE UNDER VTU

11.3.4.3 Assessment pattern for Comprehensive Courses:

The weightages of various components of CIE for comprehensive courses considering weightage of **20% to Quiz/AAT** i.e. 10 out of 50 marks are shown in table-9.

Component	Theory (50%)		Practical (30)%)	Self-Study	Total	
	Test-1	Test-2	Quiz	Lab Lab Performance/ Test Record		(20%) /AAT	Marks
Maximum Marks	20	20	10	20	10	20	100
Reduced CIE marks	10	10	5	10	5	10	50

Table-9

11.3.5 CIE assessment pattern using AAT with more than 20% weightage, but limited to, 40%.

A faculty who wishes to design AAT with more than 20% weightage, shall create a new pattern for assessment indicating weightages for all the three components. The assessment pattern shown above need not be used. Hence, it is mandated that a faculty shall submit a detailed assessment pattern and obtain prior approval (preferably one week before the commencement of classes), from the concerned HOD/BOS Chairperson.

11.3.6 **The CIE for certain courses in B.Arch.** can also contain assessment through Reviews/Assignments/Portfolios submission that will be predefined by the course coordinator.

Note: Students must secure a minimum of 40% in CIE and should have 85% attendance.

In case of integrated and comprehensive courses, a student must secure a minimum of 40% marks and 85% attendance in both theory and practical components. In addition, the overall CIE marks including theory, practical and self-study components shall not be less than 40%.

- **11.4. Semester End Examination (SEE):** The SEE shall be conducted jointly by the subject teacher and an external examiner appointed for this purpose by the College. Here, the external examiner to mainly associate with the work of Question Paper setting, because of the difficulties in having him/her for conducting the evaluation of student's answer scripts due to the tight time schedule for the various tasks connected with SEE.
 - **11.4.1 SEE Answer Scripts:** The answer scripts of SEE are evaluated first by the course instructor/teacher; before declaring the results, to include a second evaluation or an external review of SEE conducted. A committee of the College may oversee and ensure the quality and standard of evaluation and of the grades awarded in all the cases;

AUTONOMOUS COLLEGE UNDER VTU

- **11.4.2 External Review of SEE:** An external review shall be conducted under the aegis of the Board of Examiners (BOE) of the College by appointing a panel of subject experts from outside the College for this purpose and aiming at totality in the review of SEE operation and covering such steps as, question paper review, checking random samples of answer scripts, analysis of results/grades awarded, etc. This step is necessary for gaining the confidence of the University and also of the society at large, on the fairness and transparency in the system.
- **11.5 Passing Standards:** High standards are maintained in all aspects of the examination. The absolute grading method is followed. The minimum standard of passing in respect of CIE and SEE for each course is shown in Table-10.

Table-10: Passing Standards using Absolute Gradi								
Evaluation Method	Passing Standard							
Sessional (CIE)	Score: ≥40%							
Terminal (SEE)	Score: ≥40%							

Table-10: Passing Standards using Absolute Grading

11.6 Project work Evaluation: The evaluation of **CIE** of the project work shall be based on the progress of the student in the work assigned by the project supervisor/guide, periodically evaluated by him/her together with a Departmental Committee constituted for this purpose.

A seminar presentation, submission of project report and final oral examination conducted by a common Project Evaluation Committee at the College level shall form the **SEE** of the project work.

- **11.7** There shall be **NO RE-EXAMINATION** for any Course in the credit system to take care of such students who have:
 - a) Absented themselves from attending CIE or SEE; without valid reasons; or,
 - b) Failed (Grade F, as covered in Section 9) to meet the minimum passing standards prescribed for CIE and/or SEE; or,
 - c) Been detained for want of attendance; or,
 - d) Withdrawn (Grade W, as covered in Section 9.) from a Course;

Such students listed above (a - d), shall be required to re-register for the Course(s) and go through CIE and SEE again and obtain a Grade equal to or better than E (refer Section 9) in each case. While such students shall have to re-register for the same Course(s) if hard core (core courses), they can re-register for alternative Course(s) from among the soft core (elective courses), as the case may be. The re-registration shall be possible when the particular course is offered in regular semesters.

11.8 Successive Failures: A student who has not been able to obtain eligibility for third semester even after **three academic years** will be declared as Not Fit for Technical Education [NFTE]. However, such a student can re-join B.E./B.Arch. Programme in the College as a fresh student to the First Year.

AUTONOMOUS COLLEGE UNDER VTU

12. ATTENDANCE REQUIREMENT

- 12.1 All students shall maintain a minimum attendance of 85% in each course registered. In case of shortfall, the concerned Head of the Department shall consider and may condone deficiency up to a limit of 10% in special cases. The relevant documents pertaining to condonation of attendance shall be maintained by the respective departmental head and produced as and when required by the head of the institution. Any student failing to meet the above standard of attendance in any course(s) registered, shall not be allowed to appear for SEE of such course(s).
- 12.2 In the event of condonation, the students whose attendance is condoned are not eligible for make-up examination in that course during the semester.
- 12.3 Attendance at CIE and SEE: Attendance at all examinations, both CIE and SEE of each course registered shall be compulsory for the students and there shall not be any provision for re-examination/consideration.
- 12.4 Any student against whom any disciplinary action by the College is pending shall not be permitted to attend any SEE in that Semester.
- 12.5 Each Semester is considered as a unit and the candidate has to put in a minimum attendance of 85% in each course with a provision of condonation of 10% attendance for reasons such as medical emergencies and legitimate grounds.
- 12.6 The basis for the calculation of the attendance shall be the period prescribed by the College by its calendar of events. For the first semester students, the same is reckoned from the date of admission to the course.
- 12.7 The students shall take note of his/her attendance status periodically from the respective faculty and strive to make up the shortage. However, the departments shall periodically announce the attendance status of the students. Non-receipt of such information from the college will not be considered as valid reason for exemption from the attendance requirements.
- 12.8 If a student does not fulfill the attendance requirements in any course, he/she is not permitted to attend the Semester End Examination (SEE) in that course and is deemed to have been awarded "F" grade in that course.
- 12.9 In respect of Integrated Courses 85% of attendance shall be maintained in theory as well as practical component of the course. Failing to maintain the 85% attendance in any one component, the student will not be permitted to take up SEE in that course.

AUTONOMOUS COLLEGE UNDER VTU

13. GRADING

General

- 13.1 As in recent years, the grading system has replaced the evaluation of student's performance in a Course based on absolute marks. This is to ensure uniformity in the grading practice at different autonomous colleges to facilitate the migration of students or transfer of credits among Autonomous Colleges under the University.
- 13.2 Letter Grades: A letter grade is basically a qualitative measure (an alphabet/letter) giving the performance of a student, such as, Outstanding (S), Excellent (A), Very Good (B), Good (C), Average (D), Poor (E) and Unsatisfactory/Fail (F), based on the raw score (marks, as in conventional practice) obtained by the student. This is usually arrived at after the student's performance in a Course, which includes both CIE and SEE, is assessed and raw score (marks) for the total are awarded to begin with, followed by grouping of all the students in a Course under different grading levels, as above.
- 13.3 Absolute Grading: The College has adopted the absolute grading system.

14.2 Grade Points

14.2.1 Depending on the letter grades assigned, a student earns certain grade points. As the grading system can have different grade points, like 5, 8 and 10, more number of points in the scale, will be necessary to provide a better resolution in the performance assessment.

The Colleges follow the 10-point grading system, as given in the Table-11:

Level	Out- standing	Excellent	Very Good	Good	Average	Poor	Fail
Grade	S	А	В	С	D	E	F
Grade Points	10	09	08	07	05	04	00
Score (Marks) Range (%)	≥ 90	≥ 75 - <90	> =60 - < 75	≥50 - < 60	≥ 45 - < 50	≥40 - <45	< 40

Table-11: Grade Points Scale (Absolute Grading)

- 14.2.2 The grade points given in above table help in the evaluation of credit points earned by the student in a Course as the credit points are equal to the number of credits assigned to the Course multiplied by the grade points awarded to the student in that Course. This shall be used in arriving at the credit index of the student for that semester, as it is the sum total of all the credit points earned by the student for all the Courses registered in that semester.
- 14.2.3 Earning of Credit: A student shall be considered to have completed a course successfully and earned the credits if he/she secures an acceptable letter grade in the range S to E. Letter grade 'F' in any Course implies failure of the student in that Course and no *credits* earned.

AUTONOMOUS COLLEGE UNDER VTU

14.2.4 Transitional Grades: The transitional grades, such as, 'I', 'W' and 'X' shall be awarded to a student in the following cases. These transitional grades shall be converted into any one of the letter grades (S to F) after the student completes his/her Course requirements, including examination.

14.2.4.1 **Grade 'I':** Awarded to a student having satisfactory attendance at classes and meeting the passing standard at CIE in a Course, but remained absent from SEE for valid and convincing reasons acceptable to the College, like:

- (i) Accident or severe illness leading to hospitalization, which disabled the student from attending Semester End Examination (SEE);
- (ii) A calamity in the family at the time of SEE, which required the student to be away from the College;
- (iii) In the event of (i) and (ii) above, it is the responsibility of the student/parent/guardian to inform the college authorities (proctor/HOD) immediately. The information may be in the form of either written communication, personal communication by parent/guardian/peer or an email or mobile message. The candidate needs to submit all the relevant evidences (hospital reports, police reports, certificates from competent authorities, etc.,) prior to attending the college. Intimation is mandatory. Any intimation after the conduct of examination will not be entertained.

14.2.4.2 **Grade 'X':** Awarded to a student having attendance $\geq 85\%$ and CIE rating ($\geq 60\%$) in a course, but SEE performance observed to be poor, which could result in an overall 'F' Grade in the Course. No 'F' Grade is awarded in this case but student's performance record is maintained separately. The student will be provided an opportunity in the make-up examination; however, the grades ('D' to 'S') will be reduced to the next lower grade and grade 'E' will remain unchanged.

- 14.2.5 **Grade 'W':** Awarded to a student having satisfactory attendance at classes, but withdrawing from that Course before the prescribed date in a semester under faculty advice; the student shall re-register for the said course in the regular semesters only. All the 'W' grades awarded to the students shall be eligible for conversion to the appropriate letter grades only after the concerned students re- register for these Courses in a main (Odd/Even) semesters only and fulfill the passing standards.
- 14.2.6 **Grade Card:** Each student shall be issued a Grade Card (or transcript) at the end of each semester. This will have a list of all courses registered by a student in the semester along with the credits. In addition to the letter grades with grade points, the grade card will also contain transitional grades 'I' and 'X' which do not carry any grade points. Hence, only the courses registered for credit and having grade points shall be included in the computation of student's performance i.e., SGPA and CGPA.

AUTONOMOUS COLLEGE UNDER VTU

However, the Courses taken for audit will not form part of this computation. The results of mandatory courses, which are of the noncredit type, shall also be reflected in the Grade Card as 'PP' (for Passed) or 'NP' (for Not Passed). It may be noted that each UG student shall have to obtain the grade 'PP' in each mandatory course to qualify for award of the Degree by the University.

- 14.2.7 **Make-up Examination:** The Make-up Examination facility shall be available to students who may have missed to attend the SEE of one or more Courses in a semester for valid reasons and given the 'I' grade; Students having the 'X' grade shall also be eligible to take advantage of this facility. The standard of the Make-up Examination shall be the same as that of regular SEE for the Courses. The Make-up Examination shall be held as per dates notified in the Academic Calendar. However, it will be possible for the Autonomous institution to modify the Academic Calendar with the permission of the Academic Council.
- 14.2.8 In the event a student fails in a Laboratory course and/or in CIE of a course in final year, the student shall be given 'I' grade. In such a case, the concerned Chairperson of BOE may grant the student extra time not exceeding 12 weeks for completing the course with due concurrence of the faculty and Head of the Department. If no such extra time is sought / granted, the concerned student shall have to re-register for the course(s) in the succeeding regular semester and fulfill the academic requirements for the award of the degree.
- 14.2.9 All the transitional grades ('I' and 'X') awarded to a student shall have to be converted to an appropriate letter grade after the make-up examination. Any outstanding 'I' and 'X' grades two days after the last scheduled Make-up Examinations shall be automatically converted to 'F' grade.

14.3 Grade Point Averages

14.3.1 **SGPA and CGPA:** The credit index can be used further for calculating the Semester Grade Point Average (SGPA) and the Cumulative Grade Point Average (CGPA), both of which are important performance indices of the student. While SGPA is equal to the credit index for a semester divided by the total number of credits registered by the student in that semester, CGPA gives the sum total of credit indices of all the previous semesters divided by the total number of credits registered in all these semesters. The SGPA and CGPA will be computed as shown below:

Semester Grade Point Average (SGPA)

- Σ [(Course credits) X (Grade points)] (for all Courses in that semester excluding transitional grades)
- Σ [(Course credits)] (for all courses in that semester excluding
- transitional grades)

Cumulative Grade Point Average (CGPA)

- Σ [(Course credits) X (Grade points)] (for all Courses excluding those with F & transitional grades until that semester)
- Σ [(Course credits)] (for all Courses excluding those with F &

transitional grades until that semester)

AUTONOMOUS COLLEGE UNDER VTU

Both SGPA and CGPA facilitate the declaration of academic performance of a student, at the end of a semester and at the end of successive semesters respectively. Both SGPA and CGPA shall be normally calculated up to the second decimal position, so that the CGPA, in particular, can be made use of in ranking the students in a class. If two students get the same CGPA, the tie should be resolved by considering the number of times a student has obtained higher SGPA; but, if it is not resolved even at this stage, the number of times a student has obtained higher student has obtained higher grades like S, A, B etc., shall be taken into account in ranking the students in a class.

14.3.2 **An illustrative Example:** An illustrative example given in Table-11 below indicates the use of the above two equations in calculating SGPA& CGPA:

Semester (Odd:I) (Even:II)	Course No.	Credits	Grade	Grade Points	Credit Points	SGPA	CGPA
I	AA 101	5:0:0	В	8	40		
Ι	AA 102	3:2:0	W	-			
I	AA 103	3:0:0	Α	9	27		
Ι	AA 104	0:1:1	F	0	00		
Ι	AA 105	4:1:0	D	5	25		
Ι	AA 106	5:0:0	E	4	20		
Total		20 (18*)			112	5.60 (112/20)	5.60 (112/20)
II	BB 107	3:1:1	С	7	35		
II	BB 108	4:0:0	В	8	32		
II	BB 109	3:0:0	D	5	15		
II	BB 110	4:1:0	E	4	20		
II	BB 111	2:1:1	A	9	36		
II	BB 112	2:0:0	F	0	00		
II	BB 113	0:2:0	В	8	16		
Total		25 (23*)			154	6.16 (154/25)	6.48 (266/41)
Fast Track	XX 102	3:2:0	D	5	25		
Fast Track	XX 104	0:1:1	С	7	14		
Fast Track	XX 112	2:0:0	D	5	10		
Total		9			49	5.44 (49/9)	6.30 (315/50)

Table-12: Typical example - Calculation of SGPA/CGPA

*Total No. of credits excluding those with 'F' and transitional grades; this is particularly important to keep track of the number of credits earned by a student up to any semester.

14.3.3 **Vertical Progression:** Minimum standards for SGPA and CGPA together with the minimum number of credits are laid down for the vertical progression of students. This facilitates the mobility of students from one College to another and also avoids confusion among the students. The vertical progression of students is applied between two academic years only.

AUTONOMOUS COLLEGE UNDER VTU

The following are the prescribed standards for vertical progression:

- a) Minimum Standard for SGPA = 5.0
- b) Minimum Standard for CGPA =5.0 (at the end of each academic year)
- c) Maximum Number of 'F' Grades that can be carried at the end of any academic year is four only
- d) The maximum number of withdrawals at any given time shall not exceed two courses subjected to maintaining the minimum registration requirements

However, failure to secure a minimum CGPA = 5.0 at the end of any semester for the first time, shall **attract a warning** before allowing the student to continue in the next semester.

14.3.4 Award of Class: The class will be awarded after students earn a total of 200 credits. The Table-13 shows the conversion of CGPA into percentage of marks and the award of class thereon.

Table-13

Range of Grade Point	Percentage	Class
Average (SGPA or CGPA)	of Marks	
≥ 5.75 and < 6.75	≥ 50 and < 60	Second Class
≥ 6.75 and < 7.75	≥ 60 and < 70	First Class
≥ 7.75	≥ 70	First Class with Distinction

For a given SGPA or CGPA, the percentage of marks can be computed using the following formula: % MARKS SCORED = [CGPA - 0.75] x 10

CGPA	% Marks	CGPA	% Marks
5.25	45.0	7.75	70.0
5.50	47.5	8.00	72.5
5.75	50.0	8.25	75.0
6.00	52.5	8.50	77.5
6.25	55.0	8.75	80.0
6.50	57.5	9.00	82.5
6.75	60.0	9.25	85.0
7.00	62.5	9.50	87.5
7.25	65.0	9.75	90.0
7.50	67.5	10.00	≥ 92.5

Table-14

AUTONOMOUS COLLEGE UNDER VTU

15. Other Academic Matters

Time Schedules

- 15.1 **Academic Schedules:** An Academic Calendar is published before the commencement of every academic year to assist the students and faculty. The calendar includes, dates for registration of courses, dropping of courses and withdrawal from courses. This enables the students to be well prepared, minimize their chances of failure in CIE and / or SEE and take full advantage of the flexibility provided by the credit system.
- 15.2 **Registration of Courses:** Each student shall have to register for course work at the beginning of a semester. The student has to compulsorily register for all the stipulated credits in the first year of the programme. In the subsequent years (higher semesters i.e., third semester onwards) the registrations shall be within the limits of minimum (≥20) and maximum (≤30) credits. A period of 2-3 days is assigned for this event to facilitate the students to seek faculty advice and discuss with the proctor/faculty prior to registering for courses.
- 15.3 **Dropping of Courses:** A specific period in the middle of a semester is fixed for this purpose and to help review the student's performance in CIE by the faculty advisors (proctors). The students having poor performance are facilitated to drop the identified course(s) (up to the minimum credits specified for the semester) in the higher semesters only (i.e., third semester onwards) without being mentioned in the Grade Card. Such Courses to be re-registered by these students in the regular semesters at a later time.
- 15.4 **Withdrawal from Courses:** A specific period is identified towards the end of a semester to help review the students' performance in CIE by the Proctor who shall advise the students having poor performance to withdraw from identified course(s) (up to the minimum credits specified for the semester) with mention in the Grade Card (Grade 'W'). Such Courses to be re-registered by these students in the main/regular semesters at a later time.

When to withdraw?: A student is allowed to withdraw from a Course(s) after one week from the last date of the second internal test (CIE) or as mentioned in the Academic Calendar. Separate circular/notification shall not be issued in this regard. It is the responsibility of the student to withdraw from the courses with in the stipulated time failing which student will have to continue with the course and fulfill the academic requirements.

15.5 Temporary withdrawal from programme:

- 15.5.1 A student may withdraw temporarily from the programme on grounds like, prolonged illness, grave calamity in the family or any other serious happening. The withdrawal shall be for periods which are integral multiples of a semester, provided that:
 - the student applies to the College within 6 weeks of the commencement of the semester or from the date he/she last attended the classes, whichever is later, stating fully the reasons for such a withdrawal, together with supporting documents and endorsement of his/her parent/guardian.

AUTONOMOUS COLLEGE UNDER VTU

- The College is satisfied of the genuineness of the case and that, even by taking into account the expected period of withdrawal, the student has the possibility to complete the programme requirements within the time limits specified by the University.
- The student does not have any dues or demands at the College/University including tuition and other fees as well as library material.
- 15.5.2 A student availing of temporary withdrawal from the College under the above provision shall be required to pay such fees and/or charges as may be fixed by the College until such time as his/her name appears on the Students' Roll List. However, it may be noted that the fees/charges once paid shall not be refunded.
- 15.5.3 Normally, a student will be entitled to avail **the temporary** withdrawal facility only once during his/her studentship of the programme. However, any other concession for the concerned student shall have to be approved by the Academic Council of the College. Hence, the students shall be advised by the Principal to use this provision only in exceptional cases.

15.6 Termination from the Programme

A student shall be required to withdraw from the programme and leave the College on the following grounds:

- 15.6.1 Failure (getting 'F' Grade) and not passing a Course to earn credits for the same, in-spite of **five attempts**.
- 15.6.2 Failure to secure a CGPA \geq 5.00 on **three** consecutive occasions to lead the student being asked to discontinue the programme and leave the College (However, failure to secure a CGPA \geq 5.00 at the end of any semester for the first time, to attract warning before approval of the student to continue in the following semester).
- 15.6.3 Absence from classes for more than **one regular semester** at a time **without leave of absence** being granted by competent authorities.
- 15.6.4 Failure to meet the **standards of discipline** as prescribed by the College from time to time;

15.7 Student's Feedback

- 15.7.1 The college obtains feedback from students on their course work and various academic activities conducted. The feedback is obtained on-line from the students at regular intervals maintaining confidentiality.
- 15.7.2 The feedback received from the students is reviewed/discussed by a committee constituted for the purpose and necessary corrective measures are taken.

15.8 Graduation Ceremony

15.8.1 The College conducts annual Graduation Day ceremony for the award of Degrees to students completing the prescribed academic requirements. The Graduation Day is conducted after the University Convocation.

15.8.2 The College awards Ranks and Medals to the meritorious students during the Graduation Day Ceremony to encourage the students to strive for excellence.

16. Interpretation

Any question as to the interpretation of these rules and regulations shall be decided by the College, whose decision shall be final and binding on the student in the matter. The College shall also have the power to issue clarifications to remove any doubt, difficulty or anomaly, which may arise in regard to the implementation of these regulations.

:: NOTE ::

These rules and regulations may be altered/changed from time to time by the academic council. Failure to read and understand is not an excuse

Department Vision

To emerge as a Centre of Academic Excellence in Electronics, Communication and related domains through Knowledge generation, acquisition and dissemination meeting the global needs and standards

Department Mission

Imparting quality education through state of the art curriculum, conducive learning environment and Research with scope for continuous improvement leading to overall professional Success

Program Educational Objectives

The Program Educational Objectives (PEOs) describe the professional accomplishments of our graduates about three-five years after having completed the under-graduate program in Electronics and communication Engineering.

PEO-1. Graduates will professionally progress in Electronics, Communication and related areas with an inclination towards continuous learning.

PEO-2. Graduates will work in diversified teams of multidisciplinary environment.

PEO-3. Graduates will exhibit good inter-personal skills, adapt themselves for changes in contemporary technology.

Program Outcomes

Program Outcomes (POs), are attributes acquired by the student at the time of graduation. The POs given in the Table below, ensure that the POs are aligned to the Graduate Attributes (GAs) specified by National Board of Accreditation (NBA). These attributes are measured at the time of Graduation, and hence computed every year for the outgoing Batch. The POs are addressed and attained through the Course Outcomes (COs) of various courses of the curriculum.

PO-1	Ability to apply the knowledge of mathematics, science, electronics and
	communication to conceptualize solutions to complex engineering problems.
PO-2	Ability to Identify, formulate and analyse in Engineering domains using first
	principles of basic sciences and engineering sciences.
PO-3	Ability to design and realize solutions for complex engineering problems with
	applicable considerations.
PO-4	Ability to support investigations of Research based knowledge including
	literature survey, design of experiments, data analysis and data interpretation
	leading to valid conclusions.
PO-5	Ability to choose modern Engineering tools and resources for Electronics &
	communication engineering problems and their applications
PO-6	Ability to identify and assess societal, safety and legal issues using contextual
	knowledge and develop potential to assume consequent responsibilities during
	engineering practice.
PO-7	Ability to recognize the impact of electronics and communication engineering
	domain in societal and environmental contexts and demonstrate knowledge of
	and need for sustainable development.
PO-8	Ability to apply ethical principles and practice professional ethics.
PO-9	Ability to function effectively either as an individual or as a member/leader
	within diversified and multidisciplinary teams.
PO-10	Ability to communicate on engineering activities understandably, among stake
	holders and society at large through effective reports, design documentation
	and effective presentations.
PO-11	Ability to identify and engage in self-learning in the context of technological
	changes.
PO-12	Ability to demonstrate the knowledge of and apply project management
	principles to manage projects in multidisciplinary environments in team or as
	an individual.

Sl.	Course Code	Course Title			Crea	lits	
No.	Course Code	Course The	L	Т	Р	S	Total
1	15MA3GCAEM	Advanced Engineering Mathematics	3	1	0	0	4
2	15ES3GCLCA	Linear Circuit Analysis	3	1	0	0	4
3	15ES3GCAMC	Analog Microelectronics	3	0	1	2	6
4	15ES3GCDEC	Digital Electronics	3	0	1	2	6
5	15ES3GCFAW	Fields and Waves	3	1	0	0	4
6	15EC3DLSL1	Simulation Laboratory-1	0	0	1	0	1
		Total	15	3	3	4	25

III Semester Scheme

IV Semester Scheme

Sl.	Course Code	Course Title			Cree	lits	
No.	Course Coue	Course The	L	Т	Р	S	Total
1	15MA4GCDMP	Discrete Mathematics and Probability	3	1	0	0	4
2	15EC4DCHDL	Verilog HDL Programming	3	0	1	0	4
3	15ES4GCAIC	Analog Integrated Circuits	3	0	1	2	6
4	15ES4GCMCS	Microcontrollers	3	0	1	2	6
5	15ES4GCSAS	Signals and Systems	3	1	0	0	4
6	15EC4DCTEW	Technical Writing	0	1	0	0	1
		Total	15	3	3	4	25

NOMENCLATURE FOR THE COURSE CODE

Course T	itle	ADVANCED ENGINEERING MATHEMATICS						
		(Common to EC, TE, EE, IT, ML)						
Course C	Code	15MA3GCAEM	Cred	its	4	L-T-P-S	3:1:0:0	
CIE	100 mark	ks (50% weightage) SEE		100 mai	ks (50% w	eightage)	
Pre-requisites Trigonometric formulas, methods of differentiation, methods of integration, partial derivatives, matrices, Fourier Series, Fourier Transforms							itegration,	
UNIT I	,						[9 hours]	
MATRICES Introduction: Elementary row transformations, Echelon form of a matrix, rank of a matrix by elementary row transformations. Consistency of system of linear equations and solution. Solution of a system of non-homogenous linear algebraic equations: Gauss elimination method, LU decomposition method, Gauss-Seidel method. Eigenvalues and eigenvectors of matrices. Reduction of a matrix to diagonal form. (7L+2T) Suggested Reading: Inverse of a matrix using Gauss-Jordan method. Largest eigenvalue and								
UNIT II				100.			[10 hours]	
Finite Diffe Gregory for Lagrange's Simpson's equations: I Suggested I simultaneo	erences and rward interp interpolation $1/3^{rd}$, $3/8^{th}$ r Euler's mod Reading: M us differenti	interpolation: Forwar polation formula, New on formula, Lagrange' ule, Weddle's rule. N lified method, Runge- ilne's method to solve al equations by Rung	d differen vton-Grego s inverse umerical s Kutta met e ordinary e-Kutta fo	ces, t ory b interj soluti hod diffe ourth	packward d ackward in polation. N ion of ordir of fourth or rential equ order meth	ifferences. N terpolation four umerical intenary different oder. ations. Solutiod.	fewton- ormula, egration: ial (8L+2T) on of	
UNIT III							[10 hours]	
DARTIAL DIFFERENTIAL EQUATIONS Formation of Partial differential equations-elimination of arbitrary constants, elimination of arbitrary functions. Equations of first order- Solution of the linear equation $P p + Q q = R$ (Lagrange's partial differential equation).Applications: One-dimensional heat equation and wave equation (without proof), Transmission line-telegraph equations, various possible solutions of these by the method of separation of variables.(7L+3T)								
Suggested D'Alember	Reading: Di t's solution	rect integration metho of wave equation.	od, methoo	d of s	separation of	of variables,	. ,	
UNIT IV		*					[9 hours]	
COMPLE Function of function. A Cartesian a	UNIT IV [9 hours] COMPLEX ANALYSIS 1 Function of a complex variable, limits, continuity and differentiability of a complex valued function. Analytic functions, properties of analytic functions, Cauchy-Riemann equations in Cartesian and polar form, construction of analytic functions by Milne-Thomson method							

Confor	mal mapping-Transformation	s: $w = z^2$ and $w = z + \frac{a^2}{z}$ ($z \neq 0$	D).Bilinear				
transfo	transformations.						
			(7L+2T)				
Sugges	ted Reading: Standard transfo	ormations $w = c + z$, $w = cz$, w	z = 1/z, properties of				
bilinea	r transformations.						
UNIT	V		[10 hours]				
COMP	V PLEX ANALYSIS 2						
Comple	ex integration: Line integral, I	Problems on line integral, Cauchy	's theorem, Cauchy's				
integra	l formula.		, ,				
Comple	ex series: Taylor's series, Mac	claurin's series and Laurent's seri	es (without proof).				
Zeros,	Poles and Residues: Residue	theorem (without proof). Evaluat	ion of real definite				
integral	ls using residues.						
C		1'	(7L+3T)				
Sugges	rition improper real integrals	uius of convergence. Removable	and essential				
	ations: Use of harmonic funct	ion to a heat transfer problem A	alysing AC circuits				
Current	t in a field- effect transistor	ion to a heat transfer problem. Al	larysing AC circuits,				
Current							
		Mathematics Lab					
• Soluti	ion of system of algebraic equ	ations using Gauss Seidel metho	d.				
• LU de	ecomposition of matrices.						
• Eigen	values and eigenvectors of m	atrices.					
• Large	st eigenvalue, smallest eigenv	value and corresponding eigenvec	tors of a matrix.				
• Soluti	ion of algebraic and transcend	lental equations using Newton- R	aphson method.				
• Nume	erical integration.	N 1 1					
• Nume	erical solution of ordinary diff	erential equations					
Text B	ooks:						
1.	Higher Engineering Mathem	natics, B.S. Grewal, 43rd edition,	2014, Khanna				
	Publishers						
2.	Advanced Engineering Math	nematics, 5th edition, 2011, by D	ennis G.				
-	Zill and Cullen, Jonesand Ba	artlett India Pvt. Ltd.					
Refere	nce Books:						
1.	Higher Engineering Mathem	hatics, B.V. Ramana, 2007, Tata	Mc. Graw Hill.				
2.	Advanced Engineering Math	nematics, Erwin Kreyszig, 10 th ec	lition Vol.1 and Vol.2,				
2	2014, Wiley-India.						
5.	Ivengar P K Jain 6 th editic	on 2010 New Age International ((11011. M.N. Jalli, S.K.N (D) Limited Dublishers				
E book	ryengar, K.K. Jan, O eutre	in, 2010, New Age International (
1.	Engineering Mathematics k	K. A. Stroud, Dexter J. Booth Ind	ustrial Press, 2001				
	http://books.google.co.in/bo	oks/about/Engineering Mathema	tics.html?id=FZncL-				
	xB8dEC&redir esc=v.						
2.	Advanced Engineering Matl	nematics, P. V. O'Neil, 5 th Indian	n reprint, 2009, Cengage				
	learning India Pvt. Ltd.						
3.	http://ocw.mit.edu/courses/n	nathematics/ (online course mate	rial)				

MOOO	Cs
1.	http://nptel.ac.in/courses.php?disciplineId=111
2.	https://www.khanacademy.org/
3.	https://www.class-central.com/subject/math (MOOCS)
4.	E-learning: <u>www.vtu.ac.in</u>

CO-1: Obtain numerical solution a system of algebraic equations, algebraic and transcendental equations and ordinary differential equations.

CO-2: Formulate boundary value problems involving one dimensional heat and wave equation.

CO-3: Solve partial differential equations with appropriate boundary conditions using the method of separation of variables.

CO-4: Construct analytic functions and simple conformal mappings.

CO-5: Evaluate real and complex integrals using the calculus of residues.

Assessment

- 1. Each unit consists of one full question.
- 2. Each full question consists of three or four subdivisions.
- 3. Five full questions to be answered.
- 4. To set one question each from Units 1, 2, 4 and two questions from Unit 3 and Unit 5.

Questions for CIE (50%) and SEE(50%) will be designed to evaluate the various educational components (Blooms taxonomy) such as:

- Remembering and understanding the course contents (weightage: 40%)
- Applying the knowledge acquired from the course
 - (weightage: 35%)
- Designing and analyzing various engineering problems
- Understanding of various system models
- (weightage: 15%) (weightage: 10%)

Course Title		DIGITAL ELECTRONICS						
		(Common to EC, TE, EE, IT, ML)						
Course Code		15ES3GCDEC	DEC Credits 6 L-T-P-S 3:0			3:0:1:2		
CIE	CIE 100 marks (50% weightage)		SEE	100 marks (50% weightage)		eightage)		

Pre-r	requisites	5					
		Elements of Ele	ectronics Engin	eering			
UNI	ΓΙ				[8 hours]		
Intro	duction:	Review of Bool	ean algebra, log	gic gates.			
Simp	Simplification of Boolean functions : Three Variable K – Maps, Four Variable K – Maps,						
The T	Tabulatio	n Method, Deter	mination of Prin	me Implicants, S	Selection of prime implicants		
Com	bination	al Logic Circuit	s: Introduction	, Carry Look Al	nead Adder, Parallel Adder,		
Decir	nal Adde	r Code conversi	on, , Magnitude	e Comparator, D	Decoders, Multiplexers, Read Onl		
memo	ories (RC	M), Programma	ble Logic Array	ys(PLAs).			
		Γ		1			
UNI	ΓΠ				[7 hours]		
Flip-	Flops:						
The E	Basic Flip	o-flop circuit, Clo	ocked Flip-flops	s, Triggering of	Flip-flops: Master Slave Flip-		
Flops	, Edge T	riggered Flip Flo	ps, Characteris	tic Equations.			
		I	I	1			
UNI	T III				[8 hours]		
Sequ	ential Lo	gic Circuits:					
Shift	Registers	s, Ripple Counter	rs, Design of Sy	nchronous Cou	nters		
UNI	ΓΙ				[8 hours]		
Sequ	ential sy	stems:					
Analy	ysis of Cl	ocked Sequentia	l circuits, State	Reduction and A	Assignment, Design		
Proce	dure, De	sign with State E	quations	1			
UNI	Γ				[8 hours]		
Logic	: Familie	s: Characteristic	of Digital ICs,	Transistor – Tra	ansistor Logic,		
Comp	olementa	ry MOS (CMOS)) Logic, Compa	rison of TTL an	d CMOS families		
This o	course sh	all include asses	sments based or	n the QEEE Pha	se IV lecture on 'Nitty Gritty		
of Lo	gic Gates	s to Processor De	esign' by Prof.	Ashok Jhunjhun	wala, IIT Madras (based on the		
topics	s Logic C	fates to Executio	n Unit Design,	ALU design)			
Text	Books:						
1	Digital	Logic and Comp	uter Design- M	. Morris Mano,	Prentice Hall – Pearson Educatio		
2	Fundam	ental of Logic D	esign- Charles	Roth Jr., Thom	as Learning		
Refe	rence Bo	oks:					
1	Digital	Principles and D	esign- Donald	Givone, Tata M	c Graw Hill		
2	Digital	Logic Applicatio	ns and principle	es- John Yarbro	ough, Pearson Education		
E Bo	oks		**				
1.	http://w	ww.free-enginee	ring-books.con	n/2014/11/digita	l-fundamentals-by-thomas-l-		
	floyd.ht	ml					
2.	https://b	ooks.google.co.i	n/books/about/	Fundamentals_c	of <u>Digital</u> <u>Circuits.html?id=BO</u>		

	VkrtiLUcEC				
MOO)Cs				
1.	http://freevideolectures.com/blog/2010/11/130-nptel-iit-online-	courses/			
2.	http://freevideolectures.com/Course/2319/Digital-Systems-Design#				
3.	www. Pyroelectrom.com/edu				
4.	Nptel.ac.in/courses/117106086				
5.	http://nptel.ac.in/courses/117105080				
6.	Digital Circuits and Systems Youtube - S. Srinivasan, IIT Madras				
7.	Digital Integrated Circuits Youtube - AmitavaDasgupta, IIT Madras				
Cou At th	rse Outcomes e end of the course, the student will have the				
CO1	Ability to understand, define and explain the fundamental epts of Digital circuits	PO1			
CO2 (Bool optim time	CO2: Ability to apply the knowledge of digital circuit concepts (Boolean Algebra, K-Maps and Quine-McClusky method) to optimize a digital circuit for the given parameter (number of gates, time delay, power consumption, cost)				
CO3 concl	CO3: Ability to analyze digital circuits and arrive at suitable PO3				
CO4	Ability to design a digital circuit for given specifications	PO4			
CO5 appli	Ability to conduct experiments using digital ICs for a given cation/problem statement	PO6			
CO6 imple	CO6: Ability to engage in self-study to formulate, design, implement, analyze and demonstrate an application of digitalPO3, PO4, PO6, PO9, PO10 PO12				
CO7 relate (<u>www</u> the applid	electronic circuits through an open ended experimentPO10, PO12CO7: Ability to engage in self-study to deliver a seminar on topics related to the course accompanied by a seminar report (www.deity.gov.in, Comparative study of components, preparing the specifications of components, verifying the data sheets, applications of digital ICs, the characteristics/specifications of different disital ICs, etc)PO10, PO12				

Assessment Pattern

Continu	Marks 100 (Weightage 50%)			
Theory Component	Three Internals (Best Two of Three)	40%		
Theory Component	Quiz (Best Two of Three)	10%		
Laboratory Component	30%			
	Seminar (Oral presentation with report)	10%		
Self-Study Component	Conduction and demonstration of an	10%		
	Open-Ended Experiment			
Semester End ExaminationMarks 100(This is a written examination for THREE hours)(Weightage 50%)				

Course Title		ANALOG MICROELECTRONICS						
		(Common to EC, TE, EE, IT, ML)						
Course Code		15ES3GCAMC Credits 6 L-T-P-S 3:				3:0:1:2		
CIE 100 marks (50% weightage)		SEE	100 mar	ks (50% we	eightage)			

Pre-requisites							
E	Elements of Electronics Engineering						
UNIT I				[7 hours]			
Diodes: - Introduction							
Limiting and c	lamping circuits -	Limiter circuit	s, The Clamped ca	pacitor or DC			
restorer.							
Bipolar Junction	on Transistor (BJ'	Ts):- Introduction	,				
Single stage BJ7	ר amplifiers ר	The basic structur	e, characterizing	g BJT Amplifiers,			
The common em	itter amplifier						
Frequency Rea	sponse of the CE	amplifierThe 3	frequency bands, '	Гhe high			
frequency respon	se, The low free	quency response.					
UNIT II				[8 hours]			
MOSFETS:-							
Introduction,							
Device structure	e and physical ope	eration Devic	e structure, operati	on with no gate			
voltage, creating	a channel for curre	ent flow, Applying	a small VDs, Open	ation as VDs is			
increased, Deriv	ation of the $id - V_J$	DS relationship, The	e P- Channel MOS	SFET,			
Complementary 1	MOS or CMOS, or	perating the MOS	transistor in the su	bthreshold			
region.							
Current voltage	Characteristics	-Circuit symbol, ic	l – V _{DS} characteris	tics,			
characteristics of	the P-Channel M	OSFET					
MOSFET Circu	uits at DC						
The MOSFET a	s an amplifier and	d as a switch 1	Large – signal oper	ration, Graphical			
derivation of the	transfer characteris	stic, operation as a	switch, operation a	as a linear			
amplifier.							
Biasing in MOS	amplifier circuits	sBiasing by fixir	ng V_{GS} , Biasing by	fixing V _G and			
connecting a resi	stor in the source,	Biasing using a dr	ain to gate feedbac	k resistor,			
biasing using a c	urrent source						
UNIT III				[7 hours]			
Small – signal operation and models of MOSFETsThe DC bias point, the signal							
current in the drain terminal ,the voltage gain, separating dc analysis and the signal							
analysis, small signal equivalent circuit models, the transconductance g_m , the T							
equivalent circuit model.							
Single stage MO	Single stage MOS amplifiersThe basic structure, characterizing amplifiers, The CS						
amplifier, The CS amplifier with a source resistance.							
IC Biasing :- Cu	irrent sources, cu	rrent mirror and	current steering of	circuits			
The basic MOSF	ET current source,	MOS current steer	ring circuits				
Current mirror	circuit with impro	oved performance	e The Wilson cu	irrent mirror			

	X 7							
UNITI	V			[7 hours]				
Feedback:-								
Introdu	ction ,the	general feedback struct	ure, Some properties of negativ	ve feedback				
Gain de	Gain density, bandwidth extension, noise reduction, reduction in non linear distortion,							
The for	The four basic feedback topologies Voltage amplifiers, current amplifiers,							
transco	transconductance amplifiers, practical feedback circuits for current series and voltage							
series fe	eedback	T						
UNIT	V			[7 hours]				
Power	Amplifie	'S:-						
Introdu	ction, The	classification of outpu	t stages.					
Class A	A output s	stage – transfer charact	eristic, signal w/Fs, power dissip	ation, power				
convers	ion efficie	ency, transformer coup	led power amplifiers, class B trai	nsformer coupled				
amplifi	er							
Class B	output s	tage – Circuit operation	n, transfer characteristic, power	conversion				
efficien	cy, power	dissipation, reducing c	crossover distortion, single suppl	y operation				
Class A	B output	stage – Circuit operati	on, output resistance					
Power	BJTs – Ju	nction temperature, th	nermal resistance, power dissipat	ion versus				
tempera	ature, tran	sistor case and heat sin	k					
This co	urse shall	include an assessment	based on the QEEE Phase IV of	n 'Fundamentals				
of Smal	ll Signal A	nalysis' taught by Prof	.Shanthi Pavan, IIT Madras					
Text B	ooks:							
1.	Microele	ctronic Circuits-Theory	y and applications by Adel S. See	dra and Kenneth				
-	C.Smith,	Fifth Edition, (Oxfor	rd International Student Edition))				
2.	Electron	c Devices and Circuit	Theory-Robert L.Boylestad and I	Louis Nashelsky				
	(Pearson	Education)						
Refere	nce Books							
1.	Electron	c Devices and Circuits	- Millman and Halkias, TMH					
2.	Electron	c Devices and Circuits	- David A Bell - PHI 4 th edition	1				
On-line	e Referen	ce						
1.	www.pyro	electro.com/edu/analog						
2.	http://freev	videolectures.com/Course/	3020/Circuits-for-Analog-System-Des	sign				
MOOC	Cs							
1.	https://w	ww.mooc-list.com/co	ourse/electronic-systems-and-	digital-				
	electron	ics-uninettuno?static	=true					
2.	http://oc	w.mit.edu/courses/el	ectrical-engineering-and-com	puter-				
-	science	6-012-microelectroni	c-devices-and-circuits-spring-	2009/				
3.	Introduc	tory Analog Electroni	cs Laboratory (Spring 2007)	ov MIT Open				
	Coursey	vare Reviews and R	latinas	<u>,</u>				
Cours		mes						
At the	and of the	urus course the student w	vill have the					
COL				DO 1				
	Ability to	define, understand a	na explain the structure, V-I	PUI				
characte	eristics, w	orking and applications	s of analog electronic devices					
like dio	des, Bipol	ar Junction Transistors	(BJTs) and MOSFETs					
COL	A 1 '1'	l (1 1 1 1						
002:	Ability t	o apply the knowledg	e of KVL and KCL to obtain	rU2				

voltage /current/waveform at different points in analog electronic circuits such as diode clippers, clampers, amplifiers using BJTs and MOSFETs, current sources, current mirrors, power amplifiers, feedback amplifiers	
CO3: Ability to analyze analog electronic circuits such as diode clippers, clampers, amplifiers using BJTs and MOSFETs, current sources, current mirrors, power amplifiers, feedback amplifiers etc. to obtain voltage /current/waveform at different points for given specifications	PO3
CO4: Ability to design analog electronic circuits such as diode clippers, clampers, amplifiers using BJTs and MOSFETs, current sources, current mirrors, power amplifiers, feedback amplifiers for given specifications.	PO4
CO5: Ability to conduct experiments using analog electronic components and electronic instruments to function as switch, regulator, clippers, clampers, small signal amplifiers, oscillators, power amplifiers	PO1, PO2 PO3, PO4 PO6, PO9
CO6: Ability to engage in self-study/independent study to formulate, design, implement, analyze and demonstrate an application using analog electronic components through an open ended experiment	PO3, PO4, PO6, PO9, PO10, PO12,
CO7 : Ability to engage in self-study/independent study to submit a seminar report and make an effective presentation on topics related to the course (e-waste management, <u>www.deity.gov.in</u> , Comparative study of components, preparing the specifications of components, verifying the data sheets, applications of analog electronics)	PO7, PO8, PO10, PO12

Assessment Pattern

Continu	Marks 100 (Weightage 50%)	
	Three Internals (Best Two of Three)	40%
Theory Component	Quiz (Best Two of Three)	10%
	QEEE Quiz	10%
Laboratory Component	20%	
	Seminar (Oral presentation with report)	10%
Self-Study Component	Conduction and demonstration of an	10%
	Open-Ended Experiment	
Seme (This is a writte	Marks 100 (Weightage 50%)	

Course Title		LINEAR CIRCUIT ANALYSIS						
		(Common to EC, TE, EE, IT, ML)						
Course	Code	15ES3DCI	LCA	Credits	4	L-T-P-S	3:1:0:0	
CIE	100 mar	ks (50% weight	age)	SEE	100 marks (50% weightage)			
Pre-requi	Pre-requisites							
	Eleme	nts of Electron	ics Eng	ineering				
UNITI							5+4 hours]	
Practical transform sources f	Basic Concepts: Practical sources, Source transformations, Network reduction using Star Delta transformation, Loop and node analysis with linearly dependent and independent sources for DC and AC networks. Concepts of super node and super mesh							
UNIT II						3]	8+6 hours]	
Network	k Topolog	y:						
Graph of cut- set s Resonar and Para	Graph of a network, Concept of tree and co-tree, incidence matrix, tie-set, tie-set & cut- set schedules, Formulation of equilibrium equations, Principle of duality. Resonant Circuits: Series and parallel resonance, frequency response of series and Parallel circuits, Q factor, Bandwidth							
UNIT III						[7	7+6 hours]	
Networl	k Theorem	IS:						
Superpos	sition, Recip	procity, Millma	n's, Tł	nevinin's an	d Norton's	theorems;	Maximum	
Power tra	ansfer theor	em						
LINIT IN						[11) 6 hours	
Transie	ath ah arria	nend initial as	a diti a)+0 noursj	
Transie	nt benavio	rand initial co	naitio	ns:				
 Behavior of circuit elements under switching condition and their representation, evaluation of initial and final conditions in RL, RC and RLC circuits Review of Laplace transforms, Laplace Transformation & Applications, , waveform Synthesis, initial and final value theorems, step, ramp and impulse responses, convolution theorem, solution of simple R-L, R-C, R-L-C networks for AC and DC excitations using Laplace transforms. 								
UNIT V						[6+2 hours]	
Two por Definitio paramete using La	UNIT V [6+2 hours] Two port network parameters and State Variable analysis: Definition of z, y, h and transmission parameters, modeling with these parameters, relationship between parameters sets. Writing state equations and solution using Laplace transforms.							

Text B	ooks:				
1.	1. "Network Analysis", M. E. Van Valkenburg, PHI / Pearson Education, 3rd				
	Edition. Reprint 2002.				
2.	"Networks and systems", Roy Choudhury, 2nd edition, 200)6 re-print, New			
	Age International Publications				
3.	Theory and Problems of Electric Circuits (Schaum Series),	2 nd Edition			
	McGraw Hill				
Refere	nce Books:				
1.	"Engineering Circuit Analysis", Hayt, Kemmerly and D	urbin,TMH 6 th			
2	2002 "Network on alwais and Symthesis" Frenklin F. Kus, Wiley I	7 1:4:			
<u> </u>	"Analysis and Synthesis, Franklin F. Kuo, whey h	20111011			
5.	"Analysis of Linear Systems", David K. Cheng, Narosa Publishing				
4	"Circuits" Bruce Carlson Thomson Learning 2000 Reprint 2	2002			
	Circuits , Brace Carison, Thomson Learning, 2000. Reprint 2	2002			
E-Books					
1.	Nptel.ac.in/courses/108105065- Networks signals and systems by Prof T.K.				
	Basu, III Knaragpur				
2.	Npte1.ac.in/courses/108102042- Circuit Theory by Prof Dutta Roy S.C, IIT Delhi				
3. www.electrodiction.com/circuit-theory					
I .	1. <u>http://elearning.vtu.ac.in/06ES34.html</u>				
2.	https://www.coursera.org/course/circuits				
Cours	e Outcomes				
At the end of the course, the student will have the					
CO1: <i>A</i>	CO1: Ability to understand, define and explain the concepts of loop PO1				
and node analysis, network topology and resonant circuits					
CO2: Ability to apply the knowledge of Network theorems, Laplace PO2					
transformation and state -space analysis to two port networks to obtain					
desired parameters					
CO3: <i>A</i>	Ability to analyze two port networks	PO3			
CO4: <i>A</i>	Ability to listen and comprehend audio/video lectures related to	PO10			
the course					

Assessment Pattern

Contin	Marks 100 (Weightage 50%)	
	Three Internals (Best Two of Three)	70 %
	Quiz (Average of two)	10%
Theory Component	Quiz based on NPTEL web link to be provided (Average of two)	10%
	Lab component (AAT)	10%
Sen (This is a writ	Marks 100 (Weightage 50%)	

Course Title		FIELDS AND WAVES (Common to TE and EC)				
Course Code		15ES3GCFAW	Credits	4	L-T-P-S	3:1:0:0
CIE	100 mar	100 marks (50% weightage) S		100 marks (50% weightage)		

Engineering Physics Engineering Mathematics UNIT I [8 +4 hours] Introduction to electrostatics: Introduction to line integral, surface integral, volume integral of vectors, Coulomb's Law(vector form), Electric Field Intensity (vector form), Electric Flux Density (EFD), Gauss' Law and Divergence Theorem Energy and Potential: Energy spent in moving charge, Definition of Potential Difference (PD), PD due to Point Charge Energy Density Current and current density: Current and Current Density, Continuity of Current, Conductor, Dielectric materials, Properties, and Boundary Conditions, capacitance-parallel plate ,co-axial, spherical. UNIT II [6+4 hours] Introduction to Magnetostatics: Biot-Savart Law, Ampere's circuital law, curl, Magnetic Flux, Flux Density, Scalar and Vector Magnetic Potentials, Force on a moving charge, Force on different current element, Magnetic Boundary Condition. UNIT III [7+6 hours] Introduction in Point and Integral Form, retarded potentials, UNIT IV [7+6 hours] UNIT IV [7+6 hours] UNIT IV [7+6 hours] UNIT IV [7+6 hours] Uniform plane waves: Wave equations, solution of wave equation, wave propagation through good dielectric, good conductor, skin effect, Poynting Theorem, wave polarization.
Engineering Mathematics UNIT I [8 +4 hours] Introduction to electrostatics: Introduction to line integral, surface integral, volume integral of vectors, Coulomb's Law(vector form), Electric Field Intensity (vector form), Electric Flux Density (EFD), Gauss' Law and Divergence Theorem Energy and Potential: Energy spent in moving charge, Definition of Potential Difference (PD), PD due to Point Charge ,Energy Density Current and current density: Current and Current Density, Continuity of Current, Conductor, Dielectric materials, Properties, and Boundary Conditions, capacitance-parallel plate ,co-axial, spherical. [6+4 hours] Introduction to Magnetostatics: Biot-Savart Law, Ampere's circuital law, curl, Magnetic Flux, Flux Density, Scalar and Vector Magnetic Potentials, Force on a moving charge, Force on different current element, Magnetic Boundary Condition. [7+6 hours] UNIT III [7+6 hours] UNIT IV [7+6 hours] Uniform plane waves: Wave equations, solution of wave equation, wave propagation through good dielectric, good conductor, skin effect, Poynting Theorem, wave polarization.
UNIT I [8+4 hours] Introduction to electrostatics: Introduction to line integral, surface integral, volume integral of vectors, Coulomb's Law(vector form), Electric Field Intensity (vector form), Electric Flux Density (EFD), Gauss' Law and Divergence Theorem Energy and Potential: Energy spent in moving charge, Definition of Potential Difference (PD), PD due to Point Charge ,Energy Density Current and current density: Current and Current Density, Continuity of Current, Conductor, Dielectric materials, Properties, and Boundary Conditions, capacitance-parallel plate ,co-axial, spherical. UNIT II [6+4 hours] Introduction to Magnetostatics: Biot-Savart Law, Ampere's circuital law, curl, Magnetic Flux, Flux Density, Scalar and Vector Magnetic Potentials, Force on a moving charge, Force on different current element, Magnetic Boundary Condition. UNIT III [7+6 hours] Time varying fields and Maxwell's equations: Faraday's Law, Displacement Current, Maxwell's Equations in Point and Integral Form, retarded potentials, UNIT IV UNIT IV [7+6 hours] Uniform plane waves: Wave equations, solution of wave equation, wave propagation through good dielectric, good conductor, skin effect, Poynting Theorem, wave polarization.
Introduction to line integral, surface integral, volume integral of vectors, Coulomb's Law(vector form), Electric Field Intensity (vector form), Electric Flux Density (EFD), Gauss' Law and Divergence TheoremEnergy and Potential: Energy spent in moving charge, Definition of Potential Difference (PD), PD due to Point Charge ,Energy Density Current and current density: Current and Current Density, Continuity of Current, Conductor, Dielectric materials, Properties, and Boundary Conditions, capacitance-parallel plate ,co-axial, spherical.[6+4 hours]UNIT II[6+4 hours]Introduction to Magnetostatics: Biot-Savart Law, Ampere's circuital law, curl, Magnetic Flux, Flux Density, Scalar and Vector Magnetic Potentials, Force on a moving charge, Force on different current element, Magnetic Boundary Condition.[7+6 hours]UNIT III[7+6 hours]UNIT III[7+6 hours]UNIT IV[7+6 hours]Uniform plane waves: Wave equations, solution of wave equation, wave propagation hrough good dielectric, good conductor, skin effect, Poynting Theorem, wave polarization.UNIT V[8 + 4 hours]
of vectors, Coulomb's Law(vector form), Electric Field Intensity (vector form), Electric Flux Density (EFD), Gauss' Law and Divergence Theorem Energy and Potential: Energy spent in moving charge, Definition of Potential Difference (PD), PD due to Point Charge ,Energy Density Current and current density: Current and Current Density, Continuity of Current, Conductor, Dielectric materials, Properties, and Boundary Conditions, capacitance-parallel plate ,co-axial, spherical. UNIT II [6+4 hours] Introduction to Magnetostatics: Biot-Savart Law, Ampere's circuital law, curl, Magnetic Flux, Flux Density, Scalar and Vector Magnetic Potentials, Force on a moving charge, Force on different current element, Magnetic Boundary Condition. UNIT II [7+6 hours] Time varying fields and Maxwell's equations: Faraday's Law, Displacement Current, Maxwell's Equations in Point and Integral Form, retarded potentials, UNIT IV [7+6 hours] Uniform plane waves: Wave equations, solution of wave equation, wave propagation through good dielectric, good conductor, skin effect, Poynting Theorem, wave polarization. UNIT V [8+4 hours]
Electric Flux Density (EFD), Gauss' Law and Divergence Theorem Energy and Potential: Energy spent in moving charge, Definition of Potential Difference (PD), PD due to Point Charge ,Energy Density Current and current density: Current and Current Density, Continuity of Current, Conductor, Dielectric materials, Properties, and Boundary Conditions, capacitance-parallel plate ,co-axial, spherical. UNIT II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
Energy and Potential: Energy spent in moving charge, Definition of Potential Difference (PD), PD due to Point Charge ,Energy Density Current and current density: Current and Current Density, Continuity of Current, Conductor, Dielectric materials, Properties, and Boundary Conditions, capacitance-parallel plate ,co-axial, spherical. UNIT II [6+4 hours] Introduction to Magnetostatics: Biot-Savart Law, Ampere's circuital law, curl, Magnetic Flux, Flux Density, Scalar and Vector Magnetic Potentials, Force on a moving charge, Force on different current element, Magnetic Boundary Condition. UNIT III [7+6 hours] Time varying fields and Maxwell's equations: Faraday's Law, Displacement Current, Maxwell's Equations in Point and Integral Form, retarded potentials, UNIT IV [7+6 hours] Uniform plane waves: Wave equations, solution of wave equation, wave propagation through good dielectric, good conductor, skin effect, Poynting Theorem, wave polarization. [8 + 4 hours]
Energy and Potential: Energy spent in moving charge, Definition of Potential Difference (PD), PD due to Point Charge ,Energy Density Current and current density: Current and Current Density, Continuity of Current, Conductor, Dielectric materials, Properties, and Boundary Conditions, capacitance-parallel plate ,co-axial, spherical. UNIT II [6+4 hours] Introduction to Magnetostatics: Biot-Savart Law, Ampere's circuital law, curl, Magnetic Flux, Flux Density, Scalar and Vector Magnetic Potentials, Force on a moving charge, Force on different current element, Magnetic Boundary Condition. UNIT III [7+6 hours] Time varying fields and Maxwell's equations: Faraday's Law, Displacement Current, Maxwell's Equations in Point and Integral Form, retarded potentials, UNIT IV [7+6 hours] Uniform plane waves: Wave equations, solution of wave equation, wave propagation through good dielectric, good conductor, skin effect, Poynting Theorem, wave polarization. UNIT V [8 + 4 hours]
(PD), PD due to Point Charge ,Energy Density Current and current density: Current and Current Density, Continuity of Current, Conductor, Dielectric materials, Properties, and Boundary Conditions, capacitance-parallel plate ,co-axial, spherical. UNIT II Introduction to Magnetostatics: Biot-Savart Law, Ampere's circuital law, curl, Magnetic Flux, Flux Density, Scalar and Vector Magnetic Potentials, Force on a moving charge, Force on different current element, Magnetic Boundary Condition. UNIT III UNIT III [7+6 hours] Time varying fields and Maxwell's equations: Faraday's Law, Displacement Current, Maxwell's Equations in Point and Integral Form, retarded potentials, UNIT IV [7+6 hours] Uniform plane waves: Wave equations, solution of wave equation, wave propagation hrough good dielectric, good conductor, skin effect, Poynting Theore
Current and current density: Current and Current Density, Continuity of Current, Conductor, Dielectric materials, Properties, and Boundary Conditions, capacitance-parallel plate ,co-axial, spherical. UNIT II [6+4 hours] Introduction to Magnetostatics: Biot-Savart Law, Ampere's circuital law, curl, Magnetic Flux, Flux Density, Scalar and Vector Magnetic Potentials, Force on a moving charge, Force on different current element, Magnetic Boundary Condition. UNIT III [7+6 hours] Time varying fields and Maxwell's equations: Faraday's Law, Displacement Current, Maxwell's Equations in Point and Integral Form, retarded potentials, [7+6 hours] UNIT IV [7+6 hours] Uniform plane waves: Wave equations, solution of wave equation, wave propagation hrough good dielectric, good conductor, skin effect, Poynting Theorem, wave polarization. UNIT V [8+4 hours]
Conductor, Dielectric materials, Properties, and Boundary Conditions, capacitance-parallel plate ,co-axial, spherical. UNIT II [6+4 hours] Introduction to Magnetostatics: Biot-Savart Law, Ampere's circuital law, curl, Magnetic Flux, Flux Density, Scalar and Vector Magnetic Potentials, Force on a moving charge, Force on different current element, Magnetic Boundary Condition. UNIT III [7+6 hours] Time varying fields and Maxwell's equations: Faraday's Law, Displacement Current, Maxwell's Equations in Point and Integral Form, retarded potentials, [7+6 hours] UNIT IV [7+6 hours] Uniform plane waves: Wave equations, solution of wave equation, wave propagation hrough good dielectric, good conductor, skin effect, Poynting Theorem, wave polarization. [8+4 hours]
plate ,co-axial, spherical. [6+4 hours] Introduction to Magnetostatics: Biot-Savart Law, Ampere's circuital law, curl, Magnetic Flux, Flux Density, Scalar and Vector Magnetic Potentials, Force on a moving charge, Force on different current element, Magnetic Boundary Condition. UNIT III [7+6 hours] Time varying fields and Maxwell's equations: Faraday's Law, Displacement Current, Maxwell's Equations in Point and Integral Form, retarded potentials, UNIT IV [7+6 hours] Uniform plane waves: Wave equations, solution of wave equation, wave propagation through good dielectric, good conductor, skin effect, Poynting Theorem, wave polarization. UNIT V [8+4 hours]
UNIT II[6+4 hours]Introduction to Magnetostatics: Biot-Savart Law, Ampere's circuital law, curl, MagneticFlux, Flux Density, Scalar and Vector Magnetic Potentials, Force on a moving charge, Forceon different current element, Magnetic Boundary Condition.UNIT IIIUNIT IIITime varying fields and Maxwell's equations: Faraday's Law, Displacement Current,Maxwell's Equations in Point and Integral Form, retarded potentials,UNIT IVUNIT IVUniform plane waves: Wave equations, solution of wave equation, wave propagationthrough good dielectric, good conductor, skin effect, Poynting Theorem, wave polarization.UNIT VUNIT VUNIT VUNIT VInform plane waves: Wave equations, solution of wave equation, wave propagation
Introduction to Magnetostatics: Biot-Savart Law, Ampere's circuital law, curl, Magnetic Flux, Flux Density, Scalar and Vector Magnetic Potentials, Force on a moving charge, Force on different current element, Magnetic Boundary Condition. UNIT III [7+6 hours] Time varying fields and Maxwell's equations: Faraday's Law, Displacement Current, Maxwell's Equations in Point and Integral Form, retarded potentials, UNIT IV [7+6 hours] Uniform plane waves: Wave equations, solution of wave equation, wave propagation through good dielectric, good conductor, skin effect, Poynting Theorem, wave polarization. UNIT V [8 + 4 hours]
Flux, Flux Density, Scalar and Vector Magnetic Potentials, Force on a moving charge, Force on different current element, Magnetic Boundary Condition. [7+6 hours] UNIT III [7+6 hours] Time varying fields and Maxwell's equations: Faraday's Law, Displacement Current, Maxwell's Equations in Point and Integral Form, retarded potentials, [7+6 hours] UNIT IV [7+6 hours] Uniform plane waves: Wave equations, solution of wave equation, wave propagation through good dielectric, good conductor, skin effect, Poynting Theorem, wave polarization. UNIT V [8+4 hours]
on different current element, Magnetic Boundary Condition. UNIT III [7+6 hours] Time varying fields and Maxwell's equations: Faraday's Law, Displacement Current, Maxwell's Equations in Point and Integral Form, retarded potentials, UNIT IV [7+6 hours] Uniform plane waves: Wave equations, solution of wave equation, wave propagation through good dielectric, good conductor, skin effect, Poynting Theorem, wave polarization. UNIT V [8 + 4 hours]
UNIT III [7+6 hours] Time varying fields and Maxwell's equations: Faraday's Law, Displacement Current, Maxwell's Equations in Point and Integral Form, retarded potentials, UNIT IV [7+6 hours] Uniform plane waves: Wave equations, solution of wave equation, wave propagation through good dielectric, good conductor, skin effect, Poynting Theorem, wave polarization. UNIT V [8 + 4 hours]
UNIT III[7+6 hours]Time varying fields and Maxwell's equations: Faraday's Law, Displacement Current, Maxwell's Equations in Point and Integral Form, retarded potentials,[7+6 hours]UNIT IV[7+6 hours]Uniform plane waves: Wave equations, solution of wave equation, wave propagation through good dielectric, good conductor, skin effect, Poynting Theorem, wave polarization.[8 + 4 hours]
Time varying fields and Maxwell's equations: Faraday's Law, Displacement Current, Maxwell's Equations in Point and Integral Form, retarded potentials, UNIT IV [7+6 hours] Uniform plane waves: Wave equations, solution of wave equation, wave propagation through good dielectric, good conductor, skin effect, Poynting Theorem, wave polarization. UNIT V [8 + 4 hours]
Maxwell's Equations in Point and Integral Form, retarded potentials, UNIT IV [7+6 hours] Uniform plane waves: Wave equations, solution of wave equation, wave propagation through good dielectric, good conductor, skin effect, Poynting Theorem, wave polarization. UNIT V [8 + 4 hours]
UNIT IV[7+6 hours]Uniform plane waves: Wave equations, solution of wave equation, wave propagation through good dielectric, good conductor, skin effect, Poynting Theorem, wave polarization.UNIT V[8 + 4 hours]
Uniform plane waves: Wave equations, solution of wave equation, wave propagationthrough good dielectric, good conductor, skin effect, Poynting Theorem, wave polarization.UNIT V[8 + 4 hours]
through good dielectric, good conductor, skin effect, Poynting Theorem, wave polarization.
UNIT V [8 + 4 hours]
Plane wave reflection and dispersion: Reflection of uniform plane waves at normal incidenc
SWR, Wave reflection from multiple interfaces, plane wave propagation in general directions,
plane wave reflection at oblique incidence angles, total reflection and total transmission of
obliquely incident waves, wave propagation in dispersive media, pulse broadening in dispersiv
media
This course shall include an assessment based on the QEEE Phase IV on 'Electromagnetic
Waves' taught by Prof. Deepa Venkatesh, IIT Madras
Text Books:
1. Engineering Electromagnetics, W H Hayt J A Buck, M Jaleel Akhtar Tata
McGraw-Hill, 8e Edition, 2014.
2. Electromagnetics. Schaum's Outline series Joseph A Ediminister Tata McGraw-Hill.
revised second Edition. 2014.
Reference Books:
1 Electromagnetics with Applications John Krauss and Daniel A Eleisch McGraw
I. ELECTIONIASTICUES WITH ADDITIONS, JOHN KLAUSS AND DATICE A FICINUM WITH A WEITER -

2.	"Field and wave electromagnetic, David K Chary, Pearson Education Asia, Second					
	Edition – 1989, Indian Reprint - 2001					
On-lin	e Reference					
1.	http://nptel.ac.in/courses/108106073/					
2.	http://www.cdeep.iitb.ac.in/nptel/Electrical%20&%20Comm%2	<u>20Engg/</u>				
3.	Transmission%20Lines%20and%20EM%20Waves/Course%20	Objective.htm				
MOO	Cs					
1.	http://emt-iiith.vlabs.ac.in/					
2.	http://emt-iiith.vlabs.ac.in/Experiment.php?code=C001 to C010)				
3.	http://nptel.ac.in/courses/108106073/1 to 108106073/42					
Cour	Course Outcomes					
At the	end of the course, the student will have the					
CO1:	CO1: Ability to define, understand, and explain concepts on					
electro	statics and magnetostatics, Time varying fields and Maxwell's	DO1				
equation	ons, wave propagation in different media, concepts on	FOI				
reflect	on and dispersion of plane waves					
CO2:	Ability to apply various properties/ laws/theorems/ Maxwell's					
equation	equations of electrostatics, magnetostatics to solve/derive examples PO2					
in different media of time varying fields and uniform plane waves.						
CO3: <i>A</i>	CO3: Ability to analyze the given specifications of static and time					
varyin	varying Electric, Magnetic fields, uniform plane waves in various PO3					
config	configurations/ distributions					
CO4 :	Ability to listen and comprehend audio/video lectures related	PO10				
to electromagnetic fields and waves domain						

Assessment Pattern

Continu	Marks 100 (Weightage 50%)	
	Three Internals (Best Two of Three)	60%
Theory Component	Quiz (Best Two of Three)	20%
	QEEE Quiz	10%
Laboratory Component	Quiz based on the Laboratory component	10%
Laboratory Component	(as AAT based on videos from vlab.co.in)	
Seme (This is a writte	Marks 100 (Weightage 50%)	

Course Title		SIMULATION LABORATORY – I				
	(TE only)					
Course Code		15TE3DLSL1	Credits	1	L-T-P-S	0:0:1:0
CIE	100 mar	ks (50% weightage)	SEE 100 marks (50% weightag		eightage)	

Part A

- 1. **Introduction:** The MATLAB Environment, Data addressing, Language fundamentals, Operators, Functions & System objects, Data input & output, Matlab functions
- 2. **Numerical Computation** Matrix arithmetic. Equations & Expressions- Solve simultaneous and differential equations and visualize the same.
- **3. Data Analysis & visualization** Graphical visualization, Plotting tools, Plotting multi graphs, multi curves, pie charts, bar graphs. Labeling and annotation Introduction to functions, function I/O, definitions of functions, scope, advantages, scripts, File I/O, MAT files, excel files, text files, binary files.
- **4. Signal generation and system analysis-** Using MATLAB commands, Solution of mesh current and node voltage equations using matrix operations. Obtain the time response of first and second order systems and the domain specifications. Realize a logical expression using Boolean algebra.

PART – B (Simulink)

1. Create mathematical models of systems, Interact with MATLAB workspace and

obtain the plots .

- 2. Use of Simulink tool box, steps involved in creating system models using the simulink Library, solver selection, creating model hierarchy.
- 3. Obtain the transient response of first order and second order systems. Transfer of variables between Simulink and MATLAB workspace and obtain their plots .
- **4.** Modeling Mechanical /Electrical systems-such as Full wave rectifier design, Op Amp configuration , Digital system etc. (not limited)

Course Outcomes

At the end of the course, the student will have the	
1. Familiarize the MATLAB environment, enter commands,	
Create access, modify, perform calculations, and visualize matrix data and customize plots.	
2. Import data from files write and debug scripts and	

	create functions.	
3.	Graphical Visualization and interpretation of data	
4.	Solve simultaneous and differential equations and visualize the same. Realize a logical expressions.	
5.	Familiarize the SIMULINK environment, Create and simulate a model of a physical system.	

Assessment Pattern

Continu	Marks 100 (Weightage 50%)	
	Part A	40%
Laboratory Component	Part B	40%
Laboratory Component	Open Ended Experiment from either Part- A or Part-B	20%
Seme (This is a laboratory e include ONE exper	Marks 100 (Weightage 50%)	

Course Title		DISCRETE MATHEMATICS AND PROBABILITY				
		(Common to EC, TE, EE, IT, ML)				
Course Code		15MA4GCDMP	Credits	4	L-T-P-S	3:1:0:0
CIE	100 mar	ks (50% weightage)	SEE	, 100 marks (50% weightage)		eightage)

Pre-requisites						
Basic concepts of	f set theory, relation	s and functions. M	latrices. Basic con	cepts of		
probability, addit	ion theorem, condit	ional probability, E	Bayes' theorem, dis	crete random		
variable, Binomia	al distribution		-			
UNIT I				[12 hours]		
SET THEORY	AND RELATIONS	5				
Introduction to se	ets and subsets, oper	rations on sets, laws	s of set theory. Du	ality, Principle of		
duality for the eq	uality of sets. Count	table and uncounta	ble sets. Addition I	Principle.		
Introduction to Relations. Definition. Types of functions, operations on relations, matrix						
representation of relations, composition of relations, properties of relations, equivalence						
relations, partial orders, Hasse diagram, Posets- extremal elements on posets						
(9L+3T)						
Suggested Reading: Some particular functions- Floor and ceiling functions. Projection						
Unary and Binary operations						
Shary and Dinary	operations.					
UNIT II				[10 hours]		

ALGE				~			
	ALGEBRAIC STRUCTURES- Groups, properties of groups. Some particular groups- The						
Klein 4-group, additive group of integers modulo <i>n</i> , multiplicative group of integers mod <i>p</i> ,							
permut	ation grou	ps. Subgroups, Cyc	lic groups, Coset d	ecomposition of a	group,		
homom	orphism,	isomorphism.		-			
	1 /	1			(7L+3T)		
Sugges	ted Readir	ng: Lagrange's theo	rem and its consec	uences	(
	III				[9 hours]		
	u tufni						
dasic basic							
concep	ts: Types (or graphs, order and	size of a graph, in	-degree and out-de	gree, connected		
and dis	connected	graphs, Eulerian gi	aph, Hamiltonain	graphs, subgraphs,	dual graphs,		
isomor	phic graph	s. Matrix represent	ation of graphs: adj	acency matrix, inc	idence matrix.		
Trees: s	spanning t	ree, breadth first sea	arch. Minimal spai	nning tree: Kruskal	's algorithm,		
Prim's	algorithm,	, shortest path-Dijks	stra's algorithm.				
					(7L+2T)		
Sugges	ted Readir	ng: Konigsberg brid	ge problem, Utility	problem.			
00		0 0 0		1			
UNIT	V				[8 hours]		
PROR	ARILITY				[00		
Theorem	tical distri	butions. Poisson dis	stribution Normal	distribution: Error	function Central		
limit th					Tunction, Central		
		1 . 11		· 11 N/ (1 /	1		
	mensional	random variables:	Discrete random va	ariable, Mathemati	cal expectation,		
Covaria	ance and C	Correlation.					
					(6L+2T)		
Suggested Reading: Exponential distribution Uniform distribution Continuous two							
dimensional random variables					nuous two		
dimens	ional rand	ng: Exponential dist om variables.	ribution, Uniform	distribution. Conti	nuous two		
dimens	ional rand	ng: Exponential dist om variables.	ribution, Uniform o	distribution. Conti	nuous two		
dimens	ional rand	ng: Exponential dist om variables.	ribution, Uniform o	distribution. Conti	nuous two [9 hours]		
dimens UNIT	ional rand	ng: Exponential dist om variables.	ribution, Uniform o	distribution. Conti	nuous two [9 hours]		
UNIT MARK	ional rand V COV CHA	ng: Exponential dist om variables. IN AND QUEUIN	ribution, Uniform of the second secon	distribution. Conti	nuous two [9 hours]		
UNIT MARK Markov	ional rand V COV CHA / Chain, P	Ig: Exponential dist om variables. IN AND QUEUIN robability vectors, s	ribution, Uniform of the second secon	distribution. Conti	nuous two [9 hours] , regular stochastic Markov chains		
UNIT MARK Markov Matrice	ional rand V COV CHA V Chain, P es. Higher	Ig: Exponential dist om variables. IN AND QUEUIN robability vectors, s transition probability Concept of Oueue	ribution, Uniform of G THEORY tochastic matrices, ties, stationary distr	distribution. Conti	nuous two [9 hours] , regular stochastic Markov chains.		
UNIT MARK Markov Queuin	ional rand V COV CHA Chain, Pres. Higher g models:	Ig: Exponential dist om variables. IN AND QUEUIN robability vectors, s transition probability Concept of Queue,	ribution, Uniform of G THEORY tochastic matrices, ties, stationary distr M/M/1 queuing sy	distribution. Conti	nuous two [9 hours] , regular stochastic Markov chains.		
UNIT V MARK Markov Queuin	V COV CHA Chain, Pr s. Higher g models:	Ig: Exponential dist om variables. IN AND QUEUIN robability vectors, s transition probability Concept of Queue,	ribution, Uniform of G THEORY tochastic matrices, ties, stationary distr M/M/1 queuing sy	fixed point vector, ribution of regular rstems.	nuous two [9 hours] , regular stochastic Markov chains. (7L+2T)		
UNIT MARK Markov matrice Queuin Sugges	ional rand V COV CHA Chain, P S. Higher g models: ted Readir	Ig: Exponential dist om variables. IN AND QUEUIN robability vectors, s transition probability Concept of Queue, ng: Power supply m	ribution, Uniform of G THEORY tochastic matrices, ties, stationary distr M/M/1 queuing sy odel, Economic co	distribution. Conti fixed point vector, ribution of regular rstems. st profit model.	nuous two [9 hours] , regular stochastic Markov chains. (7L+2T)		
UNIT MARK Markov matrice Queuin Sugges	ional rand V COV CHA Chain, Pres. Higher g models: ted Readir	Ig: Exponential dist om variables. IN AND QUEUIN robability vectors, s transition probabilit Concept of Queue, ng: Power supply m	ribution, Uniform of G THEORY tochastic matrices, ties, stationary distr M/M/1 queuing sy odel, Economic co	distribution. Conti fixed point vector, ribution of regular rstems. st profit model. 2	nuous two [9 hours] , regular stochastic Markov chains. (7L+2T)		
UNIT MARK Markov matrice Queuin Sugges	ional rand V COV CHA Chain, Pr s. Higher g models: ted Readir bility distr	Ig: Exponential dist om variables. IN AND QUEUIN robability vectors, s transition probability Concept of Queue, ng: Power supply m	ribution, Uniform of IG THEORY tochastic matrices, ties, stationary distr M/M/1 queuing sy odel, Economic co <u>Mathematics Lat</u>	distribution. Conti fixed point vector, ribution of regular rstems. st profit model. 2	nuous two [9 hours] , regular stochastic Markov chains. (7L+2T)		
UNIT V MARK Markov matrice Queuin Sugges • Proba • Minim	ional rand V COV CHA Chain, Pr g models: ted Readir bility distr nal spanni	Ig: Exponential dist om variables. In AND QUEUIN robability vectors, s transition probability Concept of Queue, ng: Power supply m fibutions ng tree- Kruskal's a	ribution, Uniform of G THEORY tochastic matrices, ties, stationary distr M/M/1 queuing sy odel, Economic co Mathematics Lat ilgorithm, Prim's a	distribution. Conti fixed point vector, ribution of regular rstems. st profit model. 2 Igorithm.	nuous two [9 hours] , regular stochastic Markov chains. (7L+2T)		
UNIT V MARK Markov matrice Queuin Suggess • Proba • Minim • Shorte	V COV CHA Chain, P Chain, P Chain, P S. Higher g models: ted Readir bility distr nal spanni est Path- E	Ig: Exponential dist om variables. IN AND QUEUIN robability vectors, s transition probability Concept of Queue, ng: Power supply m ributions ng tree- Kruskal's a Dijkstra's algorithm	ribution, Uniform of G THEORY tochastic matrices, ties, stationary distr M/M/1 queuing sy odel, Economic co <u>Mathematics Lat</u> llgorithm, Prim's a	distribution. Conti fixed point vector, ribution of regular rstems. st profit model. 2 Igorithm.	nuous two [9 hours] , regular stochastic Markov chains. (7L+2T)		
UNIT V MARK Markov matrice Queuin Sugges • Proba • Minim • Shorte	ional rand V COV CHA Chain, P S. Higher g models: ted Readir bility distr nal spanni est Path- D	Ig: Exponential dist om variables. IN AND QUEUIN robability vectors, s transition probabilit Concept of Queue, ng: Power supply m fibutions ng tree- Kruskal's a Dijkstra's algorithm	ribution, Uniform of IG THEORY tochastic matrices, ties, stationary distr M/M/1 queuing sy odel, Economic co <u>Mathematics Lat</u> Ilgorithm, Prim's a	distribution. Conti fixed point vector, ribution of regular rstems. st profit model. 2 Igorithm.	nuous two [9 hours] , regular stochastic Markov chains. (7L+2T)		
UNIT V MARK Markov matrice Queuin Sugges • Proba • Minim • Shorte	V COV CHA Chain, Pi s. Higher g models: ted Readin bility distr nal spanni est Path- D	Ig: Exponential dist om variables. IN AND QUEUIN robability vectors, s transition probabilit Concept of Queue, ng: Power supply m fibutions ng tree- Kruskal's a Dijkstra's algorithm	ribution, Uniform of G THEORY tochastic matrices, ties, stationary distr M/M/1 queuing sy odel, Economic co <u>Mathematics Lat</u> llgorithm, Prim's a	distribution. Conti fixed point vector, ribution of regular rstems. st profit model. 2 Igorithm.	nuous two [9 hours] , regular stochastic Markov chains. (7L+2T)		
UNIT V MARK Markov matrice Queuin Suggess • Proba • Minim • Shorte Text B	V COV CHA Chain, Pros. Higher g models: ted Readin bility distr nal spanni est Path- D ooks:	Ig: Exponential dist om variables. IN AND QUEUIN robability vectors, s transition probabilit Concept of Queue, ng: Power supply m fibutions ng tree- Kruskal's a Dijkstra's algorithm	ribution, Uniform of G THEORY tochastic matrices, ties, stationary distr M/M/1 queuing sy odel, Economic co <u>Mathematics Lat</u> llgorithm, Prim's at	distribution. Conti fixed point vector, ribution of regular rstems. st profit model. 2 Igorithm.	nuous two [9 hours] , regular stochastic Markov chains. (7L+2T) Prism Engineering		
UNIT V MARK Markov matrice Queuin Suggess • Proba • Minim • Shorte Text B 1.	V COV CHA Chain, P COV CHA Chain, P S. Higher g models: ted Readir bility distr nal spanni est Path- D ooks: Discrete	Ig: Exponential dist om variables. IN AND QUEUIN robability vectors, s transition probability Concept of Queue, ng: Power supply m ributions ng tree- Kruskal's a Dijkstra's algorithm Mathematical Struc	ribution, Uniform of G THEORY tochastic matrices, ties, stationary distr M/M/1 queuing sy odel, Economic co <u>Mathematics Lat</u> algorithm, Prim's at	distribution. Conti fixed point vector, ribution of regular rstems. st profit model. 2 Igorithm.	nuous two [9 hours] , regular stochastic Markov chains. (7L+2T) Prism Engineering		
UNIT V MARK Markov matrice Queuin Sugges • Proba • Minim • Shorte Text B 1.	V COV CHA Chain, P S. Higher g models: ted Readir bility distr nal spanni est Path- D ooks: Discrete Educatio	Ig: Exponential dist om variables. IN AND QUEUIN robability vectors, s transition probabilit Concept of Queue, ng: Power supply m tibutions ng tree- Kruskal's a Dijkstra's algorithm Mathematical Struct n Series.	ribution, Uniform of G THEORY tochastic matrices, ties, stationary distr M/M/1 queuing sy odel, Economic co <u>Mathematics Lat</u> algorithm, Prim's a ctures, Dr. DSC, 4 th	distribution. Conti fixed point vector, ribution of regular stems. st profit model. 2 Igorithm.	nuous two [9 hours] , regular stochastic Markov chains. (7L+2T) Prism Engineering Khanna		
 Jugges dimens UNIT V MARK Markov matrice Queuin Suggess Proba Minin Shorte Text Bo 1. 2. 	V COV CHA Chain, Pi s. Higher g models: ted Readin bility distr nal spanni est Path- D ooks: Discrete Educatio Higher E	Ig: Exponential dist om variables. IN AND QUEUIN robability vectors, s transition probabilit Concept of Queue, ng: Power supply m tibutions ng tree- Kruskal's a Dijkstra's algorithm Mathematical Struct n Series.	ribution, Uniform of IG THEORY tochastic matrices, ties, stationary distr M/M/1 queuing sy <u>odel, Economic co</u> <u>Mathematics Lak</u> ilgorithm, Prim's a etures, Dr. DSC, 4 th natics, B.S. Grewal	distribution. Conti fixed point vector, ribution of regular rstems. st profit model. 2 Igorithm. ¹ edition, 2011-12, , 43 rd edition, 2013	nuous two [9 hours] , regular stochastic Markov chains. (7L+2T) Prism Engineering , Khanna		
UNIT V MARK Markov matrice Queuin Suggess • Proba • Minim • Shorte Text B 1. 2.	V COV CHA Chain, P S. Higher g models: ted Readir bility distr nal spanni est Path- D ooks: Discrete Educatio Higher E Publisher	Ig: Exponential dist om variables. IN AND QUEUIN robability vectors, s transition probability Concept of Queue, ng: Power supply m fibutions ng tree- Kruskal's a Dijkstra's algorithm Mathematical Structor n Series. Engineering Mathem rs.	ribution, Uniform of IG THEORY tochastic matrices, ties, stationary distr M/M/1 queuing sy <u>odel, Economic co</u> <u>Mathematics Lak</u> algorithm, Prim's a ctures, Dr. DSC, 4 th matics, B.S. Grewal	distribution. Conti fixed point vector, ribution of regular rstems. st profit model. 2 Igorithm. ¹ edition, 2011-12, , 43 rd edition, 2013	[9 hours] , regular stochastic Markov chains. (7L+2T) Prism Engineering , Khanna		
UNIT V MARK Markov matrice Queuin Suggess • Proba • Minim • Shorte Text B 1. 2. 3.	V COV CHA Chain, P S. Higher g models: ted Readir bility distr nal spanni est Path- D ooks: Discrete Educatio Higher E Publisher Discrete	Ig: Exponential dist om variables. IN AND QUEUIN robability vectors, s transition probability Concept of Queue, ng: Power supply m ributions ng tree- Kruskal's a Dijkstra's algorithm Mathematical Struc n Series. Engineering Mathem rs. Mathematics, Seym	ribution, Uniform of G THEORY tochastic matrices, ties, stationary distr M/M/1 queuing sy odel, Economic co <u>Mathematics Lak</u> algorithm, Prim's a ctures, Dr. DSC, 4 th natics, B.S. Grewal	distribution. Conti fixed point vector, ribution of regular stems. st profit model. 2 Igorithm. ¹ edition, 2011-12, , 43 rd edition, 2013 Lipson, 2005, Tat	Is two [9 hours] (1) regular stochastic Markov chains. (7L+2T) Prism Engineering (1) Khanna a Mc Graw Hill.		
UNIT V MARK Markov matrice Queuin Suggess • Proba • Minim • Shorte Text B 1. 2. 3. Refere	V COV CHA Chain, P S. Higher g models: ted Readir bility distr nal spanni est Path- D ooks: Discrete Educatio Higher E Publisher Discrete nce Books	Ig: Exponential dist om variables. IN AND QUEUIN robability vectors, s transition probabilit Concept of Queue, ng: Power supply m tibutions ng tree- Kruskal's a Dijkstra's algorithm Mathematical Struct n Series. Engineering Mathem rs. Mathematics, Seym	ribution, Uniform of IG THEORY tochastic matrices, ties, stationary distr M/M/1 queuing sy odel, Economic co <u>Mathematics Lak</u> algorithm, Prim's a ctures, Dr. DSC, 4 th natics, B.S. Grewall nour Lipschutz. M.	distribution. Conti fixed point vector, ribution of regular stems. st profit model. 2 Igorithm. ¹ edition, 2011-12, , 43 rd edition, 2013 Lipson, 2005, Tat	Is two Is two Is two Is two Is two Is the second se		
 Jugges dimens UNIT V MARK Markov matrice Queuin Suggess Proba Minin Shorte Text B 1. 2. 3. Referend 1. 	V COV CHA Chain, Pi s. Higher g models: ted Readin bility distr nal spanni est Path- D ooks: Discrete Educatio Higher E Publisher Discrete Educatio	Ig: Exponential dist om variables. IN AND QUEUIN robability vectors, s transition probabilit Concept of Queue, ng: Power supply m tibutions ng tree- Kruskal's a Dijkstra's algorithm Mathematical Struct n Series. Engineering Mathem rs. Mathematics, Seym	ribution, Uniform of G THEORY tochastic matrices, ties, stationary distr M/M/1 queuing sy <u>odel, Economic co</u> <u>Mathematics Lak</u> algorithm, Prim's a etures, Dr. DSC, 4 th natics, B.S. Grewal nour Lipschutz. M. natics, B.V. Raman	distribution. Conti fixed point vector, ribution of regular stems. st profit model. 2 Igorithm. ⁴ edition, 2011-12, , 43 rd edition, 2013 Lipson, 2005, Tat a, 2007, Tata Mc. 0	[9 hours] , regular stochastic Markov chains. (7L+2T) Prism Engineering , Khanna a Mc Graw Hill. Graw Hill.		
 Jugges dimens UNIT V MARK Markov matrice Queuin Suggess Proba Minim Shorte Text B 1. 2. 3. Referent 1. 2. 	V COV CHA Chain, P S. Higher g models: ted Readir bility distr nal spanni est Path- D ooks: Discrete Educatio Higher E Discrete nce Books Higher E Discrete	Ig: Exponential dist om variables. IN AND QUEUIN robability vectors, s transition probabilit Concept of Queue, ng: Power supply m fibutions ng tree- Kruskal's a Dijkstra's algorithm Mathematical Struc n Series. Engineering Mathem rs. Mathematics, Seyn S: Engineering Mathem Mathematics. J K S	ribution, Uniform of IG THEORY tochastic matrices, ties, stationary distr M/M/1 queuing sy odel, Economic co <u>Mathematics Lak</u> algorithm, Prim's a etures, Dr. DSC, 4 th natics, B.S. Grewal nour Lipschutz. M. natics, B.V. Raman harma, 3 rd edition.	distribution. Conti fixed point vector, ribution of regular stems. st profit model. 2 Igorithm. ¹ edition, 2011-12, , 43 rd edition, 2013 Lipson, 2005, Tat a, 2007, Tata Mc. 0 2013, Macmillan I	[9 hours] regular stochastic Markov chains. (7L+2T) Prism Engineering , Khanna a Mc Graw Hill. Graw Hill. India Ltd.		

	Giambene, 2005, Springer
4.	Data Networks, Dimitri Bertsekas, Robert Gallager, 2 nd edition, 1992, Prentice India
5.	Schaum's Outline of Probability and Statistics, John J Schiller, Murray R
	Speigel, 4th edition, 2013, Schaum's Outlines
E book	S
1.	Discrete Mathematics for Computer Science, Gary Haggard, John Schlipf, Sue
	Whitesides, Thomson Brooks/Cole, 2006
2.	(1) http://www.khanacademy.org/math/probability/random-variablestopic/
	random_variables_prob_dist/v/random-variables
3.	http://ocw.mit.edu/courses/mathematics/ (online course material)
MOOC	Čs
1.	www.nptelvideos.in/2012/11/discrete-mathematical-structures.html
2.	www.cs.berkeley.edu/~daw/teaching/cs70-s05
3.	https://www.khanacademy.org/

Course Outcomes

At the end of the course, the student will have the

CO-1: Understand the notation of set theory, relations and functions.

CO-2: Construct a Hasse diagram for partial orderings, Use many terms associated with graphs and prove whether two graphs are isomorphic.

CO-3: Obtain the probability of an event using discrete and continuous distributions, including the n-step transition probability.

CO-4: Analyse and classify simple states (recurrent/transient)

CO-5: Understand, derive and apply the properties of the M/M/m queuing model (properties like stationary probability, average waiting and system time, expected number of customers in the queue)

Assessment

- 1. Each unit consists of one full question.
- 2. Each full question consists of three or four subdivisions.
- 3. Five full questions to be answered.
- 4. To set one question each from Units 1, 4, 5 and two questions from Unit 2 and Unit 3.

Questions for CIE (50%) and SEE(50%) will be designed to evaluate the various educational components (Blooms taxonomy) such as:

- Remembering and understanding the course contents (weightage: 40%)
- Applying the knowledge acquired from the course
- (weightage: 35%) (weightage: 15%)
- Designing and analyzing various engineering problems
- Understanding of various system models (weightage: 10%)

Course 7	Fitle	Verilog I	HDL Progra	amming (Only EC)	
Course	Code	15EC4DCHDL Credits 4 L-T-P-S 3:0:1:0				
CIE 100 marks (50% weightage)		SEE	100 mar	ks (50% we	eightage)	

Pre-rec	quisit	es: Digital Elec	tronics			
UNIT I	[[8 hours]	
Overvie	ew of	Digital Design	with Verilog HI	DL:		
Evolutio	on of	computer aid	led digital des	sign, Emergence	e of HDLs, Typical design flow,	
importance of HDLs, Verilog HDL and Design. Methodologies, modules, instances,						
components of simulation, example, basic concepts.						
Module	es and	ports: Module	s, ports, Rules,	Hierarchical Nar	nes.	
Gate L	evel	modeling and	Data flow m	nodeling: Gate	Types, Gate Delays, Examples,	
Continu	lous	assignment, De	elays, Expression	ons, Operators,	Operands, Operator Types and	
Exampl	es.					
UNIT I	Ι				[8 hours]	
Structu	red p	procedures, Pro	cedural assigr	nments, Timing	controls, conditional statement,	
Multi w	/ay br	anching, Loops,	Sequential and	d parallel blocks,	, generate blocks, Examples.	
Tasks a	nd Fu	inctions: Differe	ence between [·]	Tasks and Funct	ions, Tasks, Functions, Automatic	
Functio	ns, Co	onstant Functio	n, Signed Funct	tions.		
UNIT I	III				[8 hours]	
Logic sy	nthe:	sis, Verilog HDL	Synthesis, Inte	rpretation of Ve	rilog Constructs, Synthesis Design	
flow, ex	kampl	es, verification	of the gate leve	el netlist, modeli	ing tips for logic synthesis.	
Timing	and	delays: Types	of delay mo	dels, modeling,	timing checks and delay back	
annota	tion.					
UNIT I	IV				[7 hours]	
Introdu	ction	, basic concepts	, Digital design	with FPGAs, FPG	GA based system design.	
FPGA F	abrics	s: FPGA archited	ctures, SRAM b	ased FPGAs, Ch	ip I/O and Circuit design of FPGA	
fabrics,	Arch	itecture of FPGA	A fabrics, SPAR	TAN III and abov	е.	
UNIT V	V				[8 hours]	
Moore	and	Mealy machine	es, definition	of state machir	nes, state machine as sequence	
control	ler, D	esign of state	machines, sta	te table, state	assignment, transition excitation	
table, lo	ogic re	ealization, Desig	gn example- Se	rial adder.		
Text B	ook:					
1.	Sami	r Palnitkar, "VE	RILOG HDL,A G	uide to digital d	esign and synthesis", 2nd edition,	
	Pear	son education,	2003.			
2.	Way	ne Wolf, "FPGA	based system	design", Reprint	2005, Pearson Education	
Refere	nce B	ooks:				
1.	Step	hen Brown and	ZvonkoVranesi	c, "Fundamental	s of Digital logic with VERILOG	
	desig	gn" <i>,</i> TMH.				

E Boo	ks					
1.	http://www.eng.auburn.edu/~strouce/class/elec42	200/Overview%20of%20Verilog.pd				
	f					
2.	Verilog HDL: A Guide to Digital Design and Syn	thesis, Volume 1 By Samir				
	Palnitkar at https://books.google.co.in/books					
MOO	Cs					
1.	http://www.xilinx.com/training/languages/basic-h	ndl-coding-techniques-video.htm				
2.	http://www.nitroindia.org/training.html?gclid=CM	MzC_9S-4cYCFafLtAodkCEOSA				
3.	http://www.eetimes.com/lecture-calendar.asp?cid	=902#lecture_track_cgid_3				
Cours	se Outcomes					
At the	end of the course, the student will have the					
1. Den	nonstrate the basic knowledge of HDL.	DO1				
	-	POI				
2. Den	nonstrate the ability to apply HDL in modelling					
com	binational and sequential circuits and to write a					
VEI	RILOG test bench to test VERILOG modules.					
3. Use	EDA tools in digital circuit modelling,					
sim	ulation, functional verification.					
4. Targ	4. Target and synthesize a VERILOG design to FPGA					
boar	rd.					
5. Des	ign state machines to control complex systems					

Assessment Pattern

Continu	ous Internal Assessments	Marks 100 (Weightage 50%)
Theory Component	Three Internals (Best Two of Three)	40%
Theory Component	Quiz	10%
Laboratory Component	Laboratory component	40%
Laboratory Component	Open-Ended Experiment	10%
Seme (This is a writte	ester End Examination en examination for THREE hours)	Marks 100 (Weightage 50%)

Course Title	ANALOG INTEGRATED CIRCUITS					
	(Common to EC, TE, EE, IT, ML)					
Course Code	15ES4GCAIC	Credits	6	L-T-P-S	3:0:1:2	

Electronics and communication Engineering **2015**

CIE	100	marks (50% weig	htage)	SEE	100 marks (5	50% weightage)		
Pre-req	Pre-requisites Elements of Electronics Engineering							
	Analog Microelectronics							
UNIT I						[8 hours]		
Operati	onal Am	plifier Character	istics:					
Introduc	tion, DC	Characteristics, A	C Charac	teristics, A	Analysis of data sl	neets of an OP-		
AMP								
Operati	onal Am	plifier Applicatio	ns:					
Review	of basic	Opamp applicatio	ons, Instru	imental A	mplifier, V to I a	nd I to V		
converte	r, Op-am	p circuits using Di	iodes – H	alf wave 1	ectifier, Full wave	e rectifier,		
Sample	and hold	circuit, Multiplier	and Divid	der.				
UNIT II						[7 hours]		
Compai	ators an	d Waveform Gen	erators:	(C	-1			
Introduc	tion, con	iparator, Regenera	tive comp	parator (So	chmitt Trigger), S	quare wave		
generato	r (Astabl	e Multividrator),	wonostat	only)	horator, Triangula	ar wave		
	и. (КС а П	and wenn bridge os		Jilly)		[7 hours]		
Voltago	Dogulat	ore:				[/ nours]		
Introduc	tion Seri	urs. les on-amn regulat	or IC Vo	ltage regu	lators 723 Gener	al nurnosa		
Regulato	or Switel	hing Regulator		mage legu	iators, 725 Gener	ai puipose		
	ilters.	ling Regulator.						
Introduc	tion RC	' Active Filters Fit	rst order l	ow pass fi	ilter second order	active filter High		
order lov	v pass fil	ter. High pass acti	ve filter	All pass fi	lter-phase shift le	ad and lag circuit		
UNIT I	V				iter pluse shift le	[7 hours]		
Timers	<u>.</u>							
Introduc	tion to 5:	55 timer. Descripti	on of Fur	nctional d	iagram, monostab	ble operation.		
astable of	peration	•			,	· · · · · · · · · · · · · · · · · · ·		
Phase lo	cked loo	ps : Introduction, B	Basic princi	iples, phas	e detector/compara	ator, voltage		
controlle	d oscillato	or (VCO)			•			
UNIT V						[7 hours]		
D-A and	I A-D Co	onverters:						
Introduc	tion, Bas	ic DAC Technique	es- Weigh	nted Resis	tor DAC, R-2R La	adder DAC.		
A-D Co	nverters:	Direct type ADCs	s- The par	rallel Com	parator (Flash) A	/D converter,		
Successi	ve Appro	oximation Convert	er, DAC	ADC Spe	cification, Sigma	– delta ADC		
Text Bo	ok:							
1.	1. Linear Integrated Circuits-D.Roy Choudhury & Shail B.Jain							
	(New age Publication)							
2.	2. Op-Amps and Linear Integrated Circuits- Ramakanth A.Gayakwad,4th ed,PHI							
Referen	ce Books	5:						
1.	Linear Ir	tegrated Circuits-S	S.Salivah	anan & V	S.Kanchana Bhaa	askaran (Tata		
	McGraw	-Hill Publication)						
2.	Opamps	and Linear ICs-Da	avid A.Be	ell (Prentio	ce-Hall Publication	ons)		
E Books	<u>}</u>							
1.	http://freev	videolectures.com/Co	ourse/2321	/Electronics	-tor-Analog-Signal-F	Processing-L		

2.	http://freevideolectures.com/Course/2322/Electronics-for-Analog-Signal-F	Processing-I					
MOOO	Čs						
1.	http://ocw.tudelft.nl/courses/microelectronics/analog-integrated-circuit-						
	design/course-home/						
2.	Introductory Analog Electronics Laboratory (Spring 2007)	by MIT Open					
	Courseware Reviews and Ratings						
3.	http://www.pannam.com/blog/free-resources-to-learn-elect	trical-					
	engineering/						
Cours	e Outcomes						
At the	end of the course, the student will have the						
CO1: A	bility to define , understand and explain the DC and AC performance	PO1					
character	istics of Opamp, applications of Opamp, working of 555 timer and voltage						
regulator	S.						
CO2:	Ability to apply the knowledge of KVL and KCL to obtain voltage	PO2					
/current/	waveform at different points in analog electronic circuits such as Opamp						
ampinier	s, recimers, miters, waveform generators, PLL, data converters, regulators,						
COmpara	Nois, 555 timers	PO3					
roctifiers	filters waveform generators PLL data converters regulators comparators	105					
555 tim	ers etc to obtain voltage /current/waveform at different points that meet						
desired s	pecifications.						
CO4:Ab	ility to design analog electronic circuits such as Opamp amplifiers.	PO4					
rectifiers	, filters, waveform generators, PLL, data converters, regulators, comparators						
,555 time	ers etc. that meet desired specifications						
CO5: A	bility to conduct experiments using analog electronic components,	PO1, PO2					
electroni	electronic instruments to function as amplifiers, comparators, rectifiers, filters, PO3, PO4						
astable a	nd monostable circuits using 555, data converters	PO6,PO9					
CO6: A	bility to engage in self-study/independent study to formulate, design,	PO3 PO4					
impleme	nt, analyze and demonstrate an application using analog electronic	PO6, PO9, PO10					
compone	nts/ASLK/Multisim through a mini-project and submit the mini-project	PO12,					
and mak	e an oral presentation of the work	- 7					

Assessment Pattern

Continu	Marks 100 (Weightage 50%)			
Theory Component	Three Internals (Best Two of Three)	40%		
Theory Component	Quiz (Best Two of Three)	10%		
Laboratory Component	Laboratory component	30%		
	Seminar (Oral presentation with report)	10%		
Self-Study Component	Conduction and demonstration of an	10%		
	Open-Ended Experiment			
Seme (This is a writte	Marks 100 (Weightage 50%)			
	(This is a written examination for TTIREE hours)			

Course Title	MICROCONTROLLERS
	(Common to EC, TE, EE, IT, ML)

Electronics and communication Engineering **2015**

Course	Code	15ES4GCMCS	Credits	6	L-T-P-S	3:0:1:2
CIE	100 marks (50% weightage)		SEE	100 mar	ks (50% we	eightage)

Pre-requisites							
Elements of Electronics Engineering							
		D	igital El	ectronics			
UNIT	[[7 hours]
INTRO	DUCTIO	ON TO	MICR	OCOMPUTER	AND	MICROC	CONTROLLER:
Introduction to Microprocessors, Internal organization of computer- Bus Structures,							
Harvar	d & Von-l	Neumann (CPU arc	chitecture, The 80)51 Arch	itecture: I	ntroduction, 8051
Microc	ontroller I	Hardware,	Input / C	Output Pins, Exte	rnal Mer	nory Interfa	ce.
UNIT	ΙΙ						[8 hours]
MICR	OCONTE	ROLLER	PROGE	RAMMING			
Instruct	tion set are	chitecture-	RISC &	CISC CPU Arch	itectures	, Pipelining	, Execution of an
instruct	tion, Addr	essing Mo	des and	Instruction set. E	xample l	Demonstrati	ion using 8051
instruct	tion set, D	ata transfe	r instruc	ctions, Arithmetic	instructi	ons, Logica	l instructions,
Branch	ing and Su	ubroutines,	Exam	ple programs.			
UNIT	III						[8 hours]
CONC	EPTS OF	F EMBED	DED '	C' PROGRAMM	/ING.:		
Data ty	pes, exam	ples in 80	51 C, pi	rogram structures	, logical	operations,	Memory and I/O
access,	Programm	ning peripl	nerals (E	Examples: Timer	/ Counte	r), Program	ming serial
commu	inication (serial data	input/ou	utput) - example	program	s using 805	1
UNIT	IV		_				[7 hours]
INTEF	RUPTS	AND INT	ERRUP	T PROGRAMN	/ING:		
Concep	ot of Intern	rupts, Inter	rupts in	8051. Program	ming Tir	ner Interrup	ots, Programming
Externa	al Hardwa	re Interrup	ts, Prog	ramming Serial C	Communi	cation Inter	rupts
UNIT Y	V			_			[6 hours]
INTER	RFACING	AND AP	PLICA	TIONS:			
Interfac	cing 8051	to LCD, D	AC, AL	OC Stepper motor	interfac	ing. Applica	ations of
microc	ontrollers					• • • •	
LABO	RATORY	EXPER	MENT	S:			
Part A:	Data Trai	nsfer, Logi	cal-Byte	e/Bit manipulatio	ns, Jump	and Subrou	tine Calls using
Asseml	bly langua	ge, counte	rs and d	elay generation u	sing time	ers, Embedo	led C programs
Part B:	Interfacin	g: LCD D	isplay, S	Stepper motor cor	ntrol, log	ical interfac	e, 7 segment
interface, DAC and keyboard.							
Text Books:							
1.	"The 80	51 Microco	ontroller	Architecture, Pre	ogrammi	ng & Appli	cations",
Kenneth J. Ayala 2e, Thomson Learning 2005							
2. "The 8051 Microcontroller and Embedded Systems – using assembly and C",							
Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay;							
	PHI, 200)6					•
Reference Books:							
1.	'Comput	ter Organiz	ation ar	nd Architecture'.	Carl Har	nacher, Mc	GrawHill, 5th
	Edition	U		-)		, -	,
2	http://cnx.org/contents/dadb4fd5-8390-4323-a056-						

f6381587e89a@1/Microcontroller%288051%29-Lab					
E Book	S				
1.	nptel.ac.in/courses/Webcourse-contents/IIT/microcontrollers				
2.	http://freevideolectures.com/Course/3018/Microprocessors-and-	Microcontrollers			
MOOO	Čs				
1.	Embedded Systems - Shape The World-				
	https://www.edx.org/course/embedded-systems-shape-world-uta	ustinx-ut-6-02x			
2.	Electronic Interfaces: Bridging the Physical and Digital Wor	lds-			
	https://www.edx.org/course/electronic-interfaces-bridging-physic	cal-uc-			
	berkeleyx-ee40lx-0				
Cours	e Outcomes				
At the	end of the course, the student will have the				
CO1: <i>A</i>	Ability to understand and explain computer based and memory				
based a	rchitecture, microcontroller, pipelining, addressing modes, data	PO1			
types in	Embedded C, basics of serial communication, timer	101			
configu	ration and interrupt handling				
CO2: <i>A</i>	Ability to calculate instruction execution time, delay, baud rate,				
and wr	ite assembly and C Code, identify the timer mode, serial	PO2			
commu	nication mode and interrupt priorities				
CO3: <i>A</i>	Ability to debug / analyze the code in assembly as well as	PO3			
Embed	ded C	105			
CO4:	Ability to identify the IDE to conduct experiments by simulating,	PO6			
debuggi	debugging and executing the assembly and Embedded C code				
CO5: <i>A</i>	CO5: Ability to engage in independent study / self-study by				
prepari	preparing a 5 min video on 'Applications of Microcontrollers for PO10 PO12				
health,	health, safety, environment and society'				
CO6:	Ability to work as an individual and as a team-member to	PO8, PO9.			
design,	formulate and implement experiments using microcontroller	PO10. PO12			
through	conduction of an Open-Ended experiments				

Assessment Pattern

Continu	Marks 100 (Weightage 50%)	
The same Common and	Three Internals (Best Two of Three)	40%
Theory Component	Quiz (Best Two of Three)	10%
Laboratory Component	30%	
	Seminar (Oral presentation with report)	10%
Self-Study Component	Conduction and demonstration of an	10%
	Open-Ended Experiment	
Seme (This is a writte	Marks 100 (Weightage 50%)	

Course 7	ſitle	SIGNALS AND SYSTEMS (EE/EC/IT/ML)				
Course	Code	15ES4GCSAS Credits 4		L-T-P-S	3:1:0:0	
CIE 100 marks (50% weightage)		SEE	100 mar	ks (50% we	eightage)	

Pre-re	equisites					
	I	Basic Electronics,	Network Analysis	, Engineering Math	nematics	
UNIT	Ί				[10 hours]	
INTRODUCTION						
Defini	Definitions of a signal and a system, classification of signals, basic Operations on signals,					
elementary signals, Systems viewed as Interconnections of operations, properties of systems.						
UNIT	' II				[10 hours]	
TIME	E-DOMAI	N REPRESENT	TATIONS FOR	LTI SYSTEMS:	Convolution, impulse	
respon	nse represe	entation, Convolu	tion Sum and Co	nvolution Integral,	Properties of impulse	
respon	ise represe	entation, Differen	tial and difference	equation Represen	tations, Block diagram	
repres	entations.			1 1		
UNIT	' III				[08 hours]	
FOU	RIER SE	RIES: Introduct	ion, Discrete tim	e and continuous	s time Fourier series	
(derivation)	ation of tr	igonometric Four	ier series represent	ation are excluded), Properties of Fourier	
series	(No proof), Applications of	Fourier series. San	mpling Theorem an	d Reconstruction.	
UNIT	'IV				[10 hours]	
FOU	RIER SE	RIES: Introduct	ion, Discrete tim	e and continuous	s time Fourier series	
(derivation)	ation of tr	igonometric Four	ier series represent	ation are excluded), Properties of Fourier	
series	(No proof), Applications of	Fourier series. Sa	mpling Theorem an	d Reconstruction.	
UNIT	V				[10 hours]	
Z-TR	ANSFOR	MS: Introduction	on. Z – transform	, properties of RC	DC & Z – transforms	
Invers	e Z–transt	forms, unilateral	Z- Transform, and	alysis of LTI Syste	ems and application to	
solve	Difference	e equations.		5	11	
Text I	Books:	-				
1	Simon H	aykin and Barry	Van Veen "Sign	als and Systems",	John Wiley & Sons,	
•	2001.Rep	orint 2002	C	2	•	
2	Alan V O	ppenheim, Alan S	S. Willsky and A F	lamid Nawab, "Sig	nals and Systems"	
•	Pearson E	Education Asia / F	HI, 2nd edition, 19	997. Indian Reprint	2002	
Reference Books:						
1 H. P Hsu, R. Ranjan, "Signals and Systems", Scham's outlines, TMH, 2006						
•						
2 B. P. Lathi, "Linear Systems and Signals", Oxford University Press, 2005						
•		· ·	-	-		
3 Ganesh Rao and SatishTunga, "Signals and Systems", Sanguine Technical Publishers,						
2004						
E Books/SIGNALS AND SYSTEMS VIDEO LINKS						
1	NPTEL le	ecture Video on S	ignals and System	s by Prof. S.C.Dutt	a Roy,	
•	http://ww	w.satishkashyap.	com/2012/04/iit-vi	deo-lectures-on-sig	nals-and.html	
	2 NPTEL lacture Video on Signals and Systems by Prof. T.K. Bosy. UT Kharagpur					

	http://www.nptel.ac.in/courses/108105065/				
. 3	NPTEL on line Course Modules–IIT Bombay –Signals and Sy	stems			
	http://www.cdeep.jitb.ac.in/nptel/Electrical%20&%20Comm%	20Engg/Signals%20and			
	%20System/TOC-M1 html	<u>lobing; orginals; o lound</u>			
MOC	DCs				
1	https://www.edx.org/course/signals-systems-part-1-iitbombays	-ee210-1x-0			
-					
2	https://www.edx.org/course/signals-systems-part-2-iitbombays	x-ee210-2x-0			
Cou	rse Outcomes				
At th	e end of the course, the student will have the				
CO1 :	Ability to define , understand , and explain continuous time				
signal	s, systems, their time and frequency domain representation,	PO1			
equal	izers, ideal and physically realizable filters				
CO2 :	Ability to classify signals and systems, obtain the output for				
LTI s	ystems using the time domain and the frequency domain				
repres	sentation, obtain the frequency domain representation for	PO2			
contin	nuous time signals, obtain the transfer function, pole-zero plot				
of the	of the Butterworth filters				
CO3 :	CO3: Ability to analyze the given specifications for physical				
realiz	realizability, stability, analyze the designed system (compare with PO3				
the desired specifications), analyze systems					
CO4 :	Ability to design equalizers for a given system, design filters	PO/			
for gi	ven specifications	r 04			
Asses	sment Pattern				

Continu	Marks 100 (Weightage 50%)	
Theory Component	Three Internals (Best Two of Three)	80%
Theory Component	Blended MOOCs (IITBX) Quiz	20%
Semester End Examination (This is a written examination for THREE hours)		Marks 100 (Weightage 50%)

Course 7	ſitle	TECHNICAL WRITING (EC only)					
Course	Code	15EC4DCTEW Credits 1 L-T-P-S 0:0:1:					
CIE	100 mar	ks (50% weightage)	SEE				
Course Description This course provides the student with a working knowledge of various types of technical communication, including the writing of proposals, instructions, and reports for both the specialist and the non-specialist.							

CONTENTS TO BE PUBLISHED SHORTLY

MANDATORY MATHEMATICS COURSES FOR LATERAL ENTRY STUDENTS

Course Title	Mathematics-I (All Branches)					
Course Code	15MA3IMMAT	Credits	0 1	L-T-P-S	0:0:0:0	
CIE	10	0 marks (10	0% weightage)		
Pre-requisites Basic concepts of Trig	gonometry, Trigonome	tric formula	s, concept of o	lifferenti	ation, conce	
INIT I					[0 hou	
DIFFERENTIAL AL	ND INTEGRAL CAL					
List of standard de Differentiation of pro and Maclaurin's serie integration by parts T	erivatives including l oduct of two functions as expansion for function of finite integrals – prof	nyperbolic using Leib ons of singl-	functions, ru nitz rule (dire e variable. Li	les of ect probl st of star	differentiation ems). Taylo adard integration (71 + 2	
UNIT II					[10 hou	
POLAR COORDIN	ATES AND PARTIA	L DERIVA'	TIVES			
polar curves. Polar co polar curves. Partial d Taylor's and Maclaur properties (without pr	ifferentiation. Total dif in's series expansion fo oof) – Problems.	fferentiation or functions	-Composite and tanget of two variable	nd Implic les. Jacob	tit functions. bians and the (7L+3)	
UNIT III					[08 hou	
FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONS Introduction to first order differential equations. Linear equation and its solution. Bernoulli's equation and its solution. Exact differential equation and its solution. Orthogonal Trajectories. (6L+2T)						
UNIT IV					[9 hou	
SECOND AND I	HIGHER ORDER OF	RDINARY I	DIFFERENT	IAL EQ	UATIONS	
Ordinary differential equations, non-homo type f (x) = e^{ax} , sin(ax parameters. Cauchy's	equations with constant geneous differential eq), cos(ax), x ⁿ , e ^{ax} sin(ba and Legendre differen	t coefficients uations – Pa x), e ^{ax} cos(by tial equation	s: Homogeneo articular integr (). Method of as.	ous differ al for fur variation	ential actions of the of (7L+2	
LINIT V					[8 hours]	
VECTOR CALCUL (OCC) Recapitulation of scal	US AND ORTHOGO ars, vectors and operation	NAL CUR	VILINEAR (COORD	nd vector	

operator. Vector identities (without proof). Cylindrical and Spherical polar coordinate

system	s. Expressing a vector point function in cylindrical and spherical systems. Expressions
for grad	dient, divergence, curl and Laplacian in OCC. (6L+2T)
	•
Text B	ooks:
1.	Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Precise Textbook
	series, Vol. 1 and Vol. 2, 10 th edition, 2014, Wiley- India.
2.	Higher Engineering Mathematics, B.V. Ramana, 7 th reprint, 2009, Tata Mc. Graw Hill.
Refere	nce Books:
1.	Higher Engineering Mathematics, B.S. Grewal, 43 rd edition, 2014, Khanna Publishers
2.	Advanced Engineering Mathematics, 4th edition, 2011, by Dennis G. Zill and
	Cullen, Jones and Bartlett India Pvt. Ltd.
E Bool	ζS
1.	Engineering Mathematics, K. A. Stroud, Dexter J. Booth, Industrial Press, 2001
	http://books.google.co.in/books/about/Engineering_Mathematics.html?id=FZncL-
	<u>xB8dEC&redir_esc=y</u> .
2.	Advanced Engineering Mathematics, P. V. O'Neil, 5 th Indian reprint, 2009, Cengage learning India Pvt. Ltd.
3.	http://ocw.mit.edu/courses/mathematics/ (online course material)
MOO	Cs
1.	https:// www.khanacademy.org/Math
2.	https:// www.class-central.com/subject/math (MOOCS)
3.	E-learning: <u>www.vtu.ac.in</u>
Cours	se Outcomes
At the	end of the course, the student will have the
CO-1:	Understand the basic concepts of differentiation and integration.
CO-2:	Apply the concepts of polar curves and multivariate calculus.
CO-3:	Apply analytical techniques to compute solutions of first and higher order ordinary
differer	ntial equations.
CO-4:	Apply techniques of vector calculus to engineering problems.
CO-5:	Comprehend the generalization of vector calculus in curvilinear coordinate system.

Course Title	Mathematics-II (All Branches)					
Course Code	15MA4IMMAT	Credits	0	L-T-P-S	0:0:0:0	
CIE	100 marks (100% weightage)					

Pre-requisites

Basic concepts of Trigonometry Trigonometric formulas concept of differentiation concept						
of integ	pration	i ingonometry, i	ingonometrie form	ulus, concept of ul	norentiation, concept	
	Jution					
UNIT	[[8 hours]	
LAPL	ACE TRA	ANSFORMS				
La	place tran	sforms of standar	d functions. Propert	ties and problems.	Laplace Transform of	
Periodic functions with plotting. Unit step function						
		F	-8 F			
					(6L+2T)	
					()	
UNIT	II				[9 hours]	
INVEF	RSE LAP	LACE TRANSF	ORMS			
Inverse	Laplace	transforms of stan	dard functions. Pro	perties and problem	ms. Solution of ODE-	
Initial a	and Bound	dary value Proble	ms.			
		-			(7L+2T)	
UNIT	III				[11 hours]	
DOUB	LE INTE	EGRAL				
Evalua	tion of do	uble integral. Cha	inge of order of inte	gration. Change of	f variables to polar	
coordir	nates. App	olication: Area.				
					(8L+3T)	
UNIT	IV				[8 hours]	
TRIPL	E INTE	GRALS AND IM	IPROPER INTEG	RALS		
Evalua	tion of tri	ple integral. Appli	ication: Volume. Ga	amma and Beta fur	nctions-definition	
Relatio	n between	n Gamma and Bet	a functions. Propert	ties and Problems.		
					(6L+2T)	
UNIT	V				[8 hours]	
VECT	OR INTH	EGRATION				
Line in	tegral. Gr	een's theorem. St	okes' theorem. Gau	ss divergence theo	orem.	
					(6L+2T)	
Text B	ooks:					
I. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Precise Textbook						
series, Vol. 1 and Vol. 2, 10 th edition, 2014, Wiley- India.						
2.	2. Advanced Engineering Mathematics, 4th edition, 2011, by Dennis G. Zill and					
Cullen, Jones and Bartlett India Pvt. Ltd						
Refere	Reference Books:					
1.	Higher I	Engineering Math	ematics, B.S. Grew	al, 43^{rd} edition, $\overline{20}$	14, Khanna	
	Publishe	ers.				
2.	Higher	Engineering Math	nematics, B.V. Ran	nana, 7 th reprint, 2	2009, Tata Mc. Graw	

	Hill.
E Books	
1.	(1) Engineering Mathematics, K. A. Stroud, Dexter J. Booth, Industrial Press, 2001
	http://books.google.co.in/books/about/Engineering_Mathematics.html?id=FZncL-
	<u>xB8dEC&redir_esc=y</u> .
2.	Advanced Engineering Mathematics, P. V. O'Neil, 5 th Indian reprint, 2009, Cengage
	learning India Pvt. Ltd.
3.	http://ocw.mit.edu/courses/mathematics/ (online course material)
MOOCs	
1.	https:// www.khanacademy.org/Math
2.	https:// www.class-central.com/subject/math (MOOCS)
3.	E-learning: <u>www.vtu.ac.in</u>
Course Outcomes	
At the end of the course, the student will have the	
CO-1:	Use Laplace transforms to solve differential equations.
CO-2: Apply double integrals to compute areas.	
CO-3: Learn to use triple integrals in computing volumes.	
CO-4: Use Gamma and Beta functions to evaluate integrals.	
CO-5: Ability to understand the use of integral calculus in scalar and vector fields.	