(2) 31

Identify the wrong statement from the following: (1) If A and B are two sets, then $A - B = A \cap \overline{B}$

(3) If A and B are two sets, then $\overline{A} \cup \overline{B} = \overline{A} \cap \overline{B}$ (4) If A, B and C are sets, then $A \cap B \cap \overline{C} \subseteq A \cap B$

both cheese and apples, then we have

(2) If A, B and C are sets, then (A - B) - C = (A - C) - (B - C)

1.

2.

3.

NIMCET 2010

MATHEMATICS

A survey shows that 63% of the Americans like cheese where as 76% like apples. If x% of the Americans lie

(4)62

How many proper subsets of {1, 2, 3, 4, 5, 6, 7} contain the numbers 1 and 7?

	(1) $x \ge 39$	(2) $x \le 63$	(3) $39 \le x \le 63$	(4) None of these				
4.	Set A has 3 eleme	ents and set B has	4 elements. The number	of injection that can be defined from \boldsymbol{A} to \boldsymbol{B} is				
	(1) 144	(2) 12	(3) 24	(4) 64				
5.	If $(1 + x)^n = a_0 + a$	$a_{1}x + a_{2} x^{2} + \dots a_{n} x^{n},$	then $\left(1 + \frac{a_1}{a_0}\right)\left(1 + \frac{a_2}{a_1}\right)\left(1 + \frac{a_2}{a_1}\right)$	$-\frac{a_3}{a_2}\right)\left(1+\frac{a_n}{a_{n-1}}\right)$				
	$(1) \frac{n^n}{n!}$	$(2) \frac{(n+1)^n}{n!}$	(3) $\frac{n^{n+1}}{(n+1)!}$	(4) $\frac{(n-1)^n}{n!}$				
6.	getting points 0 independent, the	, 1 and 2 are 0. probability of india	45, 0.05 and 0.50 response getting at least 7 points					
	(1) 0.8750	(2) 0.0875	(3) 0.0625	(4) 0.0250				
7.	4	2	2	l and tail alternatively is				
	(1) $\frac{1}{11}$	(2) $\frac{2}{3}$	(3) $\frac{3}{4}$	$(4) \frac{1}{4}$				
8.				wing up a head, are tossed. If $0 and if f heads on exactly 51 coins then the value of p,$				
	(1) $\frac{1}{2}$	(2) $\frac{49}{101}$	(3) $\frac{50}{101}$	$(4) \ \frac{51}{101}$				
9.	In a Poisson distr	ribution if $P[X = 3]$	$=\frac{1}{4}P[X=4]$ then $P[X=5]$	$S_{ij} = kP[X = 7]$ where k equals to				
	(1) $\frac{1}{7}$	(2) $\frac{21}{128}$	100	(4) $\frac{21}{256}$				
10.	The average marks per student in a class of 30 students were 45. On rechecking it was found that marks had been entered wrongly in two cases. After correction these marks were increased by 24 and 34 in the two cases. The correct average marks per student are							
	(1) 75	(2) 60	(3) 56	(4) 47				
11.	The value of 'a' for which the system of equations $a^3 x + (a + 1)^3 y + (a + 2)^3 z = 0$ $ax + (a + 1) y + (a + 2) z = 0$ $x + y + z = 0$ has a non zero solution, is							
	(1) 1	(2) 0	(3) -1	(4) none of these				

12.		$9X^3 + 35X^2 - X + 4$ (2) -160	for $X = -5 + 2\sqrt{-4}$ is (3) 160	(4) –164
13.	If $y = a \log x + bx^2$	2 + x has its extrem	num value at $x = -1$ a	and $x = 2$, then
	(1) $a = 2$, $b = -1$	(2) $a = -2$, $b = \frac{1}{2}$	(3) $a = 2$, $b = -\frac{1}{a}$	(4) a = 1,

14. If a, b, c are in A.P., p, q, r are in H.P. and ap, bq, cr in G.P., then $\frac{p}{r} + \frac{r}{p}$ is equal to $(1) \frac{a}{c} - \frac{c}{a} \qquad (2) \frac{a}{c} + \frac{c}{a} \qquad (3) \frac{b}{q} - \frac{a}{p} \qquad (4) \frac{b}{q} + \frac{a}{p}$

```
15. If a \neq p, b \neq q, c \neq r and \begin{bmatrix} p & b & c \\ a & q & c \\ a & b & r \end{bmatrix} = 0, then the value of \frac{p}{p-a} + \frac{q}{q-b} + \frac{r}{r-c} is

(1) 0 (2) 1 (3) -1 (4) 2
```

16. Let $\omega \neq 1$ be a cube root of unity and $i = \sqrt{-1}$. The value of the determinant $\begin{vmatrix} 1 & 1+i+\omega^2 & \omega \end{vmatrix}$

$$\begin{vmatrix} 1 & 1+i+\omega^2 & \omega \\ 1-i & -1 & \omega^2-1 \\ -i & -i+\omega-1 & -\omega^3 \end{vmatrix}$$
 is
$$(1) \ 0 \qquad (2) \ \omega \qquad (3) \ \omega^2 \qquad (4) \ 1+\omega^2$$

17. The point (4, 1) undergoes the following three transformation successively:

(i) Reflection about the line y = x

(ii) Transformation through a distance 2 unit along the positive direction of x-axis

(iii) Rotation through an angle of $\frac{\pi}{4}$ about the origin in the anticlockwise direction. The final position of the point is given by the coordinates.

$$(1)\left(\frac{-1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right) \qquad (2)\left(\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right) \qquad (3) \ (-2, 7\sqrt{2})$$

18. If the two pair of lines X^2 - $2mxy - Y^2 = 0$ and X^2 - $2nxy - Y^2 = 0$ are such that one of them represent the bisecter of the angles between the other, then

(1) mn+1=0 (2)mn-1=0 (3)
$$\frac{1}{m} + \frac{1}{n} = 0$$
 (4) $\frac{1}{m} - \frac{1}{n} = 0$

19. The circle $x^2 + y^2 = 9$ is contained in the circle $x^2 + y^2 - 6x - 8y + 25 = c^2$ if (1) c = 2 (2) c = 3 (3) c = 5 (4) c = 10

20. If any tangent to the ellipse $\frac{X^2}{a^2} + \frac{Y^2}{b^2} = 1$ intercepts equal length l on the axes, then l = 1

(1)
$$a^2 + b^2$$
 (2) $\sqrt{a^2 + b^2}$ (3) $(a^2 + b^2)^2$ (4) None of these

21. The angle between the asymptotes of the hyperbola $27x^2 - 9y^2 = 24$ is (1) 60° (2)120° (3) 30° (4) 150°

22. The angle of intersection of the cardioids $r = a(1 + \cos \theta)$, $r = a(1 - \cos \theta)$ is

(1) $\frac{\pi}{2}$ (2) 0 (3) $\frac{\pi}{4}$

23. If
$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases}$$
 then

- (1) f is a continuous function
- (2) f'(0+) exits but f'(0-) does not exist
- (3) $f'(0+) \neq f'(0-)$
- (4) f'(0 +) and f'(0 -) do not exist
- 24. If the tangents at the extremities of a focal chord of the parabola $x^2 = 4ay$ meet the tangent at the vertex at points whose abscissa are x_1 and x_2 then x_1x_2 =
- (2) $a^2 1$
- $(4) a^2$
- The value of the integral $\int_{3}^{6} \frac{\sqrt{x}}{\sqrt{9-x} + \sqrt{x}} dx$ is 25.
 - (1) 1
- (2) $\frac{1}{2}$
- (4) 2
- The value of the integral $\int_{0}^{\frac{\pi}{4}} \frac{\sin x + \cos x}{3 + \sin 2x} dx$ is
 - $(1) \log 2$
- $(2) \log 3$
- (3) $\frac{1}{4} \log 3$
- $(4) \frac{1}{9} \log 3$

- $\int \log_{10} x dx$ is 27.
 - (1) $(x 1) \log_e x + c$

(2) $\log_e 10.x \log_e \left(\frac{x}{e}\right) + c$

(3) $\log_{10} e. \times \log_e \left(\frac{x}{a}\right) + c$

- (4) $\frac{1}{y} + c$
- **28.** If $I_1 = \int_0^1 2^{x^2} dx$, $I_2 = \int_0^1 2x^3 dx$, $I_3 = \int_1^2 2^{x^2} dx$ and $I_4 = \int_1^2 2^{x^3} dx$ then
- (2) $I_3 > I_4$
- (4) $I_1 > I_2$
- The area between the curves $y = 2 x^2$ and $y = x^2$ is

 (1) $\frac{8}{3}$ (2) $\frac{4}{3}$ (3) $\frac{2}{3}$ 29.

- 30. A vector \vec{a} has components 2p and 1 with respect to a rectangular Cartesian system. This system is rotated through a certain angle about the origin in the counterclockwise sense. If, with respect to the new system, \vec{a} has components p + 1 and 1, then
- (2) p = 1 or $p = \frac{1}{2}$ (3) p = -1 or $p = \frac{1}{2}$ (4) p = 1 or p = -1
- The vectors \vec{a} , \vec{b} and \vec{c} are equal in length and taken pairwise make equal angles. If $\vec{a} = \hat{i} + \hat{j}$, $\hat{b} = \hat{j} + \hat{k}$ and 31. \vec{c} make an obtuse angle with the base vector i, then $\vec{c}\,$ is equal to
 - (1) $\hat{i} + \hat{k}$
- (2) $-\hat{i} + 4\hat{j} \hat{k}$ (3) $-\frac{1}{3}\hat{i} + \frac{4}{3}\hat{j} \frac{1}{3}\hat{k}$ (4) $\frac{1}{3}\hat{i} + \frac{4}{3}\hat{j} \frac{1}{3}\hat{k}$
- The position vector of A, B, C and D are $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 5\hat{j}$, $3\hat{i} + 2\hat{j} 3\hat{k}$, and $\hat{i} 6\hat{j} \hat{k}$ then the angle between **32.** \overrightarrow{AB} and \overrightarrow{CD} is
 - (1) 0
- (2) $\frac{\pi}{4}$ (3) $\frac{\pi}{9}$

 $(4) \pi$

0.0	T . = 1 1 = 1	41		n: 141 / ₹ i · n: 41					
33.	Let \vec{a} , \vec{b} and \vec{c} be three non zero vectors, no two of which are collinear and the vector $\vec{a} + \vec{b}$ is collinear with \vec{c} , while $\vec{b} + \vec{c}$ is collinear with \vec{a} then $\vec{a} + \vec{b} + \vec{c}$, is equal to								
	(1) \vec{a}	$(2) \ \vec{b}$	(3) c	(4) none of these					
34.	If C is the middle (1) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}$	point of AB and P	is any point outside AB (2) $\overrightarrow{PA} + \overrightarrow{PB} = 2\overrightarrow{PC}$, then					
	(3) $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} =$	= O	$(4) \vec{PA} + \vec{PB} + 2\vec{PC} = \vec{O}$						
35.	The value of $\sqrt{3}$	eot 20° – 4 cos 20° is	3						
	(1)1	(2) -1	(3) 0	(4) none of these					
36.	$If \sin^{-1}\frac{2a}{1+a^2} - \cos^{-1}\frac{2a}{1+a^2} = \cos^{-1}\frac{2a}{1+a^2} - \cos^{-1}\frac{2a}{1+a^2} = \cos^{-$	$s^{-1}\frac{1-b^2}{1+b^2} = tan^{-1}\frac{2}{1-b^2}$	$\frac{dx}{dx^2}$ then x is equal to						
	(1) a	(2) b	$(3) \frac{a+b}{1-ab}$	$(4) \frac{a-b}{1+ab}$					
37 .	_	C, R is circumradius (2) Obtuse angled	s and $8R^2 = a^2 + b^2 + c^2$. (3) Right angled	The triangle ABC is (4) none of these					
38.			shadow of a man 2 met he rate of 2m/sec is	ters height, due to a lamp at 10 meters height,					
	(1) $\frac{1}{2}$ m/sec	$(2) \frac{2}{5} \mathrm{m/sec}$	(3) $\frac{1}{3}$ m/sec	(4) 5m / sec					
39.	A person stands at a point A due south of a tower and observes that its elevation is 60°. He then walks westwards towards B, where the elevation is 45°. At a point C on AB produced, he finds it to be 30°. Then AB/BC is equal to								
	(1) $\frac{1}{2}$	(2) 1	(3) 2	(4) $\frac{5}{2}$					
40.	The distance bety	veen the parallel li	nes y = 2x + 4 and 6x = 3	3y + 5					
	(1) $\frac{17}{\sqrt{3}}$	(2) 1	(3) $\frac{3}{\sqrt{5}}$	(4) $\frac{17\sqrt{5}}{15}$					
			COMPUTER AWARE	NESS					
41.	Which of the foll	owing is NOT one	of the four major data pr	rocessing functions of a computer?					
	(1) Gathering dat(3) Analyzing the		(2)Processing data into n (4) Storing the data or						
42.	Simplified form	of a Boolean function	on $F(X,Y,Z) = \sum (0, 2, 4,$	5, 6) is					
	(1) $\overline{Z}X + X\overline{Y}$	$(2) \ \overline{Z} + X\overline{Y}$	(3) $\overline{YZ} + X\overline{Y}$	(4) None of these					
43.	Which gate is eq (1) NAND gate	uivalent to (NOR) (2) OR gate	OR (XOR) ? (3) AND gate	(4) XOR gate					
44.	(1) Field, Record,(2) Character, Re(3) Character, Fie	owing places the co Character, Databa cord Field, Databa eld, Record, Databa racter, Record, Fie	se se se	order from smallest to largest?					
45.	Which one of the (1) Micro-processe (3) Analog-compu	or	d program machine?	(2) Calculator (4) Micro-computer :					

46.			of 45ns. A 5ns time gap ridth of the memory (3) 40 MHz	is necessary for the completion of one access to $(4) 50 \text{ MHz}$				
47.	the word length o	f the memory?		emory has a total capacity of 16 KB, what is				
	(1) 2 bytes	(2) 4 bytes	(3) 8 bytes	(4) 16 bytes				
48.	(1) Memory and I	2)						
49.	Execution of an (1) Window mana (3) Bootstrap		s initiated by a program (2) Scheduler (4) None of the above	called the				
50.	If $(12x)_3 = (123)_x$	then the value of x	is					
	(1) 1 (3) Both (1) and (2)	2)	(2) 2(4) None of above					
			ENGLISH					
Dire	ctions: Question	s 51 and 52.						
Read	d the passage an	d select the most	suitable answer to qu	estions from the given choices.				
their the for In the mold the g dead indef havir	energy free from tangi. is search for ener forming on a piece ground, you are we plant life of past initely; specimens ag been blown down	gy the fungus has e of bread, or a pile atching a fungus e centuries. In fact, of the redwood, form.	become the earth's major e of leaves turning to containing. Without fungus a certain plants which cor instance, can still be for	or source of rot and decay. Whereever you see mpost, or a blown-down tree becoming pulp or action the earth would be piled high with the ontain resins that are toxic to fungi will last ound resting on the forest floor centuries after				
51.	(1) They are responded(2) They cannot li(3) They are vast	onsible for the deco		life				
52.	The passage is primarily concerned with (1) Warning people of the dangers of fungi (2) Rot and decay of plants in nature (3) Describing the action of fungi (4) Relating how most plants use solar energy							
53.	bottom of the glas (1) Quickly	ss. lumpy	; finally all that ren (2) Immediately (4) Subsequently					
54.	Find the synonyn (1) abortive	n that is most nearl (2) secret	ly similar in meaning to (3) tangible	the word CLANDESTINE (4) doomed				

55.	Choose the word that is opposite (1) disturb (2) reveal	e in meaning to the word COMPOSE (3) strengthen (4) isolate							
Dire	ections: Questions 56 and 57.								
		part of the sentence is underlined. Beneath each sentence, four different are indicated. Choose the best alternative from among the four.							
56.	6. It was us who had left before he arrived. (1) We who had left before time he had arrived (2) Us who has went before he arrived (3) Us who had went before he had arrived (4) We who had left before he arrived								
 Many of these environmentalists proclaim to save nothing less than the planet itself. (1) to save nothing lesser than (2) that they are saving nothing less than (3) that they save nothing less than (4) to have saved nothing less than 									
Dire	ection: Questions 58 and 59.								
Sele	ect the pair of words which are rel	ated in the some way as the capitalized words are related to each then?							
58.	MOTH: CLOTHING								
	(1) egg : larva (3) suit : dress	(2) hole: repair (4) stigma: reputation							
59.	ASCETIC : LUXURY :: (1) philosopher : knowledge (3) misogynist : women	(2) general : victory (4) teacher : blackboard							
60.	(1) A hater of the institution of r(2) The violation of sacred things(3) To prevaricate is to make eva	There are four statements, of which one is incorrect. Choose the incorrect one (1) A hater of the institution of marriage is misogamist. (2) The violation of sacred things is sacrilege, (3) To prevaricate is to make evasive or misleading statements. (4) A torpid person is generally hyperactive.							
61.	61. Following sentence has one or two banks, each blank indicating that something has been omitted. Benthe sentence are given four words or sets of words. Choose the word or set of words for each blank best fits meaning of the sentence as a whole.								
	ĕ	His presentation was so lengthy and that it was difficult for us to find out the real in							
	best fits meaning of the sentence								
	best fits meaning of the sentence								
62.	best fits meaning of the sentence. His presentation was so length (1) verbose, content (3) laborious, coverage	y and that it was difficult for us to find out the realin it; (2) tedious, skill							

(3) Sympathy

How can then one characterize a conflict to be waged against a phenomenon as war?

The sentences given below, when properly sequenced, form a coherent paragraph. Each sentence is labeled with a letter. Choose the most logical order of sentences from among the given choices to construct a

The phrase 'war against terror' which has passed into the common lexicon, is a huge misnomer.

Surrendered, or captured, combatants cannot be incarcerated in razor wire cages; this 'war' has

(4) Forgiveness

(1) Empathy

coherent paragraph,

dubious legality.

64.

Ρ.

Q. R. (2) Kindness

- (1) X is 6, Y is 7 (2) X is 5, Y is 15
 - (2) X is 5, Y is 15 (3) X is 4, Y is 6
- (4) X is 16, Y is 23
- 73. Which should be the next two numbers in the series 28 25 5 21 18 5 14
 - $(1)\ 11.5$
- $(2)\ 10,\ 7$
- (3) 11, 8
- (4) 5, 10
- 74. A, B, C, D and E are five integers. When written in the ascending order of values* the difference between any two adjacent integers is 4. D is the greatest arid A is the least B is greater than E but less than C, The sum of the integers is equal to E, What is the product of integers?
 - (1) 945

- (2)945
- $(3)\ 315$
- (4) 0
- **75.** Persons X, Y, Z and Q live in red, green, yellow or blue colored houses placed in a sequence on a street. Z lives in a yellow house. The green house is adjacent to the blue house. X does not live adjacent to Z, The yellow house is in between the green and red house. The color of the house X lives in is
 - (1) Green

- (2) Blue
- (3) Red
- (4) Cannot be determined

Directions: Questions 76 to 78.

220 guests are to be transported from A to B. Any number of buses of the following passenger carrying capacities are available.

Type P: 60, Type Q: 50, Type R: 40, Type S: 30

The cost per trip for a bus of each of these types is given as follows:

Type P: Rs 200, Type Q: Rs 140, Type Rt Rs :125, Type S: Rs 95

No buses can be overloaded and, prefer no vacant seats in each trips.

- **76.** What is the minimum possible cost for the trip?
 - (1) Rs 690
- (2) Rs 615
- (3) Rs 640
- (4)Rs 695
- 77. How many buses are needed for the above (Minimum cost trip)
 - (1)5
- (2) 4
- (3) 7
- (4) 6
- 78. The second cheapest trip arrangement would involve
 - (1) Rs. 630
- (2) Rs. 680
- (3) Rs. 710
- (4) Rs. 655
- **79.** A child can do a piece of work 15 hours slower than woman. The child works, for 18 hours on the job and then the women takes charge for 6 hours. In this manner, 3/5 of the work can be completed. To complete the job now, how much time the women take?
 - (1) 24 hours
- (2) 18 hours
- (3) 12 hours
- (4) 30 hours
- **80.** A culprit was spotted by the police from a distance of 250 m. When the police men started . Running towards the culprit at a speed of 10 km/h, the culprit also fled. If his speed was 8 km/h, find out how far the culprit had run before he was overpowered.
 - (1) 2 km
- (2) 1 km
- (3) 1.5 km
- (4) 0.8 km

Directions: Questions 81 to 83.

The following sketch shows the pipeline carrying material from one location to another. The capacity of each pipeline is 2000. The demand for the material at B is 800, at C is 800, at D is 1400 and at E is 400. The arrow indicates the direction of material flow through pipeline. The flow through pipelines meets exactly the demand at each location, flow from B to C is 600.

`81.	The o	quantity	moved	from	Α	to	Ε	is

(1) 400

(2)1600

(3)1400

(4)2000

82. The free capacity available in the A-B pipeline is

(1) 0

 $(2)\ 200$

(3) 400

(4) 600

83. What is the free capacity available in the E-C pipelines?

(1)600

(2)400

(3)200

(4) 0

Directions: Questions 84 to 87.

The plan given below, shows office for six officers namely A, B, C, D, E and F. Both B and C occupy offices to the right of the corridor (as one enters the office block) and A occupies the office to the left of the corridor. E and F occupy offices on opposite sides of the corridor but their offices do not face each other. The offices of C and D face each other. E does not have a corner office. F's office is further down the corridor than A's, but on the same side.

- 84. If E sits in his office and faces the corridor, whose office is to his left?
 - (1) A
- (2)B
- (3) C

(4)D

- 85 Whose office faces A's office?
 - (1) R
- (2) C
- (3) D
- (4) E

- **86.** Who is/are F's neighbour(s)?
 - (1) A only
- (2) A and D
- (3) C only
- (4) B and C
- 87. D was heard telling someone to go further down die corridor to the last office on fee right. To whose room was he trying to direct that person?
 - (1) A
- (2) B
- (3) C
- (4) F

Direction: Questions 88 to 91.

Given below is a binary tree, where every letter has been coded with a string of digits 0 and 1. At any node going left is denoted by 1; at any node going right is denoted by 0. Thus N is denoted as: 10000. All the codes are in Binary notation.

- 88. What will be the code for S:
 - (1)01011
- (2)01110
- (3) 01111
- (4) None of these

- 89. Which letter is represented by 11001?
 - (1)G
- (2) L
- (3) U
- (4) None of these
- What is the value of C + R in binary notation? 90.
 - (1) 11101
- (2) 1101
- $(3)\ 1001$
- (4) none of these
- 91. If all the codes are converted into decimal notation, then how many letters have their values greater than L?
 - (1) 1
- (2) 2
- (3) 3
- (4) None of these

Directions: Questions 92 to 94.: Read the following information carefully and answer the questions that follow

- (1) There is group of five persons P, Q, R, S and T.
- (2) One of them is a horticulturist, one is a physicist, one is a journalist, one is an industrialist and one is an advocate.
- (3) Three of them P, R and advocate prefer tea to coffee and two of them -Q and the journalist prefer coffee to tea.
- (4) The industrialist, S and P are friends to one another but two of these prefer coffee to tea.
- (5) The horticulturist is R's brother.
- 92. Who is a horticulturist?
 - (1) P
- (2) Q
- (C) R
- (4) S

- 93. Who is an industrialist?
 - (1) T
- (2) R
- (3) Q
- (4) S
- 94. Which of the following groups include a person who likes tea but is not an advocate?
- (1) PRT (2) ST (3) QRT (4) None of these
- If REASON is coded as 5 and-BELIEVED as 7, what is the code number for GOVERNMENT? **95**. (1) 6
- (3)9
- $(4)\ 10$

Directions: Questions 96 and 97: In the following questions, select one alternative in which the third statement is implied by the first two statements.

- (1) All elephants are wild. All lions are wild. So all lions are elephants.
 - (2) All mangoes are red. Some apples are mangoes. So all apples are red.
 - (3) All roads are boxes. All foxes are roads, So all boxes are foxes.
 - (4) All XYZ can run. All ABC are XYZ. So all ABC can run.

- 97. (1) All dogs are mad. All sick persons are mad. So all sick persons are dogs.
 - (2) All oranges are black. All figs are oranges. So all figs are black.
 - (3) All windows are dogs. Some doors are dogs. So all windows are doors.
 - (4 No man can fly. No kite can fly. So all men are kites.

Directions: Questions 98 to 100.

In each of the following three questions, four numbers are given. Out of these, three are alike in a certain way but the rest one is different. Choose the one which is different from the rest three.

98.	(1) 2384	(2)3629	(3)3756	(4)4298
99.	(1) 325	(2)236	(3)178	(4) 639
100.	(1) 5698	(2)4321	(3)7963	(4) 4232

- **101.** If finger is called toe, toe is called foot, foot is called thumb, thumb is called ankle, ankle is called palm and palm is called knee, which one finger has a different name?
 - (1) Thumb
- (2) Ankle
- (3) Knee
- (4) Palm
- **102.** In a certain code language, '617' means 'sweet' and 'hot' '735' means 'coffee is sweet' and '263' means 'tea is hot'. Which of the following would mean 'coffee is hot'?
 - (1)731
- (2) 536
- $(3)\ 367$
- (4) 753
- 103. If the direction North-East becomes South-East how will other directions change?
 - (1) West to North

- (2) South to South-West
- (3) North-West to East
- (4) East to South-West

Directions: Questions 104 and 105.

In each of the following questions, a number series is given with one term missing. Choose the Correct alternative that will continue the same pattern and fill in the blank spaces.

104. 3, 8, 13, 24, 41, (....) (1)70

(2)75

(3)80

(4)85

105. 4, 23, 60, 111, (....)

(1) 212

(2)221

(3) 241

(4) 242

Directions: Questions 106 and 107.

Find the missing number in each of the following questions;

106.

(1) 13(2)14(3)20(4)21107. 13 5 2 3 $(1)\ 10$ (2) 11(3) 12(4) 13108. If $\frac{3}{4}$ of a number is equal to $\frac{2}{3}$ of another number, what is the ratio between these two numbers $(1) \ 3:4$ (2) 5:6(3) 8:9(4) 9:10109. Q is shorter than P, but taller than R, R is shorter than P but taller than A. If they stand in. ascending order of their height the sequence is (3) QPAR (4) RPQA (1) ARQP (2) AQPR 110. A man starts walking towards south. After walking 5 km he again turns left at right angles in what direction is he finally walking in? (1) North (2) South (3) East (4) West 111. Find the missing number in the following series: 4, 6, 3, 5, 2? (1) 8(2) 4(3) 3112. If UNDERSTAND is coded as 1234567823 how will START be coded? (1) 56781(2)83243(3) 73652(4)67857113. A cyclist goes 30 km to North and then turning of East he goes 40 km, Again he turns to his right and goes 20 km. After this he turns to his right and goes 40 km. How far is he from his straight point? (1) 0 km(2)10 km(3) 25 km (4) 40 km114. A one rupee coin is placed on a plain paper. How many coins of the same size can be placed round it so that each one touches the central and adjacent coins? (1)9(2) 8(4)6115. A, B, C, D and E distribute some cards among themselves in a manner that A gets one less than B; C gets 5 more than D; E gets 3 more than B while D gets as many as B. Who gets the least cards?

116. If r is the radius of the circle given below, what is the area of the shaded region?

(3) D

(1) $4r^2$ (2) r^2 (3) $\frac{4}{3}r^2$ (4) 4r

(2) C

117.	An elevator has a children? (1) 4	capacity of 12 adu	ults or 20	childre	n. How	many adults can (4) 6	board the elevator with 15
118.		s in a year have the	` '	Nove		,	
119.	Flow many numb 8? (1) Four	ers from 1 to 100 a (2) Zero	re such ea		which is	divisible by 8 and (4) Six	d whose at least one digit is
120.	In the following square, numbers have been filled according to some rule. One space has been left blank, Find the correct number out of those given below for the blank, space.						
			56	65	78		
			12		30		
			44	14	48	_	
	(1) 14		(2) 44			(3) 62	(4) 51

Answer Key

1.	(2)	31.	(3)	61.	(1)	91.	(2)
2.	(*)	32.	(4)	62.	(1)	92.	(1)
3.	(3)	33.	(4)	63.	(2)	93.	(3)
4.	(3)	34.	(2)	64.	(4)	94.	(4)
5.	(2)	35.	(1)	65.	(4)	95.	(3)
6.	(2)	36.	(4)	66.	(2)	96.	(4)
7.	(4)	37.	(3)	67.	(3)	97.	(2)
8.	(4)	38.	(1)	68.	(1)	98.	(2)
9.	(2)	39.	(2)	69.	(3)	99.	(2)
10.	(4)	40.	(4)	70.	(3)	100.	(3)
11.	(3)	41.	(1)	71.	(1)	101.	(3)
12.	(2)	42.	(2)	72.	(3)	102.	(2)
13.	(3)	43.	(1)	73.	(1)	103.	(1)
14.	(2)	44.	(3)	74.	(1)	104.	(1)
15.	(4)	45.	(4)	75.	(2)	105.	(1)
16.	(1)	46.	(2)	76.	(3)	106.	(2)
17.	(1)	47.	(2)	77.	(1)	107.	(1)
18.	(1)	48.	(3)	78.	(4)	108.	(3)
19.	(4)	49.	(3)	79.	(3)	109.	(1)
20.	(2)	50.	(4)	80.	(2)	110.	(3)
21.	(2)	51.	(4)	81.	(4)	111.	(2)
22.	(1)	52.	(3)	82.	(4)	112.	(4)
23.	(1)	53.	(3)	83.	(2)	113.	(2)
24.	(4)	54.	(2)	84.	(3)	114.	(4)
25.	(3)	55.	(1)	85.	(4)	115.	(1)
26.	(3)	56.	(4)	86.	(1)	116.	(2)
27.	(3)	57.	(2)	87.	(2)	117.	(3)
28.	(4)	58.	(4)	88.	(2)	118.	(3)
29.	(1)	59.	(3)	89.	(4)	119.	(1)
30.	(2)	60.	(4)	90.	(3)	120.	(4)
Note	· In a	lestion	9 all 1	the star	tement	e are co	rrect

Note: In question 2, all the statements are correct.

In Question 30, p should be $-\frac{1}{3}$ and 1.