

IIT JAM MOCK SAMPLE PAPER - 1

1.	The order of 2 in (a) 2		(a) 29	(4) 20
	(a) 2	(b) 14	(c) 28	(d) 29
2.	If $3\int_{0}^{2h} f(x)dx = h$	[a f(0)+bf(h)+c f	(2h)] for all polynor	mials $f(x)$ of degree ≤ 2 , and h
	> 0, then (a, b, c)	e) is		
	(a) (1, 2, 1)	(b) (1, 4, 1)	(c) (2, 2, 2)	(d) (2, 4, 1)
3.	The function $f(x)$	$(x, y) = x^3 + 3xy^2 - 4y^3$	-15x has a local	
	(a) minima at (-	5,0)	(b) minima at (5, 5)
	(c) maxima at (5	5, 0)	(d) maxima at (-	- 5, 0)
4.	The orthogonal t	rajectories of the curve	$es y = 3x^3 + x + c a x$	re
	(a) $2 \tan^{-1} 3x +$		(b) $3\tan^{-1} 3x +$	
	(c) $3\tan -1 3x -$	·	(d) $3\ln x - 2 \tan x$	•
5.		•	by a and b such that	a4 = b2 = 1 and $ba = a3b$.
	The order of the	-	5	
	(a) 1	(b) 2	(c) 4	(d) 8
6.	Let $f(x) = x^2 + 1$	$g(x) = x^3 + x^2 + 1$ and	$h(x) = x^4 + x^2 + 1.7$	Then
) are reducible over Z_2
	(c) $f(x)$ and $h(x)$	are reducible over Z_2	(d) $f(x), g(x)$ an	d $h(x)$ are reducible over Z
7.	The value of the	integral $\int_{0}^{1} \frac{x}{x^2 + 10} dx u$	sing Simpson's1/3 ru	ule with $h = 0.5$ is
	(a) 41/902	(b) 43/902	(c) 45/902	(d) 47/902
8.		en the probability that	-	probability that team A wins a natches, loses one and the third
	(a) 8/27	(b) 16/27	(c) 8/81	(d) 32/81
9.	The value of $f(5)$) using Lagrange's inte	erpolation formula, g	given
		x 0	1 4	6
		F(x) = 1	-1 1	-1
	is			
	(a) -3/2	(b) -1	(c) 1	(d) 3/2
10.	Let <i>F</i> be a field.	Given below are six st	atements about F	
	1. F is a skew field			
	2. F is a group w	with respect to multiplic	cation	
<u>http:</u>	//www.pappulal.co	m/practice-papers/ind	<u>lex.html</u>	Page 1 of 12

3. *F* is an integral domain
4. *F* has zero divisors
5. *F* has no zero divisors
6. Only ideals of *F* are {0} and itself
In which of the following options all the statements are correct?
(a) 1, 2, 3 (b) 1, 3, 5 (c) 2, 4, 6 (d) 4, 5, 6
11. If
$$8x - y = 15$$
 is a tangent at (2, 1) to the curve $y = x^3 + ax^2 + b$, then (*a*, *b*) is
(a) (1, 3) (b) (-1, 3) (c) (1, -3) (d) (-1, -3)
(a) (1, 3) (b) (-1, 3) (c) (1, -3) (d) (-1, -3)
(a) (1, 3) (b) (-2, i - 2, 2)
 $-2 - 4 - 3 - i - 3$
 $1 + i - 2 + i - 1 - 2 - i$)
(a) 1 (b) 2 (c) 3 (d) 4
13. Which of the following sets is NOT a convex set?
(a) {(x, y) | $4x^2 + y^2 \le 9, x - y \le 1$ } (b) {(x, y) | $4x^2 + y^2 \le 9, x - y \ge 1$ }
(c) {(x, y) | $4x^2 + y^2 \ge 9, x - y \le 5$ } (d) {(x, y) | $4x^2 + y^2 \ge 9, x - y \le 5$ }
14. For the set $W = \{ (x, 1, z) \in \mathbb{R} 3 \}$, consider the statements
P. *W* is not closed under vector addition
Q. *W* is closed under vector addition
R. *W* has an additive identity
S. *W* is not closed under scalar multiplication
R. *W* has an additive identity
S. *W* is not closed under scalar multiplication
R. *W* has an additive identity
S. *W* is not for the differential equation is
(a) $2x^3 + 2xy + y^2 = c$ (b) $2x^3 + 6xy + 3y^2 = c$
(c) $2x + 2xy + y^2 = c$ (d) $x^2 + xy + y^2 = c$
16. The value of $\int_0^1 \frac{dx}{\sqrt{x^2 + y^2}} + \frac{x^{10}}{y^{10}} e^{\frac{x^2}{2}}$ for $x > 1, y > \frac{\pi}{2}$, then $x\frac{dy}{dx} + y\frac{dy}{dy} + 1000 f$ equals
(a) 998f (b) 999f (c) 1000f (d) 1002f
17. If $f(x, y) = \frac{1}{x^2} \tan^4 \frac{x}{\sqrt{x^2 + y^2}} + \frac{x^{10}}{y^{10}} e^{\frac{x^2}{2}}$ for $x > 1, y > \frac{\pi}{2}$, then $x\frac{dy}{dx} + y\frac{dy}{dy} + 1000 f$ equals
(a) 998f (b) 999f (c) 1000f (d) 1002f
18. The volume of the closed region bounded by the surfaces $x^2 + y^2 = 2x, z = -1$ and $z = 1$
is
(a) 0 (b) $\pi/2$ (c) 2π (d) π

😤 pappulal

19.	If $P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$, then P ⁵⁰ equals		
	(a) $\begin{bmatrix} 1 & 100 & 500 \\ 0 & 1 & 100 \\ 0 & 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 50 & 100 \\ 0 & 1 & 50 \\ 0 & 0 & 1 \end{bmatrix}$	$ (c) \begin{bmatrix} 50 & 100 & 150 \\ 0 & 50 & 100 \\ 0 & 0 & 50 \end{bmatrix} $	(d) $\begin{bmatrix} 1 & 50 & 1275 \\ 0 & 1 & 50 \\ 0 & 0 & 1 \end{bmatrix}$
20.	Let <i>P</i> be a matrix of size 3×3 with eigen (a) neither invertible nor diagonalizable (c) invertible but not diagonalizable	(b) both invertible an	nd diagonalizable
21.	The integral $\int_{1}^{1} x dx$ is computed by the	trapezoidal rule with	step length $h = 0.01$. The
	absolute error in the computed value is		
	(a) 0 (b) 0.0001	(c) 0.0025	(d) 0.005
22.	An iteration scheme generates a sequence $x_{n+1} \le c \alpha - x_n $ for all $n \ge 0$. Whice the convergence of $\{x_n\}$?		
	(a) $c = 1$ (b) $c > 1$	(c) $c > 0$	(d) $0 < c < 1$
23.	An approximate value of $\sqrt{3}$ is computed	d by the formula x_{n+1}	$= x_n - \frac{1}{4}(x_n^2 - 3)$. If $x_0 =$
	1.75, the value of x_1 correct to three decim	nal places is	
	(a) 1.734 (b) 1.733	(c) 1.732	(d) 1.731
24.	The optimal solution of the LPP max $f = f$	2x + 3y + 20 subject t	0
	$x + y \le 1,$ $2x + 5y \le 3,$ $x \ge 0, y \ge 0,$ is		
	(a) $\left(\frac{1}{3}, \frac{2}{3}\right)$ (b) $\left(\frac{2}{3}, \frac{1}{3}\right)$	(c) $\left(0,\frac{3}{5}\right)$	(d) $\left(\frac{3}{2},0\right)$
25.	The value of x in the sequence 2, 4, 10, 28	$3, 82, x, \dots$ is	
	(a) 102 (b) 168	(c) 252	(d) 244
26.	The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \end{bmatrix}$ is		
	(a) 1 (b) 2	(c) 3	(d) 4
27.	A particular integral of the differential equ	uation $\frac{d^2 y}{dx^2} - 16 y = 4s$	in $h^2 2x$ is

http://www.pappulal.com/practice-papers/index.html

6				
	(a) $\frac{1}{8}(xe^{4x} + xe^{-4x} - xe^{-4x})$	- 1)	(b) $\frac{1}{8}(xe^{4x}-xe^{-4x}+$	-1)
	(c) $\frac{1}{8}\left(e^{4x}-xe^{-4x}+e^{-4x}$	$\left(\frac{1}{2}\right)$	(d) $\frac{1}{8} \left(xe^{4x} + e^{-4x} + e^{-4x} \right)$	$\left(\frac{1}{2}\right)$
28.	The area bounded by	y the curves $x^2 = 4 -$	$2y$ and $x^2 = y + 4$ is	
	(a) 16	(b) 24	(c) 30	(d) 36
29.	The volume of the re	egion in R 3 given by	x 3 x + 4 y + 3 z	\leq 12 is
	(a) 64	(b) 48	(c) 32	(d) 24
30.	Let $F(x, y, z) = x^2 +$	$y^2 + z^2 + xy + yz +$	zx . The value of F_x +	$F_y + F_z$ at (1, 1, 1) is
	(a) 12	(b) 10	(c) 16	(d) 8
31.	An unbiased coin is at least one tail is	tossed eight times. T	The probability of obta	ining at least one head and
	(a) 255/256	(b) 127/128	(c) 63/64	(d) 31/32
32.	A Poisson random v	ariable X has unit mo	ean. Then $P(X = odd)$	is
	(a) $\frac{1}{2}\left(1-\frac{1}{e}\right)$	(b) $1 - \frac{1}{e^2}$	(c) $\frac{1}{2} - \frac{1}{e^2}$	(d) $\frac{1}{2}\left(1-\frac{1}{e^2}\right)$
33.	The order of the per	mutation (12) (546)	(3978) in the symmetri	c group S ₉ is
	(a) 6	(b) 9	(c) 12	(d) 24
34.	Let S be a set with elements is	10 elements. The	number of subsets of	S having odd number of
	(a) 256	(b) 512	(c) 752	(d) 1024
35.	Let $a_0 + a_1 x + a_2 x^2$ = 0. Then a_3 equals	$+ a_3 x^3 + \dots$ be the T	Taylor series for the fur	faction sin $(x^2 + 3x)$ about x
	(a) $-\frac{9}{2}$	(b) $\frac{9}{2}$	(c) $\frac{27}{2}$	(d) $-\frac{27}{2}$
36.	Let $f(x) = 2x^3 + 3x^3$	$x^{2} - 12x + 4$ for all $x \in$	\equiv R . Then	
	(a) f is not one-one			
	(b) f is one-one on [-1,1] but not one-on	e on [-2, 2]	
	(c) f is one-one on [0, 2] but not one-one	e on [-2, 0]	
	(d) f is one-one on [
37.	Let $f(x, y) = x^3 + y^3$	³ for all $(x, y) \in \mathbf{R}^2$.	Then	
	(a) f has a local max	•		
	(b) f has a local min	imum at (0, 0)		
	(c) f has neither a lo	cal maximum nor a l	local minimum at (0, 0))
	(d) f has both a local	l maximum and a loc	cal minimum at (0, 0)	
38.		•	CPU, RAM and expan	
	(a) Hard disk	(b) Floppy disk	(c) Mother board	(d) None of the above

39. Operating system (a) Link a program with the subroutines it references (b) Provides a layered, user-friendly interface (c) Enables a programmer to draw a flowchart (d) None of the above Ethernet uses 40. (a) Bus topology (b) Ring topology (d) None of the above (c) Mesh topology 41. What will be output if you will compile and execute the following c code? #include<stdio.h> int main(){ int i=320; char *ptr=(char *)&i; printf("%d",*ptr); return 0; } (a) 320 (b) 1 (c) 64 (d) Compiler error 42. What will be output if you will compile and execute the following c code? #include<stdio.h> #define x 5+2int main(){ int i; $i=x^*x^*x;$ printf("%d",i); return 0; } (a) 343 (b) 27 (c) 133 (d) Compiler error 43. Indicate which, of the following is not true about 4GL. (a) 4GL does not support a high –level of screen interaction (b) Many database management system packages support 4GLs (c) A 4GL is a software tool which is written, possibly, in some third generation language (d) None of the above The remainder obtained on dividing 2^{1680} by 1763 is 44. (a) 1 (b) 3 (c) 13 (d) 31 45. The iterative formula to compute the reciprocal of a given positive real number α using Newton-Raphson method is (a) $x_{n+1} = x_n (2 - \alpha x_n)$ (b) $x_{n+1} = x_n (2 + \alpha x_n)$ (c) $x_{n+1} = x_n^2 (2 - \alpha x_n)$ (d) $x_{n+1} = x_n^2 (2 + \alpha x_n)$

16	Let C be a group of order 9 concreted by	a and b such that a^4	$- h^2 - 1$ and $ha - a^3h$
46.	Let <i>G</i> be a group of order 8 generated by The order of the center of <i>G</i> is	a and b such that a	-b - 1 and $ba - ab$.
	(a) 1 (b) 2	(c) 4	(d) 8
47.	The surface area of the solid generated by $1 \le 1$ about the line $y = 2$ is	revolving the line seg	ment $y = x + 2$ for $0 \le x$
	(a) $\sqrt{2\pi}$ (b) 2π	(c) $2\sqrt{2\pi}$	(d) 4
48.	The general solution of the differential equa	ation	
	$y''(x) - 4y'(x) + 8y(x) = 10 e^x \cos x$		
	(a) $e^{2x} (k_1 \cos 2x + k_2 \sin 2x) + e^x (2 \cos x)$		
	(b) $e^{2x} (k_1 \cos 2x + k_2 \sin 2x) + e^x (2 \cos x + k_2 \sin 2x) + e^x (2 \sin x + k_2 \sin x) + e^x (2 \sin x + k_2 \sin x) + e^x (2 \sin x + k_2 \sin x) + e^x (2 \sin x + k_2 \sin x) + e^x (2 \sin x + k_2 \sin x) + e^x (2 \sin x + k_2 \sin x) + e^x (2 \sin x + k_2 \sin x) + e^x (2 \sin $		
	(c) $e^{-2x} (k_1 \cos 2x + k_2 \sin 2x) - e^x (2 \cos x)$		
	(d) $e^{-2x} (k_1 \cos 2x + k_2 \sin 2x) + e^x (2 \cos x)$		
49.	The work done by the force $\vec{p} = 3i - 2j$		-
	displaced from $A(8, -2, -3)$ to $B(-2, 0, 6)$		ent AB, is
		(c) 3.5	(d) 4.2
50.	The entire area bounded by the curve $r^2 = a$	$a \cos 2\theta$ is	
	(a) a (b) 2a	(c) πa	(d) 2πa
51.	Suppose that 20 misprints are distributed Poisson distribution, the probability that a c		
	(a) $\frac{2}{9}e^{-2/3}$ (b) $\frac{2}{9}e^{-3/2}$	(c) $\frac{9}{8}e^{-2/3}$	(d) $\frac{9}{8}e^{-3/2}$
52.	If ω is a non-real cube root of unity, then	the eigenvalues of the	e matrix
	$(1 \ 1 \ 1 \ 1)$ $(1 \ 0 \ 0)$ $(1 \ 0 \ 1)$)	
	$1 \ \omega \ \omega^2 \ 0 \ -1 \ 0 \ 1 \ 1/\omega^2$	are:	
	$ \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega^4 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1/\omega & 1/\omega^2 \\ 1 & 1/\omega^2 & 1/\omega^4 \end{pmatrix} $)	
	(a) 1, -1, 0 (b) $\frac{1}{3}, -\frac{1}{3}, 0$	(c) 1, ω , ω^2	(d) 3, -3, 0
53.	Example of non-numerical data is		
	(a) Employee address	(b) Examination scor	e
	(c) Bank balance	(d) None of the above	e
54.	A Register is a group of		
	(a) OR gates	(b) OR & AND gate	
		(d) None of these	
55.	This is truth table for gate		

А	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

	(a) OR gate	(b) AND gate	(c) NAND gate	(d) EX-OR gate	
56.		or spaces over a field. Then <i>dim F Hom(V</i> ,		and $dim F W = n$, where m	
	(a) $m + n$	(b) <i>m</i> – <i>n</i>	(c) <i>mn</i>	(d) <i>m/n</i>	
57.	Which of the follow:	ing is a unit normal v	vector to the surface $z =$	xy at P (2, −1, −1)?	
	(a) $\frac{i-2j+k}{\sqrt{6}}$	(b) $i - 2j + k$	(c) $-i+2j+k$	(d) $\frac{-i+2j+k}{\sqrt{6}}$	
58.	The order of the quo	tient group $\mathbb{Z}8$ $ imes$ \mathbb{Z}	$9 \times \mathbb{Z}18$ / ($(2, 2, 2)$	> is	
	(a) 18	(b) 36	(c) 72	(d) 144	
59.	Which of the follow:	ing sets is NOT a cor	nvex set?		
	(a) $\{(x, y) 4x^2 + y^2$	\leq 9, $x - y \leq 1$ }	(b) $\{(x, y) 4x^2 + y^2$	\leq 9, $x - y \geq 1$ }	
	(c) { $(x, y) 4x^2 + y^2$	\geq 9, $x - y \geq$ 5}	(d) { $(x, y) 4x^2 + y^2$	\geq 9, $x - y \leq$ 5}	
60.	The program				
	main()				
	$\{ int a = 256, *p = \&a \}$				
	printf("%d",*p>>5);	, ,			
	} prints				
	(a) 2	(b) 4	(c) 6	(d) 8	
61.	The output of the fol				
	main()				
	{				
	<pre>int a[] = "computation"; char *p = a, b=" '; for a first in the second sec</pre>				
	for (int i = 1; i < 12; if(i%4) continue;	1++)			
	else $a[i]=b;$				
	puts(p);				
	}				
	is				
	(a) comp	(b) comp tat on	(c) com utat on	(d) comp tati n	

52.	In 1978 Intel introduced the 16 bit Microprocessor 8086 now called	ed as				
	(a) M6 800 (b) APX 80 (c) Zylog z8000	(d) Intel 8086				
53.	In a C program, variables x and y are declared to be of type int. four statements	Consider the following				
	S1: $y = x \& 1$; S2: $y = x \% 2$;					
	S3: $y = x / 2$; S4: $y = x << 1$;	1 6 0				
	Which of the statements will result in the same value of y for ever (a) S3 and S4 (b) S1 and S3 (c) S1 and S2	(d) S2 and S4				
54.		(u) 52 and 54				
J - .	int $x = 20$;					
	int x = 20; int y = 25;					
	int $y = 23$, int $z = x \wedge y$;					
	where $^{\text{denotes}}$ bit-wise XOR operation. Then the value assigned	to z will be				
		(d) 13				
65.		(u) 15				
	(a) Refillable ink (b) Pencil lead (c) Light sensitive eler	ments				
66.	_					
		(d) 59.625				
57.						
071		(d) 0111 1111				
58.						
00.	(a) binary form (b) ASCII code form					
	(c) decimal form (d) alphanumeric form	l				
59.						
	(a) makes integer arithmetic faster (b) makes pipelining n	nore efficient				
		netic calculations faster				
70.	What do the abbreviations VAB stand for?					
	(a) Voice activated broadcasting (b) Voice answer back	(b) Voice answer back				
	(c) Visual audio board					
71.	IBM PC's were originally based on the					
	(a) Intel 80×86 processor family (b) Motorola 68000 fa	(b) Motorola 68000 family				
	(c) Motorola 6800 family (d) PowerPc family					
72.	Flip flop is also called as					
	(a) Stable (b) Bi stable (c) Tri stable	(d) not stable				
73.	A software is termed an open source software if					
	(a) the developer company is open 24 hours					
	(b) its source code is available to share, study and modify					
	(c) it can be downloaded from the Internet					
	(d) it is available free of cost					

78. Following graph shows distances between six cities A through F.

If x and y are minimum and maximum distances from A to F where no city is visited more than once, then (x, y) is

(a) (6, 11) (b) (5, 12) (c) (4, 13) (d) (6, 12)

79. Consider the following two lists:

		1		
		List I		List II
	1.	DOS	Р.	Sun Microsystems
	2.	P4	Q.	Microsoft Corporation
	3.	Java	R.	IBM
	4.	PC	S.	Intel Corporation
	The correct	match is		
	(a) $1 \rightarrow Q$,	$2 \rightarrow S, 3 \rightarrow P, 4 \rightarrow R$	(b)	$1 \rightarrow Q, 2 \rightarrow R, 3 \rightarrow S, 4 \rightarrow P$
	(c) $1 \rightarrow S$,	$2 \rightarrow P, 3 \rightarrow Q, 4 \rightarrow R$	(d)	$1 \rightarrow R, 2 \rightarrow P, 3 \rightarrow Q, 4 \rightarrow S$
80.	This US proof	esident is associated with	n the abolit	ion of slavery. Identify him from the given
	(a) George	Washington	(b)	Abraham Lincoln
	(c) Franklin	n D Roosevelt	(d)	Richard Nixon
81.	A computer	r cannot "boot" if it does	not have t	he
	(a) Compil	er (b) Loader	(c)	Operating system (d) Assembler
82.		us Indian freedom figh n from the given options		shed the newspaper titled Young India.
	(a) MK Ga	ndhi (b) Lala Lajp	at Rai (c)	GK Gokhale (d) BG Tilak
83.	The term 'b	baud' is a measure of the		
	(a) speed at	t which data travels over	the comm	unication line
	(b) memory	y capacity		
	(c) instruct	ion execution time		
	(d) all of th	e above		
84.	Consider th	e following C program		
	main()			
	{ int: 1:	1 1 0 1 2		
	•	1,k=0,l=2,m; ++&&k++ l++;		
		%d %d %d %d",i,j,k,l,m);	
	}			
	The output	of the program will be		
	(a) 0 0 1 3	1 (b) 0 1 1 3 1	(c)	0 2 1 3 1 (d) 1 0 1 3 1
85.	A bootstrap	o is:		
	(a) a memo	ory device		
	(b) a device	e to support the computer	ſ	
	(c) a small	initialization program to	start up a	computer
	(d) an error	correction technique		

86.	The number of gold in 2010 is	medals won by India	in the commonwealth	games held in New Delhi
	(a) 36	(b) 37	(c) 38	(d) 40
87.	Which of the follow State list and Concur	0	Constitution of India	deals with the Union list,
	(a) Fourth Schedule	(b) Fifth Schedule	(c) Sixth Schedule	(d) Seventh Schedule
88.	A file is corrected in	nmediately after the i	nput of a transaction. T	This is an example of
	(a) sorting	(b) batching	(c) on-line updating	(d) off-line updating
89.	Using 2's Compleme	ent, subtraction, of (1	010)2 from (0011)2 is	
	(a) (0111)2	(b) (1001)2	(c) –(0111)2	(d) –(1001)2
90.	The number of fun Boolean variables as	-	oolean variables as in	nput and providing three
	(a) 12	(b) 32	(c) 4096	(d) 65536
91.	if P is true or Q is t	,	nd S is false. Suppose	e or false. It is known that it is given that R is false.
	(a) Both P and Q are	e true	(b) P is true and Q is	false
	(c) P is false and Q i	s true	(d) Both P and Q are	false
92.	Multiplexer means _			
	(a) One into many	(b) many into one	(c) many into many	(d) none of these
93.	The chief reason why	y digital computers u	se complementally sub	ptraction is that is
	(a) simplifies their c	ircuitry	(b) is a very simple p	process
	(c) can handle negat	•	(d) avoids direct sub	
94.	The National anthen National Congress ir		or the first time at the	Calcutta session of Indian
	(a) 1906	(b) 1909	(c) 1911	(d) 1913
95.	Organization for Eco	onomic Cooperation	8' Development (DE C	D) is headquartered at
	(a) Geneva	(b) Paris	(c) The Hague	(d) Vienna
96.	The twinkling of stars	-		
	(a) Reflection	(b) Refraction	(c) Diffraction	(d) Scattering
97.	An example of an en	•		
	(a) A calculator	(b) A machine tool		(d)
98.	What will be output if #include <stdio.h> int main(){ int i=10; static int x=i; if(x==i) printf("Equal"); else if(x>i)</stdio.h>	you will compile and e	execute the following c c	ode?
	printf("Greater than");		

http://www.pappulal.com/practice-papers/index.html

	else printf("Less than return 0; }	");		
	(a) Equal	(b) Greater than	(c) Less than	(d) Compiler error
99.	What will be output #include <stdio.ht int main(){ double far* p,q; printf("%d",sized return 0; }</stdio.ht 		execute the following	g c code?
	(a) 12	(b) 8	(c) 1	(d) 4
100.	In the following	table, numbers 1, 2, 3,	4 are to be arrange	d wherever missing in su

100. In the following table, numbers 1, 2, 3, 4 are to be arranged wherever missing in such a way that each row as well as each column has all of these numbers exactly once

		4	2
2	4		
			1
	1		

The missing entries in the main diagonal are

(a) 1, 2, 3 $(b) 2, 3, 1$ $(b) 1, 3, 1$ $(a) 1, 2, 1$	(a) 1, 2, 3	(b) 2, 3, 4	(c) 1, 3, 4	(d) 1, 2, 4
---	-------------	-------------	-------------	-------------

101. Given list I and list II as

	List I		List II
Р.	Abhijnana Shakuntalam	1.	Tulsidas
Q.	Godan	2.	Valmiki
R.	Ramcharitmanas	3.	Kalidas
S.	Ramayana	4.	Jawaharlal Nehru
Τ.	Discovery of India	5.	Prem Chand

Which of the following group is correct?

(a) (R-2, S-3, T-4) (b) (P-1, Q-5, S-2) (c) (P-3, S-2, T-4) (d) (Q-5, R-2, T-4)