LAB MANUAL

SUBJECT:

DIGITAL LOGIC DESIGN AND
 APPLICATIONS

SE (COMPUTERS) SEM III

INDEX

Sr. No	Title of the Experiment	Page No.
$\mathbf{1}$	Study of BASIC Gates	$\mathbf{3}$
$\mathbf{2}$	Universal Gates	$\mathbf{6}$
$\mathbf{3}$	Study of Full \& Half Adder \& Subtractor using Gates	$\mathbf{8}$
$\mathbf{4}$	Study of Magnitude Comparator	$\mathbf{1 0}$
$\mathbf{5}$	Study of Multiplexer	$\mathbf{1 1}$
$\mathbf{6}$	Study of Demultiplexer	$\mathbf{1 3}$
$\mathbf{7}$	Implementation of Flip-Flops using NAND \& Study of 7 $\mathbf{8}$	$\mathbf{S t u 6}$
$\mathbf{9}$	Design of Counter \& Study of IC 7490	
$\mathbf{1 0}$	Vo V/S Vi Characteristic of TTL \& CMOS	$\mathbf{1 7}$

DIGITAL LOGIC DESIGN AND APPLICATIONS

EXPT. NO. 1
TITLE
STUDY OF BASIC GATES
AIM
To study basic gates.
APPARATUS Power Supply, Breadboard, Connecting wires.
COMPONENTS ICs 7400, 7402, 7404, 7408, 7432, 7486, LED.
IC PINOUTS

NOR		
\mathbf{A}	\mathbf{B}	$\mathbf{Y}=\overline{\mathbf{A + B}}$
0	0	1
0	1	0
1	0	0
1	1	0

NOT	
\mathbf{A}	$\mathbf{Y}=\mathbf{A}$
0	1
1	0

AND		
\mathbf{A}	\mathbf{B}	$\mathbf{Y}=\mathbf{A . B}$
0	0	0
0	1	0
1	0	0
1	1	1

OR		
\mathbf{A}	\mathbf{B}	$\mathbf{Y}=\mathbf{A + B}$
0	0	0
0	1	1
1	0	1
1	1	1

EX-OR		
\mathbf{A}	\mathbf{B}	$\mathbf{Y}=\mathbf{A} \overline{\mathbf{B}}+\overline{\mathbf{A}} \mathbf{B}$
0	0	0
0	1	1
1	0	1
1	1	1

DIGITAL LOGIC DESIGN AND APPLICATIONS

THEORY Logic gates are the digital circuits with one output and one or more inputs. They are the basic building blocks of any logic ckt. Different logic gates are : AND, OR, NOT, NAND, NOR, EX-
OR. They work according to certain logic.
AND : Logic eqn. Y = A.B
The output of AND gate is true when the inputs A and B are True.
OR : Logic eqn. $\mathrm{Y}=\mathrm{A}+\mathrm{B}$.
The output of OR gate is true when one of the inputs A and B or both the inputs are true.
NOT : Logic eqn. $\mathrm{Y}=\overline{\mathrm{A}}$.
The output of NOT gate is complement of the input.
NAND : Logic eqn. Y $=\overline{\text { A.B }}$
The output of NAND gate is true when one of the inputs or both the inputs are low level.
NOR : Logical eqn. $\mathrm{Y}=\mathrm{A}+\mathrm{B}$.
The output of NOR gate is true when both the inputs are low.
EX-OR: Logic eqn. $\mathrm{Y}=\mathrm{AB}+\overline{\mathrm{AB}}$.
The output of EX-OR gate is true when both the inputs are low.
PROCEDURE 1)Give biasing to the IC and do necessary connections.
2) Give various combinations of inputs and note down the output with help of LED for all gate ICs one by one.
CONCLUSION Thus all basic gates are studied.

DIGITAL LOGIC DESIGN AND APPLICATIONS

EXPT. NO. 2

TITLE
AIM
APPARATUS

UNIVERSAL GATES
To study the realization of basic gates using universal gates.
Power supply, Breadboard.
COMPONENTS ICs 7400, 7402, LED.

CIRCUIT
DIAGRAM
a) $\operatorname{AND} \quad Y=A \cdot B$

b) $O R \quad Y=A+B$

C) NOT $\gamma=\bar{A}$

d) $E X \cdot O R \quad V=\bar{A} \cdot B+A \cdot \bar{B}$

e) NOR $Y=\overline{A+B}$
$0 / \mathrm{p}$ of ckt. b

a) $\mathrm{AND} \quad \mathrm{V}=\mathrm{A} \cdot \mathrm{B}$

b) $O R \quad Y=A+B$

c) NOT $Y=\bar{A}$

d) $\mathrm{EX} \cdot \mathrm{OR} \quad \mathrm{V}=\mathrm{A}, \overline{\mathrm{B}}+\overline{\mathrm{A}}, \mathrm{B}$

e) NAND $\gamma=\overline{\mathrm{A} B}$
$\% / \mathrm{p}$ of ckt

DIGITAL LOGIC DESIGN AND APPLICATIONS

THEORY AND, OR, NOT are called basic gates as their logical operation cannot be simplified further.
NAND and NOR are called universal gates as using only NAND or only NOR any logic function can be implemented. Using NAND and NOR gates and De Morgans Theorems different basic gates \& EX-OR gates are realized.

PROCEDURE 1)Give biasing to the IC and do necessary connections as shown in the ckt. diagram.
2)Give various combinations of inputs and notedown output using LED.
3) Repeat the procedure for all gates.

OBSERVATION TABLE

\mathbf{A}	\mathbf{B}	\mathbf{Y}
0	0	
0	1	
1	0	
1	1	

CONCLUSION Thus universal gates are studied.

DIGITAL LOGIC DESIGN AND APPLICATIONS

EXPT. NO. 3

TITLE
AIM
APPARATUS
COMPONENTS ICs 7486, 7432, 7408, 7404, LEDs.
CIRCUIT
DIAGRAM
AND
OBSREVATION
TABLE

ADDER AND SUBTRACTOR

To study adder and subtractor circuits using logic gates.
Power supply, breadboard.

Half Adder

\mathbf{A}	\mathbf{B}	\mathbf{C}	Sum	Carry

A	B	Diff.	Bout

DIGITAL LOGIC DESIGN AND APPLICATIONS

Abstract

THEORY A digital adder circuit adds binary signals \& a subtractor subtracts binary signals. Half Adder/Subtractor is a basic ckt. that adds / subtracts 2 bits and generates sum or difference along with Carry / Borrow. Unlike half adder or subtractor a full adder / subtractor has the provision to take consideration of previous carry / borrow also. PROCEDURE A digital adder circuit adds binary signals \& a subtractor subtracts binary signals. Half Adder / subtractor is a basic ckt. that adds / subtracts 2 bits and generates sum or difference along with Carry / Borrow. Unlike half adder or subtractor a full adder / subtractor has the provision to take consideration of previous carry / borrow also.

CONCLUSION Thus half \& full Adder / Subtractor is studied.

DIGITAL LOGIC DESIGN AND APPLICATIONS

TITLE
AIM
APPARATUS Power supply, Breadboard.
COMPONENTS IC 7485, LEDs.
IC PINOUT

Magnitude Comparator compares two binary data signals A \& B and generates the results of comparision in form of three output signals $\mathrm{A}>\mathrm{B}, \mathrm{A}=\mathrm{B}, \mathrm{A}<\mathrm{B}$. IC 7485 is a 4 -bit comparator. The cascade inputs $\mathrm{A}>\mathrm{B}, \mathrm{A}=\mathrm{B}, \mathrm{A}<\mathrm{B}$ can be used to construct a comparator comparing more than 4 bits. The compare outputs depend on both compare i / ps as well as cascade i / ps.
PROCEDURE 1)Give biasing to the IC .
2)Give various two 4 -bit inputs and note down output.
3)Do connections for cascading and note down output for various two 8-bit inputs.

OBSERVATION
TABLE

For 4-bit Comparator

$\mathbf{A}_{\mathbf{3}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{B}_{\mathbf{3}}$	$\mathbf{B}_{\mathbf{2}}$	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{0}}$	$\mathbf{A}>\mathbf{B}$	$\mathbf{A}=\mathbf{B}$	$\mathbf{A}<\mathbf{B}$

CONCLUSION Thus magnitude comparator is studied.

DIGITAL LOGIC DESIGN AND APPLICATIONS

TITLE
AIM
APPARATUS Power supply, Breadboard.
COMPONENTS
IC PINOUT

THEORY

Multiplexer is a combinational ckt. that is one of the most widely used in digital design. The multiplexer is a data selector which gates one out of several i / ps to a single o / p. It has n data i / ps \& one o / p line \& m select lines where $2^{\mathrm{m}}=\mathrm{n}$. Depending upon the digital code applied at the select inputs one out of n data input is selected \& transmitted to a single o/p channel. Normally strobe(G) input is incorporated which is generally active low which enables the multiplexer when it is LOW. Strobe i/p helps in cascading. A 4:1 Mux. using NAND gate can be designed as shown in dgm 1. No. of ICs are available such as 74157, 74158 (Quad 2:1 mux), 74352, 74153 (dual 4:1 Mux.), 74151A, 74152 ($8: 1$ Mux.), 74150 ($16: 1$ Mux). IC 74151 A is a $8: 1$ multiplexer which provides two complementary o/ps Y \& $\overline{\mathrm{Y}}$. The $\mathrm{o} / \mathrm{p} \mathrm{Y}$ is same as the selected $\mathrm{i} / \mathrm{p} \& \mathrm{Y}$ is its complement. The $\mathrm{n}: 1$ multiplexer can be used to realize a m variable function. $\left(2^{\mathrm{m}}\right.$ $=\mathrm{n}, \mathrm{m}$ is no. of select inputs)
PROCEDURE 1)Give biasing to the IC.
2)Do necessary connections.

DIGITAL LOGIC DESIGN AND APPLICATIONS

OBSERVATION
TABLE

Inputs				Outputs	
Select			Strobe		
C	B	A	S		

CONCLUSION Thus multiplexer is studied.
ASSIGNMENT 1)Verify the truthtable of IC 74151, 8:1 Mux.
2)Connect two 74151 ICs in cascading \& verify its operation as a 16:1 Mux.
3)Implement the function $\mathrm{Y}=\mathrm{AB}+\mathrm{BC}$ using $74151 \&$ verify the truthtable.

DIGITAL LOGIC DESIGN AND APPLICATIONS

TITLE
AIM
APPARATUS Power supply, Breadboard.
COMPONENTS IC 74155, LEDs.
IC PINOUT

THEORY
Demux takes single $\mathrm{i} / \mathrm{p} \&$ distributes it over several o/ps. It has one data line, no op lines \& m select lines where $2^{\mathrm{m}}=\mathrm{n}$. The logic ckt. of 1:4 demux. using NAND gates is shown in the dgm 1. The ckt. can also be used as binary to decimal decoder with binary inputs applied at the select i / p lines $\& \mathrm{o} / \mathrm{p}$ will be obtained on the corresponding line. MSI ICs available in TTL family for demux. are 74138(3 line to 8 line decoder/demux.), 74139(dual 2 to 4 line decoder/driver.), 74154(4 to 16 line decoder/demux), 74155 (dual 2 to 4 line decoder) etc. IC 74155 is a dual 2 to 4 line decoder. It has two sets of active low outputs 1 Y 0 to $1 \mathrm{Y} 3 \& 2 \mathrm{Y} 0$ to 2 Y 3 . A \& B are the select terminals common for both the demux. C1, C2 \& G1, G2 are the data lines \& strobe(enable) inputs for the two demux. C 1 is active high, C 2 , G1, G2 are active low. The two 2 line to 4 line demux. can be combined to implement 3 line to 8 line demux.
PROCEDURE 1)Give biasing to the IC.
2)Do necessary connections.

DIGITAL LOGIC DESIGN AND APPLICATIONS

OBSERVATION 2-Line to 4-Line Decoder OR 1-Line to 4-Line Demultiplexer TABLE

Inputs				Outputs			
Select		Strobe	Data	$\mathbf{1 Y}_{\mathbf{0}}$	$\mathbf{1 Y}_{\mathbf{1}}$	$\mathbf{1 Y}_{\mathbf{2}}$	$\mathbf{1 Y}_{\mathbf{3}}$
B	A	$\mathbf{G}_{\mathbf{1}} / \mathbf{G}_{\mathbf{2}}$	C1/C2	$\mathbf{2 Y}_{\mathbf{0}}$	$\mathbf{2 Y}_{\mathbf{1}}$	$\mathbf{2 Y}_{\mathbf{2}}$	$\mathbf{2 Y _ { 3 }}$

3:8 Decoder OR 1:8 Demultiplexer

Inputs				Outputs							
Select			Strobe (Data)								
C^{+}	B	A	G \ddagger	$2 \mathrm{Y}_{0}$	2Y1	$2 \mathrm{Y}_{2}$	2 Y 3	1Y0	1Y1	1Y2	1Y3

$\mathbf{C}^{+}=\mathrm{I} / \mathrm{P}^{\prime} \mathrm{C}_{1}$ and C_{2} connected together
$\mathbf{G} \ddagger=\mathrm{I} / \mathrm{P}$'s G_{1} and G_{2} connected together
CONCLUSION Thus demultiplexer is studied.
ASSIGNMENT 1)Verify the operation of both the demux in IC 74155 as per the truthtable.
2)Combine the two demux to give 3 line to 8 line demux \& verify the operation.

DIGITAL LOGIC DESIGN AND APPLICATIONS

EXPT. NO. 7
TITLE
AIM
APPARATUS
APPARATUS
COMPONENTS ICs 7400, 7402, 7476, LED.
CIRCUIT I) SR FF using NAND DIAGRAM AND TRUTHTABLE

Clk	S	R	Qn
0	X	X	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

II) JK FF (IC 7476)

1)

Clk	J	K	Qn
\checkmark	0	0	
$\checkmark \sqrt{k}$	0	1	
\checkmark,	1	0	
$\lrcorner \sqrt{\downarrow}$	1	1	

2) III) T FF using JK

$\mathbf{C l k}$	\mathbf{T}	Qn
\checkmark	0	
Ω	1	

3)
4)

DIGITAL LOGIC DESIGN AND APPLICATIONS

5) IV) D FF using JK
6)

Clk	D	Qn
$\checkmark k$	0	
$\curvearrowright \downarrow$	1	

7)

THEORY Flip-flops are the basic building blocks of sequential ckt. The clocked FFs change their o/p state depending upon i / p 's at certain interval of time synchronized with the clock pulse applied to it.
Different types of FFs are S-R, J-K, D \& T. Their operations are described by the respective truthtables. MSI chip 7476 incorporates two negative edge triggered Master-Slave JK flipflops. The J-K flipflop can be converted to D \& T flipflop.
PROCEDURE 1)Give biasing to the IC and do necessary connections.
2)For various combinations of i / p verify the truthtable.

CONCLUSION Thus R-S, J-K, D \& T Flip-Flops are studied.
ASSIGNMENTS 1)Construct clocked S-R FF using only NAND gates \& verify the truthtable.
2)Verify the truthtable of J-K FF using IC 7476. Observe the effect of Preset \& Clear i/ps.
3)Convert the J-K FF to D \& T FF.

DIGITAL LOGIC DESIGN AND APPLICATIONS

TITLE
AIM
APPARATUS
COMPONENTS
IC PINOUT

EXPT. NO. 8

SHIFT REGISTER

To study shift registers.
Power supply, Breadboard.
IC 7495, LEDs.

THEORY

PROCEDURE 1)Give biasing to the IC
2)Do connections for SIPO, PIPO \& Left Shift and notedown corresponding o / p.

OBSERVATIONS I) PIPO : Parallel I/P Parallel O/P

\mathbf{M}	$\mathbf{C l k} 2$	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	$\mathbf{Q}_{\mathbf{A}}$	$\mathbf{Q}_{\mathbf{B}}$	$\mathbf{Q C}$	$\mathbf{Q d}_{\mathbf{D}}$
1	0	X	X	X	X				
1									

DIGITAL LOGIC DESIGN AND APPLICATIONS

II)SIPO : Serial I/P Parallel O/P

a) Shift Right

\mathbf{M}	Clk1	Serial I/P	$\mathbf{Q A}_{\mathbf{A}}$	$\mathbf{Q B}_{\mathbf{B}}$	$\mathbf{Q C}_{\mathbf{C}}$	Qd
0						

b) Shift Left

\mathbf{M}	Clk2	D I/P	Q $_{\mathbf{A}}$	QB $_{\mathbf{B}}$	$\mathbf{Q C}$	QD
1						

CONCLUSION Thus shift register is studied.

DIGITAL LOGIC DESIGN AND APPLICATIONS

EXPT. NO. 9

TITLE
AIM
APPARATUS COMPONENTS

IC PINOUTS

CIRCUIT
DIAGRAM

COUNTERS

To study the counters.
Power supply, Breadboard.
ICs 7476, 7490, LEDs.

IC7476

3-BIT ASYNCHRONOUS COUNTER USING J-K flip flop.

DIGITAL LOGIC DESIGN AND APPLICATIONS

THEORY

PROCEDURE 1)Do connections as per the ckt. dgm.
2)Give biasing to the ICs.
3)Observe o/p using LEDs.

OBSERVATIONS

Counter State	$\mathbf{Q}_{\mathbf{0}}$	$\mathbf{Q}_{\mathbf{1}}$	$\mathbf{Q}_{\mathbf{2}}$
0			
$:$			
$:$			
7			

CONCLUSION Thus counters is studied.

DIGITAL LOGIC DESIGN AND APPLICATIONS

TITLE
AIM
APPARATUS
COMPONENTS
CIRCUIT DIAGRAM

THEORY A group of compatible ICs with the same logic levels and supply voltages for performing various logic functions have been fabricated using a specific ckt. configuration which is referred to as a logic family. TTL (Transistor-Transistor logic) is one of the saturated Bipolar logic families. CMOS (Complementary metal oxide semiconductor) is an unipolar logic family. Various chars. of digital ICs are used to compare their performances.
Current \& Voltage parameters :-
High level \mathbf{i} / \mathbf{p} voltage $\mathbf{V}_{\mathbf{I H}}$:- This is the min. i / p voltage at the o / p corresponding to logic 1 .
Low level i / p voltage $\mathbf{V}_{\text {IL }}$: - This is the max. i / p voltage which is recognized by the gate as logic0.
High level output voltage $\mathbf{V}_{\mathbf{O H}}$:- This is the min. voltage available at the o / p corresponding to logic1.
Low level o/p voltage $\mathbf{V}_{\text {OL }}$:- This is the max. voltage available at the o/p corresponding to logic0.
PROCEDURE 1)Connect the ckt. as per ckt. dgm. for TTL IC.
2)Vary the i / p voltage in steps \& notedown corresponding o/p voltage.
3)Plot graph of Vi Vs Vo.
4)Repeat same procedure for CMOS IC.

DIGITAL LOGIC DESIGN AND APPLICATIONS

OBSERVATIONS

Vi	Vo

CONCLUSION Thus transfer characteristics of TTL \& CMOS ICs is studied.

