
Lecture Notes on Turbomachinery

ME251. Instructor: R. Betti

1. Euler Equation

Consider a control volume (Euler wheel) rotating at the angular velocity ω = constant

(Fig. 1). The fluid particle with mass ∆m enters the c.v. with velocity ~C1 and it is carried

by the rotating wheel. The particle leaves the c.v. with a velocity ~C2. Newton’s law

applied to the particle reads as

∆m
d~C

dt
= ~F (1)

where ~F is the force applied on the particle by the wheel, ~c = d~x/dt is the particle velocity

and ~x(t) is the particle trajectory. From Eq. (1) it follows that

∆m
d

dt
( ~C × ~x) = ~F × ~x (2)

The axial (z-)component of Eq. (2) is

∆m
d

dt
( ~C × ~x · ez) = ~F × ~x · ez (3)

where er, eθ, ez are the unit vectors in the r, θ, z directions. Since ~x = rer + zez, Eq. (3)

yields

d

dt
(∆mCθr) = Fθr (4)

Multiplying both sides of Eq. (4) by ω, remembering that Cθ = rθ̇ = rω and integrating

in time between the particle inlet and outlet leads to the following equation for the work

done by the wheel on the particle

[∆mCθrω]21 =

∫ 2

1

FθCθdt = ∆W12 (5)

Obviously the work done by the particle on the wheel is just the opposite (−∆W12). For

the unit of mass (∆m = 1),

−W12 = ω[Cθ1r1 − Cθ2r2] (6)
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Eq. (6) relates the work done by the unit of mass on the wheel with the wheel angular

frequency ω, the outlet and inlet fluid tangential velocities, and the outlet and inlet fluid

radial position. The power produced/absorbed by the wheel is

P = ṁ(−W12)

If P > 0 the wheel is a turbine; if P < 0, the wheel is a compressor or pump.

2. Application of the Euler Equation

Consider air flowing inside the control volume without swirl (Cθ1 = 0) and leaving the

control volume at the radial position r2 = 15cm with a tangential velocity equal to 90%

of the rotor velocity. The air inlet temperature is 15 C and its pressure is 100kPa. The

rotor frequency is 20,000 revolutions/minute. Determine the compression ratio Pout/Pin

assuming that a diffuser is present at the outlet and the velocity at the diffuser exit is

negligible. Also neglect the inlet kinetic energy with respect to the air enthalpy and the

heat transfer in the compressor. Assume that there are no sources of irreversibilities.

Using Euler equation, the work done on the unit of mass of air is W12 = Cθ2r2ω. Since

Cθ2 = 0.9ωr2, then W12 = 0.9(ωr2)
2. Using ω = 2πf = 2π × 20000/60s−1, r2 = 0.15m,

we find W12 = 88.736kJ/kg. The energy balance between the inlet and the outlet of the

c.v. is

h1 +
C2

1

2
+ W12 = h2 +

C2
2

2
(7)

The energy balance between the inlet and the outlet of the diffuser is h2 +
C2

2

2
= hout.

Neglecting the kinetic energy at the inlet, Eq. (7) becomes

hin + W12 = hout (8a)

From the properties of perfect gases, dh = CpdT and

hout − hin = Cp(Tout − Tin) (8b)
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Also dh = CpdT = vdp and pv = RT . Thus,

Pout

Pin
=

(

Tout

Tin

)

Cp

R

(9)

Determining Tout/Tin from Eq. (8) and substituting into Eq. (9) yields

Pout

Pin
=

[

1 +
W12

CpTin

]

Cp

R

(10)

Using Cp = 1kJ/kg · K, T1 = 288K gives

Pout

Pin
= 2.55

The device studied is here is a compressor with compression ratio β = 2.55. It seems that

the only requirement for building such compressor is to design the wheel in such a way

to induce an outlet tangential velocity equal to 90% of the rotor speed and to design the

diffuser to convert kinetic energy into pressure.

How can we do that?????????

3.1 Blades in an Axial Compressors

We start by using the following shape of the control volume interior. In the control

volume there are radial blades as described in Fig. 2. The air flow enters the c.v. in the

axial direction (no swirl), the mass flow rate is ṁ = 0.9 kg/s, the blades radial length is

h = 1cm. The blades are installed on a cylindrical shaft of radius rs = 14.5 cm. The average

radius of the blades is rb = 15cm. The flow area is A1 = π[(rs + h)2 − r2
s ] = 94cm2 and

the air density is ρ1 = p1/RT1 = 1.2kg/m3. The average flow velocity of the air entering

the blades is C1 = ṁ/ρ1A1 = 80m/s and the blade velocity is Cb = ωrb = 314m/s.

In the frame of reference of the rotating blades, the air velocity is ~C1 −
~Cb = ~Cr1.

Defining with α the deflection angle of Cr1, the blade must be oriented with the same

angle in order to be aligned with the flow. Thus,

α = tan−1 C1

Cb
(11)
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Since Cb = ωrb = 314m/s, Eq. (11) yields α = 14o.

In the blades frame of reference, the air leaves the blades with a velocity ~Cr2 oriented

like the blades. The air velocity in the rest frame of reference is ~C2 = ~Cr2 + ~Cb. Defining

with φ, the outlet deflection angle of the blade, it follows that

Cθ2 = Cb − Cr2 cos φ (12)

where Cθ2 is the tangential component of the velocity at the exit of the rotor. In order to

design the compressor described in Sec. 2, it is required that Cθ2 = 0.9Cb thus leading to

Cr2 cos φ = 0.1Cb. There are two unknowns in this equation: Cr2 and φ. Now remember

that according to the mass conservation, the axial flow of air is constant. That is

ρ1C1 = ρ2Cr2 sin φ → C1 =
ρ2

ρ1
Cr2 sin φ (13)

Furthermore, energy conservation in the blade frame of reference requires

h1 +
C2

r1

2
= h2 +

C2
r2

2
(14)

Using the perfect gas model (dh = CpdT , Cp = constant), Eq. (14) can be rewritten as

T2

T1
= 1 +

C2
r1 − C2

r2

2CpT1
(15)

Neglecting heat exchanges and generation of irreversibilities, the pressure and temperature

are related by the following equation

P1

P2
=

(

T1

T2

)Cp/R

(16a)

and the densities (ρ = P/RT ) obey

ρ1

ρ2
=

(

T1

T2

)

Cp

R
−1

=

(

T1

T2

)

Cv
R

(16b)

Substituting Eq. (16) and (15) into Eq. (13) yields

C1 =

(

1 +
C2

r1 − C2
r2

2CpT1

)Cv/R

Cr2 sin φ (17)
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Since Cr1 =
√

C2
1 + C2

b = 324m/s and Cr2 = 0.1Cb/ cos φ, Eq. (17) can be rewritten in

the following form

C1 =



1 +
C2

1 + C2
b −

(0.1Cb)
2

cos2 φ

2CpT1





Cv/R

(0.1Cb) tanφ (18)

Eq. (18) is the equation for the blade deflection angle φ. Substituting C1 = 80m/s,

Cb = 314m/s, Cp = 1000J/kgK and T1 = 288 K, Cv/R = 2.48, Eq. (18) is numerically

solved and yields φ = 59o. Then using Cr2 = 0.1Cb/ cosφ one finds Cr2 = 61m/s.

3.2 The Diffuser

Observe that at the exit of the rotor blades, the air velocity is large,

C2 =
√

C2
r2 − 2Cr2Cb cos φ + C2

b = 287m/s (19)

and so is the kinetic energy

Ek =
C2

2

2
= 41kJ/kg (20)

The compression ratio between the inlet and outlet of the rotor is low. From Eq. (15) and

(16a), P2/P1 = 1.76. In order to transform the kinetic energy into pressure, one can use a

set of diffusers in parallel by appropriately installing a set of static blades (stator blades).

The deflection angle of the air velocity at the exit of the rotor blades can be obtained by

the sine rule C2/ sinφ = Cr2/ sin δ yielding

δ = sin−1

(

Cr2

C2
sin φ

)

= 11o (20)

In order to follow the flow, the stator blades are also deflected by 11o. It is usually desirable

to have axial flow at the exit of the stator blades ( ~C3 = C3ez). Defining with A2 and A3

the flow areas at the inlet and outlet of the stator blades, the conservation of mass gives

ρ2A2C2 sin δ = ρ3C3A3 →

C2A2

C3A3
=

ρ3

ρ2

1

sin δ
(21)
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The energy conservation in the stator reads as

h2 +
C2

2

2
= h3 +

C2
3

2
(22)

and using the perfect gas model

T3

T2
= 1 +

C2
2 − C2

3

2CpT2

P3

P2
=

(

T3

T2

)Cp/R

(23)

Combining Eq. (22) and Eq. (23) yields the following equation

A2

A3
=

C3

C2

1

sin δ

[

1 +
C2

2 − C2
3

2CpT2

]Cv/R

(24)

Using Cr1 = 324m/s into Eq. (15) gives T2 = 338 K and Eq. (24) becomes

A2

A3
= 5.5

C3

C2

[

1.12 − 0.12

(

C3

C2

)2
]2.5

(25)

For a given value of C3/C2, Eq. (25) yields the stator inlet/outlet ratio. For example:

C3 = 20m/s C3/C2 = 0.07 A2/A3 = 0.5

C3 = 10m/s C3/C2 = 0.035 A2/A3 = 0.2

For C3 = 20m/s, Eq. (23) yields T3/T2 = 1.12 and P3/P2 = 1.48 leading to a compression

ratio

P3

P1
= 1.48 × 1.76 = 2.6

as expected from Sec. 2.

4.1. Axial Flow Turbines

Remember the expression of the work done by the fluid on the Euler wheel (Eq. (6)).

If you can design the wheel in such a way that Cθ2 = 0 and Cθ1 > 0, then the work

−W12 = ωCθ1r1 > 0 can be extracted from the fluid. Here Cθ is the velocity component

in the tangential direction or direction of rotation of the wheel. Thus, it is important
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to induce a tangential component to the fluid entering the wheel. This can be achieved

through a set of stator blades. Fig. 5 shows a stator blade deflecting the fluid by 70o

(α1 = 20o). Fig. 4 shows the cross section of a turbine. Observe that the stator blades

are connected to the casing and do not move. Their length changes in the axial direction

(See Fig. 6. where R0 < R < R1). The Euler wheel of Fig. 1 is represented by the rotor

blades that are connected to the shaft and rotate with its angular frequency. At the rotor

inlet, the fluid has a tangential component Cθ1. At the outlet of the rotor blades of Fig.

5. the fluid velocity is deflected by the angle α2 ' 90o and Cθ2 = 0.

The stator and rotor represent one stage of the turbine. There are several stages in

each turbine (three stages in Fig. 4). The rotor blades have constant length in the radial

direction (R2 = R1).

4.2 Example

Consider a flow of saturated steam at 70 bars and hin = h0 = 2772.1 kJ/kg entering

the turbine with velocity C0 = 0.25Cs where Cs =
√

5p/3ρ is the speed of sound

C0 = 140m/s

The shaft radius is Rs = 18cm and the mass flow rate is ṁ = 1200kg/s. The flow area is

A0 =
ṁv0

C0
= 0.23m2 (26)

corresponding to a inlet radius R0 = 32cm. The steam pressure drops from 70 to 10 bars

at constant entropy. The quality at the exit of the turbine is

xout =
5.8133 − 2.1387

6.5863 − 2.1387
= 0.826 (27)

The enthalpy at the exit of the turbine is

hout = 0.826 × 2778.1 + (1 − 0.826) × 762.81 = 2427kJ/kg (28)
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In our design, the enthalpy drop is the same through each stage and the turbine has three

stages (Fig. 4)

h0 − h2 =
hin − hout

3
= 115kg/kJ (29)

The stage reaction is defined as the ratio of the enthalpy drop through the rotor and the

total enthalpy drop through the stage

Reaction =
h1 − h2

h0 − h2
(30)

For a 50% reaction stage, h0 − h1 = 57.5kJ/kg and h1 − h2 = 57.5kJ/kg.

4.3 Stator Blades

The energy conservation through the stator yields

h0 +
C2

0

2
= h1 +

C2
1

2
(31)

The mass conservation yields

ρ0C0A0 = ρ1C1A1 sinα1 (32)

From the energy conservation C1 = 367m/s. If we knew the pressure p1, we could calculate

the density ρ1 to use in the mass conservation equation. The equation for p1 is obtained

by

x1 =
s1 − sl(p1)

sv(p1) − sl(p1)
=

h1 − hl(p1)

hv(p1) − hl(p1)
(33)

where s1 = s0 is the entropy of the mixture, sl, sv, hl, hv are the entropies and enthalpies

of the saturated liquid and vapor at p1 Obviously Eq. (33) has one unknown: the pressure

p1. I try a few values of p1 and I found that p1 = 52 bars is close to the exact solution.

This value of p1 leads to x1 = 0.95 and

v1 = x1vv(p1) + (1 − x1)vl(p1) = 0.036m3/kg (34)
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In order to maximize Cθ1, we choose a small deflection angle α1 = 20o thus leading to

A1 = A0
v1C0

v0C1 sin α1
= 1.48 × 0.23 = 0.34m2 (35)

corresponding to R1 = 38cm.

4.4 Rotor Blades

The rotor blades are connected to the shaft that rotates at 6000rpm. The average

radius of the rotor blades (Fig. 6) is

Rb =
Rs + R1

2
= 28cm (36)

The blade velocity at the midpoint is Cb = ωRb = 176m/s. In the frame of reference of

the rotor (Fig. 5), the fluid velocity is

Cr1 =
√

C2
1 + C2

b − 2CbC1 cos α1 = 210m/s (37)

The angle β1 is

β1 = sin−1

(

C1

Cr1
sin α1

)

= 37o (38)

In the rotor frame of reference, the conservation of energy reads as

h1 +
C2

r1

2
= h2 +

C2
r2

2
(39)

This equation can be solved to find Cr2

Cr2 =
√

2(h1 − h2) + C2
r1 = 399m/s

The angle β2 can be determined by the conservation of the axial flow

ρ2Cr2 sin β2A2 = ρ1Cr1 sin β1A1 (40)

where A2 = A1 (Fig. 6). To determine ρ2 we need the quality and the pressure at 2

ρ−1
2 = v2 = x2vv(p2) + (1 − x2)vl(p2) (41)
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For isentropic flows, the pressure p2 can be determined from the quality equation

x2 =
s2 − sl(p2)

sv(p2) − sl(p2)
=

h2 − hl(p2)

hv(p2) − hl(p2)
(42)

where s2 = s1 = s0 = 5.8133 and h2 = h0 − 115 = 2657kJ/kg. I tried a few values of

p2 and p2 = 40 bars seems to be close enough to the exact solution. The corresponding

quality is x2 = 0.92 and the specific volume is v2 = 0.046. Eq. (40) can be solved to find

β2

β2 = sin−1

(

v2Cr1

v1Cr2
sin β1

)

= 24o (43)

The velocity of the fluid in the lab. frame of reference is

C2 =
√

C2
r2 + C2

b − 2Cr2Cb cos β2 = 248m/s (44)

and α2 = 40o. Observe that the angle α2 is not 90o as we wished. We could change the

degree of reaction until we find α2 = 90o. However, observe that values of α2 < 90 make

Cθ2 < 0 and therefore they increase the power transfer from the fluid to the rotor, thus

improving the performance of the turbine. The energy variation of the fluid is

∆E = h0 +
C2

0

2
− h2 −

C2
2

2
= 94kJ/kg

This is the work transferred from the fluid to the turbine.
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