

 1

Chapter 1

Fundamentals and History of C

Introduction to C
C has emerged as the most widely used programming language for software
development. C language supports the powerful low level features like pointer, memory
allocation, bit manipulations etc. The features of C language make it possible to se the
language for system programming like the development of compiler, interpreter,
operating system, system utilities etc.

History of C:
C language was developed by Dennis Ritchie & Ken Thompson at Bell Laboratories
(now part of AT & T) at USA. In 1968, Bell and MIT were doing a joint project on
MULTICS (multiplexing information and computing service). Operating system for
multi-user-time sharing- system. They are BCPL (Basic combined programming
language) developed by Martin Richards at Cambridge University. Around the same time

The language called ‘B’ was written by Ken Thompson at Bell Laboratories. Denis
Ritchie inherited the features of ‘B’ and BCPL, added some features of his own and
developed ‘c’.

Computer Definition:

A computer is a programmable machine. It allows the user to store all sorts of
information and then ‘process’ that information, or data, or carry out actions with the
information, such as calculating numbers or organizing words.

ADVANTAGES/FEATURES OF C
 C language has become the language of choice of two decades among system
programmers and application programmers. Reason for its popularity can be summarized
as follows:

1. Powerful and flexibility:
The power and popular UNIX as was written in C. The complier and interpreter
for FORTAN, PASCAL, LISP, and BASIC are written in C.

2. Portability:
C program written in one system can be run on other system with little
modifications.

3. Efficiency:
The program written in C language is highly efficient like assembly language in
speed and memory management.

4. Programmer oriented:
It has the flexible control structure and gives access to hardware and enables to
manipulate individual bits of memory.

5. Modularity:

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 2

C program can be modularizing for step wise refinement. The complex program
can be modularize into simple programs.

Computer Systems:

A computer is a system made of two major components :Hardware and Software

Hardware:

• The hardware are the parts of computer itself including the Central Processing
Unit (CPU) and related microchips and micro-circuitry, keyboards, monitors, case
and drives (floppy, hard, CD, DVD, optical, tape, etc...).

• Other extra parts called peripheral components or devices include mouse, printers,
modems, scanners, digital cameras and cards (sound, colour, video) etc...
Together they are often referred to as a personal computers or PCs.

• Central Processing Unit (CPU) - Though the term relates to a specific chip or the
processor a CPU's performance is determined by the the rest of the computers
circuitry and chips.

• Keyboard - The keyboard is used to type information into the computer or input
information.

• Disk Drives - All disks need a drive to get information off - or read - and put
information on the disk - or write. Each drive is designed for a specific type of
disk whether it is a CD, DVD, hard disk or floppy. Often the term 'disk' and 'drive'
are used to describe the same thing but it helps to understand that the disk is the
storage device which contains computer files - or software - and the drive is the
mechanism that runs the disk.

• Mouse - Most modern computers today are run using a mouse controlled pointer.
Generally if the mouse has two buttons the left one is used to select objects and

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 3

text and the right one is used to access menus. If the mouse has one button (Mac
for instance) it controls all the activity and a mouse with a third buttons can be
used by specific software programs.

One type of mouse has a round ball under the bottom of the mouse that rolls and turns
two wheels which control the direction of the pointer on the screen. Another type of
mouse uses an optical system to track the movement of the mouse.

• Monitors - This Visual Display Unit (VDU) shows information on the screen
when you type. This is called outputting information. When the computer needs
more information it will display a message on the screen, usually through a dialog
box. Monitors come in many types and plus sizes from the simple monochrome
(one colour) screen to full colour screens.

Most desktop computers use a monitor with a cathode tube and most notebooks use a
liquid crystal display (LCD) monitor. To get the full benefit of today's software with full
colour graphics and animation, computers need a color monitor with a display or graphics
card.

• Printers - The printer takes the information on your screen and transfers it to paper
or a hard copy. There are many different types of printers with various levels of
quality. The three basic types of printer are; dot matrix, inkjet, and laser.

• Scanners- Scanners allow you to transfer pictures and photographs to your
computer. A scanner 'scans' the image from the top to the bottom, one line at a
time and transfers it to the computer as a series of bits or a bitmap. You can then
take that image and use it in a paint program, send it out as a fax or print it.

• Memory - Memory can be very confusing but is usually one of the easiest pieces
of hardware to add to your computer. It is common to confuse chip memory with
disk storage. An example of the difference between memory and storage would be
the difference between a table where the actual work is done (memory) and and a filing

cabinet where the finished product is stored (disk). To add a bit more confusion, the
computer's hard disk can be used as temporary memory when the program needs more
than the chips can provide.

• Random Access Memory or RAM is the memory that the computer uses to temporarily
store the information as it is being processed. The more information being processed the
more RAM the computer needs.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 4

Basic hardware Components:

Types of software :

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 5

Relationship between system software and application software:

System Software: It helps in running the computer hardware and the computer system.
System software is a collection of operating systems; devise drivers, servers, windowing
systems and utilities. System software helps an application programmer in abstracting
away from hardware, memory and other internal complexities of a computer.

Application Software: It enables the end users to accomplish certain specific tasks.
Business software, databases and educational software are some forms of application
software. Different word processors, which are dedicated for specialized tasks to be
performed by the user, are other examples of application software.

Time sharing environment:

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 6

Time-sharing is an approach to interactive computing in which a single computer is used
to provide apparently simultaneous interactive general-purpose computing to multiple
users by sharing processor time. So basically, time sharing is for multi-user computer
systems.

Time-sharing developed out of the realization that while any single user was inefficient, a
large group of users together were not. This was due to the pattern of interaction; in most
cases users entered bursts of information followed by long pause, but a group of users
working at the same time would mean that the pauses of one user would be used up by
the activity of the others. Given an optimal group size, the overall process could be very
efficient. Similarly, small slices of time spent waiting for disk, tape, or network input
could be granted to other users.

Implementing a system able to take advantage of this would be difficult. Batch
processing was really a methodological development on top of the earliest systems;
computers still ran single programs for single users at any time, all that batch processing
changed was the time delay between one program and the next. Developing a system that
supported multiple users at the same time was a completely different concept; the "state"
of each user and their programs would have to be kept in the machine, and then switched
between quickly. This would take up computer cycles, and on the slow machines of the
era this was a concern. However, as computers rapidly improved in speed, and especially
in size of core memory in which users' states were retained, the overhead of time-sharing
continually decreased, relatively.

Problem Solving Method:

1. Recognize and understand the problem.
2. Accumulate facts.
3. Select appropriate theory.
4. Make necessary assumptions.
5. Solve the problem.
6. Verify results.

Algorithm and Flowchart:
Algorithm: An algorithm is just a detailed sequence of simple steps that are needed to
solve a problem
Algorithms may be presented ..
1: in words
2:as a flowchart
3:in structured code

Flowchart: is an graphical representation of an algorithm.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 7

5 steps in using computer as a problem solving tool

1. Develop an algorithm and a flowchart.
2. Write the program in a computer language
3. Enter the program into the computer.
4. Test and debug the program.
5. Run the program, input data, and get the result.

Basic Symbols:

1.Stop/Start

2.Question, Decisions (Use in Branching)

3. Input/Output

4. Preparation

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 8

5. Refers to separate flow char

6. Connecter (connects one part of the flowchart to another).

7.Process, Instruction

Example for algorithm

Finding the sum of two numbers:

Variables:
A:First Number
B:second Number
C:sum(A+B)

Algorithm:
Step1:Start
Step2:Input A
Step3:Input B
Step4:Calculate C=A+B
Step5:Output C
Step 6:Stop

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 9

Elements of C Program

System libraries
Header files
Application Source
Compiler
Linker
Creating C program
C program structure:
C program can be written using combinations of three control structures i.e. sequential,
selection and repetitive. All C programs are made up of one or more function, each
performing a particulars task. Every program has a special function named main(). It is
special because the execution of any program starts from main functions.

General

Comments
Preprocessor directives
Global variables
main() function
{
 local variables
statements

}
function1() other functions
{
 local variables
statements

}

/*Example number 1*/
#include<stdio.h>
main()
{
 Printf (“This is first program \n ”);

return 0;
}

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

Notes:
Every program statements must end with a semi colon (;).
All programming statements must lie within curly braces.
Comment statements doesn’t compile by the computer.

Comments /*……..*/
In C, /* is called opening comment mark and */ is closing comment mark. The C
compiler ignores everything between the opening comment mark and closing comment
mark. The comment is used for program documentation.

#include directory:
In C, #include is a preprocessor directive that tells the C preprocessor to look for a file
and place the file in the location where #include indicates. The preprocessor includes the
header file such as stdio.h, conio.h, string.h etc.

Header file:
The file that are included by the #include directive such as stdio.h is called header file.
The header files are always placed at the start of a C program.

Angular <> braces:
In C, the angular bracket asks the C preprocessor to look for a header file in directory
other than the current one. If we want to let the C preprocessor look into current directory
first for header file before it starts to work, we can use double quotes to surround the
name of the header file. Normally, the header file are saved in a sub directory called
include.

Main function:
Every C program must have one and only one main functions. The main function can be
put anywhere but the execution of a program starts with main function. The main
function starts and end with curly braces {}

Printf functions and new line character:
The printf function is used to print the character string. The new line character which is
usually sufficient at the end of the message, tells the system to move the cursor to the
beginning of next line.

Return statements:
All function in C can return value. The main function itself returns an integer value. So,
return 0 indicates that 0 is returned from main function and the program is terminated
normally. We can return values other than 0 to tell the system that there is an error.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

Building a C Program

Example
#include <stdio.h> /*preprocessor statements*/
#include<conio.h>

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

int main()
{
printf(“Hello”);
return 0;
}
This will print Hello on screen when executed
#include<stdio.h>
#include<conio.h>
void add(int x,int y)/*defined function*/
{
 int result;
 result=x+y;
 printf(“sum of %d and %d is %d\n”,x,y,result);
Void main()
 {
 clrscr();
 add(10,20); /*function calling*/
 add(30,20);
 getch();
}

Compiling:

1.The source file stored on the disk must be translated into machine
language, this is the job of compiler.
2.The C Compiler is actually two separate programs : Preprocessor and the translator.

Running C program:
On linux platform
Create a file with extension .c for example consider a file hello.c
Preprocessing :assembly code cc -S hello.c
Compilation :a binary file cc -c hello.s
Linking: a.out or hello, an executable file cc hello.o
Cc -o hello hello.o
Loading (dynamic linking) and execution :./hello
./a.out
output : Hello

Identifiers and Keywords:
An identifiers can be defined as the name of the variable, function, arrays, structures,
constants etc, are created by the programmer. They are the fundamental requirements of
any programming language.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

Keywords:
Keywords are reserved identifiers and they cannot be used as names for the program
variables. The keywords are also called as reserved words. The meaning of the keywords
already given to the compiler. There are 32 keywords available in C.

Delimiters:
Delimiters are used for syntactic meaning in C. These are as given below-
: colon used for label
; semicolon end of statements
() parenthesis used in expression
{} curly braces used for block of statements
[] square bracket used for array
hash preprocessor directives
, comma variables delimiter

Variable / constant:
A variable is a named data storage location in computers memory. By using a variable
name we are referring to the data stored in the location. A value that changes during the
execution of the program is called variable.

Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

Rules of variables declaration in C:
The variable name is a combination of alphabets, digits, underscore etc.
The first character in the variable name must be an alphabet.
A keyword cannot be used as variable name
No comma or blanks are allowed in variable name.
No special symbols ($, #) other than underscore can be used in variable name.
Uppercase & lowercase letters are distinct i.e. case sensitive
A variable name can’t start with digit.

The maximum length of variable name should be 8 characters long in DOS based
program & in ANSI C it supports up to 31 characters long.

Constants:

Identifier which doesn’t change value during the execution of a program is called
constant. The value associated with the storage always be constant.
C has 4 basic types of constant:
Integer constant
Floating point constant
Character constant
String constant

Integer constant
An integer constant has only numbers from 0 to 9. Examples are: 0, 111, 6598 [Invalid-
23,360 256.00 23-56]

Floating point constant
A floating point constant is a numeric constant with a decimal point are an exponent or
both.
Eg: 0.5 488.33 1.56 e +9 9e-5
Invalid: 1,000.0 0.58 e+12.6

Character constant
The single character which can be stored in a storage space is called character constant. A
character constant always denotes with single quotes.
Eg: ‘A’ ‘C’ ‘X’
Invalid: “XY” ‘ABC’

String Constant
The group of characters which represents with double quotes is a string constant. C
allocates less memory for string constant for a string, it always manages by using arrays.
Eg: “PRIME” “COLLEGE”

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

Invalid: ‘PRIME’ COMPUTER

Data Types:
A data types defines a set of values that a variable can store along with a set of operation
that can be performed on the variable. There are basically two types of data types:

1. Fundamental
2. Derived

Fundamental data types:
The fundamental data types are char, int, float and double

Data type Memory required

Char 1byte

Int 2byte

Float 2byte

Double 4byte

Derived data types:
Derived data types are derived from the fundamental data type. Some of the derived data
types are short int, long int, long double etc.Char

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

KeywordsDefining Data:

Data can be defined in the following format:
Data definition data type size value assigned
Char a, c; char 1 -
Char a=2; char 1 2
Int count=10; int 2 10
Float num float 4 -

Input / Output:
The important aspect of C programming language is its ability to handle input and output
(I /O). Some of the inputs, output function are printf, scanf, getchar, putchar etc

Data type Size range

Signed char 1

-128 to 127

Unsigned char 1 0 to 255

Short signed int 2 -32768 to 32768

Short unsigned int 2 0 to 65535

Signed int 1 -128 to 127

Unsigned int 1 0 to 255

Long signed int 4 -2147483648 to
+2147483648

Long unsigned int 4 0 to 4294967295

Float 4 3.4e-38 to 3.4e+38

Double 8 1.7e-308 to 1.7e +308

Long double 10 3.4e -4932 to 1.1e + 4932

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

Printf function
The printf function is used to display the value to the output devices It moves data
from the computer’s memory to the standard output devices.
Syntax: printf(“format specifier” , arg1, arg2, ….arg n);
Formatspecifier � control string
Arg 1. arg 2 � variables or values

Format Specifier:
%d int
%f float
%c char
%s string

Examples:
#include<stdio.h>
main()
{
 float num1;

int num2=10, num3;
num1=1.33;
num3=5;
printf(“\n the value of num1 is %f ” , num1);
printf(“\n the value of num2 is %d ” , num2);
printf(“\n the value of num3 is %d ” , num3);

return 0;

}

Output:
the value of num1 is 1.33
the value of num2 is 10
the value of num3 is 5

scanf function:
The scanf function gets data from the standard input device and stores it in the computer
memory.
Sysntax: scanf(“ format specifier”, & arg1, & arg2,…….,& argn) ;
Format specifier� is the control string to denote the data type of variable
& arg1, & arg2,…….,& argn� are the variables which stores values.

/*Example of scanf function*/
#include<stdio.h>
void main()
{
 int num1, num2, total;

printf(“ \n Enter the first numer”);

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

scanf(“ %d” , &num1);
printf(“ \n Enter the second numer”);
scanf(“ %d” , &num2);
total=num1+num2;
printf(“\n Sum of two number= %d”, total);

}

output:
Enter the first numer 10
Enter the second numer 20
Sum of two number = 30

Format specifier:
Format specifiers are the character string with % sign followed with a character. It
specifies the type of data that is being processed. It is also called conversion specifier.
When data is being output or input it must be specify with identifier(variable) and their
format specifier.

c � a single character
d � a decimal integer
f � a floating point number
e � a floating point number
g � a floating point number
h � a sort integer
lf � long range of floating point number (for double data types)
o � an octal integer
x � a hexadecimal integer
I � a decimal, octal or hex decimal integer
S � a string
U � an unsigned decimal integer

Escape sequence:
Escape sequence are special character denoted by a backslash (\) and a character after it.
It is called escape sequence because it causes an ‘escape’ from the normal way for
characters are interpreted. For example if we use ‘\ n’, then the character is not treated
as n but it is treated as a new line. Some of the common escape sequence characters are:
Escape sequence Meaning
\a Bell \ beep
\n new line
\t tab horizontal
\b move the character to left one space
\r return / enter key
\\ backslash
\’ single quote

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

\” double quote

getchar() function:
The getchar function is a part of input / output function of C programming language. It
returns a single character from the standard input device. When it is transform to an
integer it returns the ASCII value of the variable
Syntax: getchar()

putchar() function:
The putchar function is also part of input output library function of C language. It prints
only a single character to a output device.
Syntax: putchar(variable)

System Development:
We have seen the steps that are necessary to build a program.
In this ,We discuss how we go about developing a program
This critical process determines the overall quality and success of our program.
If we carefully design each program using good structured development techniques, our
program will be efficient, error free and easy to maintain.

Explanation:

the simplest software development life cycle model is the waterfall model, which states
that the phases are organized in a linear order. A project begins with feasibility analysis.
On the successful demonstration of the feasibility analysis, the requirements analysis and
project planning begins.

The design starts after the requirements analysis is done. And coding begins after the
design is done. Once the programming is completed, the code is integrated and testing is

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

done. On succeeful completion of testing, the system is installed. After this the
regular operation and maintenance of the system takes place. The following figure
demonstrates the steps involved in waterfall life cycle model.
With the waterfall model, the activities performed in a software development project are
requirements analysis, project planning, system design, detailed design, coding and unit
testing, system integration and testing. Linear ordering of activities has some important
consequences. First, to clearly identify the end of a phase and beginning of the others.
Some certification mechanism has to be employed at the end of each phase. This is
usually done by some verification and validation. Validation means confirming the output
of a phase is consistent with its input (which is the output of the previous phase) and that
the output of the phase is consistent with overall requirements of the system.
The consequences of the need of certification is that each phase must have some defined
output that can be evaluated and certified. Therefore, when the activities of a phase are
completed, there should be an output product of that phase and the goal of a phase is to
produce this product. The outputs of the earlier phases are often called intermediate
products or design document. For the coding phase, the output is the code. From this
point of view, the output of a software project is to justify the final program along with
the use of documentation with the requirements document, design document, project
plan, test plan and test results.
Another implication of the linear ordering of phases is that after each phase is completed
and its outputs are certified, these outputs become the inputs to the next phase and should
not be changed or modified. However, changing requirements cannot be avoided and
must be faced. Since changes performed in the output of one phase affect the later phases,
that might have been performed. These changes have to made in a controlled manner
after evaluating the effect of each change on the project.This brings us to the need for
configuration control or configuration management.

The certified output of a phase that is released for the best phase is called baseline. The
configuration management ensures that any changes to a baseline are made after careful
review, keeping in mind the interests of all parties that are affected by it. There are two
basic assumptions for justifying the linear ordering of phase in the manner proposed by
the waterfall model.
For a successful project resulting in a successful product, all phases listed in the waterfall
model must be performed anyway.
Any different ordering of the phases will result in a less successful software product.

Software engineering :
Software engineering is the establishment and use of sound engineering methods and
principles to obtain software that is reliable and that works on real machines.
This definition, from the first international conference on software engineering in 1969,
was proposed 30 years after the first computer was built. During this period, software was
more of an art then a science.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

Common Errors:

1Forgetting to put a break in a switch statement.
2.Using = instead of ==
3.Scanf errors:
 i:Forgetting to put an ampersand(&) on arguments
 ii:Using the wrong format for operand.
4.Size of arrays.
5.Integer division
6.Loop errors.
7.Not using prototypes.
8.Not initializing pointers.
9.String Errors

i:Confusing character and string constants.
 ii:Comparing strings with ==.
 iii:Not null terminating strings.
 iv:Not leaving room for the null terminator.
10.Input /output errors

i:Using getc(), getchar(), etc. incorrectly.
ii:Using feof() incorrectly.
iii:Leaving characters in the input buffer.

11.Using keywords as identifiers in the program.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 Chapter 2

Structure of a C program

One reason for the power of C is its wide range of useful operators. An operator is a

function which is applied to values to give a result. You should be familiar with operators

such as +, -, /.

Arithmetic operators are the most common. Other operators are used for comparison of

values, combination of logical states, and manipulation of individual binary digits. The

binary operators are rather low level for so are not covered here.

Operators and values are combined to form expressions. The values produced by these

expressions can be stored in variables, or used as a part of even larger expressions.

Assignment Statement

The easiest example of an expression is in the assignment statement. An expression is

evaluated, and the result is saved in a variable. A simple example might look like

y = (m * x) + c

This assignment will save the value of the expression in vabriable y.

Arithmetic operators

Here are the most common arithmetic operators

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

*, / and % will be performed before + or - in any expression. Brackets can be used to

force a different order of evaluation to this. Where division is performed between two

integers, the result will be an integer, with remainder discarded. Modulo reduction is only

meaningful between integers. If a program is ever required to divide a number by zero,

this will cause an error, usually causing the program to crash.

Here are some arithmetic expressions used within assignment statements.

velocity = distance / time;

force = mass * acceleration;

count = count + 1;

C has some operators which allow abbreviation of certain types of arithmetic assignment

statements.

These operations are usually very efficient. They can be combined with another

expression.

Versions where the operator occurs before the variable name change the value of the

variable before evaluating the expression, so

These can cause confusion if you try to do too many things on one command line. You

are recommended to restrict your use of ++ and - to ensure that your programs stay

readable.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

Another shorthand notation is listed below

Type conversion

You can mix the types of values in your arithmetic expressions. char types will be treated

as int. Otherwise where types of different size are involved, the result will usually be of

the larger size, so a float and a double would produce a double result. Where integer and

real types meet, the result will be a double.

There is usually no trouble in assigning a value to a variable of different type. The value

will be preserved as expected except where;

• The variable is too small to hold the value. In this case it will be corrupted (this is

bad).

• The variable is an integer type and is being assigned a real value. The value is

rounded down. This is often done deliberately by the programmer.

Values passed as function arguments must be of the correct type. The function has no

way of determining the type passed to it, so automatic conversion cannot take place. This

can lead to corrupt results. The solution is to use a method called casting which

temporarily disguises a value as a different type.

eg. The function sqrt finds the square root of a double.

int i = 256;

int root;

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

root = sqrt((double) i);

The cast is made by putting the bracketed name of the required type just before the value.

(double) in this example. The result of sqrt((double) i); is also a double, but this is

automatically converted to an int on assignment to root.

Comparison

C has no special type to represent logical or boolean values. It improvises by using any of

the integral types char, int, short, long, unsigned, with a value of 0 representing false and

any other value representing true. It is rare for logical values to be stored in variables.

They are usually generated as required by comparing two numeric values. This is where

the comparison operators are used, they compare two numeric values and produce a

logical result.

Note that == is used in comparisons and = is used in assignments. Comparison operators

are used in expressions like the ones below.

x == y

i > 10

a + b != c

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

In the last example, all arithmetic is done before any comparison is made.

These comparisons are most frequently used to control an if statement or a for or a while

loop. These will be introduced in a later chapter.

 Logical Connectors

These are the usual And, Or and Not operators.

They are frequently used to combine relational operators, for example

x < 20 && x >= 10

In C these logical connectives employ a technique known as lazy evaluation. They

evaluate their left hand operand, and then only evaluate the right hand one if this is

required. Clearly false && anything is always false, true || anything is always true. In

such cases the second test is not evaluated.

Not operates on a single logical value, its effect is to reverse its state. Here is an example

of its use.

if (! acceptable)

 printf("Not Acceptable !!\n");

Precedence of C operators

The following table shows the precedence of operators in C. Where a statement involves

the use of several operators, those with the lowest number in the table will be applied

first.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

Summary

Three types of expression have been introduced here;

• Arithmetic expressions are simple, but watch out for subtle type conversions. The

shorthand notations may save you a lot of typing.

• Comparison takes two numbers and produces a logical result. Comparisons are

usually found controlling if statements or loops.

• Logical connectors allow several comparisons to be combined into a single test.

Lazy evaluation can improve the efficiency of the program by reducing the

amount of calculation required.

C also provides bit manipulation operators. These are too specialized for the scope of this

course.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 Chapter 3
 FUNCTIONS

 What is Function in C Language?

A function in C language is a block of code that performs a specific task. It has a name
and it is reusable i.e. it can be executed from as many different parts in a C Program as
required. It also optionally returns a value to the calling program

So function in a C program has some properties discussed below.

 Every function has a unique name. This name is used to call function from
“main()” function. A function can be called from within another function.

• A function is independent and it can perform its task without intervention from or
interfering with other parts of the program.

3. A function performs a specific task. A task is a distinct job that your program must
perform as a part of its overall operation, such as adding two or more integer,
sorting an array into numerical order, or calculating a cube root etc.

6. A function returns a value to the calling program. This is optional and depends
upon the task your function is going to accomplish. Suppose you want to just
show few lines through function then it is not necessary to return a value. But if
you are calculating area of rectangle and wanted to use result somewhere in
program then you have to send back (return) value to the calling function.

C language is collection of various inbuilt functions. If you have written a program in C
then it is evident that you have used C’s inbuilt functions. Printf, scanf, clrscr etc. all are
C’s inbuilt functions. You cannot imagine a C program without function.

Structure of a Function:

A general form of a C function looks like this:

<return type> FunctionName (Argument1, Argument2, Argument3……)

{

Statement1;

Statement2;

Statement3;

}
An example of function.
int sum (int x, int y)
{
int result;
result = x + y;

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 return (result);

 }

Advantages of using functions:

There are many advantages in using functions in a program they are:

• It makes possible top down modular programming. In this style of programming,
the high level logic of the overall problem is solved first while the details of each
lower level functions is addressed later.

• The length of the source program can be reduced by using functions at appropriate
places.

• It becomes uncomplicated to locate and separate a faulty function for further
study.

• A function may be used later by many other programs this means that a c
programmer can use function written by others, instead of starting over from
scratch.

• A function can be used to keep away from rewriting the same block of codes
which we are going use two or more locations in a program. This is especially
useful if the code involved is long or complicated.

Types of functions:
A function may belong to any one of the following categories:

• Functions with no arguments and no return values.

• Functions with arguments and no return values.

• Functions with arguments and return values.

• Functions that return multiple values.

• Functions with no arguments and return values.

Example of a simple function to add two integers.
#include<stdio.h>

#include<conio.h>

void add(int x,int y)

{

int result;

result = x+y;

printf("Sum of %d and %d is %d.\n\n",x,y,result);

}

void main()

{

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

clrscr();

add(10,15);

add(55,64);

getch();

}

Program Output

� Sum of 10 and 15 is 25

� Sum of 55 and 64 is 119.

Output of above program.

Explanation

Before I explain, let me give you an overview of above c program code. This is a very
simple program which has only function named “add()” . This “add()” function takes two
values as arguments, adds those two values and prints the result.

Line 3-8 is a function block of the program. Line no. 3 is the header of function, void is
return type of function, add is function name and (int x, int y) are variable which can hold
integer values to x and y respectively. When we call function, line no. “12, 13, 14”, we
need to send two integer values as its argument. Then these two values get stored in
variable x and y of line no. 3. Now we have two values to perform addition; in line no. 5
there is an integer declaration named “result”. This integer will store the sum of x and y
(please see line no. 6). Line no. 7 simply prints the result with message.

Now imagine the same program without using function. We have called “add()” function
three times, to get the same output without using function we have to write Line no. 6 &
7 three time. If you want to add more value later in the program then again you have to
type those two lines. Above example is a small and simple program so it does not appear
great to use function. But assume a function consist 20 – 30 or more lines then it would
not be wise to write same block of code wherever we need them. In such cases functions
come handy, declare once, use wherever you want.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

Calling Functions:

Call by Value and Call by Reference

Until now, in all the functions we have seen, the arguments passed to the functions have
been passed by value. This means that when calling a function with parameters, what we
have passed to the function were copies of their values but never the variables
themselves. For example, suppose that we called our first function addition using the
following code:

1
2

int x=5, y=3, z;

z = addition (x , y);

What we did in this case was to call to function addition passing the values of x and y, i.e.
5 and 3 respectively, but not the variables x and y themselves.

This way, when the function addition is called, the value of its local variables a and b
become 5 and 3 respectively, but any modification to either a or b within the function
addition will not have any effect in the values of x and y outside it, because variables x
and y were not themselves passed to the function, but only copies of their values at the
moment the function was called.

But there might be some cases where you need to manipulate from inside a function the
value of an external variable. For that purpose we can use arguments passed by reference,
as in the function duplicate of the following example:

1
2
3
4
5

// passing parameters by reference

#include <iostream>

using namespace std;

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

6
7
8
9

10
11
12
13
14
15
16
17
18

void duplicate (int& a, int& b, int& c)

{

 a*=2;

 b*=2;

 c*=2;

}

int main ()

{

 int x=1, y=3, z=7;

 duplicate (x, y, z);

 cout << "x=" << x << ", y=" << y << ", z=" << z;

 return 0;

}

The first thing that should call your attention is that in the declaration of duplicate the type
of each parameter was followed by an ampersand sign (&). This ampersand is what
specifies that their corresponding arguments are to be passed by reference instead of by

value.

When a variable is passed by reference we are not passing a copy of its value, but we are
somehow passing the variable itself to the function and any modification that we do to
the local variables will have an effect in their counterpart variables passed as arguments
in the call to the function.

o explain it in another way, we associate a, b and c with the arguments passed on the
function call (x, y and z) and any change that we do on a within the function will affect
the value of x outside it. Any change that we do on b will affect y, and the same with c
and z.

That is why our program's output, that shows the values stored in x, y and z after the call
to duplicate, shows the values of all the three variables of main doubled.

If when declaring the following function:

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 void duplicate (int& a, int& b, int& c)

we had declared it this way:

 void duplicate (int a, int b, int c)

i.e., without the ampersand signs (&), we would have not passed the variables by
reference, but a copy of their values instead, and therefore, the output on screen of our
program would have been the values of x, y and z without having been modified.

Passing by reference is also an effective way to allow a function to return more than one
value. For example, here is a function that returns the previous and next numbers of the
first parameter passed.

// more than one returning value

#include <iostream>

using namespace std;

void prevnext (int x, int& prev, int& next)

{

 prev = x-1;

 next = x+1;

}

int main ()

{

 int x=100, y, z;

 prevnext (x, y, z);

 cout << "Previous=" << y << ", Next=" << z;

 return 0;

}

Default values in parameters:
When declaring a function we can specify a default value for each of the last parameters.
This value will be used if the corresponding argument is left blank when calling to the
function. To do that, we simply have to use the assignment operator and a value for the
arguments in the function declaration. If a value for that parameter is not passed when the
function is called, the default value is used, but if a value is specified this default value is
ignored and the passed value is used instead. For example:

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

// default values in functions

#include <iostream>

using namespace std;

int divide (int a, int b=2)

{

 int r;

 r=a/b;

 return (r);

}

int main ()

{

 cout << divide (12);

 cout << endl;

 cout << divide (20,4);

 return 0;

}

6

5

As we can see in the body of the program there are two calls to function divide. In the first
one:

 divide (12)

we have only specified one argument, but the function divide allows up to two. So the
function divide has assumed that the second parameter is 2 since that is what we have
specified to happen if this parameter was not passed (notice the function declaration,
which finishes with int b=2, not just int b). Therefore the result of this function call is 6
(12/2).

In the second call:

 divide (20,4)

there are two parameters, so the default value for b (int b=2) is ignored and b takes the
value passed as argument, that is 4, making the result returned equal to 5 (20/4).

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

Call by value => copying value of variable in another variable. So

any change made in the copy will not affect the original location.

Call by reference => Creating link for the parameter to the original location. Since
the address is same, changes to the parameter will refer to original location and the
value will be over written.

Call by reference Passes original argument Changes in function effect original,

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

Only used with trusted functions.

 Calling a Function

The call to a function in C simply entails referencing its name with the appropriate
arguments. The C compiler checks for compatibility between the arguments in the calling
sequence and the definition of the function.

Library functions are generally not available to us in source form. Argument type
checking is accomplished through the use of header files (like stdio.h) which contain all
the necessary information. For example, as we saw earlier, in order to use the standard
mathematical library you must include math.h via the statement

#include < math.h>

at the top of the file containing your code. The most commonly used header files are
< stdio.h> -> defining I/O routines

< ctype.h> -> defining character manipulation routines

< string.h> -> defining string manipulation routines

< math.h> -> defining mathematical routines

< stdlib.h> -> defining number conversion, storage allocation

 and similar tasks

< stdarg.h> -> defining libraries to handle routines with variable

 numbers of arguments

< time.h> -> defining time-manipulation routines

In addition, the following header files exist:
< assert.h> -> defining diagnostic routines

< setjmp.h> -> defining non-local function calls

< signal.h> -> defining signal handlers

< limits.h> -> defining constants of the int type

< float.h> -> defining constants of the float type

Random Number Generation:

• rand function

• Load <stdlib.h>

• Returns "random" number between 0 and RAND_MAX (at least 32767)

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

• i = rand();

• Pseudorandom

• Preset sequence of "random" numbers

• Same sequence for every function call

• Scaling

• To get a random number between 1 and n

• 1 + (rand() % n)

• rand() % n returns a number between 0 and n - 1

• Add 1 to make random number between 1 and n

• 1 + (rand() % 6)

number between 1 and 6.

The scope and lifetime of variables in functions:

The scope and lifetime of the variables define in C is not same when compared to other
languages. The scope and lifetime depends on the storage class of the variable in c
language the variables can be any one of the four storage classes:

1.AutomaticVariables
2.Externalvariable
3.Staticvariable
4.Registervariable.

The scope actually determines over which part or parts of the program the variable is
available. The lifetime of the variable retains a given value. During the execution of the
program. Variables can also be categorized as local or global. Local variables are the
variables that are declared within that function and are accessible to all the functions in a
program and they can be declared within a function or outside the function also.

 Automatic variables

Automatic variables are declared inside a particular function and they are created when
the function is called and destroyed when the function exits. Automatic variables are
local or private to a function in which they are defined by default all variable declared
without any storage specification is automatic. The values of variable remains unchanged
to the changes that may happen in other functions in the same program and by doing this
no error occurs.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

/* A program to illustrate the working of auto variables*/
#include
voidmain()
{
intm=1000;
function2();
printf(“%d\n”,m);
}

function1()
{
intm=10;
printf(“%d\n”,m);
}
function2()
{
intm=100;

function1();

printf(“%d\n”,m);

}

A local variable lives through out the whole program although it accessible only in the
main. A program with two subprograms function1 and function2 with m as automatic
variable and is initialized to 10,100,1000 in function 1 function2 and function3
respectively. When executes main calls function2 which in turns calls function1. When
main is active m=1000. But when function2 is called, the main m is temporarily put on
the shelf and the new local m=100 becomes active. Similarly when function1 is called
both previous values of m are put on shelf and latest value (m=10) become active, a soon
as it is done main (m=1000) takes over. The output clearly shows that value assigned to
m in one function does not affect its value in the other function. The local value of m is
destroyed when it leaves a function.

 External variables:

Variables which are common to all functions and accessible by all functions of aprogram
are internal variables. External variables can be declared outside a function.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

Example

intsum;
floatpercentage;
main()
{
…..
…..
}
function2()
{
….
….

}

The variables sum and percentage are available for use in all the three functions main,
function1, function2. Local variables take precedence over global variables of the same
name.

For example:

inti=10;
voidexample(data)
intdata;
{
inti=data;
}

main()
{
example(45);
}

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

In the above example both the global variable and local variable have the same name
as i.
The local variable i take precedence over the global variable. Also the value that is stored
in integer i is lost as soon as the function exits.

A global value can be used in any function all the functions in a program can access the
global variable and change its value the subsequent functions get the new value of the
global variable, it will be inconvenient to use a variable as global because of this factor
every function can change the value of the variable on its own and it will be difficult to
get back the original value of the variable if it is required.

Global variables are usually declared in the beginning of the main program ie., before the
main program however c provides a facility to declare any variable as global this is
possible by using the keyword storage class extern. Although a variable has been defined
after many functions the external declaration of y inside the function informs the
compiler that the variable y is integer type defined somewhere else in the program. The
external declaration does not allocate storage space for the variables. In case of arrays the
definition should include their size as well. When a variable is defined inside a function
as extern it provides type information only for that function. If it has to be used in other
functions then again it has to be re-declared in that function also.

Example:

main()
{
intn;
out_put();
externfloatsalary[];
……
…..
out_put();
}

voidout_put()

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

{
externfloatsalary[];
intn;
….
…..
}
float salary[size];

A function when its parameters and function body are specified this tells the compiler to
allocate space for the function code and provides type info for the parameters. Since
functions are external by default we declare them (in calling functions) without the
qualifier extern.

 Multi-file programs:

Programs need not essentially be limited into a single file, multi-file programs is also
possible, all the files are linked later to form executable object code. This approach is
very useful since any change in one file does not affect other files thus eliminating the
need for recompilation of the entire program. To share a single variable in multiple
programs it should be declared, as external variables that are shared by two or more files
are obviously global variables and therefore we must declare them accordingly in one file
and explicitly define them with extern in other file. The example shown below illustrates
the use of extern declarations in multi-file programs.

File1.c

main()
{
externintj;
intk;
}

function1()
{
intz;
…
….
}
file2.c

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

function2()
{
int k;
}
function3()
{
int num;
…
….
}

the function in main file1 reference the variable j that is declared as global in file 2. Here
function1() cannot access j if the statement extern int k is places before main then both
the functions could refer to j. this can also be achieved by using extern int j statement
inside each function in file1.

The extern specifier tells the compiler that the following variables types and names have
already been declared elsewhere and no need to create storage space for them. It is the
responsibility of the linker to resolve the reference problem. It is important to note that a
multi-file global variable should be declared without extern in one of the files.

 Static variables:

The value given to a variable declared by using keyword static persistes until the end of
theprogram.
A static variable is initialized only once, when the program is compiled. It is never
initialized again. During the first call to stat in the example shown below x is incremented
to 1. because x is static, this value persists and therefore the next call adds another 1 to x
giving it a value of 2. The value of x becomes 3 when third call is made. If we had
declared x as an auto then output would here been x=1 all the three times.

main()
{
intj;
for(j=1;j<3;j++)
stat();
}
stat();

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

{
staticintx=0;
x=x+1;
printf(“x=%d\n”,x);
}

 Register variables:

A variable is usually stored in the memory but it is also possible to store a varible in the
compilers register by defining it as register variable. The registers access is much faster
than a memory access, keeping the frequently accessed variables in the register will make
the execution of the program faster.

This is done as follows:

register int count;

 Recursivity.

Recursivity is the property that functions have to be called by themselves. It is useful for
many tasks, like sorting or calculate the factorial of numbers. For example, to obtain the
factorial of a number (n!) the mathematical formula would be:

n! = n * (n-1) * (n-2) * (n-3) ... * 1

more concretely, 5! (factorial of 5) would be:

5! = 5 * 4 * 3 * 2 * 1 = 120

and a recursive function to calculate this in C++ could be:

1
2
3
4
5
6
7
8

// factorial calculator

#include <iostream>

using namespace std;

long factorial (long a)

Please type a number: 9

9! = 362880

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

9
10
11
12
13
14
15
16
17
18
19
20

{

 if (a > 1)

 return (a * factorial (a-1));

 else

 return (1);

}

int main ()

{

 long number;

 cout << "Please type a number: ";

 cin >> number;

 cout << number << "! = " << factorial
(number);

 return 0;

}

Notice how in function factorial we included a call to itself, but only if the argument
passed was greater than 1, since otherwise the function would perform an infinite
recursive loop in which once it arrived to 0 it would continue multiplying by all the
negative numbers (probably provoking a stack overflow error on runtime).

This function has a limitation because of the data type we used in its design (long) for
more simplicity. The results given will not be valid for values much greater than 10! or
15!, depending on the system you compile it.

 www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

Tips and common errors

 1.Several possible errors related to passing parameters.

• It is a compiler error if the types in the prototype declaration and function
definition are incompatible.

• It is a compiler error to have a different number of actual parameters in the
function call then there are in the prototype statement.

• It is logic error if you code the parameters in the wrong order. Their meaning will
be inconsistence

• In the called program.

2.It is compiler error to define local variables with the same identifiers as formal
parameters.

3.Using void return with a function that excepts a return value or using a return value
with a function that excepts a void return is a compiler error.

4.Each parameters type must be individually specified: you cannot use multiple
definitions like in variables.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

5.Forgetting the semicolon at the end or a function prototype statement is a compiler
error. Similarly , using a semicolon at the end of the header in a function definition is
a compiler error.

6.It is most likely a logic error to call a function from within itself or one of its called
functions.

7.It is a compiler error to attempt to define a function within the body of another function
.

8.It is a run time error to code a function call without the parentheses, even when function

has no parameters.

9.It is a compiler error if the type of data in the return statement does not match the
function return type.

10.It is logic error to call srand every time you call rand.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

Chapter 4

Selection: Making Decisions, Repetitions

A program consists of a number of statements which are usually executed in sequence.

Programs can be much more powerful if we can control the order in which statements are

run.

Statements fall into three general types;

• Assignment, where values, usually the results of calculations, are stored in

variables.

• Input / Output, data is read in or printed out.

• Control, the program makes a decision about what to do next.

This section will discuss the use of control statements in C. We will show how they can

be used to write powerful programs by;

• Repeating important sections of the program.

• Selecting between optional sections of a program.

The if else Statement

This is used to decide whether to do something at a special point, or to decide between

two courses of action.

The following test decides whether a student has passed an exam with a pass mark of 45

if (result >= 45)

 printf("Pass\n");

else

 printf("Fail\n");

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

It is possible to use the if part without the else.

if (temperature < 0)

 print("Frozen\n");

Each version consists of a test, (this is the bracketed statement following the if). If the test

is true then the next statement is obeyed. If is is false then the statement following the

else is obeyed if present. After this, the rest of the program continues as normal.

If we wish to have more than one statement following the if or the else, they should be

grouped together between curly brackets. Such a grouping is called a compound

statement or a block.

if (result >= 45)

{ printf("Passed\n");

 printf("Congratulations\n")

}

else

{ printf("Failed\n");

 printf("Good luck in the resits\n");

}

Sometimes we wish to make a multi-way decision based on several conditions. The most

general way of doing this is by using the else if variant on the if statement. This works by

cascading several comparisons. As soon as one of these gives a true result, the following

statement or block is executed, and no further comparisons are performed. In the

following example we are awarding grades depending on the exam result.

if (result >= 75)

 printf("Passed: Grade A\n");

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

else if (result >= 60)

 printf("Passed: Grade B\n");

else if (result >= 45)

 printf("Passed: Grade C\n");

else

 printf("Failed\n");

In this example, all comparisons test a single variable called result. In other cases, each

test may involve a different variable or some combination of tests. The same pattern can

be used with more or fewer else if's, and the final lone else may be left out. It is up to the

programmer to devise the correct structure for each programming problem.

The switch Statement

This is another form of the multi way decision. It is well structured, but can only be used

in certain cases where;

• Only one variable is tested, all branches must depend on the value of that variable.

The variable must be an integral type. (int, long, short or char).

• Each possible value of the variable can control a single branch. A final, catch all,

default branch may optionally be used to trap all unspecified cases.

Hopefully an example will clarify things. This is a function which converts an integer

into a vague description. It is useful where we are only concerned in measuring a quantity

when it is quite small.

estimate(number)

int number;

/* Estimate a number as none, one, two, several, many */

{ switch(number) {

 case 0 :

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 printf("None\n");

 break;

 case 1 :

 printf("One\n");

 break;

 case 2 :

 printf("Two\n");

 break;

 case 3 :

 case 4 :

 case 5 :

 printf("Several\n");

 break;

 default :

 printf("Many\n");

 break;

 }

}

Each interesting case is listed with a corresponding action. The break statement prevents

any further statements from being executed by leaving the switch. Since case 3 and case 4

have no following break, they continue on allowing the same action for several values of

number.

Both if and switch constructs allow the programmer to make a selection from a number

of possible actions.

The other main type of control statement is the loop. Loops allow a statement, or block of

statements, to be repeated. Computers are very good at repeating simple tasks many

times, the loop is C's way of achieving this.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

Loops

C gives you a choice of three types of loop, while, do while and for.

• The while loop keeps repeating an action until an associated test returns false.

This is useful where the programmer does not know in advance how many times

the loop will be traversed.

• The do while loops is similar, but the test occurs after the loop body is executed.

This ensures that the loop body is run at least once.

• The for loop is frequently used, usually where the loop will be traversed a fixed

number of times. It is very flexible, and novice programmers should take care not

to abuse the power it offers.

The while Loop

The while loop repeats a statement until the test at the top proves false.

As an example, here is a function to return the length of a string. Remember that the

string is represented as an array of characters terminated by a null character '\0'.

int string_length(char string[])

{ int i = 0;

 while (string[i] != '\0')

 i++;

 return(i);

}

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

The string is passed to the function as an argument. The size of the array is not

specified, the function will work for a string of any size.

The while loop is used to look at the characters in the string one at a time until the null

character is found. Then the loop is exited and the index of the null is returned. While the

character isn't null, the index is incremented and the test is repeated.

The do while Loop

This is very similar to the while loop except that the test occurs at the end of the loop

body. This guarantees that the loop is executed at least once before continuing. Such a

setup is frequently used where data is to be read. The test then verifies the data, and loops

back to read again if it was unacceptable.

do

{ printf("Enter 1 for yes, 0 for no :");

 scanf("%d", &input_value);

}

while (input_value != 1 && input_value != 0)

The for Loop

The for loop works well where the number of iterations of the loop is known before the

loop is entered. The head of the loop consists of three parts separated by semicolons.

• The first is run before the loop is entered. This is usually the initialisation of the

loop variable.

• The second is a test, the loop is exited when this returns false.

• The third is a statement to be run every time the loop body is completed. This is

usually an increment of the loop counter.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

The example is a function which calculates the average of the numbers stored in an

array. The function takes the array and the number of elements as arguments.

float average(float array[], int count)

{ float total = 0.0;

 int i;

 for(i = 0; i < count; i++)

 total += array[i];

 return(total / count);

}

The for loop ensures that the correct number of array elements are added up before

calculating the average.

The three statements at the head of a for loop usually do just one thing each, however any

of them can be left blank. A blank first or last statement will mean no initialisation or

running increment. A blank comparison statement will always be treated as true. This

will cause the loop to run indefinitely unless interrupted by some other means. This might

be a return or a break statement.

It is also possible to squeeze several statements into the first or third position, separating

them with commas. This allows a loop with more than one controlling variable. The

example below illustrates the definition of such a loop, with variables hi and lo starting at

100 and 0 respectively and converging.

for (hi = 100, lo = 0; hi >= lo; hi--, lo++)

The for loop is extremely flexible and allows many types of program behaviour to be

specified simply and quickly.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

The break Statement

We have already met break in the discussion of the switch statement. It is used to exit

from a loop or a switch, control passing to the first statement beyond the loop or a switch.

With loops, break can be used to force an early exit from the loop, or to implement a loop

with a test to exit in the middle of the loop body. A break within a loop should always be

protected within an if statement which provides the test to control the exit condition.

The continue Statement

This is similar to break but is encountered less frequently. It only works within loops

where its effect is to force an immediate jump to the loop control statement.

• In a while loop, jump to the test statement.

• In a do while loop, jump to the test statement.

• In a for loop, jump to the test, and perform the iteration.

Like a break, continue should be protected by an if statement. You are unlikely to use it

very often.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 Chapter 5

ARRAYS

The meaning of an array:

 A group of related data items that share a common name is called an array.

For example, we can define an array name marks to represent a set of marks obtained by

a group of students. A particular value is indicated by writing a number called index

number or subscript in brackets after the array name.

Example,

 Marks[7]

Represents the marks of the 7th student. The complete set of values is referred to as an

array, the individual values are called elements. The arrays can be of any variable type.

One-dimensional array:

 When a list of items can be given one variable name using only one subscript and

such a variable is called a single-subscripted variable or one dimensional array.

In C language ,single-subscripted variable xi can be represented as

 x[1],x[2],x[3]……………x[n]

The subscripted variable xi refers to the ith element of x. The subscript can begin with

number 0. For example, if we want to represent a set of five numbers, say

(57,20,56,17,23), by a array variable num, then we may declare num as follows

 int num[5];

And the computer reserves five storage locations as shown below:

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

Num[0]

Num[1]

Num[2]

Num[3]

Num[4]

The values can be assigned as follows:

 Num[0]=57;

 Num[1]=20;

 Num[2]=56;

 Num[3]=17;

 Num[4]=23;

The table below shows the values that are stored in the particular numbers.

Num[0]

Num[1]

Num[2]

Num[3]

Num[4]

57

20

56

17

23

Two dimensional arrays:

 There are certain situations where a table of values will have to be stored. C

allows us to define such table using two dimensional arrays.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 Two dimensional arrays are declared as follows:

 Type array_name [row_size][column_size]

In c language the array sizes are separated by its own set of brackets.

Two dimensional arrays are stored in memory as shown in the table below. Each

dimension of the array is indexed from zero to its maximum size minus one; the first

index selects the row and the second index selects the column within that row.

 Column0 Column1 Column2

 [0][0] [0][1] [0][2]

Row 0 210 340 560

 [1][0] [1][1] [1][2]

Row 1 380 290 321

 [2][0] [2][1] [2][2]

Row2 490 235 240

 [3][0] [3][1] [3][2]

Row3 240 350 480

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

Declaration and initialization of arrays

 The arrays are declared before they are used in the program. The general form of

array declaration is

 type variable_name[size];

The type specifies the type of element that will be contained in the array, such as

int,float,or char and the size indicates the maximum number of elements that can be

stored inside the array.

Example:

 float weight[40]

Declares the weight to be an array containing 40 real elements. Any subscripts 0 to 39 are

valid.

Similarly,

 int group1[11];

Decalres the group1 as an array to contain a maximum of 10 integer constants.

The C language treats character strings simply as arrays of characters. The size in a

character string represents the maximum number of characters that the string can hold.

For example:

 char text[10];

Suppose we read the following string constant into the string variable text.

 “HOW ARE YOU”

Each character of the string is treated as an element of the array text and is stored in the

memory as follows.

 ‘H’

 ‘O’

 ‘W’

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 ‘A’

 ‘R’

 ‘E’

 ‘Y’

 ‘O’

 ‘U’

 ‘\o’

When the compiler sees a character string, it terminates it with an additional null

character. Thus, the element text[11] holds the null character ‘\o’ at the end. When

declaring character arrays, we must always allow one extra element space for the null

terminator.

Initialization of arrays

 The general form of initialization of arrays is:

 static type array-name[size]={ list of values};

The values in the list are separated by commas.

For example, the statement below shows

 static int num[3]={2,2,2};

Will declare the variable num as an array of size 3 and will assign two to each element. If

the number of values is less than the number of elements, then only that many elements

will be initialized. The remaining elements will be set to zero automatically.

For example:

 static float num1[5]={0.1,2.3,4.5};

Will initialize the first three elements to 0.1,2.3 and 4.5 and the remaining two elements

to zero. The word static used before type declaration declares the variable as a static

variable.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

In some cases the size may be omitted. In such cases, the compiler allocates enough

space for all initialized elements. For example, the statement

 static int count[]= {2,2,2,2};

Will declare the counter array to contain four elements with initial values 2.

Character arrays may be initialized in a similar manner. Thus, the statement

 static char name[]={ ‘S ‘W,’A,’N}

Declares the name to be an array of four characters, initialized with the string “SWAN”

There certain draw backs in initialization of arrays.

 There is no convenient way to initialize only selected elements.

 There is no shortcut method for initializing a large number of array elements.

Program to read and write two dimensional array

#include<stdio.h>

main()

{

 int a[10][10];

 int i,j,row,col;

 printf(“\n Input row and column of a matrix:”);

 scanf(“%d %d”, &row,&col);

 for(i=0; i<row;i++)

 for(j=0;j<col;j++)

 scanf(“%d”, &a[i][j]);

for(i=0;i<row;i++)

{

 for(j=0;j<col;j++)

 printf(“%5d”, a[i][j]);

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

printf(“\n”);

}

Program showing one-dimensional array

main()

{

 int i;

 float a[10],value1,total;

 printf(“Enter 10 Real numbers\n”);

 for(i=0;i<10;i++)

{

 scanf(“%f”, &value);

 x[i]=value1;

}

total=0.0;

for(i=0;i<10;i++)

total=total+a[i]*a[i];

printf(“\n”);

for(i=0;i<10;i++)

printf(“x[%2d]= %5.2f\n”, i+1, x[i]);

printf(“\ntotal=%.2f\n”, total);

}

Programming examples:

 1) Program to print multiplication tables

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

#define R1 4

#define C1 4

main()

{

 int row,col,prod[R1][C1];

 int i,j;

 printf(“ MULTIPLICATION TABLE \n\n”);

 printf(“ “);

 for(j=1;j<=C1;j++)

 printf(“%4d”,j);

 printf(“\n”);

 printf(“---\n”);

 for(i=0;i<R1;i++)

 {

 row=i+1;

 printf(“%2d|”, R1);

 for(j=1;j<=C1;j++)

 {

 col=j;

 prod[i][j]=row*col;

 printf(“%4d”, prod[i][j]);

 }

 printf(“\n”);

 }

 }

Output

 MULTIPLICATION TABLE

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 1 2 3 4

1 | 1 2 3 4

2 | 2 4 6 8

3 | 3 6 9 12

4 | 4 8 12 16

2) Program to show swapping of numbers.

#include<stdio.h>

main()

{

 int x[10], i,j,temp;

 for(i=0;i<=9;++i)

 scanf(“%d”, &x[i]);

for(j=0;j<=8;j+=2)

 {

 temp=x[j];

 x[j]=x[j+1];

 x[j+1]=temp;

}

for(i=0;i<=9;++i)

printf(“%d”, x[i]);

printf(“\n”);

}

3) Program to sort a list of numbers using bubble sort:

#define N 10

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 main()

{

 int i,j,k;

float a[N],t;

printf(“Enter the number of items\n”);

scanf(“%d”, &n);

printf(“Input %d values \n”, n);

for(i=1; i<=n ;;i++)

 scanf(“%f”, &a[i]);

for(i=1;i<=n-1;i++)

{

 for(j=1;j<=n-i; j++)

 {

 if)a[j]<=a[j+1])

{

 t=a[j];

 a[j]=a[j+1];

 a[j+1]=t;

}

else

 continue;

}

}

for(i=1;i<=n;i++)

 printf(“%f”, a[i]);

}

4) Program to calculate standard deviation

#include<math.h>

#define MAX 100

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

main()

{

 int i,n;

float val[MAX],deviation,sum,ssqr,mean,var,stddev;

sum=ssqr=n=0;

printf(“Input values: input-1 to end\n”);

for(i=1;i<MAX;i++)

{

 scanf(“%f”, &val[i]);

 if(val[i]==-1)

 break;

 sum+=val[i];

 n+=1;

}

mean=sum/(float)n;

for(i=1;i<=n;i++)

{

 deviation=val[i]-mean;

 ssqr+=deviation*deviation;

}

 var=ssqr/(float)n;

stddev=sqrt(var);

printf(“\n Number of items:%d\n”,n);

printf(“Mean: %f \n”, mean);

printf(“Standard deviation: %f\n”, stddev);

}

5) Program to find the largest and smallest of numbers

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

#include<stdio.h>

main()

{

 int I,s, largcount,smcount;

 float num[30],lar,small;

printf(“\n size of array (MAX 30): \t”);

scanf(“%d”, &size);

printf(“\n Array elements:\t”);

for(i=0;i<size;i++)

 scanf(“%f”, &num[i]);

for(i=0;i<size;i++)

 printf(“%f”, &num[i]);

lar=small=num[0];

larcount=smcount=1;

for(i=1;i<size;i++)

{

 if(num[i]>lar)

{

 lar=num[i];

 larcount=i+1;

}

elseif(num[i]<small)

{

 small=num[i];

 smcount=i+1;

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

}

}

printf(“\n Largest value is % f found at %d”, lar,larcount);

printf(“\n Smallest value is %f found at %d “, small, smcount);

}

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

Chapter 6

C STRINGS

What are C stings?

Strings in C are represented by arrays of characters. The end of the string is marked with
a special character, the null character, which is simply the character with the value 0
(or \0).

For example:

 char name[50] = “DAVE”;

char a[50] = “This is \n a string”.:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T H I S \n a S T R I N G . \0

printf("This is a string value. Beep! Beep! \7\7");

Initializing Strings
Following the discussion on characters arrays, the initialization of a string must the
following form which is simpler to one dimension array.

char month1[]={‘j’,’a’,’n’,’u’,’a’,’r’,’y’};

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

Then the string month is initializing to January. This is perfectly valid but C offers a
special way to initialize strings. The above string can be initialized char
month1[]=”January”; The characters of the string are enclosed within a part of double
quotes. The compiler takes care of string enclosed within a pair of a double quotes. The
compiler takes care of storing the ASCII codes of characters of the string in the memory
and also stores the null terminator in the end.

/*String.c string variable*/
#include < stdio.h >
main()
{
char month[15];
printf (“Enter the string”);
gets (month);
printf (“The string entered is %s”, month);
}

In this example string is stored in the character variable month the string is displayed in
the statement.

printf(“The string entered is %s”, month”);

It is one dimension array. Each character occupies a byte. A null character (\0) that has
the ASCII value 0 terminates the string. The figure shows the storage of string January in
the memory recall that \0 specifies a single character whose ASCII value is zero.

 J

A

N

U

A

R

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

Y

\0

Character string terminated by
 a null character ‘\0’.
A string variable is any valid C variable name & is always declared as an array. The
general form of declaration of a string variable is

Char string_name[size];

The size determines the number of characters in the string name.

Example:

char month[10];
char address[100];

The size of the array should be one byte more than the actual space occupied by the string
since the complier appends a null character at the end of the string.

Reading Strings from the terminal:

The function scanf with %s format specification is needed to read the character string
from the terminal.

Example:

char address[15];
scanf(“%s”,address);

Scanf statement has a draw back it just terminates the statement as soon as it finds a
blank space, suppose if we type the string new york then only the string new will be read
and since there is a blank space after word “new” it will terminate the string.

Note that we can use the scanf without the ampersand symbol before the variable name.
In many applications it is required to process text by reading an entire line of text from
the terminal.

The function getchar can be used repeatedly to read a sequence of successive single
characters and store it in the array.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

We cannot manipulate strings since C does not provide any operators for string. For
instance , we cannot assign one string to another
 directly.

For example:

String=”xyz”;
String1=string2;

Are not valid. To copy the chars in one string to another string we may do so on a
character to character basis.

Writing strings to screen:

The printf statement along with format specifier %s to print strings on to the screen. The
format %s can be used to display an array of characters that is terminated by the
nullcharacter for example printf(“%s”,name); can be used to display the entire contents of
the array name.

C String header
The named string.h (<cstring> header in C++) is used to work with C strings. Confusion
or programming errors arise when strings are treated as simple data types. Specific
functions have to be employed for comparison and assignment such as strcpy for
assignment instead of the standard = and strcmp instead of == for comparison.

Functions included in <string.h>

 strlen()

The "strlen()" function gives the length of a string, not including the NULL character at
the end:

 /* strlen.c */

 #include <stdio.h>

 #include <string.h>

 void main()

 {

 char *t = "XXX";

 printf("Length of <%s> is %d.\n", t, strlen(t));

 }

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

This prints:

 Length of <XXX> is 3.

strcpy()

The "strcpy" function copies one string from another. For example:

 /* strcpy.c */

 #include <stdio.h>

 #include <string.h>

 void main()

 {

 char s1[100],

 s2[100];

 strcpy(s1, "string 2");

 strcpy(s2, "string 1");

 puts("Original strings: ");

 puts("");

 puts(s1);

 puts(s2);

 puts("");

 strcpy(s2, s1);

 puts("New strings: ");

 puts("");

 puts(s1);

 puts(s2);

 }

This will print:

 Original strings:

 string 1

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 string 2

 New strings:

 string 1

 string 1

Please be aware of two features of this program:

• This program assumes that "s1" has enough space to store the final string. The
"strcpy()" function won't bother to check, and will give erroneous results if that is
not the case.

• A string constant can be used as the source string instead of a string variable.
Using a string constant for the destination, of course, makes no sense.

These comments are applicable to most of the other string functions.

strncpy()

There is a variant form of "strcpy" named "strncpy" that will copy "n" characters of the
source string to the destination string, presuming there are that many characters available
in the source string. For example, if the following change is made in the example
program:

 strncpy(s2, s1, 5);

-- then the results change to:

 New strings:

 string 1

 string

Notice that the parameter "n" is declared "size_t", which is defined in "string.h".

strcat()

The "strcat()" function joins two strings:

 /* strcat.c */

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 #include <stdio.h>

 #include <string.h>

 void main()

 {

 char s1[50],

 s2[50];

 strcpy(s1, "Tweedledee ");

 strcpy(s2, "Tweedledum");

 strcat(s1, s2);

 puts(s1);

 }

This prints:

 Tweedledee Tweedledum

strncat()

There is a variant version of "strcat()" named "strncat()" that will append "n" characters
of the source string to the destination string. If the example above used "strncat()" with a
length of 7:

 strncat(s1, s2, 7);

-- the result would be:

 Tweedledee Tweedle

Again, the length parameter is of type "size_t".

strcmp()

The "strcmp()" function compares two strings:

 /* strcmp.c */

 #include <stdio.h>

 #include <string.h>

 #define ANSWER "blue"

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 void main()

 {

 char t[100];

 puts("What is the secret color?");

 gets(t);

 while (strcmp(t, ANSWER) != 0)

 {

 puts("Wrong, try again.");

 gets(t);

 }

 puts("Right!");

 }

The "strcmp()" function returns a 0 for a successful comparison, and nonzero otherwise.
The comparison is case-sensitive, so answering "BLUE" or "Blue" won't work.

There are three alternate forms for "strcmp()":

strncmp()

• A "strncmp()" function which, as might be guessed, compares "n" characters

 in the source string with the destination string: "strncmp(s1, s2, 6)".

stricmp()

• A "stricmp()" function that ignores case in comparisons.

strnicmp()

• A case-insensitive version of "strncmp" called "strnicmp".

strchr()

The "strchr" function finds the first occurrence of a character in a string. It returns a
pointer to the character if it finds it, and null if not. For example:

 /* strchr.c */

 #include <stdio.h>

 #include <string.h>

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

 void main()

 {

 char *t = "MEAS:VOLT:DC?";

 char *p;

 p = t;

 puts(p);

 while((p = strchr(p, ':')) != NULL)

 {

 puts(++p);

 }

 }

This prints:

 MEAS:VOLT:DC?

 VOLT:DC?

 DC?

The character is defined as a character constant, which C regards as an "int". Notice how
the example program increments the pointer before using it ("++p") so that it doesn't
point to the ":" but to the character following it.

strrchr()

The "strrchr()" function is almost the same as "strchr()", except that it searches for the
last occurrence of the character in the string.

strstr()

The "strstr()" function is similar to "strchr()" except that it searches for a string, instead of
a character. It also returns a pointer:

 char *s = "Black White Brown Blue Green";

 ...

 puts(strstr(s, "Blue"));

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

strlwr() and strupr()

The "strlwr()" and "strupr()" functions simply perform lowercase or uppercase
conversion on the source string. For example:

 /* casecvt.c */

 #include <stdio.h>

 #include <string.h>

 void main()

 {

 char *t = "Die Barney die!";

 puts(strlwr(t));

 puts(strupr(t));

 }

-- prints:

 die barney die!

 DIE BARNEY DIE!

Example

length=strlen(“Hollywood”);

The function will assign number of characters 9 in the string to a integer variable length.

/*writr a c program to find the length of the string using strlen() function*/
#include < stdio.h >
include < string.h >
void main()
{
char name[100];

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

int length;
printf(“Enter the string”);
gets(name);
length=strlen(name);
printf(“\nNumber of characters in the string is=%d”,length);
}

Tips and common errors:

1.Do not confuse characters and string constants: the character constant is enclosed in a
single quotes, and the string constant is enclosed in double quotes.

2.Remember to allocate memory space for the string delimiter when declaring and
defining an array of char to hold a string.

3.String are manipulated with string functions, not operators.

4.The header file <string.h> is required for string functions.

5.The standard string functions requires a delimited string. You cannot use them on array
of char that is not terminated with a delimiters.

6.Do not confuse string array and string pointers.

7.Passing a character to a functions when a string is required is another common error.
this is most likely to occur with the formatted input and output functions, in which
case, it is logical error. Passing a character in place of a string when a prototype
header is declared is a compile error.

8.Using the address operator for a parameter in the “scanf” function with a string is a
coding error.

9.It is a compile error to assign a string to a character, even when the character is part of
string.

10.Using the assignment operator with strings instead of a function call is a compile
error.

11.Since strings are built in an array structure, they may be accessed with indexes and
pointers. When accessing individual bytes, it is a logic error, to access beyond the
end of the data structures.

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

www.a
lls

yll
ab

us
.co

m

www.allsyllabus.com

vtu.allsyllabus.com

