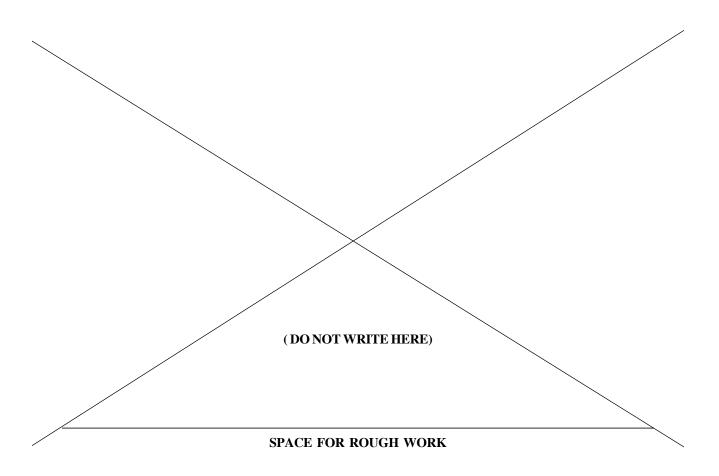


MH-CET-2015 Subjects: Physics, Chemistry & Biology

Question Booklet Version	MH-CET-2015 Roll No.				Question Booklet Sr. No.		
11							
(Write this number on	1	Answe	er She	et No.			(Write this number on
your Answer Sheet)							your Answer Sheet)

Day and Date: Thursday, 07th May, 2015

Duration: 3.00 Hours Total Marks: 200


This is to certify that, the entries of MH-CET Roll No. and Answer Sheet No. have been correctly written and verified.

Candidate's Signature

Invigilator's Signature

Instructions to Candidates

- 1. This question booklet contains 200 Objective Type Questions (Multiple Choice Questions (MCQ)) in the subjects of Physics (50), Chemistry (50) and Biology (100).
- 2. The question paper and OMR (Optical Mark Reader) Answer Sheet is issued separately at the start of the examination.
- 3. Choice and sequence for attempting questions will be as per the convenience of the candidate.
- 4. Candidate should carefully read the instructions printed on the Question Booklet and Answer Sheet and make the correct entries on the Answer Sheet. As Answer Sheets are designed to suit the OPTICAL MARK READER (OMR) SYSTEM, special care should be taken to mark the entries correctly. Special care should be taken to fill QUESTION BOOKLET VERSION, SERIAL No. and MH-CET Roll No. accurately. The correctness of entries has to be cross-checked by the invigilators. The candidate must sign on the Answer Sheet and Question Booklet.
- 5. Read each question carefully.
- 6. Determine the one correct answer from out of the four available options given for each question.
- 7. Fill the appropriate circle completely like this ●, for answering a particular question. Mark with Black ink ball point pen only.
- 8. Each question with correct response shall be awarded one (1) mark. There shall be no negative marking. No mark shall be granted for marking two or more answers of same question, scratching or overwriting.
- 9. Use of whitener or any other material to erase/hide the circle once filled is not permitted.
- 10. Avoid overwriting and/or striking of answers once marked.
- 11. Rough work should be done only on the blank space provided on the Question Booklet. **Rough work should** not be done on the Answer Sheet.
- 12. The required mathematical tables (Log etc.) is provided along with the question booklet.
- 13. Immediately after the prescribed examination time is over, the Question Booklet and Answer sheet is to be returned to the Invigilator. Confirm that both the Candidate and Invigilator have signed on question booklet and answer sheet.
- 14. No candidate is allowed to leave the examination hall till the end of examination.

-3-**PHYSICS**

1.	1. In the expression for Boyle's law, the product 'PV' has dimensions of							
	A)	force	B) impulse	C)	energy	D) momentum		
2.	The	difference between	n angular speed of mi	nute	hand and second	hand of a clock is		
	A)	$\frac{59\pi}{900}$ rad/s		B)	$\frac{59\pi}{1800} \text{ rad/s}$			
	C)	$\frac{59\pi}{2400}$ rad/s		D)	$\frac{59\pi}{3600} \text{ rad/s}$			
3.	A metal rod of length 'L', cross-sectional are expansion ' α ' is heated to 't' °C. The work				_			
	A)	$\frac{YA \alpha Lt^2}{2}$		B)	$\frac{YA\alpha^2\;Lt^2}{2}$			
	C)	$\frac{YA\alpha^2\;L^2t^2}{2}$		D)	$\frac{YA\alphaLt}{2}$			
4.	In so	nometer experime	nt, the bridges are sep	para	ted by a fixed dista	ance. The wire which is slightly		
	elasti	elastic, emits a tone of frequency 'n' when held by tension 'T'. If the tension is increased to '4T', the						
	tone	emitted by the wire	e will be of frequency	y				
	A)	n		B)	2n			
	C)	Slightly greater that	an 2n	D)	Slightly less than	2n		
5.	A pa	rticle performs S.H	I.M. with amplitude 2	5 cn	n and period 3 s. Tl	ne minimum time required for it		
	to me	ove between two p	oints 12.5 cm on eith	er si	de of the mean pos	sition is		
	A)	0.6 s	B) 0.5 s	C)	0.4 s	D) 0.2 s		

6. The pitch of the whistle of an engine appears to drop to $\left(\frac{5}{6}\right)^{th}$ of original value

when it passes a stationary observer. If the speed of sound in air is 350 m/s then the speed of engine is

A) 35 m/s

B) $70 \,\mathrm{m/s}$

C) 105 m/s

- D) 140 m/s
- 7. A solid cylinder has mass 'M', radius 'R' and length 'l'. Its moment of inertia about an axis passing through its centre and perpendicular to its own axis is
 - A) $\frac{2MR^2}{3} + \frac{Ml^2}{12}$

B) $\frac{MR^2}{3} + \frac{Ml^2}{12}$

C) $\frac{3MR^2}{4} + \frac{Ml^2}{12}$

- D) $\frac{MR^2}{4} + \frac{Ml^2}{12}$
- 8. A particle is executing S.H.M. of periodic time 'T'. The time taken by a particle in moving from mean position to half the maximum displacement is $(\sin 30^\circ = 0.5)$
 - A) $\frac{T}{2}$

B) $\frac{T}{4}$

C) $\frac{T}{8}$

- D) $\frac{T}{12}$
- 9. The dimensions of Stefan's constant are
 - A) $[M^0 L^1 T^{-3} K^{-4}]$

B) $[M^1 L^1 T^{-3} K^{-3}]$

C) $[M^1 L^2 T^{-3} K^{-4}]$

- D) $[M^1 L^0 T^{-3} K^{-4}]$
- 10. An open and closed organ pipe have the same length. The ratio of 'p'th mode of frequency of vibration of air in two pipes is
 - A) p(2p + 1)
- B) $\frac{2p}{2p-1}$
- C) p
- D) 1

11. A cord is wound around the circumference of wheel of radius 'r'. The axis of the wheel is horizontal and moment of inertia about it is 'I'. The weight 'mg' is attached to the end of the cord and falls from rest. After falling through a distance 'h', the angular velocity of the wheel will be

A)
$$[mgh]^{\frac{1}{2}}$$

B)
$$\left[\frac{2 \operatorname{mgh}}{1 + 2 \operatorname{mr}^2}\right]^{\frac{1}{2}}$$

C)
$$\left[\frac{2 \text{ mgh}}{1 + \text{mr}^2}\right]^{\frac{1}{2}}$$

D)
$$\left[\frac{mgh}{I+mr^2}\right]^{1/2}$$

12. A toy cart is tied to the end of an unstretched string of length 'l'. When revolved, the toy cart moves in horizontal circle with radius '2l' and time period T. If it is speeded untill it moves in horizontal circle of radius '3l' with period T₁, relation between T and T₁ is (Hooke's law is obeyed)

A)
$$T_1 = \frac{2}{\sqrt{3}}T$$

B)
$$T_1 = \sqrt{\frac{3}{2}} T$$

C)
$$T_1 = \sqrt{\frac{2}{3}} T$$

D)
$$T_1 = \frac{\sqrt{3}}{2} T$$

13. In a pipe open at both ends, ' n_1 ' and ' n_2 ' be the frequencies corresponding to vibrating lengths ' l_1 ' and l_2 respectively. The end correction is

A)
$$\frac{n_1 l_1 - n_2 l_2}{2(n_1 - n_2)}$$

B)
$$\frac{n_2 l_2 - n_1 l_1}{2(n_2 - n_1)}$$

C)
$$\frac{n_2 l_2 - n_1 l_1}{2(n_1 - n_2)}$$

D)
$$\frac{\mathbf{n}_1 l_1 - \mathbf{n}_2 l_2}{(\mathbf{n}_1 - \mathbf{n}_2)}$$

- 14. A mass is suspended from a spring having spring constant 'K' is displaced vertically and released, it oscillates with period 'T'. The weight of the mass suspended is (g = gravitational acceleration)
 - A) $\frac{\text{KTg}}{4\pi^2}$
- B) $\frac{KT^2g}{4\pi^2}$ C) $\frac{KTg}{2\pi^2}$
- D) $\frac{KT^2g}{2\pi^2}$

15. A satellite of mass 'm' is revolving in circular orbit of radius 'r' round the earth. Its angular momentum w.r.t. the centre of its orbit is (M = mass of earth, G = universal gravitational constant)

A) $(GMmr)^{\frac{1}{2}}$

B) $(GMm^2r)^{\frac{1}{2}}$

C) $(GMm^2r^2)^{\frac{1}{2}}$

D) $(G M^2 m^2 r)^{\frac{1}{2}}$

16. A liquid rises to a height of 1.8 cm in a glass capillary 'A'. Another glass capillary 'B' having diameter 90% of capillary 'A' is immersed in the same liquid. The rise of liquid in capillary 'B' is

A) 1.4 cm

B) 1.8 cm

C) 2.0 cm

D) 2.2 cm

17. A particle of mass 'm' is moving in circular path of constant radius 'r' such that centripetal acceleration is varying with time 't' as K^2 r t^2 where K is a constant. The power delivered to the particle by the force acting on it is

A) $m^2 K^2 r^2 t^2$

B) mK^2r^2t

C) m K^2 r t^2

D) m K r^2 t

18. A simple pendulum is oscillating with amplitude 'A' and angular frequency 'ω'. At displacement 'x' from mean position, the ratio of kinetic energy to potential energy is

A) $\frac{x^2}{\Delta^2 - x^2}$ B) $\frac{x^2 - A^2}{x^2}$ C) $\frac{A^2 - x^2}{x^2}$ D) $\frac{A - x}{x}$

19. The equation of the progressive wave is $y = a \sin 2\pi \left(nt - \frac{x}{5} \right)$. The ratio of maximum particle velocity to wave velocity is

A) $\frac{\pi a}{5}$

B) $\frac{2\pi a}{5}$ C) $\frac{3\pi a}{5}$ D) $\frac{4\pi a}{5}$

20. Let g_h and g_d be the acceleration due to gravity at height h above the earth's surface and at depth 'd' below the earth's surface respectively. If $g_h = g_d$ then the relation between 'h' and 'd' is

A) d = h

B) $d = \frac{h}{2}$ C) $d = \frac{h}{4}$ D) d = 2h

- 21. A rope 1 cm in diameter breaks if tension in it exceeds 500 N. The maximum tension that may be given to a similar rope of diameter 2 cm is
 - A) 2000 N
- B) 1000 N
- C) 500 N
- D) 250 N
- 22. The length and diameter of a metal wire is doubled. The fundamental frequency of vibration will change from 'n' to (Tension being kept constant and material of both the wires is same)
 - A) $\frac{n}{4}$
- B) $\frac{n}{8}$ C) $\frac{n}{12}$
- D) $\frac{n}{16}$
- 23. A hollow sphere of mass 'M' and radius 'R' is rotating with angular frequency 'ω'. It suddenly stops rotating and 75% of kinetic energy is converted to heat. If 'S' is the specific heat of the material in $\frac{J}{kg}$ K then rise in temperature of the sphere is (M.I. of hollow sphere = $\frac{2}{3}$ MR²)

- B) $\frac{R^2\omega^2}{4S}$ C) $\frac{R\omega}{2S}$ D) $\frac{R^2\omega^2}{2S}$
- 24. A large number of liquid drops each of radius 'a' are merged to form a single spherical drop of radius 'b'. The energy released in the process is converted into kinetic energy of the big drop formed. The speed of the big drop is
 - [ρ = density of liquid, T = surface tension of liquid]
 - A) $\left[\frac{6T}{\rho}\left(\frac{1}{a} \frac{1}{b}\right)\right]^{\frac{1}{2}}$

B) $\left[\frac{6T}{\rho}\left(\frac{1}{b} - \frac{1}{a}\right)\right]^{\frac{1}{2}}$

C) $\left[\frac{\rho}{6T}\left(\frac{1}{a} - \frac{1}{b}\right)\right]^{\frac{1}{2}}$

D) $\left[\frac{\rho}{6T}\left(\frac{1}{b} - \frac{1}{a}\right)\right]^{\frac{1}{2}}$

- 25. A black body radiates heat at temperatures ' T_1 ' and ' T_2 ' ($T_2 > T_1$). The frequency corresponding to maximum energy is
 - A) more at T₁

B) more at T₂

C) equal for T₁ and T₂

- D) independent of T₁ and T₂
- 26. For diamagnetic materials, magnetic susceptibility is
 - A) small and negative

B) small and positive

C) large and negative

- D) large and positive
- 27. For Balmer series, wavelength of first line is ' λ_1 ' and for Brackett series, wavelength of first line is

'
$$\lambda_2$$
' then $\frac{\lambda_1}{\lambda_2}$ is

A) 0.081

B) 0.162

C) 0.198

- D) 0.238
- 28. The distance of a point on the screen from two slits in biprism experiment is 1.8×10^{-5} m and 1.23×10^{-5} m. If wavelength of light used is 6000 Å, the fringe formed at that point is
 - A) 10th bright

B) 10th dark

C) 9th bright

- D) 9th dark
- 29. Same current is flowing in two a.c. circuits. First contains only inductance and second contains only capacitance. If frequency of a.c. is increased for both, the current will
 - A) increase in first circuit and decrease in second
 - B) increase in both circuits
 - C) decrease in both circuits
 - D) decrease in first circuit and increase in second

30.	The difference in the effective capacity of two similar capacitors when joined in series and then in
	parallel is 6 µF. The capacity of each capacitor is

A) $2\mu F$ B) $4\mu F$

C) 8µF

D) 16µF

31. Which logic gate produces 'LOW' output when any of the inputs is 'HIGH'?

A) AND

B) OR

C) NAND

D) NOR

32. An electron of mass 'm' and charge 'q' is accelerated from rest in a uniform electric field of strength 'E'. The velocity acquired by it as it travels a distance 'l' is

A) $\left[\frac{2Eql}{m}\right]^{\frac{1}{2}}$

B) $\left[\frac{2Eq}{ml}\right]^{1/2}$

C) $\left[\frac{2 \operatorname{Em}}{\operatorname{q}l}\right]^{\frac{1}{2}}$

D) $\left[\frac{\text{Eq}}{\text{m}l}\right]^{1/2}$

33. A light is travelling from air into a medium. Velocity of light in a medium is reduced to 0.75 times the velocity in air. Assume that angle of incidence 'i' is very small, the deviation of the ray is

A) i

B) $\frac{i}{3}$

C) $\frac{i}{4}$ D) $\frac{3i}{4}$

34. The electric field intensity at a point near and outside the surface of a charged conductor of any shape is 'E₁'. The electric field intensity due to uniformly charged infinite thin plane sheet is 'E₂'. The relation between 'E₁' and 'E₂' is

A) $2E_1 = E_2$

B) $E_1 = E_2$

C) $E_1 = 2E_2$

D) $E_1 = 4E_2$

35.	35. Sensitivity of a moving coil galvanometer can be increased by						
	A) decreasing the number of turns of coil						
	B)	increasing the nur	nber of turns of coil				
	C)	decreasing the are	ea of a coil				
	D)	by using a weak n	nagnet				
36.	For	the hydrogen atom,	the energy of radiation	on ei	mitted in the transi	tion from 4 th excited state to 2 nd	
	exci	ted state, according	g to Bohr's theory is				
	A)	0.567 eV	B) 0.667 eV	C)	0.967 eV	D) 1.267 eV	
37.	Two	o coherent monochro	omatic light beams of i	ntens	sities '4 I' and '9 I' a	are superimposed. The maximum	
	and	minimum possible	intensities in the resu	lting	g beam are		
	A)	3 I and 2 I		B)	9 I and 5 I		
	C)	16 I and 3 I		D)	25 I and I		
38.	The	resistances in left	and right gap of a mo	eter 1	bridge are 20Ω an	ad 30Ω respectively. When the	
	resis	stance in the left ga	p is reduced to half it	s val	ue, the balance po	int shifts by	
	A)	15 cm to the right		B)	15 cm to the left		
	C)	20 cm to the right		D)	20 cm to the left		
39.	For	the same angle of in	ncidence, the angles of	of ref	Traction in media '1	P', 'Q', 'R' and 'S' are 50°, 40°,	
	30°,	20° respectively. T	The speed of light is n	ninin	num in medium		
	A)	P	B) Q	C)	R	D) S	
			SPACE FOR	ROU	JGH WORK		

40.	The process of regaini	ng of information from	m carrier wave at the re	eceiver is termed as
	A) demodulation		B) modulation	
	C) attenuation		D) amplification	
41.	-	m length of wire. If le		n a battery. The e.m.f. of a cell wire is increased by 1 m, the new
	A) 2.00 m	B) 2.25 m	C) 2.50 m	D) 2.75 m
42.	$i = 5 \sin (10\pi t)$ then t	he maximum value o	f e.m.f. induced in coil	
	A) π volt	B) $\frac{\pi}{2}$ volt	C) $\frac{\pi}{3}$ volt	D) $\frac{\pi}{4}$ volt
43.	For a transistor, the cu	rrent ratio $\alpha_{dc} = \frac{69}{70}$	The current gain β_{dc}	is
	A) 66	B) 67	C) 69	D) 71
44.	In Young's double sli means	t experiment, the rati	io of intensities of brig	ght and dark bands is 16 which
	A) the ratio of their a	implitudes is 5		
	B) intensities of indi	vidual sources are 25	and 9 units respectivel	y
	C) the ratio of their a	implitudes is 4		
	D) intensities of indi	vidual sources are 4 a	and 3 units respectively	
45.			resistance is connected s. Galvanometer resista	l in series. Its range gets doubled ance is
	Α) 100 Ω	Β) 200Ω	C) 300Ω	D) 400Ω
		SPACE FOR	ROUGH WORK	

46.	The capacity of a paralle	el plate air capacitor is	s 2 μF and voltage betw	ween the plates is changing at the				
	rate of 3 V/S. The displacement current in the capacitor is							
	A) 2μF	B) 3μF	C) 5 µF	D) 6μF				

- 47. A capacitor $C_1 = 4 \mu F$ is connected in series with another capacitor $C_2 = 1 \mu F$. The combination is connected across d.c. source of 200 V. The ratio of potential across C_2 to C_1 is
 - A) 2:1 B) 4:1 C) 8:1 D) 16:1
- 48. When monochromatic light of wavelength ' λ ' is incident on a metallic surface, the stopping potential for photoelectric current is ' $3V_0$ '. When same surface is illuminated with light of wavelength ' 2λ ', the stopping potential is ' V_0 '. The threshold wavelength for this surface when photoelectric effect takes place is
 - A) λ B) 2λ C) 3λ D) 4λ
- 49. A coil carrying current 'I' has radius 'r' and number of turns 'n'. It is rewound so that radius of new coil is $\frac{r}{4}$ and it carries current 'I'. The ratio of magnetic moment of new coil to that of original coil is
 - A) 1 B) $\frac{1}{2}$ C) $\frac{1}{4}$ D) $\frac{1}{8}$
- 50. The de-Broglie wavelength ' λ ' of a particle
 - A) is proportional to mass
 - B) is proportional to impulse
 - C) is inversely proportional to impulse
 - D) does not depend on impulse

CHEMISTRY

		CHE	VII.	TRY				
51.	Which of the following	g is the most stable dia	azon	ium salt ?				
	A) $C_6H_5CH_2N_2^+X^-$	B) $CH_3N_2^+X^-$	C)	$\mathrm{CH_3CH_2N_2^+X^-}$	D)	$C_6H_5N_2^+X^-$		
52.	Electronic configuration consists of how many a	•	k elei	ment is exceptiona	al. On	e molecule of that element		
	A) One	B) Two	C)	Three	D)	Four		
53.	The correct IUPAC na	time of $[CO(NH_3)_3(N)]$	$(O_2)_2$	3]				
	A) Triammine trinitri	to – N cobalt (III)	B)	Triammine trinitr	rito –	N cobalt (II)		
	C) Triammine cobalt	(III) nitrite	D)	Triammine trinitr	ito –	N cobaltate (III)		
54.	4. If M, W and V represent molar mass of solute, mass of solute and volume of solution in litre respectively, which among following equations is true?					olume of solution in litres		
	A) $\pi = \frac{MWR}{TV}$	B) $\pi = \frac{TMR}{WV}$	C)	$\pi = \frac{TWR}{VM}$	D)	$\pi = \frac{TRV}{WM}$		
55.	Replacement of diazon	ium group by fluorin	e is	known as				
	A) Gattermann reacti	on	B)	Sandmeyer reacti	on			
	C) Balz-Schiemann r	eaction	D)	Etard reaction				
56.	For which among the fe	ollowing reactions, c	hang	ge in entropy is les	s thai	n zero ?		
	A) Sublimation of Ioo	dine						
	B) Dissociation of H	ydrogen						
	C) Formation of water	er						
	D) Thermal decompo	osition of Calcium Ca	rbon	ate				
57.	[Cr(NH ₃) ₆] [Cr(SCN) ₆ type of isomerism?	$_{5}$] and [Cr(NH $_{3}$) $_{2}$ (SO	CN)	₄] [Cr (NH ₃) ₄ (SC	CN) ₂]	are the examples of what		
	A) Ionisation isomeri	sm	B)	Linkage isomeris	m			
	C) Coordination isom	nerism	rism D) Solvate isomerism					

- 58. For the reaction $O_{3(g)} + O_{(g)} \rightarrow 2O_{2(g)}$, if the rate law expression is, rate = K[O₃] [O] the molecularity and order of the reaction are respectively
 - A) 2 and 2
- B) 2 and 1.33
- C) 2 and 1
- D) 1 and 2
- 59. $R C \equiv N + 2 \text{ (H)} \xrightarrow{\text{(i) SnC}l_2/\text{dil HC}l}$ RCHO + NH₄Cl this reaction is known as
 - A) Etard reaction
 - B) Stephen reaction
 - C) Hell-Vohlard-Zelinsky reaction
 - D) Balz-Schiemann reaction
- 60. Select a ferromagnetic material from the followings.
 - A) Dioxygen

B) Chromium (IV) oxide

C) Benzene

- D) Dihydrogen monoxide
- 61. What is the volume of water consumed during acid hydrolysis of 1.368 Kg of sucrose?

(Given – molar masses of sucrose = 342, water = 18, density of water = 1 g/cm^3)

- A) 0.072 dm^3
- B) 0.720 dm^3
- C) $0.18 \, \text{dm}^3$
- D) $0.018 \, \text{dm}^3$
- 62. The process in which metal surface is made inactive is called
 - A) Passivation
- B) Galvanizing
- C) Corrosion
- D) Pickling
- 63. Which among the following group 15 element forms most stable pentavalent compound?
 - A) Phosphorus
- B) Antimony
- C) Bismuth
- D) Arsenic
- 64. Which among the following functional groups has been given the highest priority while assigning R-S configuration?
 - $A) C_6 H_5$
- B) CN
- $C) C_2H_5$
- $D) CH_3$

65.	Given $R = 8.314$ JK (molar mass = 30) at 30		do	ne during combu	astion of 0.090 kg of ethane
	A) -18.7 kJ	B) 18.7 kJ	C)	6.234 kJ	D) -6.234 kJ
66.	Potassium dichromate i changes by	s a good oxidizing ag	ent,	in acidic medium	the oxidation state of chromium
	A) 2	B) 3	C)	4	D) 5
67.	Diethyl amine when tre	eated with nitrous acid	l yie	elds	
	A) Diethyl ammoniur	n nitrite	B)	Ethyl alcohol	
	C) N-nitroso diethyl a	amine	D)	Triethyl ammoniu	ım nitrite
68.	What is the most abund	lant element on earth	?		
	A) Hydrogen	B) Nitrogen	C)	Oxygen	D) Silicon
69.	9. The overall reaction taking place at anode during electrolysis of fused sodium chloride using suitable electrode is				
A) Oxidation of chloride B) Reduction of sodium ions					um ions
	C) Reduction of chlor	rine	D)	Oxidation of sodi	um atoms
70.	The only radioactive ele	ement among the lant	han	oids is	
	A) Gadolinium	B) Holmium	C)	Promethium	D) Neodynium
71.	Identify a metalloid from	m the following list o	f ele	ments.	
	A) Carbon	B) Neon	C)	Sodium	D) Tellurium
72.	What is the chemical co	omposition of Nicol's	pris	sm?	
	A) Al_2O_3	B) CaSO ₄	C)	CaCO ₃	D) Na ₃ AlF ₆
73.	Identify the heteropoly	mer from the list give	n be	low.	
	A) Polythene	B) Nylon-6	C)	Teflon	D) Nylon-6, 6
74.	What is the basicity of	orthophosphorus acid	1?		
	A) One	B) Two	C)	Three	D) Four

75.	75. The correct order of reactivity of aldehydes and ketones towards hydrogen cyanide is						
	A) CH ₃ COCH ₃	CH₃CHO>HCHO	B) CH ₃ COCH ₃ ⟩H	ICHO⟩CH₃CHO			
	C) CH ₃ CHO/Cl	H ₃ COCH ₃ ⟩HCHO	D) HCHO\CH3CH	HO⟩CH ₃ COCH ₃			
76.	Which among the	following is a feature of	f adiabatic expansion?				
	A) $\Delta V < 0$	B) $\Delta U < 0$	C) $\Delta U > 0$	D) $\Delta T = 0$			
77.	Molarity is defined	d as					
	A) the number of	f moles of solute dissolv	ved in one dm ³ of the s	olution			
		f moles of solute dissolv	•				
	C) the number o	f moles of solute dissolv	ved in 1 dm ³ of the solv	vent			
	D) the number of	f moles of solute dissolv	ved in 100 ml of the sol	vent			
78.	-	e number of monohydro ethyl group as a branch	•	rocarbon consisting of five carbon			
	A) 2	B) 3	C) 4	D) 5			
79.		t of work done when two X against a pressure of 1	•	ompressed from a volume of 1 m ³			
	A) 99 kJ	B) -99 kJ	C) 114.9 kJ	D) – 114.9 kJ			
80.	Which among the fe	ollowing alloys is used in	n making instruments for	electrical measurements?			
	A) Stainless stee	l B) Manganin	C) Spiegeleisen	D) Duralumin			
81.	Which of the follo	wing proteins is globula	ar?				
	A) Collagen	B) Albumin	C) Myosin	D) Fibroin			
82.	A mixture of benz	aldehyde and formaldel	hyde when treated with	50% NaOH yields			
	A) Sodium benz	oate and sodium format	e				
	B) Sodium form	ate and benzyl alcohol					
	C) Sodium benz	oate and methyl alcohol	I				
	D) Benzyl alcoh	ol and methyl alcohol					
	SPACE FOR ROUGH WORK						

83.	Which among the follo	wing solutions is NO	T used in determination	on of the cell constant?
	A) $10^{-2} \text{ M KC} l$	B) $10^{-1} \text{ M KC} l$	C) 1 M KC <i>l</i>	D) Saturated KCl
84.	Which halogen forms ar	n oxyacid that contain	s the halogen atom in t	ripositive oxidation state?
	A) Fluorine	B) Chlorine	C) Bromine	D) Iodine
85.	Name the metal that is furnace and heating that		•	oping hearth of a reverberatory
	A) Mercury	B) Galium	C) Zirconium	D) Copper
86.	Which among the follow	wing is a tranquilizer	?	
	A) Aspirin	B) Valium	C) Penicillin	D) Sulphanilamide
87.	Chlorination of ethane	is carried out in prese	ence of	
	A) anhydrous AlBr ₃		B) mercuric chloride	•
	C) ultraviolet light		D) zinc chloride	
88.	Identify a 'Chemical tw	vin' among the follow	vings.	
	A) Zr-Ta	B) Nb-Tc	C) Hf-Re	D) Nb-Ta
89.	The relationship between	en rate constant and h	nalf life period of zero	order reaction is given by
	A) $t_{\frac{1}{2}} = [A]_0 2k$	B) $t_{\frac{1}{2}} = \frac{0.693}{k}$	C) $t_{\frac{1}{2}} = \frac{[A]_0}{2k}$	D) $t_{\frac{1}{2}} = \frac{2[A]_0}{k}$
90.	Which polymer among	the following polym	ers does NOT soften o	on heating?
	A) Bakelite	B) Polythene	C) Polystyrene	D) PVC
91.	Van't Hoff factor of cen of K_3 [Fe(CN) ₆].	ntimolal solution of K	₃ [Fe(CN) ₆] is 3.333. C	Calculate the percent dissociation
	A) 33.33	B) 0.78	C) 78	D) 23.33
92.	Which of the following	compounds is most a	acidic in nature?	
	A) 4-Chlorobutanoic	acid	B) 3-Chlorobutanoid	eacid
	C) 2-Chlorobutanoic	acid	D) Butanoic acid	

93.	How is ore of alumini	um concentrated?			
	A) roasting		B) leaching		
	C) froth floatation		D) using Wilfley ta	ble	
94.	Which of the followin	g compounds has hig	ghest boiling point?		
	A) Propan-1-ol	B) n-Butane	C) Chloroethane	D) Propanal	
95.	Which metal among th	ne followings has the	highest packing effic	iency?	
	A) Iron	B) Tungsten	C) Aluminium	D) Polonium	
96.	What oxoacid of sulph	nur contains S-S bon	d in its structure ?		
	A) Disulphurous aci	d	B) Disulphuric acid		
	C) Perdisulphuric ac	eid	D) Hydrosulphurous acid		
97.	Which among the follow	owing detergents is r	on-ionic in character?		
	A) Sodiumlauryl sul	phate	B) Pentaerythrityl	stearate	
	C) Cetyltrimethyl ar	nmonium chloride	D) Sodium n-dode	cyl benzene sulphonate	
98.	Reaction of which amo	ong the following eth	ers with HI in cold lead	ls to formation of methyl alcohol?	
	A) ethyl methyl ethe	er	B) methyl propyl e	ther	
	C) isopropyl methyl	ether	D) tert-butyl methy	el ether	
99.	During conversion of replaced?	glucose into glucose	cyanohydrin, what fu	nctional group/atom of glucose is	
	A) hydrogen		B) aldehydic group)	
	C) primary alcoholic	e group	D) secondary alcoh	nolic group	
100.	Half life period of a fire	st order reaction, A —	product is 6.93 hour.	What is the value of rate constant?	
	A) 1.596 h ⁻¹	B) 0.1 h^{-1}	C) 4.802 h ⁻¹	D) 10 h ⁻¹	

BIOLOGY

101.	In the first step of Mon	ohybrid cross experi	ment, Mendel selected	l pea plants which were
	A) pure tall as male a	and pure dwarf as fen	nale	
	B) pure tall as female	e and pure dwarf as n	nale	
	C) heterozygous tall	as male and pure dw	arf as female	
	D) heterozygous tall	as female and pure d	warf as male	
102.	In Griffith's experime mixed with heat killed		f R-type to S-type of	<u>Diplococcus</u> <u>Pneumoniae</u> when
	A) mutation	B) transduction	C) transfection	D) transformation
103.	Semidwarf rice variety	IR-8 was developed	lin	
	A) Taiwan	B) Phillipines	C) India	D) China
104.	Which one of the follo	wing is a non-endosp	permic seed ?	
	A) sunflower	B) coconut	C) ground nut	D) wheat
105.	Which one of the follo	wing is NOT a myco	herbicide?	
	A) Phytophthora pali	<u>mivora</u>	B) Xanthomonas sp	<u>).</u>
	C) Alternaria crassa		D) Fusarium sp.	
106. During anaerobic respiration the conversion of pyruvate into acetaldehyde, along with corresponding the conversion of pyruvate into acetaldehyde, along with corresponding to the conversion of pyruvate into acetaldehyde, along with corresponding to the conversion of pyruvate into acetaldehyde, along with corresponding to the conversion of pyruvate into acetaldehyde, along with corresponding to the conversion of pyruvate into acetaldehyde, along with corresponding to the conversion of pyruvate into acetaldehyde, along with corresponding to the conversion of pyruvate into acetaldehyde, along with corresponding to the correspondin				
	A) Mg^{++}	B) Mn ⁺⁺	C) Fe ⁺⁺	D) Zn ⁺⁺
107.	An international treaty	known as Montreal	Protocol was signed to	control emission of
	A) UV rays	B) Ozone	C) CFC	D) Oxygen
108.	Chloroplasts in higher	plants are	shaped.	
	A) kidney	B) lens	C) bean	D) dome
109.	Pollengrain develops f	rom of a	anther.	
	A) epidermis	B) endothecium	C) tapetum	D) sporogenous tissue
110.	In processing of eukary	otic hn RNA, during	protein synthesis tailin	g involves of RNA.
	A) Addition of adeng	ylate residues at 3' en	nd	
	B) Addition of meth	yl guanosine triphos _l	phate at 3' end	
	C) Addition of meth	yl guanosine triphos _l	phate at 5' end	
	D) Removal of introd	ns		
111.	In a cross between red k the phenotypic ratio in			eat showing polygenic inheritance
	A) 1:6:15:20:15	5:6:1	B) 1:4:6:4:1	
	C) 1:2:1		D) 2:1	
112.	In angiosperms during	development of emb	ryo the suspensor cells	s develop from
	A) oospore	B) integument	C) endosperm	D) cotyledon

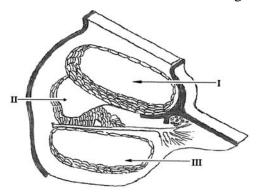
113.	Manganese, calcium and chloride ions pres	ent in PS-II play an important role in	
	A) Absorption of light	B) CO ₂ assimilation	
	C) Photolysis of water	D) ATP synthesis	
114.	Which process does the following equation	represent?	
	$C_6H_{12}O_6 + 2NAD + 2ADP + 2Pi \rightarrow 2C$	$CH_3 - CO - COOH + 2 NADH_2 + 2 ATP$	
	A) complete glycolysis	B) complete aerobic respiration	
	C) complete anaerobic respiration	D) complete fermentation	
115.	The cloning vector M13 has genetic materia	al	
	A) ssRNA B) dsRNA	C) ssDNA D) dsDNA	
116.	Earthworm is a		
	A) herbivore	B) secondary consumer	
	C) tertiary consumer	D) detrivore	
117.	To induce formation of organs in a callus it	is necessary to provide	
	A) growth hormones B) water	C) soil D) antibiotics	
118.	Anemophily is NOT observed in		
	A) Maize B) Jowar	C) Sugarcane D) Salvia	
119.	In an ecosystem, the biotic components here	bivorous are	
	A) photosynthetic B) chemosynthetic	e C) macro consumers D) micro consumers	
120.	The visible portion of light spectrum useful	in photosynthesis is referred to as	
	A) RFLP B) PAR	C) VAM D) VNTR	
121.	The microbe Pseudomonas denitrificans pro-	oduces Vitamin	
	A) K B) D	C) B ₂ D) B ₁₂	
122.	If there are 1280 microspores in a tetralocuthere in its each pollen chamber?	alar anther, how many microspore mother cells will	l be
	A) 80 B) 160	C) 240 D) 1280	
123.	Which one of the following plants DOES N	NOT help in vegetative propagation by leaves?	
	A) Begonia B) Kalanchoe	C) Bryophyllum D) Oxalis	
124.	Given below are some reactions and the ena	zymes involved.	
	Identify the CORRECT pairs.		
	I	П	
	1. Fructose 1,6 diphosphate → 3 PGAL	L + DHAP a. enolase	
	2. Citrate \rightarrow Cis – aconitate	b. thiokinase	
	3. Succinyl Co. A \rightarrow succinate	c. aconitase	
	4. $2 \text{ PGA} \rightarrow \text{PEPA}$	d. aldolase	
	A) 1-d, 2-c, 3-b, 4-a	B) 1-a, 2-b, 3-c, 4-d	
	C) 1-b, 2-a, 3-d, 4-c	D) 1-c, 2-d, 3-a, 4-b	

125.	Human skin colour is	s an example of		
	A) Intragenic intera	ection	B) Interallelic inte	eraction
	C) Quantitative inh	eritance	D) Pleiotropy	
126.	During DNA replicat	tion, the addition of n	ucleotides on the lagg	ging strand occurs
	A) towards the repl	icating fork	B) at a faster rate	than leading strand
	C) continuously		D) discontinuousl	у
127.	The technique of proculture is called	ducing large number	of genetically similar	r plants within short time by tissue
	A) Organogenesis		B) Somatic hybrid	dization
	C) Micropropagation	on	D) Protoplast cult	ure
128.	How many sense coo	lons code for 20 know	vn essential amino ac	eids?
	A) 61	B) 62	C) 63	D) 64
129.	Which one of the foll	lowing is NOT a natu	ral method of vegetat	tive propagation?
	A) runner	B) foliar buds	C) stem tuber	D) grafting
130.	Transposons are sequ	iences of		
	A) DNA	B) mRNA	C) rRNA	D) tRNA
131.	A 340 Å long segment number of guanine n			trogenous bases, what will be the
	A) 10	B) 40	C) 80	D) 160
132.	The final electron acc	ceptor during ETS in	respiration is	
	A) Hydrogen	B) Oxygen	C) FMN	D) Ubiquinone
133.	The time taken from the seconds.	he fixation of CO ₂ to t	he formation of one gl	ucose molecule is about
	A) 20	B) 40	C) 60	D) 90
134.	The secondary metab	oolite obtained from C	Catharanthus roseus i	S
	A) vincristin	B) anthocyanin	C) menthol	D) nicotine
135.	Large stout, nocturna adaptations for	l flowers producing co	opious nectar and emi	tting fermenting fruity odor, are the
	A) Entomophily	B) Ornithophily	C) Chiropterophil	y D) Anemophily
136.	During Biogas produ	ction acetic acid is tra	ansformed into the fir	nal product by the enzymes of
	A) Clostridium	B) Pseudomonas	C) Penicillium	D) Methanobacillus
137.	The gymnospermic er	ndosperm differs from	an angiospermic endo	sperm because in gymnosperms it is
	A) haploid and dev	eloped from female g	ametophyte	
	B) diploid and deve	eloped from female ga	ametophyte	
	, ±	eloped after fertilizati		
	D) triploid and deve	eloped before fertiliza	ution	

138.	What is NOT	true about emascu	lation of a flo	we	r while performin	g an a	artificial cross?	
	A) It is rem	noval of anthers from	m flower					
	B) It is don	e before anthesis						
	C) It is to a	void self pollinatio	n					
	D) It is don	e in flowers of plar	nts selected as	ma	ale parent			
139.	Pusa shubhra	a is a variety of						
	A) cauliflo	wer B) chil	li	C)	wheat	D) (cabbage	
140.	Which of the	following is correct	ct pair of pyrii	mid	ine bases ?			
	A) Adenin	e & Thymine		B)	Adenine & Guan	ine		
	C) Thymin	e & Cytosine		D)	Guanine & Cytos	sine		
141.	In the nomen	clature of enzyme i	restriction end	lon	uclease the Romai	n num	neral indicates	
	A) number	of times it is used		B)	the order of disco	very	from source	
	C) number	of cuts on DNA	-	D)	number of recom	binan	ts formed	
142.	Environment	tal biotic factor that	helps in polli	nati	ion is			
	A) air	B) water	er	C)	wind	D) i	insects	
143.	How many ty	ypes of gametes wi	ll be produce	d by	y an individual ha	ving §	genotype AaBbcc?	
	A) four	B) thre	e	C)	two	D) (one	
144.	Self pollinati	on which involves	two different	flov	wers of the same p	olant,	is called	
	A) autogan	ny B) geit	onogamy	C)	xenogamy	D) 1	nybridization	
145.	The initial sto	ep in preparation of	beer is					
	A) malting	B) carb	oxylation	C)	clarification	D) (distillation	
146.	A desirable of	change in genotype	of an organis	m i	s obtained by			
	A) DNA re				protein synthesis			
	C) rDNA t	echnology]	D)	m-RNA formatio	n		
147.	Considering	mode of asexual rep	production, ma	atch	the Column I with	n II an	nd select the correct opti	on:
		I	I	I				
	a. Yeast		i. fragn	nent	tation			
	b. <i>Penicill</i>	ium	ii. zoosį	ore	es			
	c. Filamer	ntous algae	iii. budd	ing				
	d. Chlamy	edomonas	iv. conic	lia				
	A) a-iii, b-i	v, c-i, d-ii		B)	a-ii, b-iii, c-i, d-iv	•		
	C) a-iv, b-i	ii, c-ii, d-i		D)	a-iii, b-ii, c-i, d-iv	•		
148.	How much of ATP?	f the energy release	d during aerol	bic 1	respiration is appro	oxima	ately conserved in the fo	orm
	A) 20%	B) 40%	, o	C)	60%	D)	100%	
149.	The deflection	on of pitch angle be	tween two su	cce	ssive steps (rungs) of D	NA is	
	A) 72°	B) 54°		C)	36°	D)	18°	

150.		llowing is a CAM plan		C	D) I	
	A) Maize	•		Sugarcane	D) Jowar	
151.		g cells secretes a hormo				
	A) Cells of Leydig			Cells of Sertoli	44 -	
1.50	C) Primary sperma	•		Secondary sperm	tocyte	
152.		t, with respect to X-link	_		D) N: 1411: 1	
1.50	A) Haemophilia	B) Myopia		•	D) Night blindne	ess
153.		stralopithecus was disc			CE areat	
	A) Olduvai GorgeC) Siwalik hills in			Fayum deposits of Taung in South A		
151	•			•	irica	
134.		ing options are CORR	ECI	:		
		Stimulant				
	2. Marijuana –					
	3. Cocaine –					
	4. Morphine –		<i>a</i> \	2 2 1 4	D) 1 0 14	
155	,	B) 1, 3 and 4	,		D) 1, 2 and 4	
155.		onin are hormones, sec		•	D) Th	
156	A) Pancreas	B) Pineal body			•	1 1 1
156.	are observed in	as pointed elongated so adaptation.	nout	, strong and stout f	relimbs, well dev	eloped claws
	A) Arboreal	B) Aerial	C)	Cursorial	D) Fossorial	
157.	Deposition of	in the joints causes	gout			
	A) Urea	B) Uric acid	C)	Guanine	D) Ammonia	
158.	The glycoprotein, fe	rtilizin is secreted by				
	A) Ovum	B) Ovary	C)	Sperm	D) Testis	
159.	In the given diagram	I and II indicate				
	Chromomorphism Authorities of the control of the co		D)	Centromere and s	aandary aanstriat	ion
	A Chromomere a	на сптоннопетнава	B)	Centromere and s	CONGALY CONSULCT	JOH

C) Secondary constriction and satellite D) Telomere and satellite



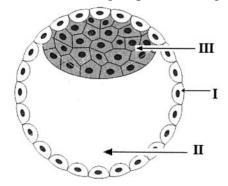
160. Find the CORRECT match:

	Column A	Column B		Column C		
	i. Mackeral	Rastrelliger		Freshwater fish		
	ii. Honey bee	Apis		Wax		
	iii. Mirgala	Tacchardia		Marine waterfish		
	iv. Silkworm	Bombyx		Mulberry silk		
	A) ii and iv	B) i and ii	C) iv only	D)	i and iii
161.	A Red list of endangere	ed species is maintain	ed	by		
	A) CSIR	B) IUCN	C) NEERI	D)	WLS
162.	The Human Genome P	roject (HGP) was ini	tiat	ted in		
	A) 1988	B) 1990	C) 1992	D)	1994
163.	Ectoderm gives rise to					
	A) cornea, heart, bron					
	B) adrenal cortex, tor	_				
	C) lungs, adrenal med	<u> </u>				
	D) enamel of teeth, na		ha	ir		
164.	Helper T – cells : Lymp	phokines as				
	Killer T – cells :					
	A) Interferons	B) Lysozymes) Perforins	D)	Prostaglandins
165.	Epicanthal skin fold and				_	
	A) Down's syndrome	2) Klinefelter's sync		ie
1	C) Thalassemia		D) Turner's syndron	ne	
166.	Following are all breed) C-1:1	D)	C: II.:
1.65	A) Jersey	B) Nagpuri	C) Sahiwal	D)	Sindhi
167.	More than 95 % of tran	=) E: 1	D)	Carra
1.60	A) Rabbits	B) Mice	C) Fish	D)	Cows
168.	Pick the ODD homolog		D	Clitaria Dania		
	A) Bartholin's GlandC) Mons pubis – Gla	-) Clitoris – Penis) Labia majora – Se	croti	ım
160	Which is NOT the fund	-	ע) Laula majura – Si	cron	4111
109.	A) Transport R.B.C.s	• •	R) Drain excess tissi	ıe fli	nid
	C) Transport lympho) Transport absorb		
170	A cuckoo laying eggs i	•		· •		
170.	A) Adelphoparasitism	-) Broodparasitism	шпр	
	C) Ectoparasitism) Hyperparasitism		
171.	The reptiles, like dinos	aurs were dominant i				
	A) Cretaceous	B) Jurassic		Tertiary	D)	Triassic

172. Select the CORRECT identification group of labelled parts I, II, III

- A) I Scala vestibuli, II Scala media, III Scala tympani
- B) I Scala vestibuli, II Scala tympani, III Scala media
- C) I Scala tympani, II Scala media, III Scala vestibuli
- D) I Scala media, II Scala tympani, III Scala media
- 173. The Transgenic animals are generally produced for all of the following needs EXCEPT
 - A) Testing of chemical safety
 - B) Testing of vaccine safety
 - C) Stimulation of pathogenicity
 - D) Production of pharmacologically important proteins

174. Match the following:


- i. Mercury
- a. Low blood pressure, blindness
- ii. Lead
- b. Hyperkeratosis, Liver cirrhosis
- iii. Arsenic
- c. Bone deformation, testicular atrophy
- iv. Cadmium
- d. Abdominal pain, haemolysis
- e. Anaemia, convulsions
- A) i-e, ii-d, iii-c, iv-b

B) i-d, ii-e, iii-b, iv-c

C) i-c, ii-b, iii-d, iv-a

D) i-b, ii-c, iii-d, iv-e

175. Choose the CORRECT group of labellings

- A) I Trophoblast, II Archenteron, III Micromeres
- B) I Trophoblast, II Blastocoel, III Megameres
- C) I Trophoblast, II Archenteron, III Inner mass cells
- D) I Trophoblast, II Blastocoel, III Inner mass cells

176.		of the following ani					D)	Tood
1.77	ĺ	Frog	B) Sna		C)	Turtle	D)	Toad
177.		study of blood vess			<i>a</i>	TT . 1	D)	TT' 4 1
		Angiology	B) Care	diology	C)	Haematology	D)	Histology
178.		ma cells are derived						
		Cytotoxic T – cell	S		,	Helper T – cells		
	C)	Memory B – cells			D)	Memory T – cells	S	
179.		win's theory of Evo	olution C	CANNOT ex	-			
		Arrival of fittest				Natural selection		
	C)	Prodigality of prod	duction		D)	Struggle for exist	ence	;
180.		ing ovulation, the o	-					
	A)	Oogonia	B) Oot	id	C)	Primary oocyte	D)	Secondary oocyte
181.	Juxt	a glomerular cells o	of kidney	secrete horn	non	e		
	A)	Angiotensinogen			B)	Angiotensin II		
	C)	Coherin			D)	Renin		
182.	The	marine fish among	the follo	wing varieti	es is	;		
	A)	Stromateus	B) Lab	eo	C)	Cirrhina	D)	Catla
183.	Whi	ch of the following	animal	was selected	by 1	Morgan for studyi	ng li	nkage ?
	A)	Apis indica			B)	Agrobacterium tı	ımaf	aciens
	C)	Drosophila melan	ogaster		D)	E. Coli		
184.	The	increase in blood fl	ow to he	art stimulate	es se	cretion of		
	A)	Renin			B)	Oxytocin		
	C)	Antidiuretic hormo	one		D)	Atrial natriuretic	facto	or
185.	Hear	viness with severe	chest pai	n which may	y dis	appear with rest in	idica	ites
	A)	Angina pectoris	B) Ath	erosclerosis	C)	Arteriosclerosis	D)	Hyperthyroidism
186.	The	co-ordinator betwe	en Nerv	ous and end	ocrii	ne system is		
	A)	Thalamus	B) Hyp	oothalamus	C)	Epithalamus	D)	Colliculus
187.	Mate	ch the pairs of disea	ases and	pathogens:				
		I			II			
	1.	Malaria		a. Wuchere	eria	bancrofti		
	2.	Filariasis		b. Helmint	h			
	3.	Typhoid		c. Plasmod	lium	falciparum		
	4.	Schistosomiasis		d. Salmone	ella t	yphi		
	A)	1-c, 2-b, 3-a, 4-d			B)	1-d, 2-a, 3-b, 4-c		
	C)	1-a, 2-b, 3-c, 4-d			D)	1-c, 2-a, 3-d, 4-b		
188.	The	clot formation can	be preve	nted by trea	tmei	nt withi	in ge	ene therapy.
	A)	DNase			B)	Recombinant vac	cine	
	C)	TPA			D)	TGF-B		

			-27-	
189.	Select the CORRECT	Γ match:		
	A) Gibbon – Cercop	oithecoidea	B) Lemur – Pro	simii
	C) New World Mor	nkey – Hominoidea	D) Tarsier – An	thropoidea
190.	Atrial Natriuretic Fac	tor (ANF) decreases		
	A) Blood pressure		B) Secretion of	renin
	C) Na ⁺ excretion		D) Vasodilation	1
191.	Morula formed at the	end of cleavage is _	celled.	
	A) 14	B) 16	C) 18	D) 20
192.	Select the CORRECT	Γpair		
	A) Adaptive Radiat	ion – Darwin's Finc	hes	
	B) Connecting Link	x – Sewall – Wright	effect	
	C) Genetic drift – P	eppered moth		
	D) Industrial Melan	ism – Archeopteryx		
193.	How many pairs of sy	mpathetic ganglia a	re present in ANS?	1
	A) 10	B) 12	C) 22	D) 31
194.	The first vaccine prod	luced by Edward Jen	ner, was for protect	tion against
	A) Hepatitis	B) Influenza	C) Chicken pox	D) Small pox
195.	Which are the phagod	ytic cells from giver	diagram ?	
		00		
	и п	ш гу	V	
	A) I and V	B) I and III	C) I and IV	D) I and II
196.	Forceful muscular co	ntractions of uterine	wall is involved in	
	A) Implantation	B) Lactation	C) Micturition	D) Parturition
197.	In mechanism of horn	none action, which o	of the following is N	NOT a second messenger?
	A) Cyclic AMP	B) IP ₃	C) Ca ⁺⁺	D) Mg ⁺⁺
198.	One of the following	pair of animals is an	example of comme	nsalism
	A) Sacculina – crab)	B) Plasmodium	a-An opheles
	C) Golden Jackal –	Tiger	D) Ascaris – M	an
199.	What is "After birth"	referred to?		
	A) Amniotic fluid p	assing out		
	B) Expulsion of bal	-		
	•	centa, umbilical coro	l and foetal membra	ine
	D) Secretion of hor			
200.	Which group of crani	al nerves control eye	ball movements?	

B) Optic, Oculomotor, Trochlear

D) Oculomotor, Abducens, Trochlear

A) Optic, Abducens, Pathetic

C) Oculomotor, Abducens, Auditory

SPACE FOR ROUGH WORK

LOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170						5	9	13	17	21	26	30	34	38
VALE 2 04	Same Tark	36.565 BL	MARKET ATTE	incontituti)	21/4/37/17/76	0212	0253	0294	0334	0374	4	8	12	16	20	24	28	32	36
11	0414	0453	0492	0531	0569		3,000-000				4	8	12	16	20	23	27	31	35
						0607	0645	0682	0719	0755	4	7	11	15	18	22	26	29	33
12	0792	0828	0864	0899	0934		00.10	0002	07.10	0.00	3	7	11	14	18	21	25	28	32
'-	0.02	0020	0001	0000	0001	0969	1004	1038	1072	1106	3	7	10	14	17	20	24	27	31
13	1139	1173	1206	1239	1271	0000	1001	1000	1012	1100	3	6	10	13	16	19	23	26	29
"	1100	1110	1200	1200	1271	1303	1335	1367	1399	1430	3	6	10	13	16	19	22	25	29
14	1461	1492	1523	1553	1584	1000	1000	1001	1000	1450	3	6	9	12	15	19	22	25	28
'7	1401	1432	1020	1555	1504	1614	1644	1673	1703	1732	3	6	9	12	14	17	20	23	26
15	1761	1700	1010	1017	1075	1014	1044	1073	1703	1732	3					_		_	
15	1761	1790	1818	1847	1875	4000	4004	4050	4007	2011		6	9	11	14	17	20	23	26
10	0044	0000	0005	0400	0440	1903	1931	1959	1987	2014	3	6	8	11	14	17	19	22	25
16	2041	2068	2095	2122	2148						3	6	8	11	14	16	19	22	24
						2175	2201	2227	2253	2279	3	5	8	10	13	16	18	21	23
17	2304	2330	2355	2380	2405						3	5	8	10	13	15	18	20	23
			V2.02.00		10/10/2004	2430	2455	2480	2504	2529	3	5	8	10	12	15	17	20	22
18	2553	2577	2601	2625	2648	eggenere ner	age to process of	1,400,000,000	THE STATE OF THE S	-505/1000	2	5	7	9	12	14	17	19	21
						2672	2695	2718	2742	2765	2	4	7	9	11	14	16	18	21
19	2788	2810	2833	2856	2878						2	4	7	9	11	13	16	18	20
						2900	2923	2945	2967	2989	2	4	6	8	11	13	15	17	19
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	2	4	6	8	11	13	15	17	19
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	2	4	6	8	10	12	14	16	18
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	2	4	6	8	10	12	14	15	17
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	2	4	6	7	9	11	13	15	17
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	2	4	5	7	9	11	12	14	16
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	2	3	5	7	9	10	12	14	15
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	2	3	5	7	8	10	11	14	15
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	2	3	5	6	8	9	11	13	14
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	2	3	5	6	8	9	11	12	14
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	1	3	4	6	7	9	10	12	13
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	1	3	4	6	7	9	10	11	13
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	1	3	4	6	7	8	10	11	12
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	1	3	4	5	7	8	9	11	12
33	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	1	3	4	5	6	8	9	10	12
34	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	1	3	4	5	6	8	9	10	11
35	5441	5453	5465	5478	5490	5502	5514	5527	5539	5551	1	2	4	5	6	7	9	10	11
36	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	1	2	4	5	6	7	8	10	11
1775	0.0000000000000000000000000000000000000	SEP4EROSE I		The second second	V 10000 1000000	2.4.0400.0402	0.0000000000000000000000000000000000000	5763		3000.0000000000000000000000000000000000	1		3	5		7	8		10
37	5682 5798	5694 5809	5705 5821	5717 5832	5729 5843	5740 5855	5752 5866	5877	5775 5888	5786 5899	1 1	2	3	5	6	7	8	9	10
38			Various			V 10000000000000		300000000000	0.0000000000	6010	1	2		17,000	6	7	8		10
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	A Committee	1	2	3	4	5		2550	9	
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117	1	2	3	4	5	6	8	9	10
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222	1	2	3	4	5	6	7	8	9
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325	1	2	3	4	5	6	7	8	9
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425	1	2	3	4	5	6	7	8	9
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522	1	2	3	4	5	6	7	8	9
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618	1	2	3	4	5	6	7	8	9
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712	1	2	3	4	5	6	7	7	8
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803	1	2	3	4	5	5	6	7	8
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893	1	2	3	4	4	5	6	7	8
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981	1	2	3	4	4	5	6	7	8

LOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	1	2	3	3	4	5	6	7	8
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	1	2	3	3	4	5	6	7	8
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	1	2	2	3	4	5	6	7	7
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	1	2	2	3	4	5	6	6	7
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	1	2	2	3	4	5	6	6	7
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	1	2	2	3	4	5	5	6	7
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	1	2	2	3	4	5	5	6	7
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	1	2	2	3	4	5	5	6	7
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	1	1	2	3	4	4	5	6	7
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	1	1	2	3	4	4	5	6	7
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	1	1	2	3	4	4	5	6	6
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	1	1	2	3	4	4	5	6	6
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	1	1	2	3	3	4	5	6	6
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	1	1	2	3	3	4	5	5	6
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	1	1	2	3	3	4	5	5	6
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	1	1	2	3	3	4	5	5	6
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254	1	1	2	3	3	4	5	5	6
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	1	1	2	3	3	4	5	5	6
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	1	1	2	3	3	4	4	5	6
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	1	1	2	2	3	4	4	5	6
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	1	1	2	2	3	4	4	5	6
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	1	1	2	2	3	4	4	5	5
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	1	1	2	2	3	4	4	5	5
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	1	1	2	2	3	4	4	5	5
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	1	1	2	2	3	4	4	5	5
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	1	1	2	2	3	3	4	5	5
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	1	1	2	2	3	3	4	5	5
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	1	1	2	2	3	3	4	4	5
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	1	1	2	2	3	3	4	4	5
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	1	1	2	2	3	3	4	4	5
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	1	1	2	2	3	3	4	4	5
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	1	1	2	2	3	3	4	4	5
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	1	1	2	2	3	3	4	4	5
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	1	1	2	2	3	3	4	4	5
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289	1	1	2	2	3	3	4	4	5
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	1	1	2	2	3	3	4	4	5
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	1	1	2	2	3	3	4	4	5
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	0	1	1	2	2	3	3	4	4
88	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	0	1	1	2	2	3	3	4	4
89	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	0	1	1	2	2	3	3	4	4
90	9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	0	1	1	2	2	3	3	4	4
91	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	0	1	1	2	2	3	3	4	4
92	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	0	1	1	2	2	3	3	4	4
93	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	0	1	1	2	2	3	3	4	4
94	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	0	1	1	2	2	3	3	4	4
95	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	0	1	1	2	2	3	3	4	4
96	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	0	1	1	2	2	3	3	4	4
97	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	0	1	1	2	2	3	3	4	4
98	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	0	1	1	2	2	3	3	4	4
99	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	0	1	1	2	2	3	3	3	4

ANTILOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
0.00	1000	1002	1005	1007	1009	1012	1014	1016	1019	1021	0	0	1	1	1	1	2	2	2
0.01	1023	1026	1028	1030	1033	1035	1038	1040	1042	1045	0	0	1	1	1	1	2	2	2
0.02	1047	1050	1052	1054	1057	1059	1062	1064	1067	1069	0	0	1	1	1	1	2	2	2
0.03	1072	1074	1076	1079	1081	1084	1086	1089	1091	1094	0	0	1	1	1	1	2	2	2
0.04	1096	1099	1102	1104	1107	1109	1112	1114	1117	1119	0	1	1	1	1	2	2	2	2
0.05	1122	1125	1127	1130	1132	1135	1138	1140	1143	1146	0	1	1	1	1	2	2	2	2
0.06	1148	1151	1153	1156	1159	1161	1164	1167	1169	1172	0	1	1	1	1	2	2	2	2
0.07	1175	1178	1180	1183	1186	1189	1191	1194	1197	1199	0	1	1	1	1	2	2	2	2
0.08	1202	1205	1208	1211	1213	1216	1219	1222	1225	1227	0	1	1	1	1	2	2	2	3
0.09	1230	1233	1236	1239	1242	1245	1247	1250	1253	1256	0	1	1	1	1	2	2	2	3
0.10	1259	1262	1265	1268	1271	1274	1276	1279	1282	1285	0	1	1	1	1	2	2	2	3
0.11	1288	1291	1294	1297	1300	1303	1306	1309	1312	1315	0	1	1	1	2	2	2	2	3
0.12	1318	1321	1324	1327	1330	1334	1337	1340	1343	1346	0	1	1	1	2	2	2	2	3
0.13	1349	1352	1355	1358	1361	1365	1368	1371	1374	1377	0	1	1	1	2	2	2	3	3
0.14	1380	1384	1387	1390	1393	1396	1400	1403	1406	1409	0	1	1	1	2	2	2	3	3
0.15	1413	1416	1419	1422	1426	1429	1432	1435	1439	1442	0	1	1	1	2	2	2	3	3
0.16	1445	1449	1452	1455	1459	1462	1466	1469	1472	1476	0	1	1	1	2	2	2	3	3
0.17	1479	1483	1486	1489	1493	1496	1500	1503	1507	1510	0	1	1	1	2	2	2	3	3
0.18	1514	1517	1521	1524	1528	1531	1535	1538	1542	1545	0	1	1	1	2	2	2	3	3
0.19	1549	1552	1556	1560	1563	1567	1570	1574	1578	1581	0	1	1	1	2	2	3	3	3
0.20	1585	1589	1592	1596	1600	1603	1607	1611	1614	1618	0	1	1	1	2	2	3	3	3
0.21	1622	1626	1629	1633	1637	1641	1644	1648	1652	1656	0	1	1	2	2	2	3	3	3
0.22	1660	1663	1667	1671	1675	1679	1683	1687	1690	1694	0	1	1	2	2	2	3	3	3
0.23	1698	1702	1706	1710	1714	1718	1722	1726	1730	1734	0	1	1	2	2	2	3	3	4
0.24	1738	1742	1746	1750	1754	1758	1762	1766	1770	1774	0	1	1	2	2	2	3	3	4
0.25	1778	1782	1786	1791	1795	1799	1803	1807	1811	1816	0	1	1	2	2	2	3	3	4
0.26	1820	1824	1828	1832	1837	1841	1845	1849	1854	1858	0	1	1	2	2	3	3	3	4
0.27	1862	1866	1871	1875	1879	1884	1888	1892	1897	1901	0	1	1	2	2	3	3	3	4
0.28	1905	1910	1914	1919	1923	1928	1932	1936	1941	1945	0	1	1	2	2	3	3	4	4
0.29	1950	1954	1959	1963	1968	1972	1977	1982	1986	1991	0	1	1	2	2	3	3	4	4
0.30	1995	2000	2004	2009	2014	2018	2023	2028	2032	2037	0	1	1	2	2	3	3	4	4
0.31	2042	2046	2051	2056	2061	2065	2070	2075	2080	2084	0	1	1	2	2	3	3	4	4
0.32	2089	2094	2099	2104	2109	2113	2118	2123	2128	2133	0	1	1	2	2	3	3	4	4
0.33	2138	2143	2148	2153	2158	2163	2168	2173	2178	2183	0	1	1	2	2	3	3	4	4
0.34	2188	2193	2198	2203	2208	2213	2218	2223	2228	2234	1	1	2	2	3	3	4	4	5
0.35	2239	2244	2249	2254	2259	2265	2270	2275	2280	2286	1	1	2	2	3	3	4	4	5
0.36	2291	2296	2301	2307	2312	2317	2323	2328	2333	2339	1	1	2	2	3	3	4	4	5
0.37	2344	2350	2355	2360	2366	2371	2377	2382	2388	2393	1	1	2	2	3	3	4	4	5
0.38	2399	2404	2410	2415	2421	2427	2432	2438	2443	2449	1	1	2	2	3	3	4	4	5
0.39	2455	2460	2466	2472	2477	2483	2489	2495	2500	2506	1	1	2	2	3	3	4	5	5
0.40	2512	2518	2523	2529	2535	2541	2547	2553	2559	2564	1	1	2	2	3	4	4	5	5
0.41	2570	2576	2582	2588	2594	2600	2606	2612	2618	2624	1	1	2	2	3	4	4	5	5
0.42	2630	2636	2642	2649	2655	2661	2667	2673	2679	2685	1	1	2	2	3	4	4	5	6
0.43	2692	2698	2704	2710	2716	2723	2729	2735	2742	2748	1	1	2	3	3	4	4	5	6
0.44	2754	2761	2767	2773	2780	2786	2793	2799	2805	2812	1	1	2	3	3	4	4	5	6
0.45	2818	2825	2831	2838	2844	2851	2858	2864	2871	2877	1	1	2	3	3	4	5	5	6
0.46	2884	2891	2897	2904	2911	2917	2924	2931	2938	2944	1	1	2	3	3	4	5	5	6
0.47	2951	2958	2965	2972	2979	2985	2992	2999	3006	3013	1	1	2	3	3	4	5	5	6
0.48	3020	3027	3034	3041	3048	3055	3062	3069	3076	3083	1	1	2	3	4	4	5	6	6
0.49	3090	3097	3105	3112	3119	3126	3133	3141	3148	3155	1	1	2	3	4	4	5	6	6

ANTILOGARITHMS

	0	1	2	3	4	5	6	7	8	9	1	2	3	4	5	6	7	8	9
0.50	3162	3170	3177	3184	3192	3199	3206	3214	3221	3228	1	1	2	3	4	4	5	6	7
0.51	3236	3243	3251	3258	3266	3273	3281	3289	3296	3304	1	2	2	3	4	5	5	6	7
0.52	3311	3319	3327	3334	3342	3350	3357	3365	3373	3381	1	2	2	3	4	5	5	6	7
0.53	3388	3396	3404	3412	3420	3428	3436	3443	3451	3459	1	2	2	3	4	5	6	6	7
0.54	3467	3475	3483	3491	3499	3508	3516	3524	3532	3540	1	2	2	3	4	5	6	6	7
0.55	3548	3556	3565	3573	3581	3589	3597	3606	3614	3622	1	2	2	3	4	5	6	7	7
0.56	3631	3639	3648	3656	3664	3673	3681	3690	3698	3707	1	2	3	3	4	5	6	7	8
0.57	3715	3724	3733	3741	3750	3758	3767	3776	3784	3793	1	2	3	3	4	5	6	7	8
0.58	3802	3811	3819	3828	3837	3846	3855	3864	3873	3882	1	2	3	4	4	5	6	7	8
0.59	3890	3899	3908	3917	3926	3936	3945	3954	3963	3972	1	2	3	4	5	5	6	7	8
0.60	3981	3990	3999	4009	4018	4027	4036	4046	4055	4064	1	2	3	4	5	6	6	7	8
0.61	4074	4083	4093	4102	4111	4121	4130	4140	4150	4159	1	2	3	4	5	6	7	8	9
0.62	4169	4178	4188	4198	4207	4217	4227	4236	4246	4256	1	2	3	4	5	6	7	8	9
0.63	4266	4276	4285	4295	4305	4315	4325	4335	4345	4355	1	2	3	4	5	6	7	8	9
0.64	4365	4375	4385	4396	4406	4416	4426	4436	4446	4457	1	2	3	4	5	6	7	8	9
0.65	4467	4477	4487	4498	4508	4519	4529	4539	4550	4560	1	2	3	4	5	6	7	8	9
0.66	4571	4581	4592	4603	4613	4624	4634	4645	4656	4667	1	2	3	4	5	6	7	9	10
0.67	4677	4688	4699	4710	4721	4732	4742	4753	4764	4775	1	2	3	4	5	7	8	9	10
0.68	4786	4797	4808	4819	4831	4842	4853	4864	4875	4887	1	2	3	4	6	7	8	9	10
0.69	4898	4909	4920	4932	4943	4955	4966	4977	4989	5000	1	2	3	5	6	7	8	9	10
0.70	5012	5023	5035	5047	5058	5070	5082	5093	5105	5117	1	2	4	5	6	7	8	9	11
0.71	5129	5140	5152	5164	5176	5188	5200	5212	5224	5236	1	2	4	5	6	7	8	10	11
0.72	5248	5260	5272	5284	5297	5309	5321	5333	5346	5348	1	2	4	5	6	7	9	10	11
0.73	5370	5383	5395	5408	5420	5433	5445	5458	5470	5483	1	3	4	5	6	8	9	10	11
0.74	5495	5508	5521	5534	5546	5559	5572	5585	5598	5610	1	3	4	5	6	8	9	10	12
0.75	5623 5754	5636	5649	5662	5675	5689	5702	5715	5728	5741	1	3	4	5	7	8	9	10	12
0.76	5888	5768 5902	5781 5916	5794 5929	5808	5821	5834 5970	5848	5861	5875	1	3	4	5	7	8	9	11	12
0.78	6026	6039	6053	6067	5943 6081	5957 6095	6109	5984 6124	5998 6138	6012 6152	1	3	4	5	7 7	8	10	11	12
0.79	6166	6180	6194	6209	6223	6237	6252	6266	6281	6295	1	3	4	6	7	8	10	11	13 13
0.80	6310	6324	6339	6353	6368	6383	6397	6412	6427	6442	1	3	4	6	7	9	10	12	13
0.81	6457	6471	6486	6501	6516	6531	6546	6561	6577	6592	2	3	5	6	8	9	11	12	14
0.82	6607	6622	6637	6653	6668	6683	6699	6714	6730	6745	2	3	5	6	8	9	11	12	14
0.83	6761	6776	6792	6808	6823	6839	6855	6871	6887	6902	2	3	5	6	8	9	11	13	14
0.84	6918	6934	6950	6966	6982	6998	7015	7031	7047	7063	2	3	5	6	8	10	11	13	15
0.85	7079	7096	7112	7129	7145	7161	7178	7194	7211	7228	2	3	5	7	8	10	12	13	15
0.86	7244	7261	7278	7295	7311	7328	7345	7362	7379	7396	2	3	5	7	8	10	12	13	15
0.87	7413	7430	7447	7464	7482	7499	7516	7534	7551	7568	2	3	5	7	9	10	12	14	16
0.88	7586	7603	7621	7638	7656	7674	7691	7709	7727	7745	2	4	5	7	8	11	12	14	16
0.89	7762	7780	7798	7816	7834	7852	7870	7889	7907	7925	2	4	5	7	9	11	13	14	16
0.90	7943	7962	7980	7998	8017	8035	8054	8072	8091	8110	2	4	6	7	9	11	13	15	17
0.91	8128	8147	8166	8185	8204	8222	8241	8260	8279	8299	2	4	6	8	9	11	13	15	17
0.92	8318	8337	8356	8375	8395	8414	8433	8453	8472	8492	2	4	6	8	10	12	14	15	17
0.93	8511	8531	8551	8570	8590	8610	8630	8650	8670	8690	2	4	6	8	10	12	14	16	18
0.94	8710	8730	8750	8770	8790	8810	8831	8851	8872	8892	2	4	6	8	10	12	14	16	18
0.95	8913	8933	8954	8974	8995	9016	9036	9057	9078	9099	2	4	6	8	10	12	15	17	19
0.96	9120	9141	9162	9183	9204	9220	9247	9268	9290	9311	2	4	6	8	11	13	15	17	19
0.97	9333	9354	9376	9397	9419	9441	9462	9484	9506	9528	2	4	7	9	11	13	15	17	20
0.98	9550	9572	9594	9616	9638	9661	9683	9705	9727	9750	2	4	7	9	11	13	16	18	20
0.99	9772	9795	9817	9840	9863	9886	9908	9931	9954	9977	2	5	7	9	11	14	16	18	20

PROVISIONAL KEY 2015 (200 Questions) Version_11

Sr.No	KEY
1	С
2	В
3	В
4	D
5	В
6	В
7	D
8	D
9	D
10	В
11	С
12	D
13	С
14	В
15	В
16	С
17	В
18	С
19	В
20	D
21	А
22	А
23	В
24	А
25	В

ми сет	PRO\ 2045 (20
Sr.No	2015 (20 KEY
26	А
27	В
28	В
29	D
30	В
31	D
32	А
33	С
34	С
35	В
36	С
37	D
38	В
39	D
40	Α
41	D
42	Α
43	С
44	В
45	D
46	D
47	В
48	D
49	С
50	С

Sr.No	KEY	
51	D	
52	А	
53	Α	
54	С	
55	С	
56	С	
57	С	
58	А	
59	В	
60	В	
61	А	
62	Α	
63	А	
64	В	
65	В	
66	В	
67	С	
68	С	
69	А	
70	С	
71	D	
72	С	
73	D	
74	В	
75	D	

KEY
В
А
С
Α
В
В
В
D
В
Α
В
С
D
С
Α
С
С
В
А
С
D
В
D
В
В

PROVISIONAL KEY T 2015 (200 Questions) Version_11

Sr.No	KEY
101	В
102	D
103	В
104	С
105	В
106	D
107	С
108	В
109	D
110	Α
111	В
112	Α
113	С
114	Α
115	С
116	D
117	А
118	D
119	С
120	В
121	D
122	А
123	D
124	А
125	С

MII 0==	PRUV
MH CET	2015 (20 KEY
126	D
127	С
128	Α
129	D
130	А
131	С
132	В
133	D
134	А
135	С
136	D
137	Α
138	D
139	Α
140	С
141	В
142	D
143	А
144	В
145	А
146	С
147	А
148	В
149	С
150	В

Sr.No	KEY
151	Α
152	С
153	D
154	С
155	В
156	D
157	В
158	А
159	D
160	А
161	В
162	В
163	D
164	С
165	А
166	В
167	В
168	С
169	А
170	В
171	В
172	А
173	С
174	В
175	D

Sr.No	KEY
176	В
177	Α
178	С
179	Α
180	D
181	D
182	Α
183	С
184	D
185	А
186	В
187	D
188	С
189	В
190	А
191	В
192	А
193	С
194	D
195	А
196	D
197	D
198	С
199	С
200	D