UNIT VII -CRYSTAL STRUCTURE

Solids are of two types: Amorphous and crystalline. In amorphous solids, there is no order in the arrangement of their constituent atoms (molecules). Hence no definite structure could be assigned to them. A substance is said to be crystalline when the arrangement of the units (atoms, molecules or ions) of matter inside it is regular and periodic.

Space lattice:

An array of points which describe the three dimensional arrangement of particles (atoms, molecules or ions) in a crystal structure is called space lattice. Here environment about each point should be identical.

Basis:

A crystal structure is formed by associating with every lattice point a unit assembly of atoms or molecules identical in composition. This unit assembly is called basis.

A crystal structure is formed by the addition of a basis to every lattice point.

i.e., lattice + Basis = crystal structure.

Thus the crystal structure is real and the crystal lattice is imaginary.

Bravais lattice:

For a crystal lattice, if each lattice point substitutes for an identical set of one or more atoms, then the lattice points become equivalent and the lattice is called Bravais lattice. On the other hand, if some of the lattice points are non-equivalent, then it is said to be a non-Bravais lattice.

Unit cell and lattice parameters:

The smallest portion of the crystal which can generate the complete crystal by repeating its own dimensions in various directions is called unit cell.

www.bookspar.com | Website for Students | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS The position vector R for any lattice point in a space lattice can be written as

$$R = n_1 a + n_2 b + n_3 c$$

Where **a**, **b** and **c** are the basis vector set and $\mathbf{n_1}$, $\mathbf{n_2}$, $\mathbf{n_3}$ are a triplet of integers $0,\pm 1,\pm 2$, etc., whose value depends on the particular lattice point. The angles between the vectors **b** and **c**, **c** and **a**, **a** and **b** are denoted as α , β and γ and are called interfacial angles. The three basis vectors and the three interfacial angles, form a set of six parameters that define the unit cell, and are called lattice parameters.

Primitive and Non primitive cells:

A primitive cell is a minimum volume unit cell. Consider a bravais lattice (in two dimensions) as shown below:

We can imagine two ways of identifying the unit cell in this structure. One is, with $\mathbf{a_1}$ and $\mathbf{b_1}$ as the basis vectors in which case, the unit cell will be a parallelogram. Here four lattice points are located at the vertices. This is a primitive cell. Other one is with the basis vectors $\mathbf{a_2}$ and $\mathbf{b_2}$ which would make a rectangle for the unit cell. Here in addition to the 4 points at the corners, one lattice point is at the centre. This is a nonprimitive cell. Thus the area of the non primitive cell is an integral multiple of the primitive cell.

Crystal systems:

Bravais demonstrated mathematically that in 3-dimensions, there are only 14 different types of arrangements possible. These 14 Bravais lattices are classified into the seven crystal systems on the basis of relative lengths of basis vectors and interfacial angles.

Seven crystal systems are:

 $www. \textcolor{red}{bookspar}. com \mid Website \ for \ Students \mid VTU \ NOTES \mid QUESTION \ PAPERS \mid NEWS \mid RESULTS$

1. Cubic 2. Tetragonal 3. Orthorhombic 4. Monoclinic 5. Triclinic 6. Trigonal (Rhombohedral)

7. Hexagonal

The 14 Bravais lattices are

1. Simple cubic

a = b = c

 $\alpha = \beta = \gamma \neq 90^{\circ}$

RHOMBOHEDRAL (TRIGONAL)

(g)

2. Body centered cubic

a=b=c, $\alpha=\beta=\gamma=90^{\circ}$

3. Face centered cubic

 $a = b \neq c$

 $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$

HEXAGONAL

(h)

Direction and planes in a crystal:

Many physical properties of crystalline solids are dependent on the direction of measurement or the planes across which the properties are studied. In order to specify directions in a lattice, we make use of lattice basis vectors \mathbf{a} , \mathbf{b} and \mathbf{c} .

In general, any directional vector can be expressed as

$$R = n_1 a + n_2 b + n_3 c$$

where n_1 , n_2 and n_3 are integers. The direction of the vector \mathbf{R} is determined by these integers. If these numbers have common factors, they are removed and the direction of R is denoted as $[n_1 \ n_2 \ n_3]$. A similar set of three integers enclosed in a round bracket is used to designate planes in a crystal.

Lattice planes and Miller indices:

The crystal lattice may be regarded as made up of a set of parallel, equidistant planes passing through the lattice points. These planes are known as lattice planes and may be represented by a set of three smallest possible integers. These numbers are called 'Miller indices' named after the crystallographer W.H.Miller.

Determination of Miller indices:

Consider a crystal plane intersecting the crystal axes as shown:

The procedure adopted to find the miller indices for the plane is as follows:

- 1. Find the intercepts of the plane with the crystal axes along the basis vectors **a**, **b** and **c**. Let the intercepts be x, y and z respectively.
- 2. Express x, y and z as fractional multiples of the respective basis vectors. Then we obtain the fractions, $\frac{x}{a}$, $\frac{y}{b}$, $\frac{z}{c}$.
- 3. Take the reciprocal of the three fractions to obtain $\frac{a}{x}$, $\frac{b}{y}$, $\frac{c}{z}$.

4. Find the least common multiple of the denominator, by which multiply the above three ratios. This operation reduces them to a set of 3 integers (h k l) called miller indices for the crystal plane. For the plane given above,

1.
$$x = \frac{2a}{3}$$
 $y = \frac{3b}{2}$ $z = 2c$
2. $(\frac{x}{a}, \frac{y}{b}, \frac{z}{c}) = (\frac{2}{3}, \frac{3}{2}, 2)$

2.
$$\left(\frac{x}{a}, \frac{y}{b}, \frac{z}{c}\right) = \left(\frac{2}{3}, \frac{3}{2}, 2\right)$$

- 3. Taking reciprocal, $(\frac{3}{2}, \frac{2}{3}, \frac{1}{2})$
- 4. Multiplying throughout by the least common multiple 6 for the denominator, we have the miller indices,

Expression for interplanar spacing:

Let ABC be one of the parallel planes represented by the miller indices (h k l). Its intercepts on the crystal axes are x, y and z. Another plane parallel to the plane ABC passes through the origin O. If OP is drawn perpendicular from O to the plane ABC, then OP is equal to the interplanar distance dhkl. Let the angle made by OP with respect to the axes X, Y and Z be θ_1 , θ_2 and θ_3 respectively.

Now
$$\cos \theta_1 = \frac{d_{hkl}}{x}$$

Now
$$\cos\theta_1 = \frac{d_{hkl}}{x}$$

Similarly we can write $\cos\theta_2 = \frac{d_{hkl}}{y}$ and $\cos\theta_3 = \frac{d_{hkl}}{z}$

But for orthogonal co-ordinates, $\cos^2 \theta_1 + \cos^2 \theta_2 + \cos^2 \theta_3 = 1$

i.e.,
$$\frac{d_{hkl}^2}{x^2} + \frac{d_{hkl}^2}{y^2} + \frac{d_{hkl}^2}{z^2} = 1$$

i.e., $\frac{d_{hkl}^2}{x^2} + \frac{d_{hkl}^2}{y^2} + \frac{d_{hkl}^2}{z^2} = 1$ But from the definition of miller indices, $x = \frac{a}{h}$ $y = \frac{b}{k}$ and $z = \frac{c}{l}$

 \therefore The interplanar spacing d_{hkl} is given by,

$$d_{hkl} = \frac{1}{\sqrt{\frac{h^2}{a^2} + \frac{k^2}{b^2} + \frac{l^2}{c^2}}}$$

For a cubic lattice, a = b = c

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

Number of atoms per unit cell (n):

1. Simple cubic lattice

There are eight corner atoms. Each corner atom is shared by eight unit cells. Hence the share of each unit cell is equal to one eighth of an atom. Therefore the total number of atom in one unit cell = $8 \times 1/8 = 1$.

2. Body centered cubic lattice

There are eight atoms at the eight corners of the unit cell and one atom at the body centre. As each corner atom is shared by eight unit cells, the contribution to each cell is $8 \times 1/8 = 1$. Moreover, there is one body centre atom per unit cell. Therefore total number of atoms per unit cell= 1+1=2.

3. Face centered cubic lattice

There are eight atoms at the eight corners of the unit cell and six face centered atoms at the centre of six faces. As each corner atom is shared by eight unit cells, the contribution to each cell is $8 \times 1/8 = 1$. Each face centered atom is shared by two unit cells. Hence the contribution of six face centered atoms to each unit cell is $6 \times 1/2 = 3$. Therefore the total number of atoms per unit cell = 1 + 3 = 4.

Co-ordination number:

Co-ordination number is the number of equidistant neighbours surrounding an atom in the given crystal structure. When the coordination number is larger, the structure is more closely packed.

1. Simple cubic lattice

Here any corner atom has four nearest neighbours in the same plane and two nearest neighbours in a vertical plane. Hence co-ordination number in this case is six.

2. Body centered cubic lattice

For any corner atom of the unit cell, the nearest atoms are the atoms which are at the centers of unit cells. A corner atom is surrounded by eight unit cells having eight body centered atoms. Hence co-ordination number is eight.

3. Face centered cubic lattice

For any corner atom, there will be four face centered atoms of the surrounding unit cells in its own plane as nearest neighbours and four face centered atoms each in two perpendicular planes. Hence coordination number is 4 + 4 + 4 = 12.

Relation between atomic radius and the lattice constant

Atoms touch each other at least in one direction in a unit cell. All atoms could be assumed to be spherical in shape.

1. Simple cubic lattice

The front view of one face of unit cell is shown:

If 'a' is the lattice constant and 'R' the atomic radius, a = 2R.

2. Body centered cubic lattice

In this structure the corner atoms do not touch each other. But each corner atom touches the central atom. From the geometry of the cube,

$$AB^{2} = BC^{2} + AC^{2}$$
But AB=4R, BC²=a²+a² and AC=a
$$\therefore (4R)^{2} = a^{2}+a^{2}+a^{2} = 3a^{2}$$

$$4R = \sqrt{3} \text{ a}$$

$$a = (4/\sqrt{3}) \text{ R} \text{ where R is the atomic radius.}$$

3. Face centered cubic lattice

Corner atoms do not touch each other. But each corner atom touches the central atom in the corresponding face as shown:

From figure,
$$AB^2 = a^2 + a^2$$

But $AB=4R$
 $\therefore (4R)^2 = 2a^2$
 $4R = \sqrt{2} a$
or $a = \frac{4}{\sqrt{2}} R$
 $a = 2\sqrt{2} R$ where R is the atomic radius.

Packing factor (fraction):

Packing factor is the ratio of total volume of the atoms in the unit cell to the total available volume in the unit cell.

Packing factor (p.f) =
$$\frac{n(\frac{4}{3}\pi R^3)}{a^3}$$
 where 'R' is the atomic radius and 'a' is the lattice constant

1. Simple cubic lattice:

Here n = 1 and a = 2R
$$\therefore (p.f) = \frac{1 \times (\frac{4}{3} \pi R^3)}{(2R)^3} = \frac{\pi}{6} = 0.52$$

2. Body centered cubic lattice:

Here
$$n = 2$$
 and $a = (\frac{4}{\sqrt{3}})R$

$$\therefore \text{ (p.f)} = \frac{2x_3^4 \pi R^3}{((\frac{4}{\sqrt{2}})R)^3} = \frac{\sqrt{3} \pi}{8} = 0.68$$

3. Face centered cubic lattice:

Here
$$n = 4$$
 and $a = 2\sqrt{2} R$

$$\therefore (p.f) = \frac{4x_3^4 \pi R^3}{(2\sqrt{2}R)^3} = \frac{\pi}{3\sqrt{2}} = 0.74$$

Lattice parameter and density:

Density of a cubic crystalline material can be written as

Density $\rho = \frac{\text{(Total mass of molecules in the unit cell)}}{\text{(Total mass of molecules in the unit cell)}}$

(volume of the unit cell)

(Number of molecules in the unit cell x Mass of each molecule)

(volume of the unit cell)

$$= \frac{(n\frac{M}{N_A})}{a^3}$$

Where 'M' is the molecular weight, 'NA' the Avogadro number and 'a' the lattice parameter.

$$\therefore a^3 = \frac{nM}{\rho N_A}$$

or,
$$\mathbf{a} = \left(\frac{\mathbf{nM}}{\mathbf{o}\mathbf{N}_{\Delta}}\right)^{\frac{1}{3}}$$

Crystal structure of NaCl:

The crystal structure of NaCl is shown in figure:

NaCl is an example of face centered cubic lattice. NaCl is an ionic compound and Na⁺ and Cl⁻ ions occupy alternate positions in the lattice. Thus there are four Na⁺ and Cl⁻ ion pairs (molecules) per unit cell. If a corner Na⁺ ion is taken as origin, the position co-ordinates of Na⁺ and Cl⁻ ions are as follows:

Na Cl

000 1/2 1/2 1/2

1/2 1/2 0 $0.0\frac{1}{2}$

1/2 0 1/2 $0\frac{1}{2}0$

 $0\frac{1}{2}\frac{1}{2}$

Lattice constant is related to the atomic radius R through the relation $a = \frac{8}{\sqrt{3}}R$

The number of molecules per unit cell is 4 and the coordination number is 6.

Interatomic distance is 2.813 Å.

KCl, PbS, MnO and AgBr possess crystal structure identical to NaCl.

Crystal structure Diamond:

The diamond lattice is composed of two interpenetrating face centered cubic sub lattices, one of which shifted relative to the other by one fourth of a body diagonal as shown:

The position co-ordinates of carbon atoms are

0.00

1/2 1/2 0

1/2 0 1/2

0 1/2 1/2

1/4 1/4 1/4

Lattice constant is related to the atomic radius R through the relation $a = \frac{8}{\sqrt{3}}R$

The number of atoms per unit cell is 8 and the coordination number is 4.

Packing fraction is $\frac{\sqrt{3} \pi}{16}$

www.bookspar.com | Website for Students | VTU NOTES | QUESTION PAPERS | NEWS | RESULTS Ge and Si possess diamond structure.

Bragg's law:

X-rays of wavelength ' λ ' be incident upon the crystal at an angle ' θ '. The crystal acts as a series of parallel reflecting planes. The intensity of the reflected beam at certain angles will be maximum when the path difference between the two reflected waves from two different planes is $n\lambda$. Lattice planes are separated by a distance 'd'.

From figure,

Path difference = $PE + EQ = BE \sin\theta + BE \sin\theta = d \sin\theta + d \sin\theta = 2d \sin\theta$ Intensity of the reflected light will be maximum when path difference is $n\lambda$.

i.e., $2d \sin\theta = n\lambda$

This result is known as **Bragg's law**.

Where ' θ ' is called Bragg angle or glancing angle and 'n' is the order of diffraction.

Bragg's X-ray spectrometer:

Bragg's X-ray spectrometer consists of three parts:

- 1. A source of X-rays (X-ray tube)
- 2. A crystal held on a circular turn table provided with vernier
- 3. A detector (ionization chamber)

X-rays from an X-ray tube collimated by two narrow slits S_1 and S_2 are allowed to fall upon the crystal C. The crystal is mounted on the turn table, which can rotate about a vertical axis and its position can be determined by vernier V_1 . The table is provided with a radial arm which carries ionization chamber. This arm can also be rotated about the same vertical axis as the crystal. The position of this arm can be determined by the vernier V_2 . The ionization chamber is connected to an electrometer E to measure the ionization current. The slits S_3 and S_4 limit the width of the diffracted beam.

The crystal table and ionization chamber are connected in such a way that the chamber turns through 2θ , when the crystal turns through θ .

To begin with, the glancing angle θ is kept very small and corresponding ionization current is noted. The glancing angle is increased in equal steps and in each case, ionization current is noted down. The ionization current is plotted against the glancing angle.

This graph is called X-ray spectrum. The peaks in the graph occur whenever Bragg's law is satisfied. One can measure the interplanar spacing 'd' through Bragg's relation $2d \sin\theta = n\lambda$, by using the measured value of ' θ ', the order 'n' and x-ray wavelength ' λ '.

C) $a\neq b=c$

7.a.I A crystal of hexagonal lattice is

B) a=b=c

A) a≠b≠c

Previous VTU questions VTU Model Question paper

D) $a=b\neq c$

II Inter atomic of	listance between I	Na and Cl is			
A) 2.81Å	B) 5.62Å	C) 6.62Å	D) 5.51Å		
III All types of H	Bravais lattices ob	served in			
A) Rhomohedr	al B) Ortho	rhombic	C) Triclinic	D) Monoclinic	
IV For every rota	ation by angle θ in	n Bragg's specti	rometer, detector to	irns by an angle	
Α) θ	В)3θ	C) 40	D) 2θ		
b . Derive expression	on for interplanar	spacing in term	s of Miller indices		
c . Explain the crys	tal structure of Na	ıCl.			
			at an angle 20° in t	he plane [212]. F	Find the wavelength
of X-ray if lattic	e constant is 3.61	5 A			(4+6+6+4)
		D 1	00 / T		
= 4)			08 / January 09		
7 a. 1) The coordin		-	•		
i) 12	ii) 6		i) 2	iv) 1	
	e following metal	-			11 11
i) Aluminium) Sodium	iv) Calcium chloride	
	_		of sodium chloride		.1
i) 5	ii) 2	iii)	,	iv) None of these	
	dices of the plane	-	· ·	/111	(0434 1)
i) (100)	ii) (010)	· · · · · · · · · · · · · · · · · · ·	(001)	iv) (111)	(04 Marks)
b. How do you find Miller indices of a given planec. Derive expression for interplanar spacing in terms of Miller indices					(04 Marks)
				41-050% 41	(08 Marks)
_					plane (132) of NaCl (04 Marks)
which results in se	cond order diffrac	tion maxima ta	king the lattice as :	0.01A	(04 Marks)
		June-	July 2009		

7 a. i) The relation between atomic radius and lattice constant in FCC structure is

www.bookspar.com V		VIU NOTES	QUESTION PAPERS	NEWS RESULTS
A) $a = 2r$	B) $2\sqrt{2}$ r	C) $a = \sqrt{3} \text{ r/4}$	D) $4r/\sqrt{3}$	
ii) APf of diamond	•	C) 0.52	D) 0.24	
A) 0.68	B) 0.74	C) 0.52	D) 0.34	
iii) A crystal of tetra A) a=b=c	agonar rattice is B) a≠b≠c	C) a=b≠c	D) a≠b=c	
*	,	<i>'</i>	,	ala
A) θ	B)3 θ	(g s spectrometer) C) $\theta/2$, detector turns by an ang D) 2θ	(04 Marks)
b . Derive expression for	,	,	,	(04 Marks)
c. With neat fig, explain		_	ier maiees.	(06 Marks)
			gle 20° in the plane [212	
of X-ray if lattice co		·		(04 Marks)
		Dec 09/Jan		
7 a i) Which one of the	~ .	-		
A) SnO_4	B) NaCl	C) CaSO ₄	D) CuSO ₄	
ii) In a simple cubic		i	D) $\sqrt{6}:\sqrt{3}:\sqrt{2}$	
A) 6:3:1 iii) Which one of the	B) $\sqrt{3}$: $\sqrt{6}$: 1	C) 6:3:√2	,	
	B) Face centered			se centered
iv) The packing fract	, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·	contered D) Bu	se centered
A) 34%	B) 52%	C) 68%	D) 74%	(04 Marks)
*	lattice and any five	crystal systems w	vith the help of illustration	*
c. Define coordination	number and packing	g factor. Calculate	e the packing factor for s	sc, fcc and bcc
structures.				(08 Marks)
		D.F. /T. 0	010	
7 - 2 NI 4 1-1	1	May/June 2		
7 a i) Nearest neighbou A) $(a\sqrt{3})/2$	B) $2a/\sqrt{3}$	two atoms in case C) (a√2)/3		J2/2
ii) The coordination nu	,	, , ,	,	U NZ
A) 12	B) 8	C) 2	D) 6	
iii) The crystal with lat	,	ngles $\alpha = \beta = \gamma =$		
A) Cubic	B) Hexagonal	C) Orthorh		etragonal
			l. The miller indices of the	ne plane are
/ \ /	B) (241)	C) (421)	D) (124)	(04 Marks)
b. Define unit cell and	primitive cell. Descri	ribe crystal struct	ture of diamond.	(08 Marks)
c. Derive Bragg's law.	roy boom of woval	anath 15 Å unda	rgoes second order Brag	(04 marks)
nlane (211) of a cubic	-ray beam or waven	ng angle of 54 38	On the lattice of the control of the control of the control of the lattice of the	g refrection from the
plane (211) of a caok	orystar, at a graner	ing ungle of 5 1.50	. Carculate the lattice ev	(04 Marks)
				(* 1 = 1 = 1 = 1)
		January 20	11	
7 a. i) The relation for a	angles between axes			
A) $\alpha = \beta = \gamma = 90$			$\beta \neq \gamma \neq 90^0$ D) $\alpha = \beta$	$= \gamma \neq 90^{\circ}$
•	n number for a face		attice is	
,	B) 8 C) 6	D) 26		
	ctor for fcc structure		o of those	
· · · · · · · · · · · · · · · · · · ·	B) 68% C) 92 ces of the plane para	/	e of these	
	B) (010)	C) (001)	D) (111)	(04 Marks)
b. Derive an expression	/ \ /	/ \ /	, , ,	(06 Marks)
c. Define packing fract		_		(06 Marks)
d. Inter planar distance	for a crystal is 3Å a	and the glancing a	angle for second order sp	pectrum was observed to
be equal to $10^0 30$ '. F	ind the wavelength	of the X-rays use	ed.	(04 Marks)

June / July 2011

7 a. i) Four types	s of Bravais lattices are obtained in	
--------------------	---------------------------------------	--

- A) rhombohedral system

B) orthorhombic system

C) triclinic system

D) monoclinic system

ii) In BCC structure, the packing density of crystal is equal to

D) $\frac{3\sqrt{3\pi}}{8}$

iii) Which of the following has greatest packing fraction

A) simple cubic

B) body centered cubic

C) face centered cubic

D) all have equal packing fraction

iv) The space lattice of diamond is

A) simple cubic

B) body centered cubic

C) face centred cubic with two atoms/unit cell

D) face centered cubic with four atoms/ unit cell

(04 Marks)

- b. With a neat figure, explain the structure of diamond and show that atomic packing factor of diamond is 0.34. (10 Marks)
- c. Calculate the glancing angle of the (110) plane of a simple cubic crystal (a=2.814 A⁰) corresponding to second order diffraction maximum for the x-rays of wavelength 0.710A⁰. **(06 Marks)**
