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SYLLABUS

ENGINEERING MATHEMATICS — IV
SUBJECT CODE: 10 MAT 41

PART-A

Unit-1: NUMERICAL METHODS -1

Numerical solution of ordinary differential equations of first order and first
degree; Picard’s method, Taylor’s series method, modified Euler’s method,
Runge-kutta method of fourth-order. Milne’s and Adams - Bashforth
predictor and corrector methods (No derivations of formulae).

Unit-11: NUMERICAL METHODS — 2

Numerical solution of simultaneous first order ordinary differential
equations: Picard’s method, Runge-Kutta method of fourth-order.
Numerical solution of second order ordinary differential equations: Picard’s
method, Runge-Kutta method and Milne’s method.

Unit-111: Complex variables — 1

unction of a complex variable, Analytic functions-Cauchy-Riemann
equations in cartesian and polar forms. Properties of analytic functions.
Application to flow problems- complex potential, velocity potential,
equipotential lines, stream functions, stream lines.

Unit-1V: Complex variables — 2
Conformal Transformations: Bilinear Transformations. Discussion of

Transformations: w=2z°, w=ez ,w=z+ (a2 /z) . Complex line
integrals- Cauchy’s theorem and Cauchy’s integral formula.

DEPT. OF MATHS/SIBIT Page 1

www.rejinpaul.com



www.rejinpaul.com

ENGG. MATHEMATICS-IV 10MATA41

PART-B

Unit-V: SPECIAL FUNCTIONS

Solution of Laplace equation in cylindrical and spherical systems leading
Bessel’s and Legendre’s differential equations, Series solution of Bessel’s
differential equation leading to Bessel function of first kind. Orthogonal
property of Bessel functions. Series solution of Legendre’s differential
equation leading to Legendre polynomials, Rodrigue’s formula.

Unit-VI: PROBABILITY THEORY -1

Probability of an event, empherical and axiomatic definition, probability
associated with set theory, addition law, conditional probability,
multiplication law, Baye’s theorem.

Unit-VII: PROBABILITY THEORY- 2

Random variables (discrete and continuous), probability density function,
cumulative density function. Probability distributions — Binomial and Poisson
distributions; Exponential and normal distributions.

Unit-VIII: SAMPLING THEORY

Sampling, Sampling distributions, standard error, test of hypothesis for
means, confidence limits for means, student’s t-distribution. Chi -Square
distribution as a test of goodness of fit
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Unit |
Numerical Methods |

Numerical Solution of First Order and First Degree Ordinary Differential
Equations

The fundamental laws of physics, mechanics, electricity and thermodynamics are
usually based on empirical observations that explain variations in physical properties
and states of the systems. Rather than describing the state of physical system directly,
the laws are usually couched in terms of spatial and temporal changes. The following
table gives a few examples of such fundamental laws that are written in terms of the
rate of change of variables (t = time and x= position)

Physical Law Mathematical Variables and
Expression Parameters
Newton’s second law dv F Velocity(v), force (F) and
of motion dt  m mass (M)
Fourier's Law of Heat dT Heat flux (g), thermal
Conduction q= _k& conductivity(k) and
temperature (T)
Faraday’s Law AV = Lﬂ Voltage drop (AV,),
(Voltage drop across Tt inductance4 (L) and
an |ndUCt0r) current (|)

The above laws define mechanism of change. When combined with continuity laws for
energy, mass or momentum, differential equation arises. The mathematical expression
in the above table is an example of the Conversion of a Fundamental law to an
Ordinary Differential Equation. Subsequent integration of these differential equations
results in mathematical functions that describe the spatial and temporal state of a
system in terms of energy, mass or velocity variations. In fact, such mathematical
relationships are the basis of the solution for a great number of engineering problems.
But, many ordinary differential equations arising in real-world applications and having lot
of practical significance cannot be solved exactly using the classical analytical methods.
These ode can be analyized qualitatively. However, qualitative analysis may not be able
to give accurate answers. A numerical method can be used to get an accurate
approximate solution to a differential equation. There are many programs and packages
available for solving these differential equations. With today's computer, an accurate
solution can be obtained rapidly. In this chapter we focus on basic numerical methods
for solving initial value problems.

Analytical methods, when available, generally enable to find the value of y for all
values of x. Numerical methods, on the other hand, lead to the values of y
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corresponding only to some finite set of values of x. That is the solution is obtained as a
table of values, rather than as continuous function. Moreover, analytical solution, if it
can be found, is exact, whereas a numerical solution inevitably involves an error which
should be small but may, if it is not controlled, swamp the true solution. Therefore we
must be concerned with two aspects of numerical solutions of ODEs: both the method
itself and its accuracy.

The general form of first order differential equation, in implicit form, is
F(x,y,y")=0 and in the explicit form is%: f(x,y). An Initial Value Problem (IVP)
X
consists of a differential equation and a condition which the solution much satisfies (or
several conditions referring to the same value of x if the differential equation is of higher

order). In this chapter we shall consider IVPs of the form

Yot v = @)
X

Assuming f to be such that the problem has a unigue solution in some interval
containing Xo, we shall discuss the methods for computing numerical values of the
solution. These methods are step-by-step methods. That is, we start from vy, = y(X,)

and proceed stepwise. In the first step, we compute an approximate value y; of the
solution y of (1) at X = X3 = Xp + h. In the second step we compute an approximate value
y» of the solution y at x = X, = Xo + 2h, etc. Here h is fixed number for example 0.1 or
0.001 or 0.5 depends on the requirement of the problem. In each step the computations
are done by the same formula.

The following methods are used to solve the IVP (1).

Taylor’s Series Method

Euler and Modified Euler Method
Runge — Kutta Method

Milne’s Method

Adams — Bashforth Method

arwnE

1. Taylor’s Series Method

Consider an IVP 3 =f(xy), Y(X)=Y,- Letus approximate the exact solution y(x) to
X

a power series in (X—X,) using Taylor's series. The Taylor's series expansion of y(x)

about the point X = X, is

( 0) y/V (X0)+ ......

(1)

(X=%X)% (X=%)° (X=%,)"
y(X) y(X )+ y (X0)+Ty (X0)+Ty (XO)+T
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From the differential equation, we havey(x)_j = f(x,y). Differentiating this
X

n

successively, we can get y”(x),y"” (x),y"" (x), etc. Putting x = X, and y = y,, the values of

v (%), ¥" (%), ¥" (%,), etc.can be obtained. Hence the Taylor's series (1) gives the
values of y for every value of x for which (1) converges.

1

On finding the value of y, for x = x, from (1), vy (%), y" (x), y"Y (x), etc.can be evaluated at

X = x, from the differential equation

Problems:

1. Find by Taylor’s series method the value of y at x = 0.1 and 0.2 five places of
decimals for the IVP % =x’y-1, y(0)=1.
X

Soln:
Given x, =0, y, =1land f(x,y) = x’y -1

Taylor’s series expansion about the point X =0(= X,) is

y(X) y(o) FASANELS ( ) /( ) (X O) 1 (0) (X O) /// (0) (X ) y/V (O) Foeeenne
e y(0=y0)+xy' 0+ y” )+~ y”’ 0) + y’V (ORI 1)
It is given that y(0)=1
%w’(@:xzy—l === y(0)=-1

Differentiating y'(x) = x?y —1successively three times and putting x =0 & y = 1, we get

y"(x) = 2xy + x°y’ === y"(0)=0
y"(x) =2y +4xy’ +x*y” > y"(0)=2
y¥(x) =6y’ +6xy" +x2y" S y"(0)=-6

Putting the values of y(0),y’(0),y” (0),y"” (0),y" (0)in (1), we get

x2 x3 x*
y(X) =1+ x(-1) + > 0) + 5 (2)+ 2 (-6)
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x* x*
X)=1-X+-—-——"—
y(X) 3 2

Hence y(0.1) = 0.90033 and y(0.2) = 0.80227.

2. Employ Taylor’s series method to obtain approximate value of y at x = 0.1 and 0.2 for
the differential equatlon% 2y +3e”*, y(0)=0.Compare the numerical solution

obtained with the exact solution.

Soln:
Given x, =0, y, =0and f(x,y)=2y+3e”

Taylor’s series expansion about the point x = Ois

y(x) = y(0) +xy' (0) + = y” 0+ y”’ 0) + y’v (ORI )
It is given that y(0)=0
ﬂ:y’(x):2y+3ex === y'(0) = 2y(0) +3e° =3

dx

Differentiating y'(x) = 2y +3e* successively three times and putting x =y = 0, we get

y"(x) =2y’ +3e* > y"(0)=2y'(0)+3=9
y"(x)=2y" + 3¢ S>> y"(0)=2y"(0)+3=21
yiV (X) — 2y/// +3ex - == yIV(O) — 2y/// (O)+3:45

Putting the values of y(0),y’(0),y” (0),y"” (0),y" (0)in (2), we get
45 4

24"
15 .

y(x)=0+3x+gx2+21x +—
9., 7
=3+ =X +=x>+—
2" 2
Hence,
y(0.1) = 3(0.1)+4.5(0.1)?+3.5(0.1)*+1.875(0.1)*

= 0.3486875
and

y(0.2) = 3(0.2)+4.5(0.2)*+3.5(0.2)%+1.875(0.2)*

=0.8110.
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The given differential equation can be written as d——2y = 3e*which is Leibnitz’s linear
X

differential equation.

Its ILF. is L.F = e [ _ g2

Therefore the general solution is,

ye X = jBeX(e’zx)dx +c=-3e"+c

y =—3e* +ce*

®3)

Using the given initial condition y = 0 when x = 0 in (3) we get c = 3.

Thus the exact solution is y =3€* —e*_

When x = 0.1, the exact solution is y(0.1) = 0.348695

When x = 0.2, the exact solution is y(0.2) = 0.811266

The above solutions are tabulated as follows:

X Numerical Exact Absolute
Error Value

0.1 0.3486875 0.348695 0. 75x10 °

0.2 0.8110 0.811266 0. 266x10 3
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3. Using Taylor’s series method solve % =x?—-vy, y(0)=1at 0.1 < x < 0.4. Compare
X

the values with the exact solution.

Soln:
Given x, =0, y, =1land f(x,y)=x* -y

Taylor’s series expansion about the point x = Ois

Y(x) = y(0) +xy' (0) + = y” 0+ y”’ (0) + y’V ) +----- 4
It is given that y(0)=0
Y _=xoy oo Y(0)=(0)2-1=-1

dx

Differentiating y'(x) = x? — ysuccessively and putting x =0, y = 1, we get

y'(x)=2x-y' >== y"(0)=0y'(0)=0-(-1) =1
y/// (X) — 2 _ y// == y/// (O) — 2 _ y// (0) :1
y"(x)=~y" === y'(0)=-y"(0)=-1

Putting the values of y(0),y'(0),y” (0),y"” (0),y" (0)in (4), we get

2 3 4
y(x)=1- x+ XX
2 6 24

Hence,

y(0.) =1-(0.1) + (0-21)2 L 0D° (.1

6 24

= 0.9051625

02° (0"
6 24

y(0.2)=1-(0.2) + (0'22)2 +

=0.8212667.
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¥(0.3)=1-(0.3) + (0-;”)2 L03° (03

6 24

=0.7491625.

04 (08)°
6 24

y(0.4)=1-(0.4) + (0'3)2

= 0.6896.

Exact Soln:

The given differential equation can be written as j_y +y = x’a linear differential equation.
X

Its ILF. is L.F = e/ — ¢

Therefore the general solution is,
ye* = Iex (x2)dx+c = (x* —2x+2)e* +c
y=(x*-2x+2)+ce” (5)

Using the given condition y(0) =1in (5)wegetl1=2+corc=-1.
Hence the exact solution is y = (x* —2x+2)—e~*

The exact solution at x = 0.1, 0.2, 0.3 and 0.4 are

y(0.1) = 0.9051625,
y(0.2) =0.8212692,
y(0.3) = 0.7491817 and
y(0.4) = 0.6896799
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The above solutions are tabulated as follows:

X Numerical Exact Absolute
Error Value
0.1 0.9051625 0.9051625, 0
0.2 0.8212667 0.8212692, 0. 25x10 ®°
0.3 0.7491625 0.7491817 0.192x10 *
0.4 0.6896 0.6896799 0. 799x10 *

2. Modified Euler’s Method

Consider the IVP % =f(xy), Y(X)=Y,. The following two methods can be used to
X
determine the solution at a point x =X, =X, +nh.

Euler’'s Method :
Yo=Y, +hf(X,,y,),  n=0123-- )
Modified Euler’'s Method :
h .
y"+1 = y” + E l (Xn’ yn) + f (Xn+11 yn+1) LR n= 011;2,3, """ (2)
Remark:

1. The formulae (1) and (2) are also known as Euler’s Predictor — Corrector formula.

2. When Modified Euler's method is applied to find the solution at a give point, we
first find the solution at that point by using Euler's method and the same will be
used in the calculation of Modified Euler's method. Also Modified Euler's method
has to be applied repeatedly until the solution is stationary.
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Problems:
2
1. Solve % = _1y , ¥(0) =1by Euler's method by choosing h = 0.1 and h = 0.05. Also
X + X

solve the same problem by modified Euler's method by choosing h = 0.05. Compare the
numerical solution with analytical solution.

Soln:

Analytical solution is : -

d—é’z—ﬁ = 1: log(1+x) +c

y 1+x y

Using the condition y(0) =1, we getc = 1.

Hence the analytical solutionis y = _ = y(0.2) = 0.84579
1+log(1+ x)

2
Now by Euler's method, we have vy, ., =, —0.{Lj

1+X,
J=0.9

2
y, =Yy(0.2)=0.9- 0.1&0'—%)1) =0.82636
+ U.

_ 14 @7
y, =y(0.1) =1 0'1[1+O

Error = 0.84579 — 0.82636 = 0.01943

2
Now taking h = 0.05, Euler’s method is vy, , =Y, —0.05(1)/—”]
+ X,

1)°
y, = ¥(0.05) =1.0-0.05{ —— |=0.95
1+0

(0.95)2
= y(0.1) = 0.95-0.05| ~——— | = 0.90702
Y = y(0.]) [1+o.05

2
y, = y(0.15) = 0.90702 o.os[%j _ 0.86963
+ U.
2
V. = y(0.2) = 0.86963 - o.%(%] — 0.83675
+ U.

Error = 0.84579 — 0.83675 = 0.00904
Note that when h = 0.1, Error was 0.01943, which is more.
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Now we use modified Euler’s method to find y(0.2) with h = 0.05

2
Euler's Formulais y,,, =y, —0.05(1 Vi ] n=0,1,2and 3
+ X

n

2 E
Modified Euler Formulais vy, , =y, —0.025 Yo Vs | n=01,2and3
1+x, 1+Xx,,

Stage - I: Finding y1 = y(0.05)

From Euler’s formula (for n = 0),

E (1)?
y; =Y(0.05) =1.0-0.05 =0.95
1+0

From Modified Euler’s formula, we have

2 2
v = y(0.05) =1.0-0.028 D", O | o535
1+0 1+0.05
2 2
y{? = y(0.05) =1.0-0.025 @° , (0953817 | _ 0.95335
1+0 1+0.05
2 2
y® = y(0.05) =1.0 - 0.025 @), (0993397 1 _ 95336
1+0 1+0.05
2 2
y{¥ =y(0.05) =1.0-0.025 @), (095336)" 1 _ 1 95336
1+0  1+0.05
Hence y, = y(0.05) = 0.95336
Stage - II: Finding y, = y(0.1)
From Euler’s formula (for n = 1), we get
2
ys = y(0.1) = 0.95336 — 0.05 (0-95336)" | _ 91008
1+0.05

From Modified Euler’s formula, we have

(0.95336)2 N (0.91008)2
1+0.05 1+0.1

y$” = y(0.1) = 0.95336 — 0.025( j =0.91286

2 2
y$? = y(0.1) = 0.95336 — 0.025 (0.95336)" | (0.91286)" | _ ) 91575
1+0.05 1+0.1
2 2
y$? = y(0.1) = 0.95336 — 0.025 (0.95336)" , (091278) |_ 41975
1+0.05 1+0.1
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Hence y, = y(0.1) =0.91278
Stage - llI: Finding y3 = y(0.15)
From Euler’s formula (for n = 2), we get

(0.91278)>

© - y(0.15) = 0.91278 - 0.05
Vs =y(0.15) ( 1+0.1

] =0.87491

From Modified Euler’s formula (for n = 2), we have

(0.91278)2 N (0.87491)2
1+0.1 1+0.15

(0.91278)2 N (0.87720)2
1+0.1 1+0.15

y{’ = y(0.15) = 0.91278 — 0.025( j =0.87720

=0.87712

y? = y(0.15) = 0.91278 - 0.025

(091278)° (0.87712)’
1+0.1 1+0.15

=0.87712

y!? = y(0.15) = 0.91278 - 0.025

Hence y, = y(0.15) =0.87712

Stage - IV: Finding y4 = y(0.2)

From Euler’s formula (for n = 3), we get
(0.87712)?

£ =y(0.2) = 0.87712-0.05
ys =Y(0.2) ( L 015

J =0.84367

From Modified Euler’s formula(for n = 3), we have

(0.87712)? . (0.84367)?
1+0.15 1+0.2

(0.87712)* (0.84557)°
1+0.15 1+0.2

(087712)° _ (0.84550)’
1+0.15 1+0.2

y® =y(0.2) =0.87712 - 0.025( ] = 0.84557

y? =y(0.2) =0.87712 - 0.025[ J = 0.84550

y? =y(0.2) =0.87712 - 0.025( J = 0.84550

Hence y, = y(0.2) = 0.84550

Error= 0.84579-0.84550=0.00029
Recall that the error from Euler's method is 0.00904
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2. Solve the following IVP by Euler’'s modified method at 0.2 < x < 0.8 with h = 0.2:

d
o =la(cEy), VO =2.

Soln:
Given Datais: X, =0,y, =2,h=0.2and f(x,y) =log,,(x+Y)

To Find: y, =y(x)=Y(0.2),y, = y(x;) = y(0.4), y; = y(x;) = y(0.6)
&y4 = y(x4) = y(0-8)

Stage — I: Finding y; = y(0.2)
From Euler’s formula (for n = 0),
yF = y(0.2) =2.0+0.2log,, O+ 2 = 2.0602

Now from Modified Euler’s formula (for n = 0), we have

y® = y(0.2) = 2.0+0.1]pg,,(0+ 2) + log,, (0.2 + 2.0602 = 2.0655
Y@ = y(0.2) = 2.0+0.1]pg,o(0+2) +10g,,(0.2 + 2.0655 = 2.0656

y©® = y(0.2) = 2.0+0.1]pg,,(0+2) +10g,,(0.2 + 2.0656 = 2.0656

Hence y, = y(0.2) = 2.0656

Stage - II: Finding y, = y(0.4)
From Euler’s formula (forn = 1),
ys = y(0.4) = 2.0656+0.2log,, .2+ 2.0656 = 2.1366
Now from Modified Euler’s formula (for n = 1), we have
y® = y(0.4) = 2.0656 + 0.1 g, (0.2 + 2.0656) + log,, (0.4 + 2.1366 = 2.1415

y? = y(0.4) = 2.0656 +0.1|pg,, (0.2 + 2.0656) + log,, (0.4 + 2.1415 = 2.1416

y$ = y(0.4) = 2.0656 + 0.1 |pg,, (0.2 + 2.0656) + log , (0.4 + 2.1416 = 2.1416

Hence y, = y(0.4) = 2.1416
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Stage - llI: Finding y3 = y(0.6)
From Euler’s formula (for n = 2),

yE = y(0.6) = 2.1416 +0.2log,, Q.4 + 2.1416 _=2.2226
Now from Modified Euler’s formula (for n = 2), we have

y® = y(0.6) = 2.1416 + 0.1 |pg,, (0.4 + 2.1416) + log,, (0.6 + 2.2226 = 2.2272

y? = y(0.6) = 2.1416 + 0.1|pg,, (0.4 + 2.1416) + log,, (0.6 + 2.2272 = 2.2272

Hence vy, = y(0.6) = 2.2272

Stage - IV: Finding y4; = y(0.8)
From Euler’s formula (for n = 3),

y§ = y(0.8) = 2.2272+0.2log,, €.6 + 2.2272 = 2.3175
Now from Modified Euler’s formula (for n = 3), we have

y® = y(0.8) = 2.2272 + 0.1 jpg,, (0.6 + 2.2272) + log, (0.8 + 2.3175 = 2.3217

y? = y(0.8) = 2.2272 + 0.1 g, (0.6 + 2.2272) + log,, (0.8 + 2.3217 =2.3217

Hence y, = y(0.8) = 2.3217
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The solutions at 0.2 <x <0.8 are tabulated as follows:

Xn Yn

0.2 y, = y(0.2) = 2.0656
0.4 y, = y(0.4) = 2.1416
0.6 y, = y(0.6) = 2.2272
0.8 y, = y(0.8) = 2.3217

3.Using modified Euler’s method solve the IVP % =sinx+cosy, Yy(25)=0 at
X

x=3.5 in two steps, modifying the solution thrice at each stages. Here x is in radians.

Soin:
Given X, =2.5,y, =0,h=0.5and f(x,y) =sin x+cosy
To Find: vy, =y(x,)=y(3.0) and y, = y(X,) = y(3.5)
Stage - I: Finding y1 = y(3.0)
From Euler’s formula (for n = 0),
yE = y(3.0) = 0.0+0.5 fin(2.5) + cos(0) =0.7992
Now from Modified Euler’s formula (for n = 0), we have
y® = y(3.0) = 0.0 +0.25 [€in(2.5) + cos(0) > €in(3.0) +cos(0.7992) "= 0.6092
y? = y(3.0) = 0.0 +0.25 [in(2.5) + cos(0) 3 €in(3.0) +cos(0.6092) "= 0.6399

y® = y(3.0) = 0.0+ 0.25 [€in(2.5) + cos(0) > €in(3.0) +c0s(0.6399) = 0.6354

Hence y, = y(3.0) = 0.6354

Stage - II: Finding y, = y(3.5)

From Euler’s formula (forn = 1),

DEPT. OF MATHS/SIBIT Page 18

www.rejinpaul.com



www.rejinpaul.com

ENGG. MATHEMATICS-IV 10MATA41

yE = y(3.5) = 0.6354 +0.5 fin(3.0) + c0s(0.6354) =1.10837
Now from Modified Euler’s formula (for n = 1), we have
y® = y(3.5) = 0.6354 + 0.25 [Kin(3.0) + c0s(0.6354) 3 €in(3.5) + cos(1.10837) "= 0.89572
y$? = y(3.5) = 0.6354 + 0.25 [Kin(3.0) + c0s(0.6354) ¥ €in(3.5) +cos(0.89572) = 0.94043

y$ = y(3.5) = 0.6354 + 0.25 [Kin(3.0) + cos(0.6354) 3+ €in(3.5) + c0s(0.94043) "= 0.93155

Hence y, = y(3.5) =0.93155

4. Using modified Euler's method obtain the solution of the differential equation
dy
X

ol x+‘\/ﬂ with the initial condition y = 1 at x = 0 for the range 0 < x <0.6 in
steps of 0.2.

Solin:
Given x, =0,y, =1,h=0.2and f(x,y) = x+‘\/ﬂ

To Find: vy, = y(x)) = y(0.2),y, = y(x,) = y(0.4) and y, = y(x;) = y(0.6)

The Entire Calculations can be put in the following Tabular Form

X Yl_ f(xn’yn) yn+hf(xn’yn) Y2 - f(xn+1’yn+l) yn+l:yn+2(l+Y2:
021 1.2 1.2954 1.2295
1.3088 1.2309
1.3094 1.2309
0.4 | 1.3094 1.4927 1.6218 1.5240
1.6345 1.5253
1.6350 1.5253
0.6 | 1.6350 1.8523 1.9610 1.8849
1.9729 1.8861
1.9734 1.8861

The solution is: y(0.2) =1.2309, y(0.4) =1.5253 and y(0.6) =1.8861
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3. Runge — Kutta Method

The Taylor's series method to solve IVPs is restricted by the difficulty in finding the
higher order derivatives. However, Runge — Kutta method do not require the
calculations of higher order derivatives. Euler's method and modified Euler's method are
Runge — Kutta methods of first and second order respectively.

Consider the IVP %: f(x,y), y(X)=Y,. Let us find the approximate value of y at
X

X=X, n=0123,..... of this numerically, using Runge — Kutta method, as follows:

First let us calculate the quantities k,,k,,k; and k, using the following formulae.

kl = hf (Xn’ yn)
Ky

h
k, =hf| x. +—, —=
2 [ n + 2 yn + 2 j
h k
k,=hf| X +—,y +—-2=
3 ( n 2 yn 2]
k, =hf €, +h,y, +k,
Finally, the required solution y is given by

Yo = Yn +%(1+2k2+2k3+k4:

Problems:
1. Apply Runge — Kutta method, to find an approximate value of y when x = 0.2 given
that ﬂ=x+ y, y(0)=1.
dx
Solin:

Given: X, =0,y, =1h=0.2and f(Xx,y) =x+y

R — K method (for n =0) is: y, = y(0.2) =y, +% & +2k, + 2k, +k, e (1)
Now
k, =hf(X,,Y,) =0.2x[0+1] =0.2
k, = hf xo+h,y0+ﬁ =0.2x O+%)+ 1+%] =0.2400
2 2 2 2
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Kk, = hf x0+n,y0+k—2 =0.2x O+£j+ l+%j = 0.2440
2 2 2 2

k, =hf € +h,y, +k, =0.2x J0+0.2 3 €+0.2440 = 0.2888

Using the values of ki,k,,k, and k,in (1), we get

y, = ¥(0.2) :l+% 0.2+0.24+0.244 + 0.2888: =1.2468

Hence the required approximate value of y is 1.2468.

22
2.Using Runge — Kutta method of fourth order, solve% = yz X2 , y(0)=1 at
Y2+ X
x=0.2&04.
Soln:
yz _x?
Given: X, =0,y, =Lh=0.2and f(x,y) = —5—
Yo+ X
Stage —I: Finding y, = y(0.2)
R — K method (for n =0) is: y, = y(0.2) =y, +% € +2k, + 2k, +k, e 2
k, =hf(x,,Y,)=0.2x f(0,) =0.2
k, = hf(xo +2, Yo +%J =0.2x f Q.11.1 =0.19672
h k, ~
k, =hf| X, +E’ Yo +7 =0.2x f €.11.0936 =0.1967
k, =hf € +h,y, +k; =0.2x f €.21.1967 =0.1891

Using the values of ki,k,,k, and k,in (2), we get
y, =y(0.2) = 1+% Q0.2 +2(0.19672) + 2(0.1967) + 0.1891:

= 1+0.19599

=1.19599
Hence the required approximate value of y is 1.19599.
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Stage - II: Finding y, = y(0.4)

We have x;, =0.1,y, =1.19599andh = 0.2

R —-Kmethod (forn=1)is: y, =y(0.4) =y, +% & +2k, + 2k, +k, e 3)
k, = hf (x,,y,) =0.2x f(0.2,1.19599) =0.1891
k, :hf(x1+2,yl+%J:0.2x f €.3,1.2906 =0.1795
h k, -
ko = f| X, +2, s+ 27| =0.2x f 0.3,1.2858 =0.1793
k, =hf € +h,y, +k, =0.2x f Q.4,1.3753_ =0.1688

Using the values of kj,k,,k, and k,in (3), we get

y, = y(0.4) =1.19599 +% ©.1891+ 2(0.1795) + 2(0.1793) + 0.1688"
= 1.19599 + 0.1792

=1.37519

Hence the required approximate value of y is 1.375109.

3. Apply Runge — Kutta method to find an approximate value of y when x = 0.2 with

h = 0.1 for the IVP % = 3x+%, y(0) =1. Also find the Analytical solution and compare
X

with the Numerical solution.

Soln:

Given: x,=0,y, =Lh=0.1and f(x,y) =3x+%

Stage - I: Finding y, = y(0.1)

R — K method (forn=0)is: y, =y(0.1) =y, +% € + 2k, +2k, + k4: -------- (4)
k, = hf (X,,Y,) =0.1x f(0,1) =0.05
k, = hf (xo +g, Y, + %) =0.1x f €.05,1.025 = 0.06625
h K, -
k, = hf| X, +5 Yo+ | = 0.0x f €.05,1.033125 = 0.0666563
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k, = hf (xo +g, Yo +k—21J =0.1x f €Q.1,1.0666563 = 0.0833328

Using the values of k,,k,,k, and k,, we get

y, = y(0.2) =1.0 +% Q.05 + 2(0.06625) + 2(0.0666563) + 0.0833328
= 1.0 + 0.0665242

=1.0665242
Hence the required approximate value of y is 1.0665242.
Stage — II: Finding vy, = y(0.2)

We have x, =0.1,y, =1.0665242andh = 0.1

R — Kmethod (forn=1)is: y, =y(0.2) =y, +% & +2k, + 2k, +k, e (5)
k, = hf (x.,y,) = 0.1x f (0.1, 1.0665242) = 0.0833262
k, = hf (xl +g, y, + %) =0.1x f €.15,1.04 = 0.1004094
h Kk, -
o = hf| X+, yy + 25 | =0.1x f €.15,1.0485_  =0.1008364
k, =hf € +h,y, +k, =0.1x f €.2,1.097425  =0.1183680

Using the values of ki,k,,k, and k,in (5), we get

y, = y(0.2) =1.0665242 + % ©.0833262 + 2(0.1004094) + 2(0.1008364) + 0.1006976 _

=1.0665242 + 0.1006976

=1.1672218
Hence the required approximate value of y is 1.1672218.
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The given DE can be written as % —% = 3xwhich is a linear equation whose solution is:

y =—6x—-12+13e2,
The Exact solution at x = 0.1 is y(0.1) = 1.0665242 and at x = 0.2 is y(0.2) = 1.1672218

Both the solutions and the error between them are tabulated as follows:

4

35

X

i T .
0.2 0.4 0.6 0.8
X y y X Y, Y, Absolute
(Exact) | (Numerical) (Exact) | (Numerical) Error
0.1 1.0665243 | 1.0665242
0.2 1.1672219 | 1.1672218 0.1 |1.0665243 | 1.0665242 | 0.0000001
0.3 1.3038452 | 1.3038450
0.4 1.4782359 | 1.4782357
0.5 16923304 | 1.6923302 0.2 |1.1672219 | 1.1672218 | 0.0000001
0.6 1.9481645 | 1.9481643
0.7 2.2478782 | 2.2478779
0.8 2.5937211 | 2.5937207
0.9 2.9880585 | 2.9880580
1.0 3.4333766 | 3.4333761

Multi-step Methods:

To solve a differential equation over an interval (Xn, Xn+1), USING previous single-step
methods, only the values of y at the beginning of interval is required. However, in the
following methods, four prior values are needed for finding the value of y,.1 at a given
value of x. Also the solution at y,.1 is obtained in two stages. This method of refining an
initially crude estimate of yn.; by means of a more accurate formula is known as
Predictor—Corrector method. A Predictor Formula is used to predict the value of yn.1
and then a Corrector Formula is applied to calculate a still better approximation of yn.;.
Now we study two such methods namely (i) Milne’s method and (ii) Adams — Bashforth
method.
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(1) Milne’s Method:

Given % =f(X,y), Y(X)=Y,. To find an approximate value of y at x=xo+nh by
X

Milne’s method, we proceed as follows: Using the given value of y(x,)=Y,, we

compute  y(x;) =Y(X, +h) =y, y(X,) =y(X, +2h) =y, and y(x;) =y(X, +3h) =y, using
Taylor’s series method.

Next, we calculate f, = f(x.,Yy,), f, = f(x,,y,) and f,=1(x;,y;). Then, the
value of y at x = x4 = Xpo+4h can be found in the following two stages.

| Stage: Predictor Method
i =y, +4_3h lfl_ f, +2f3:
Then we compute f, = f(x,,y{")

Il Stage: Corrector Method
©) _ h i
Yi© =Y, +§ lz +4f3 + f4_

Then, an improved value of f; is computed and again, corrector formula is applied to
find a better value of y,. We repeat the step until y, remains unchanged.

(I) Adams — Bashforth Method:

Given %: f(xy), Yy(%X)=Y,. Using the given value of y(x,)=Y,, we first compute
X

y(X—l) = y(Xo - h) =Y. y(x—z) = y(Xo - 2h) =Y, and y(x—s) = y(Xo _3h) =Y USing

Taylor’s series method.

Next, we calculate f, =f(x,,y,), f,=f(x,,y,) and f,="f(x,,y;). Now, the
value of y at x = x; (or y1) can be determined in two stages:

| Stage: Predictor Method

Next, we compute f, = f(x,,y")). To find a better approximation to y;, the following
corrector formula is used.
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Il Stage: Corrector Method
(©) h )
Y, :y0+£|f1+19f0—5f_1+f_2_

Then, an improved value of f, = f(x,,y{”)) is calculated and again, corrector formula

is applied to find a better value of y;. This step is repeated until y; remains unchanged
and then proceeds to calculate y, as above.

Problems:

1. Use Milne’s method to find y(0.3) for the IVP % =x+y?, y0)=1
X

Soln:

First, let us find the values of y at the points x = -0.1, x = 0.1 and x = 0.2 by using
Taylor’s series method for the given IVP.

Taylor’s expansion of y(x) about the point x = 0(= Xo) is

y(x) = y(0) + xy’ (0) +§y” (0)+X—63y”’ o (1)
Given
V() =x>+y2 —So=  y(0)=0+1=1
y" (x) = 2x+2yy' ===  y'(0)=2x1x1=2
' () =2+2yy" +2(y')? === y"(0)=2+4+2-8

Using the values of y(0), y'(0), y'(0) and y"(0) in (1), we get
,  4xt
y(X)=1+X+X +T

Putting x =-0.1, x = 0.1 and x = 0.2 in the above expression, we get
y(-0.1) = 0.9087, y(0.1) = 1.1113 and y(0.2) = 1.2507

Given:
X, =—-0.1,y, =0.9087 and f, =0.8357

X =0y,=1and f, =1

X, =0.1,y, =1.1113 and f, =1.2449

X; =0.2,y, =1.2507 and f, =1.6043
To Find: vy, =y(x,)=Yy(0.3)
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| Stage: Predictor Method
4h -
Vi =y0.3 =y +— b T, +2f;

=0.9087 +@ [2x1)-1.2449 + 2x1.6043_

=1.4372
Now we compute f, = (0.31.4372) = 2.1555

Il Stage: Corrector Method

h _
yfxc) ZY(O-3)ZYZ+§ lz +4f,+f,

y© =y(0.3) =1.1113+ O?'l 2449 + (4x1.6043) +2.1555_

=1.4386
Now, we compute f, = f(0.31.4386) =2.1596

y© = y(0.3) =1.1113+ 01 2449 + (4x1.6043) + 2.1596

3
y(0.3) =1.43869

Hence, the approximate solution is y(0.3) = 1.43869

2. Given %:x—yz, y(0) =0, y(0.2) = 0.02, y(0.4) = 0.0795 and y(0.6) = 0.1762.
X

Compute y(1) using Milne’s Method.

Soln:

Stage - I: Finding y(0.8)

Given:
Xo=0,¥,=0 and f, = f(X,,y,)=0
X =02y, =0.02 and f, = f(x;,y,)=0.1996
X, =04,y, =0.0795 and f, = f(X,,y,) =0.3937
X, =0.6,y, =0.1762 and f, = f(X;,y,) =0.56895

To Find: vy, =y(x,)=y(0.8)

| Stage: Predictor Method

4h -
yz(lp) =y(0.8) =y, +? lfl_ f, +2f,
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=0+ @ [2x 0.1996) - 0.3937, + 2x 0.56895

=0.30491
Now we compute f, = f(0.8,0.30491) = 0.7070

Il Stage: Corrector Method

y© =y(0.8) =y, +g F,+4t,+1,

v = y(0.8) = 0.0795+0;32 P.3937 + 4% 0.56895 +0.7070
= 0.3046

Now f, = f(0.8,0.3046) = 0.7072

Again applying corrector formula with new f4, we get

Y = y(0.8) =0.0795 + 02 P.3937 + 4% 0.56895 +0.7072

3

y(0.8) = 0.3046
Stage - Il: Finding y(1.0)

Given:
X =0.2,y, =0.02 and f, = f(x;,y,;)=0.1996
X, =04,y, =0.0795 and f, = f(X,,y,) =0.3937
X, =0.6,y, =0.1762 and f, = f(x;,Y;) =0.56895
X, =0.8,y, =0.3046 and f, = f(x,,y,)=0.7072

To Find:  y, =y(x;)=Yy(1.0)
| Stage: Predictor Method
4h -
yép) =y1.0)=y, "‘? Ifz - fy+21,

=0.02+ @ [2x0.3937) - 0.56895+2x 0.7072

=0.45544
Now we compute f, = f(1.0,0.45544) = 0.7926
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Il Stage: Corrector Method

h _
yéc) =y(l.0) =y, +§ '3+4f4 + 15

vy = y(1.0) = 0.56895 + % P.56895+4x0.7072+0.7926
= 0.4556

Now f, = f(1.0,0.4556) = 0.7024

Again applying corrector formula with new fs, we get

y{e = y(1.0) = 0.56895 + 0—; P.56895 + 4% 0.7072 +0.7924

y(1.0) = 0.4556
3. Given %=x2(+ Y, y@ =1 y(.1)=1.233, y(1.2) =1.548, y(1.3) =1.979 .Evaluate
X
y(1.4) by Adam’s — Bashforth method.
Soln:

Given:

X;=1ly,=1and f,=2
Xx,=11y,=1233 and f , =2.70193
X,=12,y,=1548 and f , =3.66912
X, =1.3,y, =1.979 and f, =5.03451

To Find: y, =y(x,)=yl4)

| Stage: Predictor Method

y® = y(1.4) =y, +% fsf, —59f,+37f,-9f

:1.979+% |55 x 5.03451) — (59 % 3.66912) + (37 x 2.70193) — (9% 2)

=2.57229
Now we compute f, = f(1.4,2.57229) =7.0017

Il Stage: Corrector Method

h _
y{© =y1.4) =y, t o2 bf, +19f, —5F, +f,
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~1.979+ Z—j Jox 7.0017) + (19%5.03451) — (5% 3.66912) + 2.70193

y(1.4) = 2.57495

Now, let us compute f, = f(1.4,2.57495) = 7.0069

yH =1.979 + 2—'j Jox 7.0069) + (19%5.03451) — (5% 3.66912) + 2.70193

=2.57514
Again f, = f(1.4,2.57514) = 7.0073

y(©? =1.979 +2—j o x 7.0073) + (19 5.03451) — (5x 3.66912) + 2.70193

y(1.4) = 2.57514
4. Given % =x?—y, y(0)=1.Find y(0.4) by Adam’s method.
X

Soln:

First, let us find the values of y at the points x = 0.1, x = 0.2 and x = 0.3 by using
Taylor’s series method for the given IVP.

Taylor’s expansion of y(x) about the point x = 0( = Xg) is

3

2
YOO =y©O)+3' O+ =y @+ -y @ e ©

Given

VX)) =x2-y === y(0)=0-1=-1

y'x)=2x-y' === y"(0)=0-(-1)=1

y'"(x)=2-2y" === y'(0)=2-1=1
: / / oy
Using the values of y(0), y'(0), y'(0) and y"(0) in (2), we get
2 3

X X
X)=1-X+—+—
y(x) 73

Putting x = 0.1, x = 0.2 and x = 0.3 in the above expression, we get
y(0.1) = 0.9051, y(0.2) = 0.8212 and y(0.3) = 0.7492

Let X;=0y,=1and f,=-1
x,=021y,=0.9051 and f_, =0.8951
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x,=02y,=08212 and f, =-0.7812
X, =0.3,y, =0.7492 and f, = —0.6592

ToFind: Yy, = Yy(x,)=Yy(0.4)
| Stage: Predictor Method

yl(P) =y(0.4) =y, +% i5 f,—59f  +37f, —9f73:

=0.7492 + % P55 (—0.6592) — 59 x (~0.7812) + 37 x (—0.8951) —9x (1) _

= 0.6896507
Now we compute f, = f(0.4,0.6896507) = —0.5296507

Il Stage: Corrector Method

h _
Y1(C) =y(0.4) =y, +§ lfl +19f, -5f, + 1, _

=0.7492 + g—j fx (-0.5297) +19x (~0.6592) — 5 (—0.7812) — 0.895125

y(0.4) =0.6896522
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Unit |1
Numerical Methods Ii

Introduction:

In this unit we discuss numerical solution of simultaneous first order ODEs
And also second order ODEs as an extension of some of the earlier discussed method for solving
ODE:s of first order.

Numerical solution of simultaneous first order ODEs

Picard’s method:
Consider the following system of equations:

d_y= F(Y,2) i, 1
dx

dz

o o] G675 ST 2
X

With the initial condition Y(Xo)=Yo
thatis, Y = Y, and z =2z, at X=X,

we have to find successive approximations for y and z interms of x.
from1land2

dy = f(x,y,z)dx
where y=y, at X=X,
dz=g(x,y,z)dx

where, z=z, at X=X,
Integrating LHS between y, and y RHS between X, and X we have

yjdy = Xjf(x, y, 2)dx
Xo

Yo
Integrating LHS between z, and z RHS between X, and X we have

]dz = ng(x, y, 2)dx
Xo

Zy

y=Yo= [ f(xy,2)dx
Xo

y:y0+J.f(x,y,z)dx
Xo
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1-1,= jg(x, y, 2)dx
X0

Z=12,+ Jg(x, y, z)dx

Xo

Problems

1. Use picard’s method to find y(0.1) and z(0.1) given that
dy _ dz

— =x+z,— =x-y’and y(0)=2, z(0)=1
dx dx

Soln. we have a system of two equation and we need to find two approximations for y
and z as functions of x.

dy

—=x+2;y(0)=2
dx
E=x—y2;z(0)=1
dx

yjo|y - ](x+ z)dx;
faz = Joe v
y=2+ xj(x+ z)dx ————(1)
z=1+ XJ’(x- y?)dx ————(2)

The first approximation for y and z are obtained by replacing the initial values of y and z in the
RHS of (1) and (2).

y1:2+.[(x+1)dx 2, =1+ j(x+zz)dx
0 0
2 2
y1:2+x+x— 21:1—4x+x—
y, =2+ j(x+ z,)dx z, =1+ I(x— y7)dx
0 0
2+ [(x+ (1= ax+ ")) 1+ [(x— @+ x+X)d
=2+ |(x+(1-4x+=))dx =1+ [(X=(2+x+=))dx
0}( ( ) Oj( ( >)
2 3 2 4 5
_ox XX Loax X e XX
4 20

2 3
3017 0.8

y(0.) =2+(0.1) - 5

=2.0852

2(0.1) = 0.584
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2. Find the second approximation for the solution of the following system equations by applying
picard’s method ?j—): =(X+y)t, ?j_)t/ =(x-t)y; x=0, y=1 at t=0.

Soln:we have by data
dx=(x+y)tdt; x=0,t=0; dy=(x-t)y; y=1,t=0

t

]dx = j (X + y)tdt and yjoly = tj(x —t)ydt
0 1 0

0

t
X= j(x + y)tdt
0

t
y=1+ J'(x—t)ydt
0

Putting x=0, y=1 in the rhs of 1 and 2 we have

t t
X, = [tdt y, =1+ [tdt
0 0
t? t?
=— =1-——
=" Y 5
t t
X, = [+ y,)tdt Y, =1+ [ —t)y,dt
0 0
bt I S S o
) 2= e T 20

are the required second approximation
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Runge — Kutta Method of fourth order

Consider the system of equations

dy

-V = f y Yo ’
= 1(xy.2)
dz )
& - g(X, y! Z)’

Y(Xo) = Yo» Z(Xo) =1,
We compute y(x,+h) and z(x,+h)
First let us calculate the quantities k,,k,,k; and k, using the following formulae.

k1=hf(X0,y0,ZO) |1:hg(xo’yo’zo)

h k I h k I
k2=hf(xo+5,y0+51,20+51j Izzhg(xo"‘E,yO"'El,Zo"'Elj

k; = hf (x0+g,yo+ﬁ,zo+l—2)

2 2 |3:hg(xo+g’yo+ﬁ’zo+l_2j

2 2

k,=hf X, +h,y,+ks, z,+1, I,=hg X,+h,y,+k;, 2, +1,

Finally, the required solution y is given by

y(x0+h):y0+% k, + 2Kk, + 2k, + Kk,
And

z(x0+h):zo+% L +21, +21,+1,
1. Apply Runge — Kutta method to find an approximate value of y when x = 0.2 with
h = 0.1 for the IVP % = 3x+%, y(0) =1. Also find the Analytical solution and compare

with the Numerical solution.

Soln:

Given: x, =0,y, =1,h=0.1and f (X, y) :3x+%

Stage —I: Finding y, = y(0.1)

R — K method (forn=0)is: y, = y(0.1) = y, +% € +2k, +2k, +k, e 4
k, =hf(X,,Y,) =0.1x f(0,) =0.05
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h k, ~
k, =hf| x, to Yot = 0.1x f €.05,1.025 = 0.06625
h k, ~
Ky =hf| %, +2, Yo+ | =0.1x f €.05,1.033125 = 0.0666563
h k, -
Ko =hf| X+, o+ | =0.1x £ €1,1.0666563_ = 0.0833328

Using the values of k,,k,,k, and k,, we get

y, = y(0.2) =1.0 +% Q.05 + 2(0.06625) + 2(0.0666563) + 0.0833328
= 1.0 + 0.0665242

=1.0665242
Hence the required approximate value of y is 1.0665242.
Stage - II: Finding vy, = y(0.2)

We have x, =0.1,y, =1.0665242andh = 0.1

R — Kmethod (forn=1)is: y, =y(0.2) =y, +% & +2k, + 2k, +k, e (5)
k, = hf (x.,y,) = 0.1x f (0.1,1.0665242) = 0.0833262
k, = hf (xl +g, Y, + %) =0.1x f €.15,1.04 = 0.1004094
h Kk, -
o = hf| X+, yy + 25 | =0.1x f €.15,1.0485_  =0.1008364
k, =hf € +h,y, +k, =0.1x f €.2,1.097425 =0.1183680

Using the values of K1,K3,K3 and Kyin (5), we get

y, = y(0.2) =1.0665242 +% 0.0833262 + 2(0.1004094) + 2(0.1008364) + 0.1006976

=1.0665242 + 0.1006976

=1.1672218
Hence the required approximate value of y is 1.1672218.
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2 Apply Runge — Kutta method, to find an approximate value of y when x = 0.2 given
that. dy =x+Yy, Yy(0)=1
dx
Soln: Given: x,=0,y, =1,h=0.2and f(X,y) =Xx+Yy
R — K method (forn=0)is: y, = y(0.2) = y, +% & +2k, + 2k, +k, e (1)

Now
k, =hf(X,,Y,) =0.2x[0+1] =0.2

k, = hf x0+n,y0+ﬁ =0.2x O+£)+ 1+£j =0.2400
2 2 2 2

Kk, = hf x0+n,yo+k—2 =0.2x 0+Ej+ l+%j = 0.2440
2 2 2 2

k, =hf € +h,y, +k, =0.2x J0+0.2 3 €+0.2440 = 0.2888

Using the values of ki,k,,k, and k,in (1), we get

y, = ¥(0.2) :l+% 0.2+0.24+0.244 + 0.2888: =1.2468

Hence the required approximate value of y is 1.2468.
Numerical solution of secand order ODEs by Picard’s method and Runge kutta method

We present the method explicitly

Let y =g(x,y,y) with intial conditon y(x,)=Y, , Y(X)=Y, be the second order
differential equations.

Now let y =z this gives y _d
dx
The second order differential equations assumes the form %:g(x, y,z) with the
X

condition y(x,) =Y, and z(x,) = z,where Y/ is be denoted by z,
Hence we have two first order simultaneous ODEs

d dz :

D=z and =gy, ) with y(g)=Ye: 206) =2

Taking f(x,y,z)=z we now have the following system of equations for solving

d_ f(x,y,z) dz

dx g T 9y 2), Y 06) =Y, and 2(%) =7,
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Milne’s Method:

Given % =f(X,y), Y(X)=Y,. To find an approximate value of y at x=xo+nh by
X

Milne’s method, we proceed as follows: Using the given value of y(x,)=Y,, we

compute  y(x;) =Y(X, +h) =y, y(X,) =y(X, +2h) =y, and y(x;) =y(X, +3h) =y, using
Taylor’s series method.

Next, we calculate f, = f(x.,Yy,), f, = f(x,,y,) and f,=1(x;,y;). Then, the
value of y at x = x4 = Xpo+4h can be found in the following two stages.

| Stage: Predictor Method

4h -
yfxp) ZYO+? lfl_ f, +21,_

Then we compute f, = f(x,,y{")

Il Stage: Corrector Method
©) _ h i
Yi© =Y, +§ lz +4f3 + f4_

Then, an improved value of f; is computed and again, corrector formula is applied to
find a better value of y,. We repeat the step until y, remains unchanged.

1 Use Milne’s method to find y(0.3) for the IVP % =x?+y?, y0)=1
X
Soln:
First, let us find the values of y at the points x = -0.1, x = 0.1 and x = 0.2 by using

Taylor’s series method for the given IVP.

Taylor’s expansion of y(x) about the point x = 0(= Xo) is

y(x)=y(0) +xy' (0) +§y” (0)+X—63y”’ © (1)
Given
Y (0 =x'+y? === y'(0)=0+1=1
y" (x) = 2x+2yy' ===  y'(0)=2x1x1=2
y'(x)=2+2yy" +2(y)? === y'(0)=2+4+2-8

Using the values of y(0), y/(0), y'(0) and y"(0) in (1), we get

y(X) =1+ x+x* +%
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Putting x =-0.1, x = 0.1 and x = 0.2 in the above expression, we get
y(-0.1) = 0.9087, y(0.1) = 1.1113 and y(0.2) = 1.2507

Given:
X, =-0.1,y, =0.9087 and f, =0.8357

X =0y,=1and f, =1
X, =01y, =1.1113 and f, =1.2449
X, =0.2,y, =1.2507 and f, =1.6043
ToFind: vy, =y(x,)=y(0.3)
| Stage: Predictor Method

4h i
yP = y(0.3) = y, -y pr, - f,+2f,

=0.9087 +@ [2x1)-1.2449 + 2x1.6043

=1.4372
Now we compute f, = f(0.31.4372) = 2.1555

Il Stage: Corrector Method

h _
yfxc) ZY(O-3)ZY2+§ lz +4f,+f,

y = y(0.3) _11113+ 22 2449 + (4% 1.6043) + 2.1555

3
= 1.4386
Now, we compute f, = f(0.3,1.4386) = 2.1596

y© = y(0.3) =1.1113+ O—él J 2449 + (4x1.6043) + 2.1596
y(0.3) =1.43869

Hence, the approximate solution is y(0.3) = 1.43869
2 Given %:x—yz, y(0) =0, y(0.2) = 0.02, y(0.4) = 0.0795 and y(0.6) = 0.1762.
X

Compute y(1) using Milne’s Method.
Solin:

Stage - I: Finding y(0.8)
Given:
Xo=0,¥,=0 and f, = f(X,,y,)=0
X, =0.2,y,=0.02 and f, = f(x,,y,) =0.1996
X, =04,y, =0.0795 and f, = f(X,,y,) =0.3937
X, =0.6,y, =0.1762 and f, = f(X;,y,) =0.56895
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To Find: vy, =y(x,)=Yy(0.8)
| Stage: Predictor Method

4h
Vi =y(08) = yo +— b~ f, +2f

=0+ @ [2x 0.1996) - 0.3937, + 2x 0.56895

=0.30491
Now we compute f, = (0.8,0.30491) =0.7070
Il Stage: Corrector Method

h _
yz(10) =y(0.8) =Y, "'_ Iz +4f, + 1,

y{© =y(0.8) =0. 0795+ 22 p 3937 +4x 0.56895 + 0.7070 _

= 0.3046
Now f, = f(0.8,0.3046) =0.7072
Again applying corrector formula with new f4, we get

yeY = y(0.8) =0. 0795+— }.3937 + 4x0.56895+0.7072
y(0.8) = 0.3046

Stage - II: Finding y(1.0)
Given:
X =02y, =0.02 and f, = f(x;,y,;)=0.1996
X, =0.4,y, =0.0795 and f, = f(x,,y,) =0.3937
X, =0.6,y, =0.1762 and f, = f(X;,y,) =0.56895
X, =0.8,y, =0.3046 and f, = f(x,,y,)=0.7072
To Find:  y, =Yy(x;)=Yy(1.0)
| Stage: Predictor Method

4h -
Yép) =yl1.0)=y, +— lfz - f,+21,

~0.02+ @ [2x0.3937) - 056895+ 2x 0.7072_

=0.45544
Now we compute f, = f(1.0,0.45544) = 0.7926

Il Stage: Corrector Method
h -
Y& =y@.0)=y, +_ Is +4f4 +fs

y© = y(1.0) = 0.56895 + 22 p 56895 + 4x 0.7072 +0.7926 _

= 0.4556
Now f, = f(1.0,0.4556) = 0.7024
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Again applying corrector formula with new fs, we get
y€Y = y(1.0) = 0.56895 + O—f P.56895+4x0.7072 +0.7924

y(1.0) = 0.4556
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UNIT-I11I
COMPLEX ANALYSIS-1

INTRODUCTION:

An extension of the concept of real numbers to accommodate complex numbers was evolved
while considering solutions of equations like x*> +1=0. This equation cannot be satisfied for

any real value of x. In fact, the solution of the equation x* +1=0is of the form x=+J/—-1. The
square root of -1 cannot be a real no. because the square o any real no. is nonnegative. Similarly,
there are any number of algebraic equations whose solutions involve square roots of negative
numbers.

FUNCTION OF A COMPLEX VARIABLE:

If z = x+iy is a complex variable, then w = f(z) is called function of a complex variable.
W =1(z) = u+iv where u = u(x,y), v =v(x,y). Hence for every point of (x,y) in z-plane, there
corresponds (u,v) in w-plane

LIMIT OF A COMPLEX FUNCTION:

Complex value function f(z) defined in the neighbourhood of a point z; is said to have limit L as
Z — z, if for all e>0 however small, there exists a positive real number d such that
|f(z) - L| <& whenever |z -2z, <&,
ie, lim f(z2)=L

-1

CONTINUITY:
A function f(z) is said to be continuous at a point zq if lim f(z) = f(z,)

DIFFERENTIABILITY:

A function f(z) is said to be differentiable at a point z if lim @)-1E) exists and this is

=7 Z—-1,

unique

ANALYTIC FUNCTION:

A function (z) is said to be analytic at a point z, if f(z) is differentiable at z, as well as at all
points in a neighbourhood of zy.

e, f'(2) = lim 12D - 1(2)

&—0 Vo 4

exists and unique for all points in complex region.

NOTE:
Analytic function is also called as regular function or holomorphic function.
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CAUCHY’S RIEMANN EQUATIONS OR C-R EQUATIONS IN CARTESIAN FORM:

Statement: If w = f(z) = u+iv is analytic function at the point z = x+iy, then there exists partial

derivatives and satisfy the equations au = el & ol = _u called C-R equations in cartesian
ox oy OX oy
form.

Proof: By data f(z) is analytic at a point z = x+iy, there by definition of analytic function,
f'(z) = lim fe+ra)-t@) (1)exists and unique.
0z—0 oL
We have f(z) = u(x,y) +iv(x,y)
f(z+02) =u(X+ X, Y+ ) +1V(X+ XK, Y+ )

Z=X+1y
OL=X+I1dy
Substituting the above in (1) we get )
£(2) = lim B+ 0%,y + &) +iv(x+ &, y+5y) by rivey) )
-0 X+idy

Since 6z — 0, we have 2 possibilities.

Case(i): If 8z is only real, then 8y =0
i.e., if &z > Othen &x >0
equn(2) becomes

£/(2) = lim B+ 3%, y)-u(x,y) :+ i Fox+ %, y) —v(x,y)
X—0 §X 5)(

f) =M )

oX  OX
Case(i1): If 8z is only imaginary, then 6x =0
i.e., if & — Othen 6y - 0
equn(2) becomes

by + ) -vix,y)_

f '(Z) — 1‘ lim I(Xv y+5y) —U(X, y):

+ lim
| -0 5)/ &—0 @/
.Ou oV
f'(2)=—I—+—rrrrenn @
o oy
Comparing real and imaginary parts of equations (3) and (4) we get
ou ov ov ou
—=— & —=——..... proved
oX oy OX oy
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CAUCHY’S RIEMANN EQUATIONS OR C-R EQUATIONS IN POLAR FORM:

Statement: If w = f(z) = u+iv is analytic function at the point z = re'’, then there exists partial

derivatives and satisfy the equations M = 1o & ol = _tau called C-R equations in polar

or roé or r 06
form.

Proof: By data f(z) is analytic at a point z = re'?, there by definition of analytic function,
f'(z) = lim fera)-tz) (1)exists and unique.
0z—0 oL
We have f(z) = u(r,0) +iv(r,0)
f(z+0z)=u(r+or,0+060)+iv(r +or,0+50)
& = ore" +ire’ 56
Substituting the above in (1) we get )
b(r+or,0+60)+iv(r+or,0+66) — J(r,0)+iv(r,0)

f'(z) = lim . = 2
(@)=1m, ore'’ +ire'?s56 @
Since 6z — 0, we have 2 possibilities.
Case(i): If oz is only real, then 60 =0
i.e., if &z - Othen &r >0
equn(2) becomes
f '(Z) _ e—iH lim l(r + 5|',(9) B u(r,6?) — ie—ie lim l(r + 5r!9) —v(r,H)_
F—0 or o—0 o
io| ou .ov
f'(2)=e™| —+i=—|.rrrrrrnn.
(@) {ar ar} ©
Case(i1): If 8z is only imaginary, then ér =0
i.e., if &z - Othen 66 -0
equn(2) becomes
-io _ - i _ -
1)=& lim fr.6+50) ur.0) . e jim f(r.0+50)-v(r,0)
Ir 660 50 Ilr 600 50
e'[ou . ov
f'(D)=—|—+1— |cccerrenn. 4
@) ir {86’ 66’} @)
Comparing real and imaginary parts of equations (3) and (4) we get
a—u:lﬂ & @:_lé_u ............. proved
or roo or r oo
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HARMONIC FUNCTION:
A function u is said to be harmonic function if it satisfies the Laplace equation.
2 2
e, 8_[21 + a—g =0 in Cartesian form
oX° oy

ou l1lou 1 &%

+——+—
or? ror r?ao?

=0 in polar form.

Theorem:
Statement: The real and imaginary parts of an analytic function are harmonic.

Proof: Let f(z) = u(x,y)+iv(X,y)
Since f(z) is analytic, satisfies C-R equations

. ou_ov ov_ au
|.e.,&—5 ........ (1) & &——5 ............. (2)

differentiating (1) partially w.r.t x and (2) w.r.ty, we get
o°u _ d%v 2 o*v o
ox%  oxoy  oyox  oy’®
2 2
Therefore 8_[21 = _6_[21
OX oy
2 2
= a—l: + a—lj = 0 = u satisfies Laplace equation.
ox° oy

Hence real part u is harmonic.

differentiating (1) partially w.r.ty and (2) w.r.t x , we get
’u o, v o

oxoy ox*  ox* oOxoy

2 2
Equating the above equations a—\zl = _6_\2/
oy ox
2 2
= 8_\2/ + 6_\2/ = 0 = vsatisfies Laplace equation.
ox° oy

Hence imaginary part v is harmonic.

PROBLEMS:
1. Prove thatu =e* €cos2y — ysin 2y: is harmonic. Find the analytic function f(z)
Soln:
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P % cos2y + 2 €cos2y — ysin 2y
X

2
O _ g2 Ccos2y + 4e>* €cos2y — ysin 2y

7 =

M _ g2 ¢ 2xsin 2y —sin 2y — 2ycos2y

=e”* € 4xcos2y —4cos2y + 4ysin 2y:

2

o
ou
o

o’u  du -
Hence 8X—2+—2:e € 4xcos2y—4cos2y+4ysin 2y +

4e* cos2y +4e” €cos2y—ysin2y =0

Therefore u is harmonic.
f'(z)=a—u+i@=a—u—ia—u ......... byC — Re quations
0 oXx ox oy
f'(z) = e® cos2y + 26> €cos2y — ysin 2y -ie” € 2xsin 2y —sin 2y — 2y cos2y
Put x =z and y=0

f'(z) =e” €+2z -ie” Q =e” (+22_
Integrating we get

e22 e22
f(z2)=(01+2z -2 +C
(2)=0+22)"~27,
f(z) = ze* +ic
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2)Find the analytic function f(z) where imaginary partis e*(xsiny + ycos y)

Soln:v=e* xsiny+ycosy
ov

6—=eX Xsiny+ycosy +e*siny
X

ov X i
— =€ XCOosy+cosy—ysiny

oy
we have f'(z) = MGV
OX OX

By C-R equation ou = N
ox oy
fl)= NV

oy OX

fl(z)=ex|: XCOSY+COSYy—YysSiny +1i XSiny = ycosy +sin y:|

Put x=2z,y=0

f'(z)=e’" f+1 i P 1}
= (z +1De*

Integrating w.r.t z

f(2) =(z+De* — (e’ +c

f(z) =ze* +c
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X 2 2 H
3)Find the analytic function where real part is € [ X" —y" cosy—2xysin y]

Solution:

u :ex[ x> —y? cosy—2xysin y]

a—uzex[ x* —y? cosy—2xysin y}+eX 2XCosy —2ysiny
OX
%|(z.0):ez[zz+22]
%u:ex[—Zycosy—(xz—yz)sin y —2Xsin y—2xycosy]
u ,,=e"0=0
ay ,
fo)=2ri )
ox ox'”

:g_in(—%uj .o BY C-R equations |
~€+22 Y +0
f'(z)= 2 +2z ¢
f(z)=] z*+2z e'dz
= 7°+2z7 e — 22+2 €' +(2)e* +cC

f(z)=z%"+c
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4) If f(z)=u(x,y)+iv(x,y) is analytic, Show that [

Solution:
Let f(z) =u+iv is analytic:
f*(z) exist

ov

ou .
fl(z2)=—+i—
(2) oX  OX

rel-y(5) -(3)
ERHER
Also ‘ fl(z)‘2 =u’ +Vv?
Diff partially (2) w.r.t x

—| f(2)|= ¥
OX OX

ov

Differentialing again w.r.t

P &
Salf@f =2ju™

Similarly we can obtain

%maﬁzz
®)+(4) =)

o

a 2

0

u
_2+_

OX

ZJIf()I —2{ {ax

X we get

)2 oV
+V
OX

o’u %
ay2

2 (o

™
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0? 2 N
&ﬁaﬂum=4u4

ov
OX

)

oV oV
o oy

u
ox

ov

OX

ou

jz +[_

oy

ov

(2] (2 (&

Since u & v are harmonic & using C-R equation

au
ax

|

OX

_N g v _du
oy

o* o
o oy

J|f( )| =2

=4

=4f
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UNIT-1V
COMPLEX ANALYSIS-2

CONFORMAL TRANSFORMATION:

Let ¢c; and ¢, be any two curves in the z-plane intersecting at z0, suppose the transformation w =

f(z) transforms the curves c; and c; to the curves c¢,and ¢, respectively which intersect at a
point wy = f(zo) in the w-plane. Then the transformation is said to be conformal if the angle

between c; and c; is equal to the angle between c,and ¢,’ in both magnitude and direction.

SOME STANDARD TRANSFORMATION:
1. Discuss the transformation w = z?

u+iv=(x+iy)?
= (x*-y*)+i2xy
U=X-y? L VE2XY.. 2
case(i): consider a line parallel to y-axis i.e., Xx=a, a is a constant
eqn(2) becomes
u=a®-y® , v =2ay
or v’ = 4a’y*=4a*(a’-u) = -4a*(u —a?)
This represents parabola in the w-plane along negative u-axis vertex at the point
(@*,0)
Case(ii): consider a straight line parallel to x-axis i.e., y = b, b is a constant u = x*> —b?,
v=2bx
Or v? =4b°x? =4b?*(u +b?)
This represents parabola in the w-plane along positive u axis, vertes at the point (—b?,0)

CONCLUSION: Straight line parallel to coordinate axes in z — plane transforms parabolas in

w-plane under the transformation w = z?
\

2. Discuss the transformation w = e’

w=e’

u+iv=e®" =e*(cosy +isin y)
u=e*cosy,

v=esiny....... (b}
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Squaring and adding (1)
u?+vZ=e*.......... (2)
Dividing
—=tan V..o (©)]

Case(i): consider a straight line parallel to x-axis i.e., X = a, a is a constant
Therefore eqn(2 becomes)

u?+v?=e® =r?

This represents a circle with centre origin and radius r in the w-plane

Case(ii): consider a straight line parallel to x-axis i.e., y = b, b is a constant
Therefore eqn(2 becomes)

Y _tanb.= m(say)
u
vV =um

This represents a straing line passing thro’ the origin in the w-plane

CONCLUSION: Straight line parallel to coordinate axes in z — plane transforms circle with

centre origin and straight line passing thro’ origin respectively in w-plane under the
transformation w = e’

2
3. Discuss the transformation w=z+—,z # 0. What are the points at which the
z
transformation is not conformal.

2

f(z):z+k—
z

2

f’(z):l—k—2¢o
z
Onlyif z # +k

2
Therefore the transformation w=z +k—, z # 0 is not conformal at z = tk

z
2
W=Z+—
z
) 2
w=re'" +
re
\

i

2
W =r(cosd +isin 0)+kT(cose—isin 0)

2 2
W= (r+k—]cose+ i(r—k—Jsin o
r r
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Eliminating @ from (1)and (2)

= C0S 4,

T
r+-— r——
r r

Eliminating r from (1) and (2)
L— r+ﬁ Vv k2
cosé. rj, _—=(r——

Squaring and subtracting we get
u? v?
2, «inlp ak*
cos“ 4. sin‘é.
u? v?

_ -1
(2kcos)?.  (2ksin 6)°..

Let|z| =c,

ie,r=c

case(i):

This represent a circle with centre origin and radius c,

Eqgn(3) becomes

k? k?
Wherea=c,+— and b=c,——
C1 Cl
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This represent an ellipse in w- plane with foci (+va® —b?,0) i.e., (+2k,0)

Case(ii): LetampZ=6=c,, constant
This represents a straight line passing thro’ origin in z-plane
Eqn(4 ) becomes

2 2

u ~ v _1
(2kcosc,)?.  (2ksinc,)?
.ourov?
I.e.,?—?=1

Where A=2kcosc, and B =2ksin c,

This represents a hyperbola in w-plane with foci at (+v/ A? + B?,0) i.e., (+2k,0)
CONCLUSION: The circle centred at origin with radius constant in z-plane transforms to an
ellipse with foci (£2k,0) in w-plane and straight line passing thro’ origin in z-plane transforms

to a hyperbola with foci (x2k,0) in w-plane. Since both of these conics have the same foci
(£2k,0), they are called confocal conics.

PROBLEM: Find the image if lines parallel to x-axis & lines parallel to y-axis under the
transformation w = z* Draw neat sketh
Solution:
w=2"=(x+iy)* = x*—y® +i(2xy)
u=x>—-y> &v=2xy
Case: Consider a line parallel to y-axis i.e, x=a, a is Constant
=)u=a’-y* & v=_2ay
y2 — 4a2y2
=4a’(a*-u)
V2 =—4a*(u—a?)
This represent parabola in the w-plane along-ve u-axis vertex at the pt(a® ,0)
Case(ii): Consider a straight line 11 to y-a xis i.e, y=b, b is a constant
09) u=x"-b*> & v=2xb
vZ = 4x°p? = 4b*(u +b?)
This represents parabola in the w-plan along the u-axis, vertex at the pt —b?,0
Hence, we conclude that straight line 11 to Co-ordinate axes in z-plane transforms parabolas in
w-plane under w = z?
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BILINEAR TRANSFORMATION OR MOBIUS TRANSFORMATION

i az+b
The transformation w = , Where a,b,c,d are real or complex constants such that

CZ+
ad —bc # 0 is called a bilinear transformation

CROSS RATIO:
(21 B 22)(23 B 24)
(Zz - 23)(24 - 21)

Cross ratio of four points z,,z,,z,,z, defined by
INVARIANT POINTS OR FIXED POINTS

If a point z maps ont itself i.e., w = z then the point is called invariant point or a fixed point of
the bilinear transformation

PROPERTIES OF BLT

1. The cross ratio of a set of 4 points remain invariant under a BLT
(\Nl _Wz)(VV3 _W4) _ (21 B Zz)(za — 24)
(sz _W3)(\N4 _Wl) (Zz - 23)(24 - Zl)

2. Every BLT map circles or straight lines in z-plane into circles or straight lines in w- plane

PROBLEMS:
1. Find the BLT that maps the points (0,-i,-1) of z-plane onto the points (i,1,0) of w-
plane respectively.
Soln.
Given (z,,2,,2,,2,)=(z,0.-,0)
(wy, Wy, Wy, w,)=(w,1,1,0)
Using cross ratio of 4 points
(w=1)1-0) (z-0)(-i+1)
i-)0O0-w) (O+i)(-1-2)

w—i _ 1-i)?* z

W —i z+1
W—i:2' z

w z+1
WZ—izZ+W—i=2zw
_iz+1
-7+l

This is the required BLT
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2. Find the BLT that maps the points («, i, 0) of z-plane onto the points (-1, -i, 1) of w-
plane respectively.Also find the invariant points.
Soln.
Given (2,,2,,2,,2,)=(z, », 1, 0)
(wy, Wy, Wy, w, )= (w,-1, -i, 1)
Using cross ratio of 4 points and z, »>« &1/z, -0
W+D(1-1) _ (D)
(-1+D)@-w)  O(-2)
(W+D@+i) i
1-Dl-w) z
Wi+ ZI+WZ+Z=1+1-wi—-w
wW+D)(@[i+D)z=(>1+D)Q—-w)
-z+1

z+1
This is the required BLT

put w=z2
_—z+1
z+1
22 +2z2-1=0
z:—li\/z

Are invariant points

COMPLEX INTEGRATION:
Consider xy-plane is taken as complex plane then the point p(x,y) on this curve corresponding to

the complex number z=x-iy
The equation z=z(t) where t is parameter is reoffered to as the equation of curve in the complex

form.
Ex: as t varies over the interval and x=a cast y=asin t then the complex form of the equation of

circle is
Z=X=1y

z=acost=isint
=a(cast +isint
z = ae" o<t<2r
Represent a circle leaving center at origen. And radies is equal to a.
Consider a continuous function f *of complex variable z=x=iy defined at all points of curve

frompto Q
Divide the curve in to n equal parts by taking points p= p(z,), p,(z,), p,(z,)...

P 1 (Zyg)ennnn p,(z,)=Q onthecame C
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The complex line integral along the path C is defined by [ f (z)dz.
If C is closed curve then ¢ f (z)dz.

LINE INTEGRAL OF A COMPLEX VALUED FUNCTION

Let “D” is the region of complex plane and f(z)=u(x,y)+iv(x,y) be complex valued function
defind on ‘D’ Let C be the curve in ‘D’ then (z=x+iy dz=dx+idy)

[f(2)dz. = [a(x, y) +iv(x, y)(dx = idy)
[ f(2)dz. = Ju(x, y)dx —v(x, y)dy +i [vdx + udy
[ f(2)dz = J(udx —vdy) +i J(vdx + udy)

Is called the line integral of f(z) along the carve C
PROBLEMS:

1. Evaluate |z%dz Along the straight line from z=0 to z=3+i
C

3+i
Solution ; a) Jz%dz = [ z%dz

z=0
Here z is varies from o to 3+i
Z=x+1y
Z=0=) (0.0) (3,1)
Equation of the line gaining in Y=Yo _ %17 Yo
X=X, X —X
y=X
3
dx =3.dy

f(z) =2 =2)(x+iy)* =x* —y® +i2xy
(3.1) (3.1)

CIzzdz = (0{)) (x? - yz)dx—2xydy+i(0£) lxydx +1x? —y? By

Convert these integral in to Itu variable y or x respects to integral wi y from 0 tol and x from
Oto3
Use variable ‘y’
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1 1 .
%0z =[ foy* - y*)ady—23y)ydy 31 B3y)y3dy+ioy* - y*)dy
1 1
= | (24y? —6y?)dy —+i] 8y’ +8y? dy
y=0 0
1 1
i [18y2dy +i[26y2dy
0 0
1 1
2 3
18| L | 26i] L =6+ 20
3 3 3
J2%dz =6+ 20
c 3
Along the given path.

(2,40

2. Evaluate [ (2y = x?¥9NY 3long the parabola x=2t, y=t> =3
(0.3)

X varies from 0to2 and here
X=2t =) 0=)2t=) t=0

X=2t =) 02=) 2t =) t=1

T variesfrom Oto 1

1

[@(t? +3) = 4t? .dt + €t —(t* +3) = 4t It
0

1

j(24t? — 2t* — 6t +12)at

0

4 1
:8t3—t——3t2 =12t |
2 0

=)8—%—3+12—(0)

=) (6-+6+24 ]2 =) 3—23
Cauchy’s Theorem:

Statement: If f(Z) is analytic at all points inside and on a simple Closed Curve C then
[f(@z)dz=0

Proof:
Let f(Z) dz = u+iv

[f(2)dz = [(u+iv)(dx+idy)
Jf(Z)dZ = I(UdX—de)+ij (VX + udy) -==mmmmmmmmmmm e 1

If M(x,y) and N(x,y) are two real Valued functioin then we have Green’s Theorem
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jde+ Ndy = ﬂ(———jd dy

Apply this theorem to 1

Y ou  ov
[t@dz= j —&—Eujdxdy i H(a—i—@)dxdy

ByCR Equation

[f(@)dz=0

Corollary —II:
If c1 c2 are two simple closed Curves Such that c2 lies entirely with c1 and if f(z) is analytic on

cl c2 and in the region bounded by c1 c2 then jf (z2)dz = jf (z)dz
cl c2

Proof:
The Point p c1 and Q on c2 then the Curve PQRSTUQP as a simple closed curve on boundary C
Hence by Cachy’s theorem

[f(2)0dz=0

Since C is the union of arc PRSP,PQ,QTUQ, AND QP THEN THEOREM BECOMES
jf (2)dz + jf (2)dz+ [f(z)dz- jf (2)dz =

-c3
Therefore

[f(2)dz = [f(2)az

Cauchy’s Integral Formula:
Statement:
If f(z) is analytic inside and on a simple closed curve C and if a is any point with in C then
1 ¢f(2)
f@) = — |—=dz
@ 21 I Z—a
Proof:
Since ‘a’ is a Point with in ¢ we shall enclose it by a circle c1 with z-a at a centre and r as a
radius such that c1 lies entirely with in ¢
The function f(z)/z-a is analytic inside and angular region between C and c1
By Cauchy’s theorem

[f)dz=[f(2)dz................ 1
c c2
Equation C1 can be written in the form iz —a|=r
Z-a=re"
dz=ire'’de
1 becomes
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J»f(z)dz :fo(a”e‘@)jremd@

i0
z—a J o re

Hence is r is very small but r should greater than 0
27
J'Mdz =i jf (a)do
z-a ;
= if(a)[2a]

= 2nif(a)
There fore

f(a) = % j%dz.

Problems :
1. Verify Cauchy’s theorem for the function f(z) = z? where ‘C’is squair leaving vertices
(0,0) (1,0)91,1)(0,1)

Izzdz+ jzzdz+ jzzdz+ jzzdz =0
0A AB BC co

2%dz = (x +iy)?(dx + idy)
x*dx

31
1
22dz = [22dx =) [ =)=
Jroe= Jreos 9%
2% =) (x+iy)*(ddx + idy)
=)(L+i2y—y?®)idy
1
Izzdz=i [ @-y?+i2y)dy
AB y=0
I
jzzdz=%—l
AB 3
0
J‘zzdz:f(x2 +2ix—1)dz
BC !
_[zzdz=g—i
BC 3

0
jz?dz = [(-y?)idy
(ele] !

iy |
C'£Z VA 3

Adding (1),(2) ,(3), (4)
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jzzdz—£+ﬂ—1 2_j4t
3 3
=0
2. Evaluate [ dz over each contour C [z-1=1
cz+iyl
_.[ f(Z) d
c(z—a)
f(z)=¢’, |z2-1=1
Soln: we have f(a) a=1r=1
f—f(z) dz=0
c(z-a)
when |z -1 =1

3. Evalute Iﬁdzover c: | | 3
¢ (z-2)°

Soln: The point z=2 lies inside circle
Causley’s integral formula is

f(2) _2_7Ti (n)
I(z—a)n+l dz = n! @

f()=2"+2+1 f'(2)=2z+1

f"(z2)=2
IZZ+Z+1dZ:2_7Zif2(2)
(z-2)3 n!
_ 2mx2
2

27

TAYLOR’S THEOREM:
If f(z) is analytic inside and on the boundary of the annular region ‘R’ bounded by two
concentric circle C;,C, with centered ‘a’ and radius I,r,then for every ‘7’

Zan(z—a) +Za J(z—-a)™"

Flz) = RS () PR S () aw

27 T 2de (w-a)

n ! —n n+1

 27ia(w-a)™

1. Show that = =1+ 3 (k +1)(z +1)* where (z +1) <1
z k=1
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lz+1 <1
a=-1

f(2)=f(-)+(z+1)F'(=1)+ % f(=1) + %x f(-1)

f(z):ziz f(-D)=1

f'(2) =Z£3 f/(-1) =2

f7(z) =Z£4 f"(-1) =6

f"(z) =_Z—254 f(-1) =24

ziz =1+(z+1)2+ (Z+21)2 X0+ ...

Soln: 143 (k+1)(z +1)"
k=1

2. Expand f (z) = _ in terms of Laurent’s series valid in the regions i)
(z-D(z-2)
lz-1 <1 ii) [z-1 >1.
Solution:
. 1 . .
Given f(z) =—————— is proper fraction
(2) 2 D(z_2) prop
@)=t % Q)
(z-1) z-2
Case(i): If [z-1 <1, putz-1=u then % 1
(1) Becomes s f(2) = -1, 2
(z-1) z-1-1
-1 2
=—+
u —-(1-u)
::}+la—uyf;:é—21+u+u2+mm“:
u - u -
=Li%—zl+(z—b+(z—bz+ .......... )
S -
Case(ii): If |z-1>1, putz-1=u
ie,u>1=|= <1
u
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(1) Becomes

3. Expand f(z) = z+1

i) 2<|z/<3.
Solution:

(z+2)(z+3)

www.rejinpaul.com
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in terms of Laurent’s series valid in the regions i) |Z| >3

We shall first resolve f(z) into partial fraction

-1 2

f(z) =

(z+2) z+3

case(i): |z| >3 this implies

||>1||>1 or — 3
2 K

that |z| > 2 also.

1£<1

Hence we have to write (1) in the form

-1 2

f(z) =

> +
z(1+j z(1+3J

Z z
f(2) = %{2{1+§T —[1+

7]

f(z)=£{2(1—§+%—2—Z+.......)—(1—3+iz—%+.......j}
z z 1° 12 z 1 1z

zz2 z®

f(z)=—{ _4 E—46+

Case(ii): 2 <|z| <3 this implies that — <1 e

Hence we have to write (1) in the form
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-1 2

f(z) = +
z[1+2) 3[1+Zj
Z 3
f(z) = _1[1+gj +E(1+ Ej
Z z 3 3

2 3
f(z) = __[1_2 iz—%+.......j+g(l—£+z——z—+ ........... J
Z 7 z

1 2 4 8
ThUSf(Z):_E+z_2_z_3+z_4+ ......... +§—?+7—H+

4. Find the Taylor’s series expansion of f(z) = #1)2 about the point z = -i.
Z+

Solution:
For f(z)= , we have
(2) ( e
1 i
f - -
)= a- I) T2 2
_ I
&f(n)(Z)z( 1) (n+21)'
(z+D)™
Cfoy  EDTED 1 (DD i ()"(n+ D)
B (-i+D)™  (@1-i)?  (-i+D" 2 (-i+D"
Therefore the Taylor’s expansion of the given f(z) about the point z = -i is
2 f M (— )" (n+1 o
Q)= 1)+ 3 (e { S e .)}
(-
. . . 27° +1 : .
5. Find the Taylor’s series expansion of f(z)=—; about the point z = .
7°+1z
Solution:
For f(z)—22 +l—(2 7-1)+ 2”1_2( 7-1)+ w_Z(z D+ 1.1
z2(z+1) z+1
This gives
-N"nl  (=D)"n!
f)=2- L4 1 and f0(g=D0, DL
22 (z+1) 2™ (z+D™
Accordingly,
)= o - CUARZD 1y gy 1 0
i@+1i) @+i)@-i 2 2
: 1 1 1 i
f')=2-=- =2+1-—=3+—
® iZ (i+1)? 2i 2
And
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pogp = DN, GO =(—1)“m{ L #},nzz

+
i n+l (| + 1) n+1 | n+1 (l + 1) n+l

Hence, the Taylor’s expansion of the given f(z) about the pointz =i is

DT . . w
f(2) = f(i)+2%(z—i)“ :[%—g)+(3+|§j(z—i)+Z(—1)”(n)!{inl+l +ﬁ}z—i)“
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Unit-V
SPECIAL FUNCTIONS

Many Differential equations arising from physical problems are linear but have variable
coefficients and do not permit a general analytical solution in terms of known functions.
Such equations can be solved by numerical methods (Unit — 1), but in many cases it is
easier to find a solution in the form of an infinite convergent series. The series solution
of certain differential equations gives rise to special functions such as Bessel’s function,
Legendre’s polynomial. These special functions have many applications in engineering.

Series solution of the Bessel Differential Equation

Consider the Bessel Differential equation of order n in the form

d? d .
Zd—xg+xd—i+(x2—n2)y:0 ()

where n is a non negative real constant or parameter.

X

We assume the series solution of (i) in the form

y=> ax“" where ag# 0 (ii)
r=0
Hence, @ _ D, (k+r)xr
dx r=0
d2y S

2

=Y a (k+r)(k+r-1)x<?
dX r=0

Substituting these in (i) we get,

o0

XZZar(k+r)(k+r_1)Xk+r—2 +Xzar (k+r)xk+r—l+(2 _n2 zarxkﬂ -0
r=0 r=0

r=0

e, Y a (k+rk+r-)x"+> a (k+r)x“ +> ax“" -n*> ax“" =0
r=0 =0 -0 =
Grouping the like powers, we get

Sa, k+nk+r-0+K+r-n?x"+>ax =0
r=0

r=0
> a, lk+r)2 -n? X"+ ) a x“"? =0 (iii)
r=0 =

r=0

Now we shall equate the coefficient of various powers of x to zero
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Equating the coefficient of x* from the first term and equating it to zero, we get

a, l2 —n? := 0. Since a, =0, weget k> —n*=0, ..k==n
Coefficient of X is got by putting r = 1 in the first term and equating it to zero, we get

i.e., a lk +1)°> —n? :: 0. Thisgives a, =0,since (k+1)*> —n® =0gives, k +1==n
which is a contradiction to k = #n.

Let us consider the coefficient of x“*" from (iii) and equate it to zero.
i.e, a, Ik +r)>-n* +a,_, =0.

—-a,_

B i (iv)

If K = +n, (iv) becomes

% _]n+r) -n® ] +2nr

Now puttingr=1,3,5, ..... , (0odd vales of n) we obtain,
I NP S
as =%n29 =0, ~va; =0
Similarly as, az, ..... are equal to zero
e, as=as=ar=...... =0
Now, puttingr=24.6, ...... ( even values of n) we get,
a__ao__ao. a —a, _ ay
2 4n+4  4(n+1)’ ‘T 8n+16 32(n+1)(n+2)

Similarly we can obtain ag, as, ...

We shall substitute the values of a,,a,,a,,a,,-----in the assumed series solution, we get
y= iarxk”r =x¥(ag +ayx+a,x? +agx> +a,x* 4o )

Let y; be the solution for k = +n

_yn a, 2 a, 4
y, =X ao — — e
4(n +1) 32(n +)(n+ 2)
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x? x*
e, =a x"[1- + e v
=% [ 22(n+1)  2°(n+D(n+2) } V)
This is a solution of the Bessel’s equation.

Let y, be the solution corresponding to k = - n. Replacing n be — n in (v) we get

x° x*
=g ,x "|1- + — e Vi
2= % { 22(-n+1) 2°(-n+1)(-n+72) } V)
The complete or general solution of the Bessel's differential equation is y = c1y1 + Caya,
where ¢, C, are arbitrary constants.
Now we will proceed to find the solution in terms of Bessel’s function by choosing

a, :;and let us denote it as Y.

2")(n+1)

ie, Y =X— 1- 1 (Xj4 r
2" (n+)) (n+1) h+)(n+2)-2
_(zj" 1 (Xj ( J 1 .
2) | Yin+D (n+1)j n+1) (N+)(n+2))(n+1) -2

We have the result T'(n) = (n—1) I'(n — 1) from Gamma function

4

Hence, I'(n+2) =(n+1)I'(h+ 1) and
I(N+3) =n+2)IT(n+2)=(n+2)(n+1)I'(n+1)

Using the above results in Y4, we get

[xj” 1 (sz 1 (XT 1 }
le — —| = D ...
2 ] (n+1) \2) )(n+2) \2) )(n+3)-2

which can be further put in the following form
G N A = N
Yl_[Zj (n+1) - OI(ZJ +j(n+2) 1[ j T+ 21(2) " ]
(el
- = )(N+r+1 2
» X n+2r
s (3)

1
i(n+r+1) r!
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This function is called the Bessel function of the first kind of order n and is denoted by
Jn(X).

Thus J, (x) = i(_l)f .(gjm r . 1

i(n+r+l)-r!

Further the particular solution for k = -n ( replacing n by —n ) be denoted as J.,(x). Hence
the general solution of the Bessel's equation is given by y = AJ,(x) + BJ.n(X), where A
and B are arbitrary constants.

Properties of Bessel’s function
1.3 ,(x)=(-1)"J,(x), where n is a positive integer.

Proof: By definition of Bessel’s function, we have

. i X n+2r 1
Jn(x):g(;(—l) (E) W .......... (1)

—n+2r
Hence, J_,(x)= i(—l)r.[fj _1 (2)
r=0

2 )(=n+r+1)-r!

But gamma function is defined only for a positive real number. Thus we write (2) in the
following from

o ) X —-n+2r 1
(3= £(-1) (Ej N S 3)

i(—n+r+1)'r!

Letr—n=sorr=s+n. Then (3) becomes

J_n(x)=§0(—1)s+” -(5

—n+2s+2n 1
2] .}(s+1)-(s+n)!

We know that I'(s+1) = s! and (s + n)! = I'(s+n+1)

n+2s
- z(_1)5+n.(5) 1
s=0 2 )(s+n+1)-s!
1

i(s+n+1)-s!

Comparing the above summation with (1), we note that the RHS is J,(x).

n+2s
n < S X
SR [z] |

Thus, J , ) =(-1)"J, (¥
2. J.(=x)=(-1)"J,(x)=J_,(x), where n is a positive integer

1

JnereD-r

© n+2r
Proof: By definition, J (x) = Z(_l)r e] )
r=0
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n+2r
Jn(—x)=§0(—1)f-[—5) —

2 )(n+r+1)-r!
n+2r
e, =31 pﬂr(i) L
Eo( ;e 2 \(N+r+1)-r!
n+2r
- €17 5 —1)". 5] 1
¢ /EO( ) (2 }(n+r+1)-r!

Thus, J,(x)=(-D)"J, (¥
Since, (-1)"J,(x)=J_,(x), we have J, (-x)=(-1)"J,(x)=J_,(X)
Recurrence Relations:

Recurrence Relations are relations between Bessel’s functions of different order.

Recurrence Relations 1: % l"Jn(x)_z X", 1(x)

From definition,

" X n+2r 1 w» X 2(n+r) 1
an _ N L e - = T
X (x)=x7 2.(-1) (2] J(n+r+1)-r! Z (2) Y(n+r+1)-r!
d ) - ) 2(n_+_r)x2(n+r)—1
f S a0 =Sy
dXI n(x)_ r§0( ) 2n+2rm.r!
:Xn i(_l)r (n+r)xn+2r—1

r=0 2M2(nr))(n+r) -1t

(x/2)413%
}(n—l+r+1)~r!

Thus, %I”Jn(x)}x”.]n_l(x) ........ (1)

=" ﬁo(—l)“- =x"3,4(X)

Recurrence Relations 2: di l‘”Jn(x) = —Xx"J .. (X)
» Z
From definition,

x "3, (x)=x" 3 (~1)" .(X .
r=0

n+2r 1
E] i(n+r+1)-r!

o 2r 1
- Z(—l)'-[ij -
r=0 2 (n+r+1)-r!

2r X2I‘—l

22V (n+r+1)-r!

n+1+2(r-1)

R AN eI eV

= X" S (-1 -

r-1 22D (g +1)-(r-1)!
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Letk=r-1
N oo( )k x L2k ) )
=-x" 2(-1)"- =—Xx""J (X
k=0 2" 12K (1 k 1) k! e
d |- _
Thus, &I n‘]n(x)}‘x "Joa(x)y s (2)

Recurrence Relations 3: Jn(x)=% b OO0+ (%)

We know that %I”Jn(x)}x”JM(x)

Applying product rule on LHS, we get x"J/(x)+nx"?J,(x)=x"J, ;(x)
Dividing by X" we get 3, (x)+(n/x)J,(x)=J,4(x)--=----- (3)

Also differentiating LHS of % l‘”Jn(x)}—x‘”JM(x), we get

X" I () =X (X) = XM (X)
Dividing by —x™" we get —J/(x)+(n/x)J,(x)=J,,1(X) ===~ (4)
Adding (3) and (4), we obtain 2nJ, (x)=xP, 1 (x)+Jp.1(x)_

i.e., Jn(X):Z_ann—l(X)""]nJrl(X):

Recurrence Relations 4: Jr/,(x):% b 00-3,00x)

Subtracting (4) from (3), we obtain 23/ (x)= P, 1(x)-J3,..(x)_

e 31002 Baa(0-3p(x).

Recurrence Relations 5: Jé(x):%Jn(x)—JM(x)

This recurrence relation is another way of writing the Recurrence relation 2.
Recurrence Relations 6: Jé(x):Jn_l(x)—;Jn(x)

This recurrence relation is another way of writing the Recurrence relation 1.
Recurrence Relations 7: Jml(x):z—;Jn(x)—Jn,l(x)

This recurrence relation is another way of writing the Recurrence relation 3.

Problems:

Prove that (a) Jl,z(x)=1/£ sin x (b) Jﬁl,z(x):wfi COS X
7IX 7IX
By definition,

3n(x)= i(—l)f-[fjnm- L
" _r:O 2

i(n+r+1)-r!

Putting n = %2, we get

o X 1/ 2+42r 1
3y 2(X)= z<—1>f-[—j -
r=0 2

i(r+3/2)'r!
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X 1 x ) 1 x ) 1

J“Z(X):\E{r(al 2){5] r(5/2) +[E) rar2 } """" (1)

Using the results T'(1/2) = vz and I'(n) = (n — 1) ['(n—1), we get

I(3/ 2):%,1“(5/ 2)=¥,F(7/2): 15;3/; and so on.

Using these values in (1), we get
; (X)_ﬁi_z"' 4 x' 8
He 2| Jz 4 3Jr 16 15/7.2
/x 2 x3 X ° 2 x3 x°
= —_—— X__ +_ —ecesees - E— X__ +_ —cescee
27 X 6 120 X7 3! 51
2
J X)=.—sinXx
-2

Putting n = - 1/2, we get
o X -1/ 2+2r
Lip0=EC (5]
r=0 2

1

}(r+1/2)'r!

J (X)—\/z_ 1 _[sz 1 +(5)4;_ ______________ 2)
MRV 2 rr2) \2) rar2y \2) r(sr2)2

Using the re§ults ['(1/2) =Vm and I'(n) = (n — 1) [(n-1) in (2), we get

) (X)_\E 1 xf2 xt 4
e X|Jz 4 Jr 16 3/z2
2 4
= i 1_1 +i —eeees
T TR
2
J X)=,/— COsX
r2(X) =y —

2. Prove the following results :

2
(a) J5/2(X)=\/z{3_; sinx—Ecosx} and
X X X

[2]3-x? 3 .
b) J X)=.— COS X +—sin X
(b) J.5/2(x) nx{ 2 +x }

Solution :

We prove this result using the recurrence relation J”(X):z_xn b O0)+3,0(x) - (D).
Putting n=3/2in (1), we get Jl,z(x)+J5,2(x):%J3,2(x)

B 35/2(X)=§~33/2(X)—31/2(X)

. 3 |2 |sinx—xcosx 2 .
ie, Jso(x)=—,|—| ——— |—,[—sinXx
X\ 7x X 7X
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2 | 3sinx—3xcosx—x2 sinx 2(3=x?) . 3
Js/2(X) = — > = | = |~ sinx—=cosx
72X X 7iX X X
Also putting n = - 3/2in (1), we get J_5,2(x)+J_1,2(x)=—§J_3,2(x)

3 -3 2 | xsinx+cosx 2

B J5/2(X)=——‘]3/2(X)—‘]1/2(X)=[—]{— —][—}— —— CO0sX
X X \/nx X \/nx

) 2 | 3xsin x+3cosx — x? cos x 213 . 3-x?2

ie, J.g(X)=.|— 5 = |—| = sinx+——cosx
TX X 7TX| X X

3. Show that % I,f(x)+J§+1(x):=% bzoo-(+naz.0

Solution:
LHS= % Iﬁ(x)+Jn2+1(x)} 23, (X)) (x)+231,1(X)I ] 1 (x) =====-- 1)
We know the recurrence relations

XL (X)=nd (X)X (X) - )

XL (X)=xI,(X)=(N+1)J 0 (X)  ==-=mm- 3)

Relation (3) is obtained by replacing n by n+1 in xJ/(x)=xJ,_;(x)-nJ,(x)

Now using (2) and (3) in (1), we get

LH.S = %|§(x)+J§+1(x)}2Jn(x)BJn(x)—Jnﬂ(x)}ZJnﬂ(x)[%(x)—”T”Jm(x)}

:2_;Jﬁ(X)—ZJn(X)Jn+1(X)+2Jn+1(X)Jn(x)_z

n+1

=32 (x
X n+1( )

Hence, & J200+32,00 22 Poe0-(n+132, 00

4. Prove that Jé’(x):% B.(x)-30(x)
Solution :
We have the recurrence relation J,ﬁ(x):% B ()= (%) - (1)

Putting n =0 in (1), we get Jé(x):% |,1(x)_31(x):=% Fa.00)-3,(x) =-3,(x)
Thus, 3} (x)=-3,(x). Differentiating this w.r.t. x we get, 3§ (x)=-3{(x) ----- 2
Now, from (1), for n = 1, we get J{(x):% Bo(x)-3,(x).

Using (2), the above equation becomes

=34 (0=3 B ()= 3500013 (=5 B0 - 3o(x)"

Thus we have proved that, Jé’(x):% b,(x)-3,(x)
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5. Show that (a)jJs(x)dx:c—JZ(x)—éJl(x)

(b) pag(xax=2x¢ fec0+970).
Solution ;
(a) We know that % o, 00 2 xm3,00x) o [x3,,, ()K= —x "3, (x) - (1)

Now, ng(x)dx:sz-x‘2J3(x)dx+c:x2~jx‘2J3(x)dx—j2xlx‘2J3(x)dxgx+c
=x2. lx‘sz(x)}ijlx‘sz(x)éx+c( from (1) when n = 2)

:c—Jz(x)—jéJz(x)dx:c—Jz(x)—éJl(x) (from (1) when n =1)
Hence, jJ3(x)dx=c—J2(x)—§Jl(x)
(b) ijé(x)dx:Jg(x)-%xz —jZJO(x)-Jé(x)%xzdx (Integrate by parts)
:%szg(x)+jx2JO(x)-J1(x)dx (From (1) for n = 0)
=%XZJ§(X)+JX~11(X)'% ko, (x)dx [ & k3.(x)_=x3,(x) from recurrence relation (1)}

1 1 1 )
=535 00+5 k002 =3¢ [0+ 3700,

Generating Function for J,(X)

(t-1/t

To prove that e2" " = $t"3,(x)
N=—

or

X
: : . - : : (-1
If n is an integer then J,(x) is the coefficient of t" in the expansion of 2 Y

Proof:

X
—(t-1/t
We have e2( ) -2 e

={1+(><t/2)+(xt/2)2 +(xt/2)3 o }{1+(_xt/2)+(—xt/2)2 +(_xt/2)3 o }
n 2! 3! n 2! 3!

(using the expansion of exponential function)

-x/2t

xt X2t2 X" Xn+ltn+1 X X2 (_1)nxn (_1)n+1xn+1
=1+ + 4ot + RPN 1- + B e S T
2.1 22 2"nl 2™ (n41) 2611 22221 2"t 2™t (n41)!
If we collect the coefficient of t" in the product, they are
Xn Xn+2 Xn+4
= — + —ceeee
2"l 2™Z(n4)n 2™ (n+2)12!
n n+2 n+4 n+2r
:%(ij - 1 (fj + 1 (5] I = Z(—l)r(ij ;:Jn(x)
nt{ 2 (n+1)11 2 (n+2)121\ 2 r=0 2 I'(n+r+21)r!

Similarly, if we collect the coefficients of t™" in the product, we get J_n(X).
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X(t-1/

Thus, 2 " = "3, (%)

Result: e "7 =350+ £ 1)t 3,(x)
n=1
Proof :

X1ty w . . ° .
e? = >t ‘]n(x): 2t ‘]n(x)+ ZOt ‘]n(x)
N=—o0 n=—ow n=|

= UM 004300+ T, (6)=3o(x)+ T 35(0)+ T (0 £230(0)= (-1 (1)

Thus, e2' ™" = 35(x)+ 5 I + (1)t 3,(0)
n=1
Problem 6: Show that

€) Jn(x)lecos(na—xsine)de, n being an integer
7o

(b) Jo(x):lijrcos(xcose)de
7o

(© J(? +2J12+2J22+J§+......:1
Solution :

(t-1

We know that e2 " - Jo(x)+ %l" +(-)"t" jn(x)

=Jo(X)+tI 3 (X)+t2, (X)+t3I5(X) 4o+t 2T (X)+t 2T (X)) +13T _g(X) -+
Since J_,(x)=(-1)"J,(x), we have

o2 = 30(x)+3,(x)€-1/t 3 3,(x) +1/t2}J3(x)(3 —1/t3} ----------- 1)

Let t = cosO + i sind so that t* = cosp6 + i sinpd and 1/t* = cospo - i sinpo.

From this we get, t” + 1/t" = 2cosp6 and t? — 1/t = 2i sinp6

Using these results in (1), we get

o2 _ginsing _ 3 4y 42 P,(x)c0520+ 3, (X)C0s A0+ 2 |, (x)sin O+ I5(x)sin 30+

Since ™"’ = cos(xsind) + i sin(xsing), equating real and imaginary parts in (2) we get,
cos(xsin@)=Jo(x)+2P,(x)cos20+3,(x)cos4f +---  ----- (3)
sin(xsin@)=2f,(x)sin@+J35(x)sin30+--- - 4)

These series are known as Jacobi Series.

Now multiplying both sides of (3) by cos n# and both sides of (4) by sin ng and
integrating each of the resulting expression between 0 and =, we obtain

J,(x), nisevenor zero

i7jrcos(xsin¢9)cosn6d¢9: .
7o 0, nisodd
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0, niseven

1z . . .
and = {sin(xsin®)sinnado =
7 Jon(xsing)s {Jn(x), nis odd

T T T . _
Here we used the standard result [cos pdcosqadé = [sin pésin qédﬁz{ S0 hp=g
0 0 0, if p=q

From the above two expression, in general, if n is a positive integer, we get

Jn(x):lijT fos(xsin@)cosn@ +sin(xsin §)sin neﬂezlifcos(ne—xsine)de
o o

(b) Changing 6 to (n/2) 6 in (3), we get i
cos(xcose):.]o(x)+2ll2(x)cos(;z—26’)+J4(x)cos(7r—4¢9)+---_
cos(xcosd)=Jy(x)—2J,(x)cos26+2J,(x)cos46—---

Integrating the above equation w.r.t 6 from 0O to =, we get

Tcos(xcos@)d&:fjr Bo(x)-23,(x)cos20+23,(x)cos40—---

0 0

— :JO(X).;Z-
0

sin 26? sin 449
+2J,4(X%)

lj[cos(xcose)de Jo(X)-60-23,(x)
0

Thus, Jo(x):;jcos(xcose)de
(c) Squaring (3; and (4) and integrating w.r.t. 8 from 0 to 7 and noting that m and n
being integers
Zcosz(xsina)dez lo(x)f.ﬂ+4[2(x)j%+4m4(x)j%+...
zsinz(xsine)d0:4|l(x)f%+4[3(x)j%+---
Adding, Jdo =7 =z |2(x)+202(x)+202(x)+ IZ(x) 4+ oo
Hence, J002+2J12+2J22+J§+ ------ =1
Orthogonality of Bessel Functions

If «and g are the two distinct roots of J,(x) = 0, then
0, if a#p

ij (ax)J, (,BX)dX—{ll "« ﬂ n+1(a)j, if a=p

Proof:

We know that the solution of the equation
u' +xu + (X -nHu=0 - 1)
XV + xv + (2% = n)v = 0 -------- (2)

are u = Jp(ax) and v = Jn(BX) respectively.

Multiplying (1) by v/x and (2) by u/x and subtracting, we get
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x(u”v-u v”)+ (' v-— uv’)+ (S —cP)xuv = 0
or d x{(’v uv’ (3‘2 —a? 5uv
Now mtegratlng both sides from 0 to 1, we get

6 —az)\txuvdx: I‘/V_UV/E:(/V_UV/ ;:l _______ @3)
0

el HCOEPrmy NEDELCEREC

P — /
Since u = Jy(ax), u » = (e

Similarly v = Jy(8x) gives v/ =& b.(px) kBl (px). Substituting these values in (3), we
get

I ()l 3!
(a3 poix= Dot e (4)
If o and P are the two distinct roots of J,(x) = 0, then Jn(a) = 0 and J,(B) = 0, and hence

(4) reduces to Tx3, ()3, (A)dx=0.
0

This is known as Orthogonality relation of Bessel functions.

When B = a, the RHS of (4) takes 0/0 form. Its value can be found by considering
o as a root of J,(x) = 0 and B as a variable approaching to a. Then (4) gives

L _ 1y @al@)n(B)
ﬂl;tagXJn(aX)Jn(&)dX—ﬁl;ta 5o
Applying L’'Hospital rule, we get

1 B od (a)J (B) 1y
TR ()3, (B = Lt EEEEE $(a)’)

We have the recurrence relation Jn(x):—Jn(x)—JnH(x).
X
Ia)=223 (a)-3,4(a).Since I, (a)=0,wehaved! (a)=-3,..(a)
o

Thus, (5) becomes. Lt [xJ, ()3, (k=3 (@) =3 dya(e) 3
—a

LEGENDRE’S POLYNOMIAL

If nisa positive even integer, agu(x) reduces to a polynomial of degree n and if n is positive odd
integer a;v(x) reduces to a polynomial of degree n. Otherwise these will give infinite series
called Legendre functions of second kind.

Polyninomials u(x),v(x) contain alternate powers of x and a general form of the polynomial that
represents either of them in descending powers of x and can be presented in the form

y=f(xX)=a,x"+a,,x"*+a, X" +... N e ¢ R (D)
where F(x) = & if nis even
a,x if nis odd
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We note that a, is the coefficient of X" in the series solution of the differential equation and we

have obtained B
a, o BOED O 2
(r+2)(r+1)

We plan to express an.2,an.4.....present in (1) in terms of a,. Replacing r by (n-2) in (2) we obtain
4 -~ h+D-(n-2)(n-1)

n-2-""

" n(n-1)
_ —(4n-2) a
" nh-1 "?
_ -n(n-1) a

a
"2 2(2n-1) "

Again from (2) on replacing r by (n-4) we obtain

- Il(n+1)—(n—4)(n—3)_a

an—2 n-4
(n-2)(n-3)
X T fn-12 :\a
" -2(n-3) "
_—(n-2)(n-3) a
" 4@2n-3 7
—fh-12_

an— —\a‘n—

©G-2(-3_""

a=— n(n —1(n=2)(n-3) a by usin g values of a__,
2.4(2n-1)(2n-3)
U sin g these values in (1) we have
y=f(x)=a,|x" - =D oo MO=HO=2)(N=3) 0y +G(X)
2(2n-1) 2.42n-1(2n-3)
whereG(x) = &, /a, if niseven
a,x/a, if nis odd

If the constant a, is so choosen such that y-f(x) becomes 1 when x=1, the polynomials are called
Legendre polynomials denoted by Pn(x).
Let us choose

~135..2n-1

n!

135..2n-1 X" — n(n —1) X" 4+ n(n-H(n-2)(n—3) X" (3
n! 2(2n-1) 24(2n-1)(2n-3)

We obtain few Legendre polynomials by putting n=0,1,2,3,4,

P, =1 P(X) =X, P,(X) :% ¢ -1, P :% 6x3-3x P,(X) :% €5x* —30x? +3 ptc....

, that is

n

P, ()=
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Rodrigues’ formula

WE derive a formula for the legendre polynomials P,(x) in the form

P.(x)= 2n ld - ¢ - 1j Known as Rodrigue's formula.

u=(x>-1"

nth derivative is a solution of the Legendre'sdifferential equation
Proof. Let (1-x?)y —2xy'+n(N+2)y=0....cccreevr..e. 0

differentiationu w.r.t

du

el n(x* -1)""2x ie (x> —1)u, = 2nxu
X

Differentiating w.r.t x again we have

(x* =1)u, +2xu, =2n(xu, +u)

Differentiate the result n times by applying Lebnitz theorem for the nth derivate
I -1,  +2fu,  =2nfu,  +2ny,

lx2 ~Du,,, +2fu,, —n’u, —nu, =0

L-x*)u, ., -2xu_, +n(n+Du, =0.......... )

Comparing (2) with (1) we conclude that uj is a solution of the legendre’s differential
equation.Also P,(x) which satisfies the legendre differential equation is also a polynomial of
degree n. Hence u, must be the same as P,(x) for some constant factor k

P.()=ku, =k g2 -17,
P (x), =k k-f‘ &+1" | applyinf leibnitztheoremforRHS

)=k k-1 €+17 Jonnx-nm €417 L+ n(n - 1)n(n Dx-1)" §+17 ), +. €-17 J.0)

We proceed to find k by choosing a suitable value for x. putting x=1 in (3) in RHS becomes zero
expect the last term

P.(@=knl.2" or k b
ni2"

B 1 4
P,(x)=ku,, where P, (X) = o -1 of

1 d°

Thus proved that P, (x) =
ni2" dx"

‘2 —1j .}..(Rodrigue‘sFormula.)
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PROBLEMS:
1.1 x® +2x% —x+1=aP,(x) +bP,(x) +cP,(x) + dP,(x)
Find thevaluesof a,b,c,d
soln:
Let f(x)=x>+2x* —x+1
substitutuing for x3 x?, x,linterms of legendre polynomial we have

f(x)== P(x)+ P,(x) - P(x)+ R, (x)
hencewehave

ak, (x) + bR, (x) +cP, (x) +dP. (x)

= 2R(0- SR~ P+ 2R

thus by comparlng both sides we obtaln

a:§’b:_z,czﬂ,d:g
3 5 3 5
2 Showthat x* —3x? +x_3£P(x)——P(x) P(x)——P(x)

soln:

Let f (x) = x* —3x* + xand we have obtained

8 4 1
X' =—P,(X)+=P,(X)+=P,(x
35 % (X) 72() 50()

2_2 1

@ =2R00+ LR

substituting thesein f (x) with x = P,(x) we have

f(x) = ( P+ P00+ P(x)j ( Pz(x)+§Po(x))+a(x)
thus

F(x) = —P(X) F’(X) P(X)——F’(X)
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4. Obtain P3(x) from Rodrigue’s formula and verify that the same satisfies the Legendre’s
equation in the standard form.
soln:

P (%) =2 (6% ~3%)

we have Legendre'sequation

(L-x*)y —2xy +n(n+1)y =0

We haveto verify that

(1-x*)R, (x) —2xP ,(x) +3(3+1)P,(x) =0,sincen =3
Fromtheexp ressionof P;(x)we get

P,(x)= % (15x* —3)and P,'(x) =15x
(1= x*)P, (X) — 2xP’5(x) +12P(X)
=(1- x2)15x—2x%(15x2 -3) +12%(5x3 ~3Xx)

=15x-15x° —15x° +3x+30x°> —18x =0
Thus we have verified P,(x) satifies Legendre'sequation

3.showthat P, (cos &) = % (1+3cos20)
soln:

We have P, (x) = % (3x* 1)
now P, (cos @) = %(3 cos® 6 1)

P,(cos8) =% 3+3c0s20-2
thus

P,(cos®) = % (1+3cos26)
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Unit VI

Probability Theory |
PROBABILITY:

Random experiment:

It is an experiment which performed repeatedly outcomes a result or an experiment
performed repeatedly giving different results on outcomes are called random experiment.
Eg: tossing a coin, throwing a die.

Sample space:

Sample space of random experiment set of all possible outcomes & it is denoted by S’ . The
number of elements in the set is denoted by 0(S).

Event : event is a subset of sample space & is denoted by E
Exhaustive event: The set of events is said to be exhaustive if it includes all possible events.

Mutually exclusive events: Two events A & B are mutually exclusive, if A & B cannot happen
simultaneously = AnB=¢

A & B are disjoint ie.p AnB =0

Mutually independent events: Two events A & B are mutually independent if the occurrence of
the event A does not depend on the occurrence of the event B.

Probability: If an event A can happen in M ways out of the possible n-ways (mutually exclusive
& equally likely) then probability of A is denoted by P(A)
m _ favourable number of cases

P(A)=—=
n Total number of cases
The probability of non-occurance of event A (A will not happen) is given by P(A) or P(A) or q
q=P(A)=""=1-T
n n

P(A)=1-P(A)
P(A)+P(A)=1

Axioms of probability:
i) for an event A of S, probability lies
ii) between 0<P(A) <1 The numerical value of probability lies between 0 & 1, P(S)=1

iii) P(AuB)=P(A)+P(B); A & B are disjoint

Addition theorem or rule of total probability
If A & B are any two elements, then P(Au B) =P(A)+P(B)-P(ANB)

Sol:
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ANB=AU BNA
P AnB =P AU BNnA [Aand Bmﬂaredisjoint]

=P A +P BNnA
Add & subtractP AN B
P AUB =P A +P BNnA +P AnB -P AnB

P AuB =P A+P B -P AnB

similarly,
P AuBuC =P A+PB +PC -P AnB -P BNnC -PCnA +P AnBNC
If A, B,C are mutually exclusive, then

PEUBUCHIPEDIPEDIPC)

Conditional probability: let A & B are two events, probability of the happening of event B when
the event A has already occurred is called Conditional probability & is denoted by P %

p B/ _ Probability of occurance of both A & B
A Probability of occurance of given event A

P AnB
B _ - - - _g.
P /A\ = A — Multiplication rule of probability

_p B
P ANB =P /A.PA

If A& B are Mutually independent event then, P % =P B

PANB =P B.P@)D

Problems:
1. A boy & girl appeared in interview for 2 vacancy’s in the same post. The probability of boy

& girl selection is %& that of girl selection is}/ ,what is the probability that

(i) both will be selected
(ii) None of them will be selected
(iii) one of them will be selected
(iv) atleast one of them will be selected.
Sol: let A & B be the events of selection of boy girl respectively
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P A =l, PB 1
7 5
Total space :1+1:E
7 5 35

i) Probability of both of them getting selected
()P AnB =P A P B

1
'5

~N -

(i1) probability of none of them getting selected
(i'P AnB =P AP B

[1-7 €317 €3

{212

=0.685
(iii) Probability of one of them will be selected is

PEBIPEFEIPEFE)

R

(iv)probability of atleast one of them will be selected
=1-P@nB))
=1-0.685
=0.315

Probability that a cricket team wins a match is % . If the team wins 3 matches in the

tournament what is the probability

i) team wins all matches ii) looses all match iii) wins atleast one match iv)
win atmost one.
Sol:
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O
)

i)Probability that team wins all matches
PW, =PW, =P w, =3

)22 2o

(ii)probability of team loosing all matches
21
5 5 5
(3513) - o
5)\5/\{5) 125

iii) probability that it wins atleast one match

=1-0.064
=0.936

) =P @ D €. D€ IP ¢ D€, DE. IP €. D D&,

gHHHHHBIHEE

12 36

=3x—=——=0.2888
125 125
BAYES THEORM:
Statement:
IFAA, ... A, are partition of a set 's' so that there union in s

& E be any other event, then

()L

ek
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Proof:

PEDIPENAD O
By definition of conditional probability
p(ﬁj _PGNE)
E PE)
_PE€~A)D
PE€D
- €m A ) from (1)

Y. PENAD
i=1
o
p(ﬁ) __\A)
E n
2PE€ENAD
i=1
This result is known as theorm of inverse probability or Baye's theorm.

Problem;

1. Inacollege boys & girls are equal in proportion. It was found that 10 out of 100
boys & 25 out of 100 girls were using same company of 2 wheeles If the student
using that was selected at random. What is the probability of being a boy.

Sol:

P Ejzﬂzo.l; P A =100%-05
A)” 100

P[E)-2 _025 P A —100%-05
B/ 100

Let E be an event of choosing a student from same company of two wheelers
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PE =P A .P(EJ+P B .P(E)
A B

=05 01+ 05 025

P E =0.35
probability of choosing a student from boy

Ay P A.P(i)
P _— | =_sV—
(Ej PE

101

© 035
=0.2857

2. In a school 25% of the students failed in first language, 15% of the students failed
in second language and 10% of the students failed in both. If a student is selected at
random find the probability that

Q) He failed in first language if he had failed in the second language.

(i)  He failed in second language if he had failed in the first language.

(iti)  He failed in either of the two languages.

Solution: Let A be set of students failing in the first language and B be the set of students failing
in the second language./ We have by data

PA)=—==1, PB)===—, PANB)=_—=—

. P(ANB) _ 1710 _ 2

(i) P(a/B) = P(B)  3/20 3

" _PlAnB) _ 1/10 _ 2

(i) P(B/A) = pA) - 14 s

1 3 . i _ i
(iii)  P(AUB)=P(A) + P(B) -P(ANB) = TIRETIRET

3. The probability that a team wins a match is 3/5. If this team play 3 matches in a
tournament, what is the probability that the team

(i) Win all the matches

(ii) Win atleast one match

(iii)  Win atmost one match

(iv)  Lose all the matches

Solution: Let W be the event of winning a match by the team.
P(Wy) = P(W,) = P(W3) = 3/5
Let L be the event of losing a match by the team.
Therefore, P(L1) =P(L,) =P(L3) =2/5
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(I) Probability of winning all the matches

=P(W1) P(W,) P(Ws3) =27/125
ii) Probability of winning atleast one match

=1 - Probability of lising all the matches
=1-P(L1) P(L2) P(Ls)
= 1-(8/25) =17/25
iii) Probability of winning atmost one match.
= P(L1) P(L2) P(L3)+ P(W3) P(Ly) P(Ls)+ P(L1) P(W2) P(Ls)+ P(L1) P(L2) P(Ws)
g 3 2 2] B2

LI R

T 135 555 128

IV) Probability of losing all the matches
=P(L1) P(L2) P(La) = 1

125

4. The odds that a book will reviewed favourably by 3 independent critics are 5 to 2, 4
to 3 and 3 to 4. Find the probability that majority of the reviews will be favourable.

Solution: Let E;, Ey, E; be the events of favourable review by the three critics respectively.
Therefore P(E1) =5/7 , P(Ey)=4/7 , P(E3)=3/7
Hence P(E1)=2/7 , P(E2)=3/7 , P(E3)=4I7
Majority of the reviews are favourable means that atleast two of three reviews should
be favourable and if E denotes this event then we have
P(E) = P(E1) P(E;) P(E3) + P(ET) P(E;) P(Es)+ P(E1) P(E2) P(E3)+ P(E1) P(Ey) P(Es)
4 4 432 353 5
'?'?+ 777 777 7

=1 |t

5. Three machines A, B, C produces 50%, 30% and 20% of the items in factory. The

percentage of defective outputs are 3, 4, 5. If an item is selected at random. What is
the probability that it is defective? What is the probability that it is from A?

Solution: Let D denote the event of selecting of defective item
Given P(A)=0.5 and P(D/A) =0.03
P(B) = 0.5 and P(D/B) = 0.04
P(C) = 0.5 and P(D/C) = 0.05
Now P(D)=P(A) P(D/A) + P(B) P(D/B) + P(C) P(D/C) =0.037
By Baye’s theorem,

. o P(4)P(D/4)
Probability that the defective item is from A =P(A/D) = W
:{0.5]{0.03] ~0.4054
0.037
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6. In a college where boys and girls are equal proportion, it was found that 10 out of 100
boy and 25 out of 100 girls were using the same brand of a two wheeler. If a student
using that was selected at random what is the probability of being a boy?

Solution: P(Boy) = P(B) =% = P(Girl)=P(G)
Let E be the event of choosing a student using that brand of vehicle.
Therefore, P(E/B) =10/100 =0.1 AND P(E/G) 25/100 = 0.25
Now, P(E) =P(B) P(E/B)+ P(G) P(E/G) =0.175
We have to find P(B/E) AND BY Baye’s theorem
p(B)P(E/B) _ (0.5)(0.1) _

P(BIE) = = 0.2857

P (E) 0.175
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Unit VII
Probability Theory Il

In a practical situation, one may be interested in finding the probabilities of all the events
and may wishes to have the results in a tabular form for any future reference. Since for
an experiment having n outcomes, totally, there are 2" totally events; finding
probabilities of each of these and keeping them in a tabular form may be an interesting
problem.

Thus, if we develop a procedure, using which if it is possible to compute the probability
of all the events, is certainly an improvement. The aim of this chapter is to initiate a
discussion on the above.

Also, in many random experiments, outcomes may not involve a numerical value. In
such a situation, to employ mathematical treatment, there is a need to bring in numbers
into the problem. Further, probability theory must be supported and supplemented by
other concepts to make application oriented. In many problems, we usually do not show
interest on finding the chance of occurrence of an event, but, rather we work on an

experiment with lot of expectations

Considering these in view, the present chapter is dedicated to a discussion of random
variables which will address these problems.

First what is a random variable?

Let S denote the sample space of a random experiment. A random variable means it is
a rule which assigns a numerical value to each and every outcome of the experiment.
Thus, random variable may be viewed as a function from the sample space S to the set
of all real numbers; denoted as f:S—>R. For example, consider the random
experiment of tossing three fair coins up. Then S = {HHH, HHT, HTH, THH, TTH, THT,
HTT, TTT}L Define fas the number of heads that appear.
Hence, f(HHH)=3, f(HHT)=2, f(HTH)=2, f(THH)=2, f(HTT)=1, f(THT)=1,
f(TTH)=1 and f(TTT)=0 . The same can be explained by means of a table as

given below:
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HHH HHT HTH THH TTH THT HTT TTT
3 2 2 2 1 1 1 1

Note that all the outcomes of the experiment are associated with a unique number.

Therefore, f is an example of a random variable. Usually a random variable is denoted

by using upper case letters such as X, Y, Z etc. The image set of the random variable
may be written as f(S) ={0, 1, 2, 3}.

A random variable is divided into
e Discrete Random Variable (DRV)
¢ Continuous Random Variable (CRV).

If the image set, X(S), is either finite or countable, then X is called as a discrete random
variable, otherwise, it is referred to as a continuous random variable i.e. if X is a CRV,

then X(S) is infinite and un — countable.

Example of Discrete Random Variables:

1. In the experiment of throwing a die, define X as the number that is obtained.
Then X takes any of the values 1 — 6. Thus, X(S) ={1, 2, 3. .

finite set and hence X is a DRV.

. 6} which is a

2. Let X denotes the number of attempts required for an engineering graduate to
obtain a satisfactory job in a firm? Then X(S) = {1, 2, 3.. }. Clearly X

is a DRV but having a image set countably infinite.

3. (iii) If X denote the random variable equals to the number of marks scored by a
student in a subject of an examination, then X(S) ={0, 1, 2, 3, . . . . 100}
Thus, X is a DRV, Discrete Random Variable.

4. (iv) In an experiment, if the results turned to be a subset of the non — zero

integers, Then it may be treated as a Discrete Random Variable.
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Examples of Continuous Random Variable:

1. Let X denote the random variable equals the speed of a moving car, say, from a
destination A to another location B, then it is known that speedometer indicates
the speed of the car continuously over a range from O up to 160 KM per hour.
Therefore, X is a CRV, Continuously Varying Random Variable.

2. Let X denotes the monitoring index of a patient admitted in ICU in a good
hospital. Then it is a known fact that patient’s condition will be watched by the
doctors continuously over a range of time. Thus, X is a CRV.

3. Let X denote the number of minutes a person has to wait at a bus stop in
Bangalore to catch a bus, then it is true that the person has to wait anywhere
from O up to 20 minutes (say). Will you agree with me? Since waiting to be done
continuously, random variable in this case is called as CRV.

4. Results of any experiments accompanied by continuous changes at random over

a range of values may be classified as a continuous random variable.
Probability function/probability mass function f x. =P X =x, of a discrete
random variable:

Let X be a random variable taking the values, say X: X, X, X; . . .X,
then f x, =P X =x; is called as probability mass function or just probability function

of the discrete random variable, X. Usually, this is described in a tabular form:

X = X; X, X, X4 . . . X

fx, |PC<X<5Ff x |fx, |f X : : : f x,

Note: When X is a discrete random variable, it is necessary to compute

f x. =P X=x, foreachi=1, 2, 3. . n. This function has the following
properties:

° f X; >0

° o<f X; <1
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o Z f x =1
On the other hand, X is a continuous random variable, then its probability function will
be usually given or has a closed form, given as f (x) = P(X = x) where x is defined over

a range of values., it is called as probability density function usually has some standard
form. This function too has the following properties:

e f(x)>0
e 0<f(x)<1
o Tf(x):l.

—0o0

To begin with we shall discuss in detail, discrete random variables and its distribution

functions. Consider a discrete random variable, X with the distribution function as

given below:
X =X; X X, X, : : : X,
f x fx | f x f X, : - - fox,

Using this table, one can find probability of various events associated with X. For
example,
o P x<sX<x; =P X=X, +P X=X, +upto+P X=X,

i+1

=f x +f x, +f x,, +upto+f x;,, +f x

e P X <X<X; =P X=x%x, +P X=X, + ..+P X=X,

=f x,, +f X, +tupto+f x,,

i1 i+2
e P X>x; =1-P X<Xx;, =1- P X=X, +P X=X, upto+P X=X,
The probability distribution function or cumulative distribution function is given as
F(x)=P(X<x,) =P X=x, +P X=X, + upto+P X =X,

It has the following properties:

e F(x)=0
e 0<F(x)<1
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e When x; <x; thenF x; <F Xx; i.e.litis a strictly monotonic increasing function.

e when X — oo, F(X) approaches 1
e when X — —0, F(X) approaches 0

A brief note on Expectation, Variance, Standard Deviation of a Discrete Random

Variable:
e EX)=Yx-f x
i=1
e E X2 =ixi2-f X,
i=1

e Var(X)=E X? - E(X)*

ILLUSTRATIVE EXAMPLES:

1. The probability density function of a discrete random variable X is given
below:

X: 0 1 2 3 4 5 6

fx : Kk 3k 5k 7k 9k 11k 13k

Find (i) k; (i) F(4) ; (iii) P(X =5); (iv) P(2< X <5) (v) E(X) and (vi) Var (X).
Solution: To find the value of k, consider the sum of all the probabilities which equals

1
to 49k. Equating this to 1, we obtain K = 4—9 Therefore, distribution of X may now be

written as
X: 0 1 2 3 4 5 6
fx. L 8 5 7.9 u B
' 49 49 49 49 49 49 49

Using this, we may solve the other problems in hand.

F(4)=P[X <4]= P[X =0] + P[X =1]+P[X =2]+ P[X=3]+P[X=4]=%.
24
P[X 25]= P[X =5] + P[X =6]="_
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P[2< X <5]=P[X =2]+P[X =3]+P[X =4] = Z—é Next to find E(X), consider

E(X)=in-f X, =2—093. To obtain Variance, it is necessary to compute
2 2 973 . . : :
E X =in -f X =79 Thus, Variance of X is obtained by using the

2
relation, Var(X) = E X? — E(X) ° =%_(@) _
49 49

2. Arandom variable, X, has the following distribution function.
X: -2 -1 0 1 2 3
fx : 0.1 k 0.2 2k 0.3 k

Find (i) k, (i) F(2), (i) P(-2<X <2), (iv) P(-1< X <£2), (v) E(X), Variance.
Solution: Consider the result, namely, sum of all the probabilities equals 1,

0.1+k +0.2+2k+0.3+k =1 Yields k = 0.1. In view of this, distribution function of X
may be formulated as

X: -2 -1 0 1 2 3
fox : 0.1 0.1 0.2 0.2 0.3 0.1

Note that F(2)=P[X <2]=P[X =-2]+P[X =-1]+P[X =0]+P[X =1]+P[X =2]
=0.9. The same also be obtained using the result,

F(2) = P[X<2] =1-P[X<1] =1— P[X =-2]+P[X =-1]+P[X =0] =0.6.

Next, P(-2< X <2)=P[X =-1]+P[X =0]+P[X =1]=0.5.

Clearly, P(-1<X <2) =0.7. Now, consider E(X)=) x,-f x, =0.8.

Then E X? =Y x?-f x, =2.8. Var(X)=E X? - E(X) ° =2.8-0.64 = 2.16.

A DISCUSSION ON A CONTINUOUS RANDOM VARIABLE
AND IT’S DENSITY FUNCTION:

Consider a continuous random variable, X. Then its probability density is usually given

in the form of a function f(x) with  the following properties.

() F(x)>0, (ii)0<f(x)<1 and (iii) wjf(x) dx=1.
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Using the definition of f(x), it is possible to compute the probabilities of various events

associated with X.

. P(asxgb)zl]f(x)dx, P(a<Xsb)=l]f(x)dx
o P(a<X<b)=t]f(x)dx, F(x):P(sz):i[f(x)dx

. E(X)=O]x~f(x)dx, E X? = [x*f(x)dx

e Var(X)=E X? - E(X)*
e P(a<X<b)=F(b)-F(a)

dF(x)
dx
SOME STANDARD DISTRIBUTIONS OF A DISCRETE RANDOM VARIABLE:

Binomial distribution function: Consider a random experiment having only two

o f(X)= ,If the derivative exists

outcomes, say success (S) and failure (F). Suppose that trial is conducted, say, n
number of times. One might be interested in knowing how many number of times
success was achieved. Let p denotes the probability of obtaining a success in a single
trial and g stands for the chance of getting a failure in one attempt implying that p + q =
1. If the experiment has the following characteristics;

e the probability of obtaining failure or success is same for each and every trial

e trials are independent of one another

e probability of having a success is a finite number, then

We say that the problem is based on the binomial distribution. In a problem like this,
we define X as the random variable equals the number of successes obtained in n trials.
Then X takes the values 0, 1, 2, 3 ... up to n. Therefore, one can view X as a

discrete random variable. Since number of ways of obtaining k successes in n trials
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|
n s therefore, binomial probability function may be

. . [n
may be achieved |n(kj=m

n
formulated as b(n, p,k) = [k) pkq" .

[llustrative examples:

1. Itis known that among the 10 telephone lines available in an office, the chance
that any telephone is busy at an instant of time is 0.2. Find the probability that (i)
exactly 3 lines are busy, (ii) What is the most probable number of busy lines and
compute its probability, and (iii) What is the probability that all the telephones are
busy?

Solution:

Here, the experiment about finding the number of busy telephone lines at an instant of
time. Let X denotes the number of telephones which are active at a point of time, as
there are n = 10 telephones available; clearly X takes the values right from O up to 10.
Let p denotes the chance of a telephone being busy, then it is given that p = 0.2, a finite
value. The chance that a telephone line is free is g = 0.8. Since a telephone line being
free or working is independent of one another, and since this value being same for each
and every telephone line, we consider that this problem is based on binomial

distribution. Therefore, the required probability mass function is

10
e b(10,0.2,Kk) =[k J-(o.z)k -(0.8)"% Wherek=0,1,2...10.

10
(i) To find the chance that 3 lines are busy i.e. P[X = 3] = b(10,0.2,3) =[3 ]-(0.2)3-(0.8)7
(i) With p = 0.2, most probable number of busy lines isn-p=10-0.2=2. The
e . 10 2 8
probability of this number equals b(10,0.2,2) = 5 -(0.2)°-(0.8)".

(i) The chance that all the telephone lines are busy =(0.2)"°.
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2. The chance that a bomb dropped from an airplane will strike a target is 0.4. 6
bombs are dropped from the airplane. Find the probability that (i) exactly 2
bombs strike the target? (ii) At least 1 strikes the target. (iii) None of the bombs
hits the target?

Solution:  Here, the experiment about finding the number of bombs hitting a target.
Let X denotes the number of bombs hitting a target. As n = 6 bombs are dropped from
an airplane, clearly X takes the values right from O up to 6.

Let p denotes the chance that a bomb hits a target, then it is given that p = 0.4, a finite
value. The chance that a telephone line is free is g = 0.6. Since a bomb dropped from
airplane hitting a target or not is an independent event, and the probability of striking a
target is same for all the bombs dropped from the plane, therefore one may consider
that hat this problem is based on binomial distribution. Therefore, the required
probability mass function is b(10,0.4,k) = G(O)-(OA)" -(0.8)%°.

() To find the chance that exactly 2 bombs hits a target,

i.e. P[X=2] =b(10,0.4,2) = [120}(0.4)2 -(0.8)*

(i) Next to find the chance of the event, namely, at least 1 bomb hitting the target; i.e.
P[X 21]=1-P[X <1]=1-P[X =0] =1-(0.6)°.

(i) The chance that none of the bombs are going to hit the target is P[X=0] = (0.6)°.

A discussion on Mean and Variance of Binomial Distribution Function

Let X be a discrete random variable following a binomial distribution function with the

n
probability mass function given by b(n, p,k) =(k) p“q" ™. Consider the expectation of X,

namely,
e =3k [ | prar
=2
k=n 1
B VPR LL pkq"™
k=0 k I n - k !
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_ < n(n-1)! ppk—lq(n—1+l—k)
= (k-D)! n-1+1-k !

k=n n-1)! (ke

— np- | ( 2 ' pk-Igl(n-i-(k-D]
& (D0 -1 (kD]
k=1 n-1)! (e

=np- ( ) pk 1q[( 1-(k-1)]

o (K=D![(n-D)=(k-1)1]
= npkzn(n 1Jp qln-i-ten)

=np-(p+a)™"
=npasp+q=1
Thus, expected value of binomial distribution function is np.

To find variance of X, consider

2_k=n2n k yn—k
E X _Zk-k p*q

X
3

k(k 1+1)- ( ]p q"™

k=n n| k=n n
— k k 1 k n—k+ k' k N—k
ko( )—k'n klpq 2 ()pq

5 n(n-1)(n-2)! 2 k=2 [(n-2—(k—2
k=o(k—Z)![(n—Z)!_(k_Z)!]pp gin-2--21 4 E (X))

S (n-2)! k=2 [(n—2—(k=2)]
R L Iy owr T owe L P

_ _ Ay (n-2)! k=2 [(n—2—(k=2)]
SO L - k—n” ¢ TP

=n(n-p’ Z(k 2] gl np

=n(n-1)p°(p+q)">+np. Since p +q = 1, it follows that

=n(n=1)p>+np
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Therefore, Var(X)=E X?> - E(X)°
=n(n-1)p>+np— np °
=n’p>—=np’ +np-n’p’

=np-np* =np(l- p) =npq. Hence, standard deviation of binomially

distributed random variable is o =/Var(X) = \/npq .

A DISCUSSION ON POISSON DISTRIBUTION FUNCTION

This is a limiting case of the binomial distribution function. It is obtained by considering
that the number of trials conducted is large and the probability of achieving a success in
a single trial is very small i.e. here n is large and p is a small value. Therefore, Poisson

distribution may be derived on the assumption that n—o0 and p—> 0. It is found that

Poisson distribution function is

et Ak

p(4,k) = Here, A=npandk =0, 1, 2, 3, ....©

Expectation and Variance of a Poisson distribution function

=0 _'{ﬂk
Consider E(X) = Zk p(4,k) _kz;k o
B k=00 e—lﬂﬂk—l
ko (k=D)!
k=00 ﬂ,k_l k=00 k-1
A-et. : Z e*, therefore it follows that for a
i (k=1)! (k-1
Poisson distribution function, E(X)=A4. Next to find Variance of X, first consider
k=00
E X* =) k?-p(4,k)
k=0
_ k=00 k2 ' e—ﬂ./lk
k=0 k!
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X

—,1 k
S k(k—1+1)- 52
k=0 k!

=
Il

© —l k k=00 —l k
k(k-1)< '1 Z ’1
k=

k= —lk
= k(k n® ’7“

+E(X)

=A% %*+4. Thus, E X? =41%+ 4. Hence, Variance of the Poisson

distribution function isVar(X)=E X? - E(X) °=A. The standard deviation is

o= Var(X) = Ja

lllustrative Examples:

1. It is known that the chance of an error in the transmission of a message
through a communication channel is 0.002. 1000 messages are sent
through the channel; find the probability that at least 3 messages will be
received incorrectly.

Solution: Here, the random experiment consists of finding an error in the transmission
of a message. It is given that n = 1000 messages are sent, a very large number, if p
denote the probability of error in the transmission, we have p = 0.002, relatively a small
number, therefore, this problem may be viewed as Poisson oriented. Thus, average
number of messages with an error isA =np=2. Therefore, required probability function
o2k
k!
probability of the event, namely,
P(X23)=1-P(X <3)=1-{P[X =0]+ P[X =1]+ P[X =2]}

fge]

k=0

is=p(2,k) =

, k=012 3 ...0. Here, the problem is about finding the
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=1-e? 1+2+2 =1-5e7
2. A car hire —firm has two cars which it hires out on a day to day basis. The
number of demands for a car is known to be Poisson distributed with mean
1.5. Find the proportion of days on which (i) There is no demand for the car
and (ii) The demand is rejected.
Solution: Here, let us consider that random variable X as the number of persons or
demands for a car to be hired. Then X assumes the values 0, 1,2, 3. ... ... Itis given
that problem follows a Poisson distribution with mean, 4 =1.5. Thus, required probability
e *(1.5)
k!
(i) Solution to | problem consists of finding the probability of the event, namely

P[X=0]= e™°.

mass function may be written as p(1.5,k) =

(i) The demand for a car will have to be rejected, when 3 or more persons approaches

the firm seeking a car on hire. Thus, to find the probability of the event P[X >3].

2
Hence, P[X >3]=1-P{X <3]=1-P[X =0,1,2] =e** (1+1.5+ (1'25) J

lllustrative examples based on Continuous Random Variable and it’s Probability

Density Function

1. Suppose that the error in the reaction temperature, in oC, for a controlled

laboratory experiment is a R.V. X having the p.d.f

X2

—, -1<x<?2
f(x)=13

0 elsewhere.

Find (i) F(x) and (ii) use it to evaluate P (0<X<1).
Solution: Consider F(x)=P(X <x)= _[ f (t)dt

Case (i) x < -1 F(x)= j f(t)dt = Xj0dt =0
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Case (ii) -1<x< 2

F(x)= jf(t)dt jf(t)dt+jf(t)dt 0+ j—dt

3

9

-1

Case (i) x=2 F(x)= ]'f(t)dt=_jf(t)dt+ jf(t)dt+xj‘f(t)dt

3
=0+ I—dt O—t— %=1. Therefore,
-1
0, x<-1
3
F(x)= X9+1 —1<x<2
1 X > 2.

2kxe™, forx>0

2. If the p.d.fof a R.V. X having is given by f(x)=
0, for x<0.

Find (a) the value of k and (b) distribution function F(X) for X.

WKT Ikae‘xzdx =1
0

= [ke"dt=1(putx’ =t)
0

= ke[’ =1
= (0+k)=1=k=1

F(x)=P(X <x)= Xjf(t)dt:O, if x<0
- ojf(t)olt+xjf(t)o|t, if x>0

=0+ [2te™dt = (—e7)y =(1-e™).
0
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F(x) = l1-e 7, for_sz
0, otherwise.

3. Find the C.D.F of the R.V. whose P.D.F is given by

, forO<x<1

NI N X

<
F(x) =+ , forl<x<?2

w
|
X

, for2<x<3

o

, otherwise

X 0
Solution: Case (i) x<0 F(x)= [f(t)dt= [odt=0

X 0 X 2
Case (i) 0<x<1 F(x)= [f(dt= jomuj%olt:)‘T
— —0o0 0

Case (iii)1<x<2 F(x)= ]‘ f(t)dt + ]'f(t)dt+ ]f(t)dt

—o0

2x-1
4

ot 1
=0+ I—dt+ I—dt=
02 l2
0 1 2 X
Case (iv)2<x<3 F(x)= [f(t)dt+ [f(t)dt+ [f(t)dt+ [F(t)dt
—0 0 1 2
6x—x*=5

4

Case (v) for x >3, F(x) = 1. Therefore,

F(x)=

[0, if x<0
2
x if 0<x <1
4
F(x)=1 2X4‘1, if 1<x < 2
— 2 —
OX=X"=5 i pex<3
4
L 1, if x>3
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4. The trouble shooting of an I.C. is a R.V. X whose distribution function is given

0, forx<3
by F(x)= 1—i, for x>3.
X

If X denotes the number of years, find the probability that the I.C. will work
properly

(@) less than 8 years

(b) beyond 8 years

(c) anywhere from 5 to 7 years

(d) Anywhere from 2 to 5 years.

0, forx<3

Solution: We have F(x) = [ f (t)dt =
0

1-—, for x>3.
X

8
For (a): P(x <8) = [ f(t)it =1-§2=0.8594
0
For Case (b): P(x >8) =1 - P(x< 8) = 0.1406
For Case (c): P (5< X< 7) = F (7) = F (5) = (1-9/7%) — (1-9/5%) = 0.1763

For Case (d): P (2<x<5)=F(B)-F(2) = (1-9/52) -(0)=0.64

5. A continuous R.V. X has the distribution function is given by

0, x<1
F(x)=1c(x-1)", 1<x<3
1, X > 3.

Find c and the probability density function.

Solution: We know that f(x)= (;j—X[F(x)]

0, x<1
f(x)=44c(x-1)°, 1<x<3
0, X> 3.

—1)3 <x<
F(x) = 4c(x—1)°, l_x__3
0, otherwise
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Since we must have I f(x)dx =1,

—00

3 3

[4c(x=1)3dx=1 = [c(x—1)4]1 -1
1
=16c=1 .'.c=i

16

Using this, one can give the probability function just by substituting the value of

c above.

A discussion on some standard distribution functions of continuously distributed
random variable:

This distribution, sometimes called the negative exponential distribution, occurs in
applications such as reliability theory and queuing theory. Reasons for its use include its
memory less (Markov) property (and resulting analytical tractability) and its relation to
the (discrete) Poisson distribution. Thus, the following random variables may be
modeled as exponential:
e Time between two successive job arrivals to a computing center (often called
inter-arrival time)
e Service time at a server in a queuing network; the server could be a resource
such as CPU, I/O device, or a communication channel
e Time to failure of a component i.e. life time of a component
¢ Time required repairing a component that has malfunctioned.

. .. . . . . ,le_’lx x>0,
The exponential distribution function is given by, f(x)=
0, otherwise.

The probability distribution function may be written as F(x)= }( f(x)dx which may be

—00

1™ if0<x <

F(x)=
computed as {o, otherwise.
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Mean and Variance of Exponential distribution function

o0
Consider mean (p)= | x-f(x)x - T x-he~Mx

I
8
o

o0}
Consider E X2 = | x2-f(x)dx =°fx2,xe—xxdx
0

—o0
A A w [
—AX —AX —AX
:kxze —2x62+263 :i
—)\, _}\’ _)\‘ 0 }\12
1
Var(X)=E X2 - E(X)2=—2.
A

1
The standard deviation is o = ,/Var( X) = n

lllustrative examples based on Exponential distribution function

1. The duration of telephone conservation has been found to have an exponential
distribution with mean 2 minutes. Find the probabilities that the conservation may
last (i) more than 3 minutes, (ii) less than 4 minutes and (iii) between 3 and 5
minutes.

Solution: Let X denotes the random variable equals number of minute’s conversation

may last. It is given that X is exponentially distributed with mean 3 minutes. Since for

e : : 1 1
an exponential distribution function, mean is known to be 2 (o) n= 2orA=05. The

05e7 99X ifx >0,

Probability density function can now be written as f(x) = .
0, otherwise.

(i) To find the probability of the event, namely,

2 05
P[X >3] =1-P[X <3]=1-[0.5e"Xdx
0
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4
(i) To find the probability of the event, namely P[X <4] = I0.5e_0'5xdx.
0

5
(iii) To find the probability of the event P[3 < X < 5] = [ 0.5e~0-2Xdx .
3

2. in a town, the duration of a rain is exponentially distributed with mean equal to
5 minutes. What is the probability that (i) the rain will last not more than 10
minutes (ii) between 4 and 7 minutes and (iii) between 5 and 8 minutes?

Solution: An identical problem to the previous one. Thus, may be solved on

similar lines.

Discussion on Gaussian or Normal Distribution Function

Among all the distribution of a continuous random variable, the most popular and widely
used one is normal distribution function. Most of the work in correlation and regression
analysis, testing of hypothesis, has been done based on the assumption that problem
follows a normal distribution function or just everything normal. Also, this distribution is
extremely important in statistical applications because of the central limit theorem,
which states that under very general assumptions, the mean of a sample of n mutually

Independent random variables (having finite mean and variance) are normally
distributed in the limit n—oo0 . It has been observed that errors of measurement often
possess this distribution. Experience also shows that during the wear — out phase,
component life time follows a normal distribution. The purpose of today’s lecture is to

have a detailed discussion on the same.

The normal density function has well known bell shaped curve which will be shown on

1 j{ﬂf

o227

the board and it may be given as f(x)= e’ , ~0<X<o
where—o < <o and o >0. It will be shown that x and o are respectively denotes

mean and variance of the normal distribution. As the probability or cumulative
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distribution function, namely, F(x)=P(X <Xx) = j f (x) dx has no closed form, evaluation

—00

of integral in an interval is difficult. Therefore, results relating to  probabilities are
computed numerically and recorded in special table called normal distribution table.

However, It pertain to the standard normal distribution function by choosing # and o

z 2
and their entries are values of the function, Fz(z):%je Ve dt. Since the
T —0
standard normal distribution IS symmetric, it can be shown

1 -7
et Fu(-2) == [fmdt =1-r@)

Thus, tabulations are done for positive values of z only. From this it is clear that

e P@as<X<h)=F(b)-F(a)
e Pa<X<b)=F()-F(a)
e P(@a<X)=1-P(X <a)=1-F(a)

Note: Let X be a normally distributed random variable taking a particular value, x, the

corresponding value of the standardized variable is given by z = XZH, Hence,
O

F(X)=P(X <X)=F, (X;ﬂj
lllustrative Examples based on Normal Distribution function:
1. In a test on 2000 electric bulbs, it was found that the life of a particular make
was normally distributed with an average life of 2040 hours and standard
deviation of 60 hours. Estimate the number of bulbs likely to burn for (a) more
than 2150 hours, (b) less than 1940 hours and (c) more than 1920 hours and but
less than 2060 hours.

Solution:
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Here, the experiment consists of finding the life of electric bulbs of a particular make
(measured in hours) from a lot of 2000 bulbs. Let X denotes the random variable equals

the life of an electric bulb measured in hours. It is given that X follows normal
distribution with mean 4 = 2040 hours and o = 60 hours .
First to calculate P(X > 2150 hours) =1-P(X < 2150)

=1- FZ 1.8333 =1-0.9664 = 0.0336

Therefore, number of electrical bulbs with life expectancy more than 2150 hours is
0.0336 x 2000 ~ 67 .

Next to compute the probability of the event; P(X <1950 hours)=F, (1950_2()40}

60

=F, -15 =1-F,(L5) =1-0.9332 = 0.0668

Therefore, in a lot of 2000 bulbs, number of bulbs with life expectancy less than 1950
hours is 0.0668 * 2000 = 134 bulbs.
Finally, to find the probability of the event, namely,

P(1920 < X < 2060) = F (2060) — F (1920)

(2060—2040) (1920-2040]
- | 222V | | eETeEY
z 60 z 60

= FZ 0.3333 —FZ -2
= FZ 0.3333 -1+ FZ 2

=0.6293-1+0.9774 = 0.6065.
Therefore, number of bulbs having life anywhere in between 1920 hours and 2060
hours is 0.6065 * 2000 = 1213.

2. Assume that the reduction of a person’s oxygen consumption during a period
of Transcendenta Meditation (T.M.) is a continuous random variable X normally
distributed with mean 37.6 cc/min and S.D. 4.6 cc/min. Determine the probability
that during a period of T.M. a person’s oxygen consumption will be reduced by (a)
at least 44.5 cc/min (b) at most 35.0 cc/min and (c) anywhere from 30.0 to 40.0

cc/min.
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Solution: Here, X a random variable is given to be following normal distribution

function with mean.P 4 =37.6 and 0 =4.6. Let us consider that X as the random equals

the rejection of oxygen consumption during T M period and measured in cc/min.

(i) To find the probability of the event P[X >44.5]=1- F(44.5)

1o, (#5-378)
4.6

=1-F, 15

=1-0.9332=0.0668.
(ii) To find the probability of the event, P[X <35.0] = F(33.5)

_F [35.0 - 37.6)

46
=F, —0.5652
=1-F, 0.5652

=1-0.7123=0.2877 .
(i) Consider the probability of the event P[30.0 < X < 40.0]
= F(40)-F(30)

_F (40—37.6]_ F (30—37.6}
4.6 4.6

= F,(0.5217) - F, (-1.6522)
= 0.6985—1+0.9505 = 0.6490

3. An analog signal received at a detector (measured in micro volts) may be
modeled as a Gaussian random variable N (200, 256) at a fixed point in time.
What is the probability that the signal will exceed 240 micro volts? What is the
probability that the signal is larger than 240 micro volts, given that it is larger

than 210 micro volts?

DEPT. OF MATHS/SIBIT Page 112

www.rejinpaul.com



www.rejinpaul.com

ENGG. MATHEMATICS-IV 10MATA41

Solution: Let X be a CRV denotes the signal as detected by a detector in terms of
micro volts. Given that X is normally distributed with mean 200 micro volts and variance
256 micro volts. To find the probability of the events, namely, (i) P (X > 240 micro volts]
and (ii) P[X > 240 micro volts | X > 210 micro volts].

Consider P[X >240]=1-P[X <240]

=1- F(240)

L FZ(240—200)
16

=1-F, 25

=1-0.9938
=0.00621

Next consider P[X > 240 | X > 210]

_ P[X >240 and X > 210]
- P[X >210]

_ P[X>240] 1-P[X <240]
~ P[X >210] 1-P[X <210]

240200
1-F | S22
~ [ 16 } _1-F,(25)
| [210-200] 1-F,(0.625)
16
_1-0.9939 _ 1 ac
1-0.73401
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Unit VIII
Sampling Theory

Statistical Inference is a branch of Statistics which uses probability concepts to deal with

uncertainty in decision making. There are a number of situations where in we come

across problems involving decision making. For example, consider the problem of

buying 1 kilogram of rice, when we visit the shop, we do not check each and every rice

grains stored in a gunny bag; rather we put our hand inside the bag and collect a

sample of rice grains. Then analysis takes place. Based on this, we decide to buy or

not. Thus, the problem involves studying whole rice stored in a bag using only a sample

of rice grains.

This topic considers two different classes of problems

1. Hypothesis testing — we test a statement about the population parameter from

which the sample is drawn.

2. Estimation — A statistic obtained from the sample collected is used to estimate the
population parameter.

First what is meant by hypothesis testing?

This means that testing of hypothetical statement about a parameter of population.

Conventional approach to testing:

The procedure involves the following:
1. First we set up a definite statement about the population parameter which we call it

as null hypothesis, denoted by H,. According to Professor R. A. Fisher,

Null Hypothesis is the statement which is tested for possible rejection under the

assumption that it is true. Next we set up another hypothesis called alternate

statement which is just opposite of null statement; denoted by H, which is just
complimentary to the null hypothesis. Therefore, if we start with H,:ux =, then
alternate hypothesis may be considered as either one of the following statements;

Hitu#p, or H:ipu>p orH pu<up,.
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As we are studying population parameter based on some sample study, one can not do
the job with 100% accuracy since sample is drawn from the population and possible
sample may not represent the whole population. Therefore, usually we conduct
analysis at certain level of significance (lower than 100%. The possible choices include
99%, or 95% or 98% or 90%. Usually we conduct analysis at 99% or 95% level of

significance, denoted by the symbol « . Wetest H, against H, at certain level of
significance. The confidence with which a person rejects or accepts H, depends upon

the significance level adopted. It is usually expressed in percentage forms such as 5%
or 1% etc. Note that when « is set as 5%, then probability of rejecting null hypothesis
when it is true is only 5%. It also means that when the hypothesis in question is
accepted at 5% level of significance, then statistician runs the risk of taking wrong
decisions, in the long run, is only 5%. The above is called Il step of hypothesis testing.
Critical values or Fiducial limit values for a two tailed test:

SI.No |Level of Theoretical Value
significance
1 a=1% 2.58
2 a=2% 2.33
3 a=5% 1.96

Critical values or Fiducial limit values for a single tailed test (right and test)

Tabulated value a=1% a=5% a=10%
Right — tailed test 2.33 1.645 1.28
Left tailed test -2.33 -1.645 -1.28

Setting a test criterion: The third step in hypothesis testing procedure is to construct a

test criterion. This involves selecting an appropriate probability distribution for the
particular test i.e. a proper probability distribution function to be chosen. Some of the

distribution functions used are t, F, when the sample size is small (size lower than 30).
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However, for large samples, normal distribution function is preferred. Next step is the
computation of statistic using the sample items drawn from the population. Usually,
samples are drawn from the population by a procedure called random, where in each
and every data of the population has the same chance of being included in the sample.
Then the computed value of the test criterion is compared with the tabular value; as
long the calculated value is lower then or equal to tabulated value, we accept the null
hypothesis, otherwise, we reject null hypothesis and accept the alternate hypothesis.
Decisions are valid only at the particular level significance of level adopted.

During the course of analysis, there are two types of errors bound to occur. These are
(i) Type = | error and (ii) Type - Il error.

Type — | error: This error usually occurs in a situation, when the null hypothesis is

true, but we reject it i.e. rejection of a correct/true hypothesis constitute type | error.
Type — 1l error: Here, null hypothesis is actually false, but we accept it. Equivalently,

accepting a hypothesis which is wrong results in a type — Il error. The probability of

committing a type — | error is denoted by « where
a = Probability of making type | error = Probability [Rejecting H, | H, is true]
On the other hand, type — Il error is committed by not rejecting a hypothesis when it is

false. The probability of committing this error is denoted by g . Note that
£ = Probability of making type Il error = Probability [Accepting H, | H, is false]

Critical region:

A region in a sample space S which amounts to Rejection of H, is termed as critical
region.

One tailed test and two tailed test:

This depends upon the setting up of both null and alternative hypothesis.

A note on computed test criterion value:

1. When the sampling distribution is based on population of proportions/Means,
then test criterion may be given as

Expected results - Observed results
Standard error of the distribution

cal —
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Application of standard error:

1. S.E. enables us to determine the probable limit within which the population

parameter may be expected to lie. For example, the probable limits for
population of proportion are given by p £3,/pgn . Here, p represents the chance

of achieving a success in a single trial, g stands for the chance that there is a
failure in the trial and n refers to the size of the sample.
2. The magnitude of standard error gives an index of the precision of the

parameter.

ILLUSTRATIVE EXAMPLES

1. A coin is tossed 400 times and the head turned up 216 times. Test the

hypothesis that the coin is un- biased?
Solution: First we construct null and alternate hypotheses set up H, : The coin is not
a biased one. Setup H, : Yes, the coin is biased. As the coin is assumed be fair and

it is tossed 400 times, clearly we must expect 200 times heads occurring and 200 times

tails. Thus, expected number of heads is 200. But the observed result is 216. There is

a difference of 16. Further, standard error is o =npq. With p =%, q=%and n =

difference  [216-240]
standard error 10 |

400, clearlyo =10. The test criterionis z, = 1.6

If we choose a =5% , then the tabulated value for a two tailed test is 1.96. Since, the
calculated value is lower than the tabulated value; we accept the null hypothesis that
coin is un — biased.

2. A person throws a 10 dice 500 times and obtains 2560 times 4, 5, or 6. Can this
be attributed to fluctuations in sampling?

Solution: As in the previous problem first we shall set up H,: The die is fair and H,:
The die is unfair. We consider that problem is based on a two — tailed test. Let us
choose level of significance as a=5% then, the tabulated value is 1.96. Consider

Expected value - observed result| .
; here, as the dice is tossed
standard error |

computing test criterion, z

cal —

by a person 5000 times, and on the basis that die is fair, then chance of getting any of
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the 6 numbers is 1/6. Thus, chance of getting either 4 or 5, or 6 is p = %. Also, q = %.

With n = 5000, standard error, o=.npq = 35.36. Further, expected value of

obtaining 4 or 5 or 6 is 2500. Hence, z_ =

cal

‘2500 - 2560

=1.7 which is lower than 1.96.
35.36

Hence, we conclude that die is a fair one.

3. A sample of 1000 days is taken from meteorological records of a certain
district and 120 of them are found to be foggy. What are the probable limits to the
percentage of foggy days in the district?

Solution: Let p denote the probability that a day is foggy in nature in a district as

reported by meteorological records. Clearly, p =%=0.12 and g = 0.88. With n =

1000, the probable limits to the percentage of foggy days is given by p+3,/pgn.
Using the data available in this problem, one obtains the answer as

0.12+3./0.12-88-1000 . Equivalently, 8.91% to 15.07%.

4. A die was thrown 9000 times and a throw of 5 or 6 was obtained 3240 times.
On the assumption of random throwing, do the data indicate that die is biased?
(Model Question Paper Problem)

Solution: We set up the null hypothesis as H, : Die is un - biased. Also,
H,:Dieisbiased.. Let us take level of significance as a=5% . Based on the

assumption that distribution is normally distributed, the tabulated value is 1.96. The
chance of getting each of the 6 numbers is same and it equals to 1/6 therefore chance

of getting either 5 or 6 is 1/3. In a throw of 9000 times, getting the numbers either 5 or

6 is %XQOOO =3000. Now the difference in these two results is 240. With p=1/3, q =

2/3, n = 9000, SE.=/npg =44.72. Now consider the test criterion z =—D|f;elr5ence =
240 L , _
=127 =5.367 which is again more than the tabulated value. Therefore, we reject null

hypothesis and accept the alternate that die is highly biased.

Tests of significance for large samples:
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In the previous section, we discussed problems pertaining to sampling of attributes. Itis
time to think of sampling of other variables one may come across in a practical situation
such as height weight etc. We say that a sample is small when the size is usually lower
than 30, otherwise it is called a large one.

The study here is based on the following assumptions: (i) the random sampling
distribution of a statistic is approximately normal and (ii) values given by the samples

are sufficiently close to the population value and can be used in its place for calculating

— O
standard error. When the standard deviation of population is known, then S.E (X) = —%

in

where o, denotes the standard deviation of population. When the standard deviation of the

population is unknown, then S.E (X) = 2 where & is the standard deviation of the

in

sample.

Fiducial limits of population mean are:

95% fiducial limits of population mean are X +1.96-L

n
o : - . X -

99% fiducial limits of population mean are X + 2.58% . Further, test criterion z,, = ‘S—Eﬂ

n E.

ILLUSTRATIVE EXAMPLES
1. A sample of 100 tyres is taken from a lot. The mean life of tyres is found to
be 39, 350 kilo meters with a standard deviation of 3, 260. Could the

sample come from a population with mean life of 40, 000 kilometers?
Establish 99% confidence limits within which the mean life of tyres is
expected to lie.

Solution: First we shall set up null hypothesis, H,: #=40,000, alternate hypothesis as
H, : ##40,000. We consider that the problem follows a two tailed test and

chosea=5%. Then corresponding to this, tabulated value is 1.96. Consider the

X-p

expression for finding test criterion, z_, :‘E' Here, £=40, 000, x =39, 350 and
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o=3,260,n=100. SE = -2 =320 _ 356 Thus 2, =1.994. As this value is slightly
Jn 4100

greater than 1.96, we reject the null hypothesis and conclude that sample has not come
from a population of 40, 000 kilometers.

The 99% confidence limits within which population mean is expected to lie is given as
X + 2.58xS.E. i.e. 39,350+2.58x326 = (38,509, 40, 191) .

2. The mean life time of a sample of 400 fluorescent light bulbs produced by a
company is found to be 1, 570 hours with a standard deviation of 150
hours. Test the hypothesis that the mean life time of bulbs is 1600 hours
against the alternative hypothesis that it is greater than 1, 600 hours at 1%
and 5% level of significance.

Solution: First we shall set up null hypothesis, H, : # =1,600 hours , alternate hypothesis
as H,:u>1600 hours. We consider that the problem follows a two tailed test and

chosea=5%. Then corresponding to this, tabulated value is 1.96. Consider the

XM Here, u=1, 600, X =1, 570, n = 400,

expression for finding test criterion, z, :‘

o =150 hours so that using all these values above, it can be seen that z_, =4.0 which is

really greater than 1.96. Hence, we have to reject null hypothesis and to accept the
alternate hypothesis.

Test of significance of difference between the means of two samples
Consider two populations P1 and P2. Let S, and S, be two samples drawn at random

from these two different populations. Suppose we have the following data about these
two samples, say

Samples/Data |Sample size Mean Standard Deviation

Sy n, X, 2
S, n, X_2 0,
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then standard error of difference between the means of two samples S, and S,

2 2 .
. o) L Difference of sample mean
is S.E= /—1+ﬁ and the test criterionis Z, = CTENCE OF Sample MEANS - 1 rest
nl n2

Standard error
of the analysis is same as in the preceding sections.

When the two samples are drawn from the same population, then standard error is

SE=0o i+i and test criterionis Z_, = Difference of sample means .
n, n, Standard error

When the standard deviations are un — known, then standard deviations of the two

2 2
fs S

samples must be replaced. Thus, SE= [++=% where s,and s, are standard
nl n2

deviations of the two samples considered in the problem.

ILLUSTRATIVE EXAMPLES
1. Intelligence test on two groups of boys and girls gave the following data:

Data Mean Standard Sample size
deviation

Boys 75 15 150

Girls 70 20 250

Is there a significant difference in the mean scores obtained by boys and girls?

Solution: We set up null hypothesis as H, : there is no significant difference between

the mean scores obtained by boys and girls. The alternate hypothesis is considered as
H,: Yes, there is a significant difference in the mean scores obtained by boys and girls.

We choose level of significance as a=5% so that tabulated value is 1.96.

. Difference of means
Considerz = . The standard error may be calculated as

Standard Error

2 2
SE= 1/£+£21.761, The test criterion is z_,= 570 2.84. As 2.84 is more than
150 250 1.761

1.96, we have to reject null hypothesis and to accept alternate hypothesis that there are
some significant difference in the mean marks scored by boys and girls.

2. A man buys 50 electric bulbs of “Philips” and 50 bulbs of “Surya”. He finds
that Philips bulbs give an average life of 1,500 hours with a standard deviation of
60 hours and Surya bulbs gave an average life of 1, 512 hours with a standard
deviation of 80 hours. Is there a significant difference in the mean life of the two
makes of bulbs?
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Solution: we set up null hypothesis, H;: there is no significant difference between the
bulbs made by the two companies, the alternate hypothesis can be set as H,: Yes,

and there could be some significant difference in the mean life of bulbs. Taking
a =1% and a=5%, the respective tabulated values are 2.58 and 1.96. Consider

2 2
standard error is S.E = 1/ﬂ+&:14.14 so that an|:w= 0.849. Since the
50 50 14.14

calculated value is certainly lower than the two tabulated values, we accept the
hypothesis there is no significant difference in the make of the two bulbs produced by
the companies.

A discussion on tests of significance for small samples

So far the problem of testing a hypothesis about a population parameter was based on
the assumption that sample drawn from population is large in size (more than 30) and
the probability distribution is normally distributed.  However, when the size of the
sample is small, (say < 30) tests considered above are not suitable because the
assumptions on which they are based generally do not hold good in the case of small
samples. IN particular, here one cannot assume that the problem follows a normal
distribution function and those values given by sample data are sufficiently close to the
population values and can be used in their place for the calculation of standard error.
Thus, it is a necessity to develop some alternative strategies to deal with problems
having sample size relatively small. Also, we do see a humber of problems involving
small samples. With these in view, here, we will initiate a detailed discussion on the
same.

Here, too, the problem is about testing a statement about population parameter; i.e. in
ascertaining whether observed values could have arisen by sampling fluctuations from
some value given in advance. For example, if a sample of 15 gives a correlation
coefficient of +0.4, we shall be interested not so much in the value of the correlation in
the parent population, but more generally this value could have come from an un —
correlated population, i.e. whether it is significant in the parent population. It is widely
accepted that when we work with small samples, estimates will vary from sample to
sample.

Further, in the theory of small samples also, we begin study by making an assumption
that parent population is normally distributed unless otherwise stated. Strictly, whatever
the decision one takes in hypothesis testing problems is valid only for normal
populations.

Sir William Gosset and R. A. Fisher have contributed a lot to theory of small samples.
Sir W. Gosset published his findings in the year 1905 under the pen name “student”.
He gave a test popularly known as “t — test” and Fisher gave another test known as “z —
test”. These tests are based on “t distribution and “z — distribution”.
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Student’s t - distribution function

Gosset was employed by the Guinness and Son, Dublin bravery, Ireland which did not
permit employees to publish research work under their own names. So Gosset adopted
the pen name “student” and published his findings under this name. Thereafter, the t —
distribution commonly called student’s t — distribution or simply student’s distribution.

The t — distribution to be used in a situation when the sample drawn from a population is
of size lower than 30 and population standard deviation is un — known. The t — statistic,

t, is defined as , X is the

y=n-1=12'® =(X;ﬂ}\/ﬁ where S =

sample mean, n isthe sample size, and x; are the data items.

The t — distribution function has been derived mathematically under the assumption of a
normally distributed population; it has the following form
t2) & :
ft)=C|1+— where C is a constant term and y = n - 1 denotes the number of
4
degrees of freedom. As the p.d.f. of a t — distribution is not suitable for analytical
treatment. Therefore, the function is evaluated numerically for various values of t, and
for particular values of y . The t — distribution table normally given in statistics text

books gives, over a range of values of y, the probability values of exceeding by chance

value of t at different levels of significance. The t — distribution function has a different
value for each degree of freedom and when degrees of freedom approach a large
value, t — distribution is equivalent to normal distribution function.

The application of t — distribution includes (i) testing the significance of the mean of a
random sample i.e. determining whether the mean of a sample drawn from drawn from
a normal population deviates significantly from a stated value (i.e. hypothetical value of
the populations mean) and (i) testing whether difference between means of two
independent samples is significant or not i.e. ascertaining whether the two samples
comes from the same normal population? (iii) Testing difference between means of two
dependent samples is significant? (iv) Testing the significance of on observed
correlation coefficient.

Procedures to be followed in testing a hypothesis made about the population
parameter using student’s t - distribution:

e As usual first set up null hypothesis,
e Then, set up alternate hypothesis,

e Choose a suitable level of significance,
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* Note down the sample size, n and the number of degrees of freedom,

« Compute the theoretical value, t, by using t— distribution table.

« t,, Vvalue is to be obtained as follows: If we setup a=5%=0.05, suppose y =9
then, t,,, is to be obtained by looking in 9throwandin the column a=0.025
(i.e. half of & = 0.05) .

cal —

L . X —
e The test criterion is then calculated using the formula, t —( S”].\/ﬁ

e Later, the calculated value above is compared with tabulated value. As long as
the calculated value matches with the tabulated value, we as usual accept the
null hypothesis and on the other hand, when the calculated value becomes more
than tabulated value, we reject the null hypothesis and accept the alternate
hypothesis.

ILLUSTRATIVE EXAMPLES
1. The manufacturer of a certain make of electric bulbs claims that his bulbs have
a mean life of 25 months with a standard deviation of 5 months. Random
samples of 6 such bulbs have the following values: Life of bulbs in months: 24,
20, 30, 20, 20, and 18. Can you regard the producer’s claim to valid at 1% level of
significance? (Given that t, =4.032 correspondingto y=5).

Solution: To solve the problem, we first set up the null hypothesis H, : # =25 months,
alternate hypothesis may be treated as H,:u <25 months. To set up a=1%, then

tabulated value corresponding to this level of significance is
i |oe1og ana s = 4-032 (4.032 value has been got by looking in the 5" row) . The test criterion

is given by t_, =(X;”].\/ﬁ where ¢ _

Consider
Xi x X -X X, X i
24 1 1
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26 3 9
30 7 49
20 23 -3 9
20 -3 9
18 -5 25
Total =138 - Total =102
Thus, S= % =204=4517and t_ = 255_1275‘\/5 =1.084. Since the calculated

value, 1.084 is lower than the tabulated value of 4.032; we accept the null hypothesis as
mean life of bulbs could be about 25 hours.

2. A certain stimulus administered to each of the 13 patients resulted in the
following increase of blood pressure: 5, 2, 8,-1, 3,0,-2,1,5,0, 4,6, 8. Canitbe
concluded that the stimulus, in general, be accompanied by an increase in the
blood pressure? (Model Question Paper Problem)

Solution: We shall set up H;: g = #ser 1-€- there is no significant difference in the

blood pressure readings before and after the injection of the drug. The alternate
hypothesis is  Hg: foe > Muer 1-€. the stimulus resulted in an increase in the blood

pressure of the patients. Taking a=1%and a=5%, as n = 13, y=n-1=12,
respective tabulated values are t, |, 1o a4 ,2,=3-055 and  ti, |, s ang ,=1=2.179.  Now,
we compute the value of test criterion. For this, consider
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2 -1 1
8 5 25
1 -4 16
3 0 0
0 -3 9
-2 -5 25
1 3 -2 4
5 2 4
0 -3 9
4 1 1
6 3 9
8 5 25
Total = 39 - Total =132

i=n 2

DX =X —

Consider S =4[ = 11322=J1_1=3.317. Therefore, t ‘X;'u\/ﬁ may be

cal —

n-1

obtained as t_ =

—??3_137‘«/1_3= 3.2614. As the calculated value 3.2614 is more than the

tabulated values of 3.055 and 2.179, we accept the alternate hypothesis that after the
drug is given to patients, there is an increase in the blood pressure level.

3. the life time of electric bulbs for a random sample of 10 from a large
consignment gave the following data: 4.2, 4.6, 3.9, 4.1, 5.2, 3.8, 3.9, 4.3, 4.4, 5.6 (in
‘000 hours). Can we accept the hypothesis that the average life time of bulbs is 4,
000 hours?

Solution: Set up H,:x#=4,000 hours , H,:u<4,000hours. Let us choose that
a=5%. Then tabulated value is t. |, g q4,-=2.262. To find the test criterion,
consider
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4.2 -0.2 0.04
4.6 0.2 0.04
3.9 -0.5 0.25
4.1 -0.3 0.09
5.2 4.4 0.8 0.64
3.8 -0.6 0.36
3.9 -0.5 0.25
4.3 -0.1 0.01
4.4 0.0 0.0
5.6 1.2 1.44

Total = 44 - Total = 3.12

ConsiderS = = ,/3';2 =0.589. Therefore, t_, =‘XSJ -y/n is computed as
4.4-4. .
wl =‘ 5 5890‘-\/1_0 = 2.148. As the computed value is lower than the tabulated value of

2.262, we conclude that mean life of time bulbs is about 4, 000 hours.

A discussion on ,1'2 test and Goodness of Fit

Recently, we have discussed t — distribution function (i.e. t — test). The study was
based on the assumption that the samples were drawn from normally distributed
populations, or, more accurately that the sample means were normally distributed.
Since test required such an assumption about population parameters. For this reason,
A test of this kind is called parametric test. There are situations in which it may not be
possible to make any rigid assumption about the distribution of population from which
one has to draw a sample.

Thus, there is a need to develop some non — parametric tests which does not require
any assumptions about the population parameters.
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With this in view, now we shall consider a discussion on ,1'2 distribution which does
not require any assumption with regard to the population. The test criterion

> O0-F°

E.

corresponding to this distribution may be given as  y* = where

g RT-CT

O, : Observed values, E.: Expected values.

When Expected values are not given, one can calculate these by using the following

relation; E, % Here, RT means the row total for the cell containing the row, CT

is for the column total for the cell containing columns, and N represent the total number
of observations in the problem.

2 . . . .
The calculated ¥ value (i.e. test criterion value or calculated value) is compared

with the tabular value of ,1'2 value for given degree of freedom at a certain prefixed

level of significance. Whenever the calculated value is lower than the tabular value, we
continue to accept the fact that there is not much significant difference between
expected and observed results.

On the other hand, if the calculated value is found to be more than the value suggested
in the table, then we have to conclude that there is a significant difference between
observed and expected frequencies.

As usual, degrees of freedom are y=n-k where k denotes the number of

independent constraints. Usually, it is 1 as we will be always testing null hypothesis
against only one hypothesis, namely, alternate hypothesis.

This is an approximate test for relatively a large population.

For the usage of test, the following conditions must checked before employing the test.
These are:

1. The sample observations should be independent.

2. Constraints on the cell frequencies, if any, must be linear.

3. i.e. the sum of all the observed values must match with the sum of all the
expected values.

N, total frequency should be reasonably large

No theoretical frequency should be lower than 5.

6. It may be recalled this test is depends on ,1'2 test: The set of observed and

expected frequencies and on the degrees of freedom, it does not make any
assumptions regarding the population.

ok

ILLUSTRATIVE EXAMPLES
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1. From the data given below about the treatment of 250 patients suffering from a
disease, state whether new treatment is superior to the conventional test.

Data Number of patients
Favourable [Not favorable Total
[New one 140 30 170
[Conventional 60 20 80
Total 200 50 280

Solution: We set up null hypothesis as there is no significance in results due to the
two procedures adopted. The alternate hypothesis may be assumed as there could be

some difference in the results. Set up level of significance as
112-100 * 71-50 ° 2-10°
+ 00 + >0 + 32-10 a=5% then tabulated value is
100 50 10

12 |(t=0.05,y=1= 3841

RT-CT

Consider finding expected values given by the formula, Expectation(AB) =

where RT means that the row total for the row containing the cell, CT means that the
total for the column containing the cell and N, total number of frequencies. Keeping
these in view, we find that expected frequencies are

B
136 34 170
A 64 16 80
200 50 250
Note: 170:200 e, 170:50 80200 ., 80-50 o
250 250 250 250
0, E, O -E O -E, ° O -E °
Ei
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140 136 4 16 0.118
60 64 -4 16 0.250
30 34 -4 16 0.471
20 16 4 16 1.000
Total 1.839

As the calculated value 1.839 is lower than the tabulated value z lp—005,,2=3-841, we

accept the null hypothesis, namely, that there is not much significant difference between
the two procedures.

2. A set of five similar coins is tossed 320 times and the result is

No. of heads 0 1 2 3 4 5
Frequency 6 27 | 72 112 71 | 32

Test the hypothesis that the data follow a binomial distribution function.

Solution: We shall set up the null hypothesis that data actually follows a binomial
distribution. Then alternate hypothesis is, namely, data does not follow binomial
distribution. Next, to set up a suitable level of significance, a=5%, with n = 6, degrees

of freedom is y=5. Therefore, the tabulated value is x° lp=005,-5=11.07.  Before

proceeding to finding test criterion, first we compute the various expected frequencies.
As the data is set to be following binomial distribution, clearly probability density function

n
is b n,pk =(kjpkq”‘k . Here,n =320, p = 0.5 g = 0.5, and k takes the values

right from O upto 5. Hence, the expected frequencies of getting 0, 1, 2, 3, 4, 5 heads
are the successive terms of the binomial expansion of 320- p+q °. Thus, expected
frequencies E, are 10, 50, 100, 100, 50, 10. Consider the test criterion given by

> 0-E °

20 _ i .
y4 |cal_ E. ’

Here, observed values are: O.: 6, 27, 72, 112, 71, 32

The expected values are: E,: 10, 50, 100, 100, 50, 10. Consider
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, 6-10 ° 27-50 ° 72-100 °
Z |ca|= + +
10 50 100
112-100 ° 71-50 ° 32-10 °
+ + + = 78.68. As the calculated
100 50 10

value is very much higher than the tabulated value of 3.841, we reject the null
hypothesis and accept the alternate hypothesis that data does not follow the binomial

distribution.
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