

Booklet No. :

#### **CH - 16**

### Chemical Engineering

| Duration of Test : 2 Hours |                 |                 | Max. Marks: 120    |
|----------------------------|-----------------|-----------------|--------------------|
|                            | Hall Ticket No. |                 |                    |
| Name of the Candidate :    |                 |                 |                    |
| Date of Examination :      | OMR Ans         | wer Sheet No. : |                    |
| Signature of the Candidate |                 | Signature       | of the Invigilator |

#### INSTRUCTIONS

- This Question Booklet consists of 120 multiple choice objective type questions to be answered in 120 minutes.
- Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer.
- Each question carries one mark. There are no negative marks for wrong answers.
- This Booklet consists of 16 pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet.
- Answer all the questions on the OMR Answer Sheet using Blue/Black ball point pen only.
- Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully.
- OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall.
- Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall.
- No part of the Booklet should be detached under any circumstances.
- The seal of the Booklet should be opened only after signal/bell is given.

CH-16-A

#### CHEMICAL ENGINEERING (CH)

- 1. If the eigen values of a matrix  $\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$  are 0 and 3 then the third eigen value is
  - (A) 1

(B) 3

(C) 0

- (D) 15
- 2. The rank of the matrix 3 1 4 0 5 8 is -3 4 4
  - (A) 1

(B) 3

(C) 2

- (D) 0
- 3. The gradient of a function  $\phi(x, y, z) = xy + yz + zx$  at the point (1,2,0) is
  - (A) 2i+j+2k

(B) i-2j+k

(C) i+2j+2k

- (D) 2i+k
- 4. If  $\phi_1 = 0$  and  $\phi_2 = 0$  are scalar functions then the angle between  $\phi_1$  and  $\phi_2$  is
  - (A)  $\cos^{-1} \frac{\nabla \phi_1 \nabla \phi_2}{|\nabla \phi_1|, |\nabla \phi_2|}$
- (B)  $\tan^{-1} \frac{\nabla \phi_1 + \nabla \phi_2}{1 + \nabla \phi_1 \cdot \nabla \phi_2}$

(C)  $\nabla \phi_1 \cdot \nabla \phi_2$ 

- (D)  $\sin^{-1} \nabla \phi_1 \cdot \nabla \phi_2$
- 5. The value of  $\oint_C (x^2 y^2 + 2ixy)dz$ , where C is the contour |z| = 1 is
  - (A) 0

(B) 2πi

(C) π

- (D) -πi
- **6.** The integrating factor of the differential equation  $\frac{dx}{dy} + \frac{3}{y} = \frac{1}{y^2}$ 
  - (A) e<sup>log y</sup>

(B) e<sup>y</sup>

(C) y3

- (D) y
- The Laplace transform of sinh2x is
  - $(A) \quad \frac{2}{s^2 + 4}$

 $(B) \quad \frac{2}{s^2 - 4}$ 

(C)  $\frac{2}{s^2+2}$ 

(D)  $\frac{2}{s^2-2}$ 

Set - A

2

CH

| 8.    | If f | $(x) = x + x^2$ satisfy Lagrange Mean                             | Value     | theorem in [0, 2] at c, then                             |
|-------|------|-------------------------------------------------------------------|-----------|----------------------------------------------------------|
|       | (A)  | c = 0                                                             | (B)       | c = 3                                                    |
|       |      | c = 1                                                             | 100       | c = 2                                                    |
| 9.    | The  | function $f(x, y) = xy + (\frac{1}{x} + \frac{1}{y})$ is m        | inim      | um at the point                                          |
|       |      | (1,1)                                                             |           | (0,1)                                                    |
|       |      | (1,2)                                                             | (D)       | (0,0)                                                    |
| 10.   | If y | $(x_i) = y_i, i = 0, 1, 2, 3 \text{ and } h \text{ the step sin}$ | ze the    | on by Simpson $1/3^{rd}$ rule $\int_{x_0}^{x_0} y(x) dx$ |
|       | (A)  | $\frac{h}{2} [y_0 + 2y_1 + 2y_2 + y_3]$                           | (B)       | $\frac{h}{3}[y_0 + 2y_1 + 2y_2 + y_3]$                   |
|       | (C)  | $\frac{h}{2} [y_0 + 4y_1 + 2y_2 + y_5]$                           | (D)       | $\frac{h}{3} [y_0 + 4y_1 + 2y_2 + y_3]$                  |
| 11.   | Acce | ording to Hydrostatic equilibrium, th                             | e nre     | ssure in a static fluid depends on                       |
| ***   |      | Location in cross-section                                         | (B)       |                                                          |
|       |      | Elevation only                                                    | (D)       |                                                          |
| 12.   | The  | term that is not a part of Bernoulli's                            | equa      | tion is                                                  |
|       | (A)  |                                                                   | (B)       |                                                          |
|       | (C)  |                                                                   | V 200 021 | Velocity                                                 |
| 13.   | The  | pressure difference of a process flu                              | id sho    | own by a U tube manometer is a function of               |
|       | (A)  | Height of process fluid in the left a                             | ırm       |                                                          |
|       | (B)  | Height of process fluid in the right                              | arm       |                                                          |
|       | (C)  | Height of manometric fluid in left                                | arm       |                                                          |
|       | (D)  | Height difference of manometric f                                 | luid ii   | n both arms.                                             |
| 14.   | For  | a Pseudo-plastic fluid, which is true                             | ?         |                                                          |
|       | (A)  | viscosity decreases with time                                     | (B)       | viscosity increases with time                            |
|       | (C)  | viscosity increases with shear rate                               | (D)       | viscosity decreases with shear rate                      |
| 15.   | For  | a laminar flow of a fluid in a tube (N                            | VRc=1     | 000), the fanning friction factor is                     |
|       | (A)  | 0.16                                                              | (B)       | 0.016                                                    |
|       | (C)  | 1.6                                                               | (D)       | 16                                                       |
| 16.   | The  | dimensions of dynamic viscosity are                               | 3         | 10.004194094                                             |
|       | (A)  | ML-IT-I                                                           | (B)       | M-1L-1T-1                                                |
|       | (C)  | ML <sup>2</sup> T <sup>-1</sup>                                   | (D)       | MLT <sup>-2</sup>                                        |
| Set - | A    |                                                                   | 3         | СН                                                       |
|       |      |                                                                   |           |                                                          |

| 17.   | The                                                                                                                                            | frictional loss in an | unseparated be   | oundary  | layer is called                          |    |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|----------|------------------------------------------|----|--|--|
|       | (A)                                                                                                                                            | Form Friction         |                  | (B)      | Pressure Friction                        |    |  |  |
|       | (C)                                                                                                                                            | Dynamic Friction      |                  | (D)      | Skin Friction                            |    |  |  |
| 18.   | The                                                                                                                                            | pressure drop in a p  | acked bed        |          |                                          |    |  |  |
|       | (A)                                                                                                                                            | Navier Stokes equ     | ation            | (B)      | Euler's Equation                         |    |  |  |
|       | (C)                                                                                                                                            | Ergun Equation        |                  | (D)      | Bernoulli's equation                     |    |  |  |
| 19.   | The                                                                                                                                            | velocity profile of   | laminar flow     | of a Ne  | wtonian fluid in a tube is               |    |  |  |
|       | (A)                                                                                                                                            | Linear (B)            | Parabolic        | (C)      | Hyperbolic (D) Sinusoidal                |    |  |  |
| 20.   | To a                                                                                                                                           | void cavitation in a  | pump, the mai    | n princ  | iple to be applied is                    |    |  |  |
|       | (A)                                                                                                                                            | Maintain NPSH         |                  | (B)      | Do Priming                               |    |  |  |
|       | (C)                                                                                                                                            | Do Cleaning           |                  | (D)      | Apply lubricant                          |    |  |  |
| 21.   | Head                                                                                                                                           | d developed by a ce   | ntrifugal pump   | is prop  | portional to impeller speed "n" as       |    |  |  |
|       | (A)                                                                                                                                            | n                     |                  | (B)      | n <sup>2</sup>                           |    |  |  |
|       | (C)                                                                                                                                            | n <sup>3</sup>        |                  | (D)      | n-1                                      |    |  |  |
| 22.   | The                                                                                                                                            | drag coefficient for  | the flow a pass  | t sphere | in stokes law regime is given by         |    |  |  |
|       | (A)                                                                                                                                            | 16/N <sub>Re.p</sub>  |                  | (B)      | N <sub>Re.p</sub> /16                    |    |  |  |
|       | (C)                                                                                                                                            | 24/N <sub>Re,p</sub>  |                  | (D)      | N <sub>Re.p</sub> /24                    |    |  |  |
| 23.   | The skin friction loss along the flow of 10 m of the pipe (100 mm diameter) at a velocity of 10m/s is (given fanning friction factor is 0.001) |                       |                  |          |                                          |    |  |  |
|       | (A)                                                                                                                                            | 20 J/kg               |                  | (B)      | 5 J/kg                                   |    |  |  |
|       | (C)                                                                                                                                            | 40 J/kg               |                  | (D)      | 10 J/kg                                  |    |  |  |
| 24.   | Amo                                                                                                                                            | ong the flow device   | s, the linear on | e is     |                                          |    |  |  |
|       | (A)                                                                                                                                            | Venturimeter          |                  | (B)      | Nozzle meter                             |    |  |  |
|       | (C)                                                                                                                                            | Orificemeter          |                  | (D)      | Rotameter                                |    |  |  |
| 25.   | For                                                                                                                                            | For an ideal screen   |                  |          |                                          |    |  |  |
|       | (A)                                                                                                                                            | the smallest in over  | erflow is slight | ly large | r than the largest in the underflow      |    |  |  |
|       | (B)                                                                                                                                            | the smallest in over  | erflow is very i | nuch la  | rger than the largest in the underflow   |    |  |  |
|       | (C)                                                                                                                                            | the smallest in over  | erflow is slight | ly smal  | ler than the largest in the underflow    |    |  |  |
|       | (D)                                                                                                                                            | the smallest in over  | erflow is very i | nuch sr  | naller than the largest in the underflow |    |  |  |
| Set - | A                                                                                                                                              |                       |                  | 4        |                                          | СН |  |  |
|       |                                                                                                                                                |                       |                  |          |                                          |    |  |  |

| Set - | A    |                                                                         | 5         | СН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|-------|------|-------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|       | (C)  | 0.5                                                                     | (D)       | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|       | (A)  |                                                                         | (B)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 34.   |      | convective heat flux in SI units the (SI) with a temperature difference |           | medium of heat transfer coefficient 100 °C is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|       | (C)  | Film Boiling                                                            | (D)       | Nucleate Boiling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|       |      | Transition Boiling                                                      | (B)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 33.   |      | pool boiling phenomenon, the pr                                         | eferred i | 7 B 15 CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|       | (-)  |                                                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|       |      | J/m.K                                                                   | (D)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|       |      | W/m.K                                                                   | (B)       | W/m²K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| 32.   | The  | units of heat transfer coefficient i                                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|       | (C)  | Radiation                                                               | (D)       | Free Convection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|       |      | Conduction                                                              |           | Forced Convection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| 31.   | The  | The mode of heat transfer in which Fouriers Law is applicable is        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|       | (C)  | Dilatant Fluid                                                          | (D)       | Binghamplastic Fluid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|       | (A)  | Thixotropic Fluid                                                       | (B)       | And the second of the second o |  |  |  |  |  |
| 30.   | The  | fluid that shows time dependent                                         | rheology  | y is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|       | (D)  | Very much larger than critical s                                        | peed      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|       | (C)  | Slightly greater than critical spe                                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|       |      | Very much less than critical spe                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|       | (A)  | Slightly less than critical speed                                       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 29.   | To a | void centrifuging in a ball mill, th                                    | ne opera  | ting speed should be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|       | (C)  | Kicks Law                                                               | (D)       | Newton's Law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|       | (A)  | Rittingers Law                                                          |           | Bonds Law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| 28.   | Acco |                                                                         | he work   | required is constant for same size ratio?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|       | (C)  | centrifugal force                                                       | (D)       | buoyant force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|       | 200  | weight of particle                                                      |           | drag force                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 27.   |      | a particle dropped inside a stagnar                                     |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|       | (C)  | increase in viscosity of gas                                            | (D)       | increase in temperature of gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|       | (A)  | decrease in particle density                                            | (B)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 26.   | The  | collection efficiency in a cyclone                                      | increase  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |

| Set - | A     |                                                                   | 6                                                 | СН                                          |  |  |  |
|-------|-------|-------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------|--|--|--|
|       |       | Both mass and energy exch                                         |                                                   | F-2015                                      |  |  |  |
|       |       | Neither mass nor energy ex                                        | 100 March 1980 1980 1980 1980 1980 1980 1980 1980 |                                             |  |  |  |
|       |       | Only mass exchange                                                |                                                   |                                             |  |  |  |
|       |       | Only energy exchange                                              |                                                   |                                             |  |  |  |
| 42.   |       | closed system, which is true                                      | ?                                                 |                                             |  |  |  |
|       | (D)   | Temperature difference acr                                        | oss the wall                                      |                                             |  |  |  |
|       |       | Overall temperature drop                                          |                                                   |                                             |  |  |  |
|       |       | B) Reciprocal of overall heat transfer coefficient                |                                                   |                                             |  |  |  |
|       | 1     | (A) Overall heat transfer coefficient                             |                                                   |                                             |  |  |  |
| 41.   |       | Overall thermal resistance in a heat exchanger is proportional to |                                                   |                                             |  |  |  |
|       | (C)   | Rayleigh's Number                                                 | (D)                                               | Nusselt Number                              |  |  |  |
|       |       | Prandtl Number                                                    | (B)                                               |                                             |  |  |  |
| 40.   |       | product of Grashoff and Rey                                       | nolds numbe                                       |                                             |  |  |  |
|       | 20-27 |                                                                   |                                                   |                                             |  |  |  |
|       |       | Wall side                                                         | (D)                                               | Fouling                                     |  |  |  |
|       | (A)   | Liquid side                                                       | (B)                                               | Vapor side                                  |  |  |  |
| 39.   | In or | eneral, the major resistance i                                    | in film type o                                    | ondensation is                              |  |  |  |
|       | (D)   | Water evaporated/steam co                                         | nsumed                                            |                                             |  |  |  |
|       | (C)   | Steam consumed/water eva                                          | porated                                           |                                             |  |  |  |
|       | (B)   | Water evaporated/hr                                               |                                                   |                                             |  |  |  |
|       |       | Steam consumed/hr                                                 |                                                   |                                             |  |  |  |
| 38.   | The   | economy of an evaporator is                                       | defined as                                        |                                             |  |  |  |
|       | (C)   | $T^3$                                                             | (D)                                               | T4, where T is absolute temperature         |  |  |  |
|       | (A)   | T                                                                 | (B)                                               | $T^2$                                       |  |  |  |
| 37.   | Acce  | ording to Stefan Boltzmann l                                      | aw, the emiss                                     | sive power of black body is proportional to |  |  |  |
|       | (C)   | U                                                                 | (D)                                               | <1                                          |  |  |  |
|       | (A)   |                                                                   | (B)                                               |                                             |  |  |  |
| 36.   |       | emissivity of a black body is                                     |                                                   |                                             |  |  |  |
|       |       |                                                                   |                                                   |                                             |  |  |  |
|       | 7.17  | Reynolds Number                                                   | (D)                                               |                                             |  |  |  |
|       |       | Nusselt Number                                                    | (B)                                               | Prandtl Number                              |  |  |  |
| 35.   |       | enesses is                                                        | es the ratio o                                    | f thermal to hydrodynamic boundary layer    |  |  |  |

| 43.   |                                                                                                                                      | According to Kelvin Planck statement of second law, if in a heat engine heat taken from source is 100 units, then |                       |                                                |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------|--|--|--|--|
|       | (A)                                                                                                                                  | Heat delivered to si                                                                                              | nk should be 100 un   | its                                            |  |  |  |  |
|       | (B)                                                                                                                                  | (B) Work done should be 100 units                                                                                 |                       |                                                |  |  |  |  |
|       | (C)                                                                                                                                  | Work done cannot l                                                                                                | be 100 units          |                                                |  |  |  |  |
|       | 7. 7.                                                                                                                                | Heat delivered to si                                                                                              |                       | its                                            |  |  |  |  |
| 44.   |                                                                                                                                      |                                                                                                                   | embly, a gas does 40  | J work by taking 100 J heat, then the change   |  |  |  |  |
|       |                                                                                                                                      | s internal energy is                                                                                              |                       |                                                |  |  |  |  |
|       |                                                                                                                                      | 140 J                                                                                                             | (B)                   | -60 J                                          |  |  |  |  |
|       | (C)                                                                                                                                  | –140 J                                                                                                            | (D)                   | +60 J                                          |  |  |  |  |
| 45.   | An i                                                                                                                                 | sentropic process is                                                                                              |                       |                                                |  |  |  |  |
|       | (A)                                                                                                                                  | Reversible                                                                                                        | (B)                   | Adiabatic                                      |  |  |  |  |
|       | (C)                                                                                                                                  | Reversible Adiabati                                                                                               | ic (D)                | Reversible Isothermal                          |  |  |  |  |
| 46.   | In a                                                                                                                                 | compressible cake                                                                                                 |                       |                                                |  |  |  |  |
| 40.   |                                                                                                                                      | Cake resistance is fr                                                                                             | unation of time       |                                                |  |  |  |  |
|       |                                                                                                                                      |                                                                                                                   |                       | and time                                       |  |  |  |  |
|       |                                                                                                                                      | Cake resistance is fi<br>Cake resistance is n                                                                     |                       | ind time.                                      |  |  |  |  |
|       | 1000                                                                                                                                 |                                                                                                                   |                       |                                                |  |  |  |  |
|       | (D)                                                                                                                                  | Cake resistance is n                                                                                              | ot function of positi | on.                                            |  |  |  |  |
| 47.   | Partial molar Gibbs free energy is also called                                                                                       |                                                                                                                   |                       |                                                |  |  |  |  |
|       |                                                                                                                                      | Enthalpy                                                                                                          | (B)                   |                                                |  |  |  |  |
|       | (C)                                                                                                                                  | Chemical Potential                                                                                                | (D)                   | Entropy                                        |  |  |  |  |
| 48.   | The number of degrees of freedom to define the system of water and toluene (immiscible) in contact with its vapors is                |                                                                                                                   |                       |                                                |  |  |  |  |
|       | (A)                                                                                                                                  |                                                                                                                   | (B)                   | 2                                              |  |  |  |  |
|       | (C)                                                                                                                                  |                                                                                                                   | (D)                   |                                                |  |  |  |  |
| 49.   | For                                                                                                                                  | a steady flow through                                                                                             | an adiabatic compr    | essor (neglecting kinetic and notential energy |  |  |  |  |
| 42.   | For a steady flow through an adiabatic compressor (neglecting kinetic and potential energy changes), the work done on it is equal to |                                                                                                                   |                       |                                                |  |  |  |  |
|       | (A)                                                                                                                                  |                                                                                                                   | (B)                   |                                                |  |  |  |  |
|       | (C)                                                                                                                                  | ΔΗ                                                                                                                | (D)                   | ΔS                                             |  |  |  |  |
| 50.   | Whi                                                                                                                                  | ch is true according to                                                                                           | o principle of increa | se of entropy?                                 |  |  |  |  |
|       | (A)                                                                                                                                  | ΔS system>0                                                                                                       | (B)                   | ΔS surroundings>0                              |  |  |  |  |
|       | (C)                                                                                                                                  | ΔS system>=0                                                                                                      | (D)                   | ΔS universe>=0                                 |  |  |  |  |
| 51.   | Whi                                                                                                                                  | ch is not a VLE mode                                                                                              | el ?                  |                                                |  |  |  |  |
|       | (A)                                                                                                                                  | Raoults Law                                                                                                       | (B)                   | Hess Law                                       |  |  |  |  |
|       |                                                                                                                                      | Modified Raoults L                                                                                                | aw (D)                | Henry's Law                                    |  |  |  |  |
| Set - | A                                                                                                                                    |                                                                                                                   | 7                     | СН                                             |  |  |  |  |
|       |                                                                                                                                      |                                                                                                                   |                       |                                                |  |  |  |  |

| 52.   | Which of the combinations indicate Bubble point calculation ? |                |                                                   |                |                                                                                                                                              |  |  |
|-------|---------------------------------------------------------------|----------------|---------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|       | i.                                                            | Calculate y    | vi and T given x and P                            |                |                                                                                                                                              |  |  |
|       | ii.                                                           | Calculate >    | ci and T given y and P                            |                |                                                                                                                                              |  |  |
|       | iii. Calculate yi and P given x and T                         |                |                                                   |                |                                                                                                                                              |  |  |
|       | iv.                                                           | Calculate 2    | ci and P given y and T                            |                |                                                                                                                                              |  |  |
|       | (A)                                                           | i and ii       |                                                   | (B)            | ii and iii                                                                                                                                   |  |  |
|       | (C)                                                           | i and iii      |                                                   | (D)            | i and iv                                                                                                                                     |  |  |
| 53.   | Enth                                                          | alny change    | of mixing ideal gases                             | would          | he                                                                                                                                           |  |  |
| 200   | (A)                                                           |                | of mixing ideal gases                             |                | Positive                                                                                                                                     |  |  |
|       |                                                               | Negative       |                                                   |                | Can't say                                                                                                                                    |  |  |
|       | (C)                                                           | regative       |                                                   | (D)            | Can t say                                                                                                                                    |  |  |
| 54.   |                                                               |                |                                                   |                | and vapor respectively).                                                                                                                     |  |  |
|       | (A)                                                           | 1400 kJ/kg     | 1                                                 | (B)            | 700 kJ/kg                                                                                                                                    |  |  |
|       | (C)                                                           | 600 kJ/kg      |                                                   | (D)            | 1000 kJ/kg                                                                                                                                   |  |  |
| 55.   | Whi                                                           | ch thermody    | namic function is calle                           | ed as G        | enerating function ?                                                                                                                         |  |  |
|       |                                                               | Enthalpy       |                                                   | (B)            |                                                                                                                                              |  |  |
|       | (C)                                                           |                |                                                   |                | Gibbs Free Energy                                                                                                                            |  |  |
| 56.   | gase<br>wou<br>(A)                                            |                |                                                   | 5 at 10<br>(B) | g) → CO <sub>2</sub> (g)+ H <sub>2</sub> (g), (all species are ideal) bar pressure, the extent at 20 bar pressure  1.0  0.75                 |  |  |
| 57.   | Whi                                                           | ch is not true | e regarding bypass stre                           | am 7           |                                                                                                                                              |  |  |
|       | (A)                                                           |                | ough all stages                                   |                |                                                                                                                                              |  |  |
|       | (B)                                                           |                | final product compos                              | ition          |                                                                                                                                              |  |  |
|       | (C)                                                           |                | or more stages                                    |                |                                                                                                                                              |  |  |
|       |                                                               |                | component material b                              | alance         | s                                                                                                                                            |  |  |
| 58.   | solve<br>10 k                                                 | ent (M.W=2     | 0 kg/kmol). The solut<br>ginal solution is heated | bility a       | oles of solute (M W=50 kg/kmol) per kg of<br>t 100 °C is 10 moles of solute/kg solvent. If<br>0 °C, then the weight of the additional solute |  |  |
|       | (A)                                                           | 0.25 kg        |                                                   | (B)            | 1 kg                                                                                                                                         |  |  |
|       | (C)                                                           | 2 kg           |                                                   | (D)            | 3.34 kg                                                                                                                                      |  |  |
| Set - | A                                                             |                |                                                   | 8              | СН                                                                                                                                           |  |  |
|       |                                                               |                |                                                   |                |                                                                                                                                              |  |  |

|     | (C)          | V                                                                                     | (D)                                       | 2NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|-----|--------------|---------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     |              | NV                                                                                    | 197.10                                    | V/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 67. | N PI<br>volu |                                                                                       | of with a total volume of V               | gives the same conversion as a single PFR of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|     | (0)          | AO                                                                                    | (D)                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|     |              | V/F <sub>AO</sub>                                                                     |                                           | 1/T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|     |              | T/C <sub>AO</sub>                                                                     | oncentrations gives (B)                   | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 66. |              |                                                                                       |                                           | the plot of -1/rA vs CA for a PFR between                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|     | (C)          | 4                                                                                     | (D)                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|     | (A)          |                                                                                       | (B)                                       | The state of the s |  |  |  |
| 65. | For t        | For the reaction A $\rightarrow$ 5R, the fractional change in volume $\varepsilon$ is |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|     | (0)          | 30 III                                                                                | (D)                                       | 40 III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|     | 400          | 10 hr<br>30 hr                                                                        |                                           | 20 hr<br>40 hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|     |              |                                                                                       | he space time is                          | 20 h-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 64. |              |                                                                                       |                                           | ate is 100 mol/hr at an initial concentration of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|     | (C)          | 1/C <sub>AO</sub> , k                                                                 | (D)                                       | C <sub>AO</sub> , 1/k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|     | 4.           | C <sub>AO</sub> and k                                                                 |                                           | 1/C <sub>AO</sub> ; 1/k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|     |              | 174.74                                                                                | nd slope respectively as                  | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 63. |              |                                                                                       |                                           | oducts, a plot of I/CA vs time gives a straight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|     | 7            | lit.mol <sup>-1</sup> sec                                                             |                                           | lit-mol-sec-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 02. |              | Sec-1                                                                                 |                                           | mol lit <sup>-1</sup> sec <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 62. | The          | unite of a fine                                                                       | t order rate constant                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|     | (C)          | Batch React                                                                           | tor (D)                                   | Tubular Reactor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|     | 100          | CSTR                                                                                  |                                           | Plug Flow Reactor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 61. | Whie         | ch among the                                                                          | following is not a steady sta             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|     | , ,          | ****                                                                                  | (D)                                       | 575 575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|     | 1000         | -H <sub>1</sub> -H <sub>2</sub>                                                       | (10)                                      | H <sub>2</sub> -H <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|     |              | H <sub>1</sub> +H <sub>2</sub>                                                        | nd H <sub>2</sub> respectively, then stan | H <sub>1</sub> -H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 60. |              |                                                                                       |                                           | CO <sub>2</sub> , if the standard heats of formation of CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|     | (C)          | 0.51                                                                                  | (D)                                       | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|     |              | 1.05<br>0.51                                                                          |                                           | 0.6<br>0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|     |              | e feed stream                                                                         |                                           | 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|     | dry l        | basis are CO <sub>2</sub>                                                             | -10; O <sub>2</sub> -2.37; CO-0.53 and    | $N_2$ -87.1%. Then the mole ratio of $CH_4$ to $O_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 59. |              |                                                                                       |                                           | air (21% O <sub>2</sub> and 79% N <sub>2</sub> ) in mole percent on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |

| 68.   | In a                                                                                                               | ideal CSTR, the conce                                             | entration of species  | inside the reactor is |    |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------|-----------------------|----|--|--|--|--|
|       | (A)                                                                                                                | Same as Inlet                                                     | (B)                   | Same as Exit          |    |  |  |  |  |
|       | (C)                                                                                                                | Not same as Exit                                                  | (D)                   | Can't say             |    |  |  |  |  |
| 69.   | The                                                                                                                | The half-life of nth order reaction in a batch reactor depends on |                       |                       |    |  |  |  |  |
|       |                                                                                                                    | Rate constant                                                     |                       | Order of reaction     |    |  |  |  |  |
|       | (C)                                                                                                                | Initial concentration                                             | (D)                   | All of the above      |    |  |  |  |  |
| 70.   | For                                                                                                                | solid catalyzed reaction                                          | s, Thiele modulus     | is defined as         |    |  |  |  |  |
|       | (A)                                                                                                                | (A) diffusion rate/intrinsic reaction rate                        |                       |                       |    |  |  |  |  |
|       |                                                                                                                    | [diffusion rate/intrinsi                                          |                       |                       |    |  |  |  |  |
|       |                                                                                                                    | intrinsic reaction rate/                                          |                       |                       |    |  |  |  |  |
|       | (D)                                                                                                                | [ intrinsic reaction rat                                          | e/diffusion rate]1/2  |                       |    |  |  |  |  |
| 71.   | The                                                                                                                | units of residence time                                           | distribution, E is    |                       |    |  |  |  |  |
|       | 7 7                                                                                                                | time                                                              | 4                     | No Units              |    |  |  |  |  |
|       | (C)                                                                                                                | time-1                                                            | (D)                   | time-2                |    |  |  |  |  |
| 72.   | The slow reactions in gas/porous catalyst systems are influenced by                                                |                                                                   |                       |                       |    |  |  |  |  |
|       | (A)                                                                                                                | Pore diffusion                                                    | (B)                   | Surface kinetics      |    |  |  |  |  |
|       | (C)                                                                                                                | Film diffusion                                                    | (D)                   | Particle ΔT           |    |  |  |  |  |
| 73.   | The reactor that suits the most for studying the kinetics of solid catalyzed reactions is                          |                                                                   |                       |                       |    |  |  |  |  |
|       | (A)                                                                                                                | Batch reactor                                                     | (B)                   | Differential reactor  |    |  |  |  |  |
|       | (C)                                                                                                                | Packed bed reactor                                                | (D)                   | Mixed Flow reactor    |    |  |  |  |  |
| 74.   | The                                                                                                                | The resistance to pore diffusion is given by                      |                       |                       |    |  |  |  |  |
|       | (A)                                                                                                                | Thiele modulus                                                    | (B)                   | Weisz modulus         |    |  |  |  |  |
|       | (C)                                                                                                                | Effectiveness factor                                              | (D)                   | All of the above      |    |  |  |  |  |
| 75.   | For heterogeneous systems, the extra term that comes in the rate expression when compared to homogeneous system is |                                                                   |                       |                       |    |  |  |  |  |
|       | (A)                                                                                                                | Mass transfer term                                                | (B)                   | Concentration term    |    |  |  |  |  |
|       | (C)                                                                                                                | Temperature term                                                  | (D)                   | None                  |    |  |  |  |  |
| 76.   | For                                                                                                                | dilute solutions, diffusiv                                        | vity in liquids is pr | oportional to         |    |  |  |  |  |
|       | (A)                                                                                                                |                                                                   | (B)                   | T                     |    |  |  |  |  |
|       | (C)                                                                                                                | T 1/2                                                             | (D)                   | No effect             |    |  |  |  |  |
|       |                                                                                                                    | where T is the absolute                                           | e temperature of so   | olution.              |    |  |  |  |  |
| Set - | A                                                                                                                  |                                                                   | 10                    | 10                    | СН |  |  |  |  |
|       |                                                                                                                    |                                                                   |                       |                       |    |  |  |  |  |

| 77.   | The                                                                                        | theory that post                                                                                           | ulates the steady  | y state con | centration gradient is                                   |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------|-------------|----------------------------------------------------------|--|--|--|--|
|       | (A)                                                                                        | Surface Stretc                                                                                             | h theory           | (B)         | Surface Renewal theory                                   |  |  |  |  |
|       | (C)                                                                                        | Film theory                                                                                                |                    | (D)         | Penetration theory                                       |  |  |  |  |
| 78.   | The                                                                                        | analogous dime                                                                                             | ensionless group   | in heat t   | ransfer to Sherwood number in mass transfer              |  |  |  |  |
|       | (A)                                                                                        | Reynolds Nur                                                                                               | nher               | (B)         | Nusselt Number                                           |  |  |  |  |
|       | 7                                                                                          | Prandtl Numb                                                                                               |                    | (D)         |                                                          |  |  |  |  |
|       | (0)                                                                                        | Transiti Numb                                                                                              | CI                 | (D)         | Grasion Number                                           |  |  |  |  |
| 79.   | Whie                                                                                       | ch is not the cha                                                                                          | racteristic of an  | ideal tow   | er packing material in gas-liquid operations ?           |  |  |  |  |
|       | (A)                                                                                        | Small interfac                                                                                             | ial area between   | phases      |                                                          |  |  |  |  |
|       | (B)                                                                                        | Large interfac                                                                                             | ial area between   | phases      |                                                          |  |  |  |  |
|       | (C)                                                                                        | Chemically in                                                                                              | ert                |             |                                                          |  |  |  |  |
|       | (D)                                                                                        | Structural stre                                                                                            | ngth               |             |                                                          |  |  |  |  |
| 80.   | If in                                                                                      | an absorption.                                                                                             | the liquid and g   | as flow rat | tes are 1.796x10 <sup>-3</sup> kmol/s and 0.01052 kmol/s |  |  |  |  |
|       |                                                                                            |                                                                                                            |                    |             | e is 0.1225, then the absorption factor is               |  |  |  |  |
|       |                                                                                            | 1.125                                                                                                      |                    |             | 1.366                                                    |  |  |  |  |
|       |                                                                                            | 0.732                                                                                                      |                    | (D)         | 0.889                                                    |  |  |  |  |
|       |                                                                                            |                                                                                                            |                    |             |                                                          |  |  |  |  |
| 81.   |                                                                                            |                                                                                                            | sible by distillar |             | value of relative volatility, α is                       |  |  |  |  |
|       | (A)                                                                                        |                                                                                                            |                    | (B)         |                                                          |  |  |  |  |
|       | (C)                                                                                        | 1.5                                                                                                        |                    | (D)         | 2.0                                                      |  |  |  |  |
| 82.   | The                                                                                        | The single stage operation among the following is                                                          |                    |             |                                                          |  |  |  |  |
|       | (A)                                                                                        | Continuous R                                                                                               | ectification       | (B)         | Differential Distillation                                |  |  |  |  |
|       | (C)                                                                                        | Fractionation                                                                                              |                    | (D)         | Flash Vaporization.                                      |  |  |  |  |
| 83.   | Asn                                                                                        | As raflux ratio in distillation is increased to infinity than which is true?                               |                    |             |                                                          |  |  |  |  |
| 0.5.  | i                                                                                          | As reflux ratio in distillation is increased to infinity, then which is true?  Number of trays become zero |                    |             |                                                          |  |  |  |  |
|       | ii                                                                                         |                                                                                                            | ves coincide wit   |             | ronal                                                    |  |  |  |  |
|       | iii                                                                                        |                                                                                                            | ys becomes infi    |             |                                                          |  |  |  |  |
|       | iv                                                                                         |                                                                                                            | ves deviate mos    |             | diagonal                                                 |  |  |  |  |
|       | (A)                                                                                        | i and ii                                                                                                   |                    |             | ii and iii                                               |  |  |  |  |
|       | (C)                                                                                        | ii and iv                                                                                                  |                    | (D)         | i and iv                                                 |  |  |  |  |
| 84.   | In a gas-liquid operation, at very low gas velocities, the phenomenon in which much of the |                                                                                                            |                    |             |                                                          |  |  |  |  |
|       |                                                                                            | liquid rains down through the openings of the tray is                                                      |                    |             |                                                          |  |  |  |  |
|       |                                                                                            | Flooding                                                                                                   |                    | -           | Coning                                                   |  |  |  |  |
|       |                                                                                            | Weeping                                                                                                    |                    | 1. 7        | Dumping                                                  |  |  |  |  |
| 0.5   | TI                                                                                         | ·                                                                                                          | 1.000              |             |                                                          |  |  |  |  |
| 85.   |                                                                                            | units of gas hol                                                                                           | d-up is            | (D)         | 30                                                       |  |  |  |  |
|       | (A)                                                                                        | $m^3/m^3$                                                                                                  |                    | (B)         |                                                          |  |  |  |  |
|       | (C)                                                                                        | m/m                                                                                                        |                    | (D)         | kg/m³                                                    |  |  |  |  |
| Set - | A                                                                                          |                                                                                                            |                    | 11          | СН                                                       |  |  |  |  |
|       |                                                                                            |                                                                                                            |                    |             |                                                          |  |  |  |  |

| 86.   | Whi   | Which cannot be the unit for mass transfer coefficient?                                                                                                      |            |                                                 |  |  |  |  |  |
|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------|--|--|--|--|--|
|       | (A)   | (A) moles transferred/(area)(time)(pressure)                                                                                                                 |            |                                                 |  |  |  |  |  |
|       | (B)   | (B) moles transferred/(area)(time)(mole fraction)                                                                                                            |            |                                                 |  |  |  |  |  |
|       | (C)   | (C) moles transferred/(area)(time)(mass fraction)                                                                                                            |            |                                                 |  |  |  |  |  |
|       | (D)   |                                                                                                                                                              |            | 100                                             |  |  |  |  |  |
| 87.   | In d  | rving if maisture contained by                                                                                                                               | enhetane   | a avaste an aquilibrium vapor practure that is  |  |  |  |  |  |
| 0/.   |       | In drying, if moisture contained by a substance exerts an equilibrium vapor pressure that is<br>less than that of the pure liquid at the same temperature is |            |                                                 |  |  |  |  |  |
|       | (A)   | Free Moisture                                                                                                                                                | (B)        | Bound Moisture                                  |  |  |  |  |  |
|       | (C)   | Unbound Moisture                                                                                                                                             | (D)        | Equilibrium Moisture                            |  |  |  |  |  |
| 88.   | Whi   | ch is not recommended for leach                                                                                                                              | ing oper   | ation?                                          |  |  |  |  |  |
|       |       | High temperature                                                                                                                                             |            | Low temperature                                 |  |  |  |  |  |
|       |       | High solubility of solute                                                                                                                                    |            | Low liquid viscosity                            |  |  |  |  |  |
|       | (C)   | riigh solubility of solute                                                                                                                                   | (D)        | Low inquite viscosity                           |  |  |  |  |  |
| 89.   |       |                                                                                                                                                              |            | nate of the point of intersection of q-line and |  |  |  |  |  |
|       |       |                                                                                                                                                              | s greater  | than the x coordinate of the feed point, then   |  |  |  |  |  |
|       |       | quality of the feed is                                                                                                                                       |            | W 1 W 1                                         |  |  |  |  |  |
|       |       | Saturated Vapor                                                                                                                                              | (B)        |                                                 |  |  |  |  |  |
|       |       | Liquid below bubble point                                                                                                                                    |            | Saturated liquid                                |  |  |  |  |  |
| 90.   |       | If in a counter current gas absorption, if the liquid-gas flow rate is increased, then which is true?                                                        |            |                                                 |  |  |  |  |  |
|       | (A)   |                                                                                                                                                              | auilibriu  | m curve                                         |  |  |  |  |  |
|       | 244   | (B) Operating line shifts away from equilibrium curve                                                                                                        |            |                                                 |  |  |  |  |  |
|       | 4.00  | (C) No shift of the operating line                                                                                                                           |            |                                                 |  |  |  |  |  |
|       |       | Concentration of absorbed spec                                                                                                                               | cies incre | ases in the exit liquid stream.                 |  |  |  |  |  |
| 91.   | 11/1. | ah af tha mananan is man                                                                                                                                     | limana 2   |                                                 |  |  |  |  |  |
| 91.   |       | ch of the pressure sensors is non                                                                                                                            |            | n: n:                                           |  |  |  |  |  |
|       |       | Liquid column manometer                                                                                                                                      |            | Ring Balance                                    |  |  |  |  |  |
|       | (C)   | Strain gauge on diaphragm                                                                                                                                    | (D)        | LVDT type                                       |  |  |  |  |  |
| 92.   | Whi   |                                                                                                                                                              | ment syst  | ems applies for widest range of temperature ?   |  |  |  |  |  |
|       | (A)   | Solid Expansion type                                                                                                                                         | (B)        | Resistance type                                 |  |  |  |  |  |
|       | (C)   | Thermocouple type                                                                                                                                            | (D)        | Liquid Expansion type                           |  |  |  |  |  |
| 93.   | Acc   | A constant volume gas thermometer works on the principle of                                                                                                  |            |                                                 |  |  |  |  |  |
|       | (A)   | Archimedes principle                                                                                                                                         | (B)        | Boyle's Law                                     |  |  |  |  |  |
|       | (C)   | Charles Law                                                                                                                                                  | (D)        | Pascal's Law                                    |  |  |  |  |  |
| 94.   | The   | generation of emf in thermocoup                                                                                                                              | oles is ex | plained by                                      |  |  |  |  |  |
| 766   |       | Seebeck effect                                                                                                                                               |            | Ohms Law                                        |  |  |  |  |  |
|       |       | Stefan Boltzmann Law                                                                                                                                         | (D)        |                                                 |  |  |  |  |  |
| Set - | A     |                                                                                                                                                              | 12         | СН                                              |  |  |  |  |  |
|       |       |                                                                                                                                                              |            |                                                 |  |  |  |  |  |

| 95.    | Whe                                                 | n a strip of iron and copper                                                      | is heated       |                                                            |          |  |  |  |  |
|--------|-----------------------------------------------------|-----------------------------------------------------------------------------------|-----------------|------------------------------------------------------------|----------|--|--|--|--|
|        | (A)                                                 | (A) it does not bend                                                              |                 |                                                            |          |  |  |  |  |
|        | (B)                                                 | B) it gets twisted                                                                |                 |                                                            |          |  |  |  |  |
|        | (C)                                                 | (C) it bends with iron on concave side                                            |                 |                                                            |          |  |  |  |  |
|        | (D)                                                 | it bends with copper on co                                                        | oncave side     |                                                            |          |  |  |  |  |
| 96.    | Whi                                                 | Which is incorrect regarding the first order response system?                     |                 |                                                            |          |  |  |  |  |
|        | (A)                                                 | (A) Δ(Input)=Kp Δ(Output)                                                         |                 |                                                            |          |  |  |  |  |
|        | (B)                                                 |                                                                                   |                 |                                                            |          |  |  |  |  |
|        | (C)                                                 | $\Delta(Input)-\Delta(Output)=Kp$                                                 |                 |                                                            |          |  |  |  |  |
|        | (D)                                                 | $\Delta(Output)=Kp \Delta(Input), v$                                              | where Kp is sto | eady state gain.                                           |          |  |  |  |  |
| 97.    |                                                     |                                                                                   | ne time const   | ant, the percent response attained of t                    | he final |  |  |  |  |
|        | valu                                                |                                                                                   |                 |                                                            |          |  |  |  |  |
|        |                                                     | 33.33%                                                                            | (B)             | 63.2%                                                      |          |  |  |  |  |
|        | (C)                                                 | 75.5%                                                                             | (D)             | 100%.                                                      |          |  |  |  |  |
| 98.    | Whi                                                 | ch is not true regarding PI c                                                     | ontrol ?        |                                                            |          |  |  |  |  |
|        | (A)                                                 | Order of response decreas                                                         | es              |                                                            |          |  |  |  |  |
|        | (B) Order of response increases                     |                                                                                   |                 |                                                            |          |  |  |  |  |
|        | (C) Large Kc values produce very sensitive response |                                                                                   |                 |                                                            |          |  |  |  |  |
|        |                                                     | (D) As time constant decreases for constant Kc, response becomes more oscillatory |                 |                                                            |          |  |  |  |  |
| 99.    | The                                                 | The amplitude ratio is defined as                                                 |                 |                                                            |          |  |  |  |  |
|        | (A)                                                 | $K_p/[T_p^2\omega^2 + 1]$                                                         | (B)             | $[T_p^2 \omega^2 + 1]/K_p$                                 |          |  |  |  |  |
|        | (C)                                                 | $K_p/[T_p^2\omega^2 + 1]$<br>$K_p/[T_p^2\omega^2 + 1]^{1/2}$                      | (D)             | $[T_p^2 \omega^2 + 1]/K_p$<br>$K_p/[T_p^2 \omega^2 + 1]^2$ |          |  |  |  |  |
| 100.   | The                                                 | The time lag of a first order instrument is                                       |                 |                                                            |          |  |  |  |  |
|        | (A)                                                 |                                                                                   |                 | $(1/\omega) \tan^{-1}(\omega T)$                           |          |  |  |  |  |
|        |                                                     | $(\omega) \tan^{-1} (\omega T)$                                                   | (D)             |                                                            |          |  |  |  |  |
| 101.   | The                                                 | major drawback of ammoni                                                          | um nitrate as   | a fertilizer is                                            |          |  |  |  |  |
| 101.   |                                                     | High Nitrogen content                                                             |                 | Quick acting nitrate                                       |          |  |  |  |  |
|        | (C)                                                 |                                                                                   |                 | Tendency to cake on storage                                |          |  |  |  |  |
| 102    | Whi                                                 | Which is incorrect regarding sulfuric acid ?                                      |                 |                                                            |          |  |  |  |  |
|        | (A)                                                 |                                                                                   | (B)             | Dehydrating agent                                          |          |  |  |  |  |
|        | 70                                                  | Reducing agent                                                                    |                 | Forms hydrates                                             |          |  |  |  |  |
| 103    | Oler                                                | ms are                                                                            |                 |                                                            |          |  |  |  |  |
| 1000   |                                                     | SO <sub>3</sub> in water                                                          | (B)             | H <sub>2</sub> SO <sub>4</sub> in water                    |          |  |  |  |  |
|        | 7.5                                                 | HNO <sub>3</sub> in water                                                         |                 | NO <sub>3</sub> in water                                   |          |  |  |  |  |
| Set -  | A                                                   |                                                                                   | 13              |                                                            | СН       |  |  |  |  |
| 1707.5 |                                                     |                                                                                   | (2.5)           |                                                            | Carles . |  |  |  |  |

| 104.  | In the Kraft pulping process, the primary material added to the cooking liquor is |                                                                                     |                        |    |                                       |    |  |  |  |  |
|-------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------|----|---------------------------------------|----|--|--|--|--|
|       | (A)                                                                               | Na <sub>2</sub> SO <sub>4</sub>                                                     | 107                    |    | H <sub>2</sub> SO <sub>4</sub>        |    |  |  |  |  |
|       | (C)                                                                               | NaHSO <sub>4</sub>                                                                  | (D                     | )  | Lime                                  |    |  |  |  |  |
| 105.  | Sizing is added to paper mainly to                                                |                                                                                     |                        |    |                                       |    |  |  |  |  |
|       | (A)                                                                               | A) have desired color                                                               |                        |    |                                       |    |  |  |  |  |
|       | (B)                                                                               | improve the finish                                                                  |                        |    |                                       |    |  |  |  |  |
|       | (C)                                                                               |                                                                                     | on resistance to liqui | ds |                                       |    |  |  |  |  |
|       | (D)                                                                               | to reduce cost                                                                      |                        |    |                                       |    |  |  |  |  |
| 106.  | Which operation is not involved in oil processing?                                |                                                                                     |                        |    |                                       |    |  |  |  |  |
|       | (A)                                                                               | Bleaching                                                                           | (B                     | )  | Dehydrogenation                       |    |  |  |  |  |
|       | (C)                                                                               | Refining                                                                            | (D                     | )  | Deodorization                         |    |  |  |  |  |
| 107.  | Phosphatic fertilizer is graded based on its                                      |                                                                                     |                        |    |                                       |    |  |  |  |  |
|       |                                                                                   | P content                                                                           | (B                     | )  | PCl <sub>3</sub> content              |    |  |  |  |  |
|       | (C)                                                                               | H <sub>3</sub> PO <sub>4</sub> content                                              | 4.0                    |    | P <sub>2</sub> O <sub>5</sub> content |    |  |  |  |  |
| 108   | Dlan                                                                              | china noveder is re-                                                                | presented by the form  |    | la                                    |    |  |  |  |  |
| 100.  |                                                                                   | Ca(ClO <sub>3</sub> ) <sub>2</sub>                                                  | (B                     |    | CaCl(OCl)                             |    |  |  |  |  |
|       | 21.00                                                                             | Ca(OCl) <sub>2</sub>                                                                | (D                     |    | Ca(ClO <sub>4</sub> ) <sub>2</sub>    |    |  |  |  |  |
|       | -                                                                                 |                                                                                     |                        |    |                                       |    |  |  |  |  |
| 109.  |                                                                                   | Soap may be manufactured by                                                         |                        |    |                                       |    |  |  |  |  |
|       |                                                                                   | (A) hydrolysis of tallow                                                            |                        |    |                                       |    |  |  |  |  |
|       |                                                                                   |                                                                                     |                        |    |                                       |    |  |  |  |  |
|       |                                                                                   | boiling of vegetable oils/tallow with caustic soda solution     oxidation of tallow |                        |    |                                       |    |  |  |  |  |
|       | 27.0                                                                              |                                                                                     |                        |    |                                       |    |  |  |  |  |
| 110.  |                                                                                   | petroleum products                                                                  | , °API is given by     |    |                                       |    |  |  |  |  |
|       |                                                                                   | (131.5/S)-141.5                                                                     | (B                     | )  |                                       |    |  |  |  |  |
|       |                                                                                   | (145/S)-130                                                                         | (D                     | )  | 141.5-(131.5/S)                       |    |  |  |  |  |
|       | where S is specific gravity at 60°F/60°F.                                         |                                                                                     |                        |    |                                       |    |  |  |  |  |
| 111.  | Prof                                                                              | Profitability measure that considers time value of money is                         |                        |    |                                       |    |  |  |  |  |
|       | (A)                                                                               | Net present worth                                                                   | (B                     | )  | Return on investment                  |    |  |  |  |  |
|       | (C)                                                                               | Payback period                                                                      | (D                     | )  | Net return                            |    |  |  |  |  |
| 112.  | Whi                                                                               | Which does not come under working capital?                                          |                        |    |                                       |    |  |  |  |  |
|       |                                                                                   | Raw materials                                                                       | (B                     |    |                                       |    |  |  |  |  |
|       | (C)                                                                               | Equipment                                                                           | (D                     |    | Finished products in stock            |    |  |  |  |  |
| Set - | A                                                                                 |                                                                                     | 14                     |    |                                       | СН |  |  |  |  |
|       |                                                                                   |                                                                                     |                        |    |                                       |    |  |  |  |  |

# www.recruitment.guru The relationship between the effective annual interest rate, i.e. and nominal interest rate r is

| Set - | A                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15                                | СН                                     |  |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------|--|--|--|
|       | (C)                                                                                                                       | Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (D)                               | And of the above                       |  |  |  |
|       |                                                                                                                           | Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   | All of the above                       |  |  |  |
| 120.  | The cost of heat exchanger is mainly a function of  (A) Area (B) Volume                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                        |  |  |  |
| 2000  | . 385                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 13.40.40.00.**                         |  |  |  |
|       |                                                                                                                           | volumetric flow rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   | viscosity                              |  |  |  |
| 119.  |                                                                                                                           | tube is used to measure<br>average velocity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ( <b>B</b> )                      | point velocity                         |  |  |  |
| 110   | D'.                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                        |  |  |  |
|       | (C)                                                                                                                       | 50-60%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (D)                               | 1-2%                                   |  |  |  |
|       | (A)                                                                                                                       | 10-20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (B)                               | 80-90%                                 |  |  |  |
| 118.  | For                                                                                                                       | most chemical plants, the rati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ratio of working capital to total | capital to total capital investment is |  |  |  |
|       | (D)                                                                                                                       | (cost)1=(cost)2 [(capacity)1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (capacity)2]0                     | .6                                     |  |  |  |
|       | (C) (cost) <sub>1</sub> =(cost) <sub>2</sub> [(capacity) <sub>2</sub> /(capacity) <sub>1</sub> ] <sup>0.6</sup>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                        |  |  |  |
|       |                                                                                                                           | (cost) <sub>1</sub> =(cost) <sub>2</sub> [(capacity) <sub>1</sub> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |                                        |  |  |  |
|       |                                                                                                                           | (cost)1=(cost)2 [(capacity)2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (capacity),]                      |                                        |  |  |  |
| 117.  | The unknown cost of desired capacity can be estimated from the known cost of anothe equipment from the formula            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                        |  |  |  |
|       | (C)                                                                                                                       | Revenue Total cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (D)                               | Revenue Book value                     |  |  |  |
|       | (A)                                                                                                                       | Revenue Operating cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   | Revenue Fixed cost                     |  |  |  |
| 116.  | Which is the correct statement for profit ?                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                        |  |  |  |
|       |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                        |  |  |  |
|       | (C)                                                                                                                       | P=F(1+i)-N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (D)                               | F=P(1+i) -N                            |  |  |  |
| 115.  | Present worth P, of future amount of money F for discrete discounting is  (A) P=Fe <sup>-rN</sup> (B) F=Pe <sup>-rN</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                        |  |  |  |
|       | (D)                                                                                                                       | remains constant with time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                                        |  |  |  |
|       |                                                                                                                           | decreases logarithmically w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ith time                          |                                        |  |  |  |
|       | (B)                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                        |  |  |  |
|       | (A)                                                                                                                       | Section and the section of the secti |                                   |                                        |  |  |  |
| 114.  |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | umed that the value of property        |  |  |  |
|       | (C)                                                                                                                       | t <sub>eff</sub> —nn-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (D)                               | i <sub>eff</sub> =c                    |  |  |  |
|       | 7.5                                                                                                                       | i <sub>eff</sub> =ln(r+1)<br>i <sub>eff</sub> =lnr-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1071                              | $i_{eff}=e^{r}-1$ $i_{eff}=e^{r}$      |  |  |  |

#### www.recruitment.guru SPACE FOR ROUGH WORK



Set - A 16 CH

# CHEMICAL ENGINEERING (CH) SET-A

| Question No | Answer | Question No | Answer |
|-------------|--------|-------------|--------|
| 1           | D      | 61          | C      |
| 2           | C      | 62          | A      |
| 3           | A      | 63          | C      |
| 4           | A      | 64          | В      |
| 5           | A      | 65          | C      |
| 6           | C      | 66          | В      |
| 7           | В      | 67          | C      |
| 8           | C      | 68          | В      |
| 9           | Α      | 69          | D      |
| 10          | D      | 70          | A      |
| 11          | С      | 71          | C      |
| 12          | A      | 72          | В      |
| 13          | D      | 73          | D      |
| 14          | D      | 74          | C      |
| 15          | В      | 75          | Α      |
| 16          | A      | 76          | В      |
| 17          | D      | 77          | С      |
| 18          | C      | 78          | В      |
| 19          | В      | 79          | Α      |
| 20          | A      | 80          | В      |
| 21          | В      | 81          | Α      |
| 22          | C      | 82          | D      |
| 23          | A      | 83          | A      |
| 24          | D      | 84          | C      |
| 25          | Α      | 85          | C      |
| 26          | В      | 86          | D      |
| 27          | C      | 87          | В      |
| 28          | C      | 88          | В      |
| 29          | В      | 89          | C      |
| 30          | A      | 90          | В      |
| 31          | A      | 91          | В      |
| 32          | В      | 92          | C      |
| 33          | D      | 93          | C      |
| 34          | A      | 94          | A      |
| 35          | В      | 95          | C      |
| 36          | A      | 96          | D      |
| 37          | D      | 97          | В      |
| 38          | D      | 98          | Α      |
| 39          | A      | 99          | C      |
| 40          | C      | 100         | В      |

|    | (1 | www.recri | utment.gr | ıru |  |
|----|----|-----------|-----------|-----|--|
| 41 | В  | 101       | D         |     |  |
| 42 | A  | 102       | C         |     |  |
| 43 | C  | 103       | A         |     |  |
| 44 | D  | 104       | A         |     |  |
| 45 | C  | 105       | C         |     |  |
| 46 | В  | 106       | В         |     |  |
| 47 | C  | 107       | D         |     |  |
| 48 | A  | 108       | В         |     |  |
| 49 | C  | 109       | C         |     |  |
| 50 | D  | 110       | В         |     |  |
| 51 | В  | 111       | A         |     |  |
| 52 | C  | 112       | C         |     |  |
| 53 | Α  | 113       | В         |     |  |
| 54 | C  | 114       | A         |     |  |
| 55 | D  | 115       | C         |     |  |
| 56 | A  | 116       | C         |     |  |
| 57 | Α  | 117       | D         |     |  |
| 58 | C  | 118       | Α         |     |  |
| 59 | D  | 119       | В         |     |  |
| 60 | D  | 120       | Α         |     |  |
|    |    |           |           |     |  |
|    |    |           |           |     |  |
|    |    |           |           |     |  |
|    |    |           |           |     |  |
|    |    |           |           |     |  |
|    |    |           |           |     |  |
|    |    |           |           |     |  |
|    |    |           |           |     |  |
|    |    |           |           |     |  |
|    |    |           |           |     |  |
|    |    |           |           |     |  |
|    |    |           |           |     |  |