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UNIT 3 EXPERIMENTAL DESIGNS 
Objectives 

After reading this unit, you should be able to: 

• Discuss the various experimental designs as powerful tools to study the cause and 
effect relationships amongst variables in research. 

• Explain the assumptions embodied in the design models. 

• Choose the appropriate design model for a specific research problem. 

Structure 

3.1 Introduction 

3.2 Completely Randomized Design 

3.3 Randomized Complete Block Design 

3.4 Latin Square Design 

3.5 Factorial Design 

3.6 Analysis of Covariance 

3.7 Summary 

3.8 Self-assessment Exercises 

3.9 Further Readings. 

3.1 INTRODUCTION 
As you may recall, we have pointed out in unit 1 of this block that experiments are 
much more effective than descriptive techniques in establishing the casual 
relationships. First, the units to be studied are selected by the researcher and each unit 
is assigned to the group determined by the researcher. The units do not select their 
groups, thus avoiding the self-selection bias. Second, a necessary consequence of the 
first, the researcher administers the predetermined treatment or treatments to the units 
with in each group. 
The use of a control group is almost mandatory in experimental designs. The 
inclusion of a control group permits a better isolation of the treatment component 
through a proper design like a simple cross sectional design. 
A major contribution that the statisticians have made to experimental design is the 
development of randomization concept which enables the researcher to reduce the 
effect of the uncontrolled variables on comparative measures of response to the 
variables that are under the experimenter's control. Randomization is a useful device 
for ensuring on the average, that uncontrolled variables do not favour one treatment 
versus others. 
In this unit, we will be, discussing some of the major experimental designs which 
include: 
1) 
2) 
3) 
4) 
5) 

Completely Randomized Design 
Randomized Complete Block Design 
Latin Square Design 
Factorial Design 
Analysis. of Covariance 

We will describe each of these experimental designs in detail in terms of role, the 
model, and the assumptions embodied in the model with few illustrations. We will 
not dwell into the computation aspect and instead focus on interpretation of the 
results. It is strongly suggested here that you use computer software packages like 
SPSS, STAT GRAPHICS, and BMD for getting the relevant ANOVA tables as 
output which can be interpreted by you. The interpretation of the results is much 
more important than the drudgery of complex computations. 
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It may be mentioned in the passing that in MS-61, block 5, we have given complete 
details regarding calculations of the relevant sum of squares and F ratio for 
hypothesis testing in the case of one way and two way analysis of variance. You 
please go through the same for understanding the principles of breaking down the 
total variation into meaningful components of variations. This methodology and 
principle remains the same in all the designs and therefore with a little more effort 
you should be able to understand and work out the details. We again reiterate that 
you use the software packages which have lots of options and flexibilities. You will 
really enjoy the subject in this way and will be able to understand the intricacies of 
the models which in turn will enable you to choose the right design for your research 
problem-be it in medicine, management, social science, etc. 
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3.2 COMPLETLY RANDOMIZED DESIGN 
Frequently an investigator wishes to compare three or more treatments in a single 
experiment. In a survey, too, he may wish to study several populations; for example, 
he may be interested in IQ scores from a standard test for students at five schools, 
Such comparisons could be accomplished by looking at the samples two at a time and 
comparing the means. Although feasible, this is an inefficient method of comparison 
for more than two populations. 

One reason for its inefficiency is that the standard deviation for the difference 
between the two, sample means is not calculated from all the samples but instead 
uses samples only from the two populations under immediate consideration. Second, 
we feel intuitively that we shall almost find a significant difference between at least 
one pair of means (the extreme ones, e.g.) if we consider enough identical 
populations. We can no longer trust our level of significance. 

Therefore, instead of using two samples at a time, we wish to make a single test to 
find out whether the students from the five schools are from five populations having 
the same population mean. The null hypothesis we wish to test is: 

HO: = µ2 = P3 = P4 = µ5. Our reason for making such a test is not that we think five 
population means may be equal. They probably are unequal. However, if a 
preliminary test fails to show that the means are unequal, we may feel that the 
differences are rather small and do not warrant further investigation. 

Completely randomized design is primarily concerned with tests for population 
means. To study the means, it is necessary to "analyze the variance". 

Let us consider a particular example. An investigator wished to study the effect of 
fertilizers on the yield of corn. He divided the field into 24 rectangular plots of the 
same size and shape. His four treatments consisted of (1) no fertilizer, (2) K20 + N, 3) 
K20+P205, and (4) N+P205. He assigned 

Table 1: Yields of Corn Under Four Treatments 

 

each treatment at random to six of the 24 plots. The yields in bushels per acre, are 
presented in table 1. Here we use i to denote the number of the treatment and j to 
refer to the number of the observation. The sample means are designated by Y;., 
where the dot in the second subscript position indicates that we have averaged over 
the second subscript j; in other words Y;., is the mean of all the observations of the 
ith sample. The overall mean is denoted by Y.., the two dots indicate that the mean is 
obtained by summing over both subscripts and then dividing by the total number. 
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The investigator's purpose is usually to learn to something about the populations from 
which the samples are drawn. To accomplish this, he needs an underlying model. 
For this Model, we assume that our four samples, each consisting of six corn yields, 
are independent random samples from four populations, that each of the four 
populations has a normal distribution, and, finally, that the variance of the four 
populations are equal. The investigator should consider these assumptions carefully. 
The four populations means may be designated µ and ,1 2 3,µ ,µ , 4µ  We arbitrarily 
divide each of these four means into two parts. The first part is the mean of the four 
population means, which we call the "overall mean," and the second part is the 
difference between the mean of each population and the overall mean. In symbols, 
the means are written as 

1 1µ µ+α ,.......,µ+α ,=  where  denotes the overall mean and  is the difference µ iα

iµ µ− . The overall mean has been chosen in such a way that , where a is 

the number of treatments (in this case, 4). If in our example the four populations 
means were µ  = 70, µ

a

i
i=

0=∑
1

 α

µ1 2 = 100, µ3 = 70, µ4 = 80, we would have  = (70 + 100 + 70 
+ 80)/4 = 80. The population means could then be written. 

1 1

2 2

3 3

4 4

µ =µ+α 8 0 ( 1 0 )
µ =µ+α 8 0 ( 2 0 )
µ =µ+α 8 0 ( 1 0 )
µ =µ+α 8 0 ( 0 ).

= + −
= + +
= + −

= + +

 

The difference αi iµ µ= −

i

 is often called the effect of the particular treatment. It 
should not be confused with α , the probability of rejecting a null hypothesis which is 
true. In the example, the α  sum to zero and this is always the case. 
We think, then, of a population mean as the sum of two parts : an overall mean 
(which, as an average of the four population means, may be of little interest to us) 
and the part that we attribute to the particular treatment. Using this notation, we can 
summerize the model just described by saying that each observation Yij is an 
independent observation from a normally distributed population whose mean is  

and whose variance is denoted by . This can be written 
iµ+α

2
eσ

 
Where a is the number of treatments, n is the number of observations on each 
treatment, and IND is read as "independently normally distributed." In this model, we 
are studying only these particular a populations. 
An equivalent way of writing down the model which is often convenient is  

 
Here we think of a particular corn yield Yij as made up of its population mean  
plus whatever is left over, which we call 

iµ+α

ij∈ . In our data, for example, Y23= 

82=80+20+(-18); therefore, if the mean yield for the second population is 100, 23∈  = 
-18. These 24 deviations form a random sample of 24∈ , all from a normal 

population with zero mean and variance . Note that because in practice we do not 
know the population means, we cannot know the values of the 24∈ 's. They can 
however, be estimated from the sample data. 

ij
2

eσ

ij

Format for Analysis of Variance Table for Completely Randomized Design 

 

 



 

Analysis of Variance Table For Corn Yields (Our Illustration) 
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It may be pointed out here that the format table above is the "Analysis of Variance" 
Table (often called as ANOVA table)-the general table for a completely randomized 
design with equal number of observations on each treatment. 

The second one is the ANOVA table for our illustration on the yield of corn as 
influenzed by the four treatments. 

We proceed finally to an F test of the null hypothesis that all the four population 
means are the same. This amounts to: 

Ho: µ1=µ2=µ3=µ4 

Since the calculated F value exceeds the table F value at 5% level, we reject Ho and 
conclude that the four population means are not the same and that the treatment 
levels are different. 

Activity 1 

Suppose an advertising firm wants to test three different themes-Theme A, Theme B, 
Theme C, for a brand on a sample target audience of 60 people. The firm measures 
the response on a 0-11 scale. (0 denotes no interest and 11 denote very high interest 
in purchasing the advertised brand). How will you go about evaluating the three 
themes by performing a completely randomized design model? State the null 
hypothesis. You may assign equal number of observations to each treatment (theme). 
State clearly the assumptions of this model. 

3.3 RANDOMIZED COMPLETE BLOCK DESIGN 
In the completely randomized design, treatments are assigned at random. For 
example, if the treatments are three drugs and there are 24 patients, eight patients are 
assigned at random to each of the three treatments. 

The 24 patients may vary widely in initial condition, and their initial condition may 
affect their response to the drugs. In the completely randomized design, we try to 
take care of these differences among the patients by assigning them at random into 
groups of eight patients. Unfortunately, it is possible that all the patients receiving 
drug 1 may be comparatively healthy and all those receiving drug 2 may be 
comparatively unhealthy, even though the assignment was randomly made. By 
randomization, however, at least we have given each drug an equal chance with 
respect to the initial condition of the groups. Further more, we can expect that if the 
experiment is large enough, randomization will roughly equalize the initial condition 
of the three groups. Besides initial condition, the experimenter may feel that other 
factors might influence the response to the drugs (e.g., age or weight). 

A block design is a much used method for dealing with factors that are known to be 
important and which the investigator wishes to eliminate rather than to study. 

In the randomized complete block design, still with three treatments and 24 patients, 
the patients are divided into eight blocks, each consisting of three patients. These 
blocks are farmed so that each block is as homogeneous as possible. Each block 
consists of as many experimental units as there are treatments-three, in this case. The 
blocks might be easily formed on the basis of age, for example, with blocks 1 and 8 
consisting of the three youngest and the three oldest patients, respectively. The 
individuals in a particular block are as alike as possible. On the other hand, there may 
be wide differences between the individuals for different blocks. 

 



 

Introduction to Research 
After the blocks are formed, the three drugs are assigned at random to the three 
patients within each block. If the blocking has been done on a factor such as initial 
condition, and if initial condition is important in determining the level of the 
response, the responses to the drugs will differ widely from block to block. However, 
because each drug is used exactly once in each block, the design is balanced and the 
mean treatment responses to the three drugs will be comparable. The differences 
observed among the drugs should be largely unaffected by initial condition. Below 
are the eight blocks with a possible treatment assignment. 
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Block Number 

 
When the data are gathered, they are arranged in rows according to treatment (drug), 
and we have 
  Block Number

 
Note that this is a balanced design-each treatment occurs once in each block; thus if 
we obtain the mean response for drug 1 over the eight blocks, it will be comparable 
to the mean response for drugs 2 or 3. 
This type of design is widely used. For example, industrial material frequently arrives 
in batches that tend to be homogeneous; thus a batch may be used as a block. In 
laboratories, to take another case, results often differ from day to day, and therefore 
days frequently serve as blocks. A common practice is to block out technician effect. 
In agricultural experiments, the blocks are sometimes separate plots of land. The 
technique of randomized blocks is a very useful one for removing unwanted 
variation. Frequently the investigator can obtain significant differences among 
treatment effects using a smaller sample size with the randomized complete block 
design than with a completely randomized design. 
In planning an experiment it is important to identify in advance the factors that may 
introduce unwanted variation in the response (i.e., variation not due to the treatment 
effect) and to block accordingly. If results differ from day to day, days become 
blocks, and the design should be balanced within days. Each treatment must occur 
exactly the same number of times within each day, and it must be assigned at random 
within the day. 
The model 
We assume that each observation can be described as follows: 

 
Here  is the effect of the ith treatment and β  is the effect of the jth block. Note 
that the treatments correspond to rows and the blocks correspond to columns. Thus 
Y

iα j

ii with i=2 and j=3 denotes the second treatment and the third block. 
From the model as just given, we can read four assumptions: 
1) 

2) 
j

3) 

The response to the ith treatment in the jth block Yii is from a normal distribution. 
(There are ab distributions.) 
The means of the ab normal distributions can be expressed in the form 

. This property is often called additivity, or alternatively, no 
interaction. 

iµ+α β+

The variances of the ab populations are equal. This property is known as 
homoscedasticity. 
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4) The ∈  (deviations from the means) are statistically independent. If we know 

that 
ij

11∈   is large, we have no reason to expect E12 to be small (or large, for that 
matter). 
As an example of a randomized complete block design, we use the following 
data. 

Randomized complete block design with three treatments (3 coupon plans and four 
blocks (Store sizes) 

 
Stores are blocked on the basis of the size because we expect some variation in cola 
sales due to the size of the stores. Store 1 is the largest size, followed by store 2 next 
largest, and so on. Treatments (coupon plan 1, coupon plan 2, and coupon plan 3) are 
randomly assigned to test units within each block. 
Hypothesis of primary interest-There is no difference amongst treatment effects. 
Hypothesis of secondary interest-There is no difference amongst block effects. 
Format of Analysis of Variance Table for Randomized Complete Block Design 

Format of Analysis of Variance Table for Latin Square Design 

 

 
Since the calculated F value exceeds the table F value at 5% level of significance 
both for treatment effect and block effect, we reject the null hypotheses and conclude 
that treatment effect is significant and also the block effect is significant. 
We conclude that after blocking for store size, the coupon plans do make a difference 
in sales of cola. 
Activity 2 
What are the improvements made in the randomized complete block design over the 
completely randomized design? 
…………………………………………………………………………………………
…………………………………………………………………………………………. 
…………………………………………………………………………………………. 
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 In the randomized complete block design, the effect of a single factor was removed. 
It is occasionally possible to remove .the effects of two factors simultaneously in the 
same experiment by using the Latin Square design. In order to use the Latin square 
design, however, it is necessary to assume that no interaction exists between the 
treatment effect and either block effect. In addition, the number of treatments must be 
equal to the number of categories for each of the two factors. We might, for instance, 
wish to test four detergents, using four methods of application, at four hospitals. A 
4X4 Latin square design could then be employed, using each detergent exactly once 
with each method and exactly once in each hospital. The assignment of detergent 
could be made as shown in the following table; the roman numeral in the ith row and 
jth column indicates the detergent that will be used by the ith application method in 
the jth hospital. As assigned in the Table 2, the first detergent is used in hospital 1 by 
method 1, in hospital 2 by method 4, in hospital 3 by method 3, and in hospital 4 by 
method 2. Only 16 observations are needed because of the balanced arrangement 
used and because of the assumption of no interaction. 

 
The above data table gives the measurements obtained from using the four 
detergents. 
The Model 
It is assumed that each observation Yijk can be expressed as follows: 

 
Here  denotes the overall mean response for all p treatments using all pµ 2 

combinations of the two factors; there are thus p3 population means altogether. In the 
detergent example.  is the average of pµ 3 = 64 population means. Each  is the part 
of the mean that is due to the ith row. (method); β  is the part of the mean that is due 
to the jth column (hospital); y

iα

j

k is the part of the mean due to the kth treatment 
(detergent). 
There are p3 populations, but we have economized by making an observation on only 
p2 populations. In the detergent example, instead of 64 observations, we have only 16. 
The assumptions implied by the model are as follows: 

The p3 populations are normally distributed. 1) 
2) 
3) 

They have equal variances. 
There is no interaction. 
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4) 

k

The ∈ 's are independent of one another. 
The assumptions of no interaction is implicit in the statement of the model. We have 
stated that the mean of Yijk is ; this indicates that the first detergent 
has the same effect no matter which hospital is involved and no matter which method 
is used. Each hospital performs equally well with each method. 

i jµ+α β Y+ +

The assumption of independent ∈ 's would be violated if, for example, half the 
experiment were conducted at one time and half were conducted six months later. 

 
The hypotheses to be tested are: 
H0: There are no differences among the row means  
H0: There are no differences among the column means  
H0 : There are no differences among the treatment means 
In our example, the rows are methods, columns are hospitals, and the treatments are 
the detergents. 
The calculated F exceeds the table F at 5% level for hospitals and detergents. Reject 
H0 and conclude that there are differences in performance among the four detergents; 
there are differences among the hospitals. 
The calculated F is less than the table F at 5% level in the case of the methods. Do 
not reject Ho and infer that there may be no differences among the four application 
methods. 
The advantage of a Latin square design over the randomized complete block design is 
that the effect of a second factor is eliminated without increasing the size of the 
experiment, provided always that no interactions exist. 
Activity 3 
State the Latin square model with the assumptions clearly embodied in the model. 
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
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 Often a researcher can use a single experiment advantageously to study two or more 
different kinds of treatments. For example, in investigating performance of two types 
of seeds, he may wish to vary the level of fertilizer used during the experiment. If he 
chose three levels of fertilizer-low, medium, and high-one factor would be "type of 
seed", the second factor "level of fertilizer". A factorial design, with two factors, 
would consist of employing all six treatments formed by using each type of seed with 
each level of fertilizer. Factorial designs can involve more than two factors; however, 
we consider here the case of two factors only. 
A factorial design can also be used in a survey. For example, we might wish to 
compare three methods of teaching operations research, and at the same time 
compare the fast four grades. We might have records on standardized tests for two 
classes in each grade taught by each method. The class mean improvement from 
initial test to final test could be the measure of success. Our data would then consist 
of two observations on each of 12 (3 x 4) different treatment combinations. 
The characteristic of the factorial design is that every level of one factor is used in 
combination with every level of the other factor. The design is effective for studying 
the two factors in combination. This implies that factorial designs are appropriate in 
finding out whether interactions exist between factors. 
Some factors can be measured quantitatively, and different levels for them are chosen 
on an ordered scale; level of fertilizer, dosage level; and temperature are all factors of 
this type. Other factors involve no obvious underlying continuum and can be said to 
be qualitative; drug and type of seed are factors of the second type. 
As an example of a two-factor design, let us take a study on rye yields involving two 
types of seed, each used at three fertilizer levels-low, medium, and high. There were 
available 24 small plots of ground, and the six treatment combinations were assigned 
at random to 24 plots, 4 plots receiving each treatment. Two tables (Tables 3 & 4) are 
given below. Table 3 represents the notation and the second gives the actual 
observations replacing their symbols. 

 

A response (in this case yield) is denoted by Yijk, where i indicates the seed type, j   

 



 

indicates the fertilizer level, and k is the observation number. For example, Y213, is 
the yield in the third of the four plots that used seed type 2 and a low fertilizer level. 
The cell means, denoted by ijY .  are the means for each treatment combination. The 

mean of all 12 observations on the i th seed type is i..Y ; the mean of all 8 
observations on the jth fertilizer is Y.j.; the overall mean of the 24 observations is 
Y... . 
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The Model 
Where 
  µ   = Overall means response; 
  iα   = effect of the ith level of the first factor 
  β   = effect of the jth level of the second factor j

ij(αβ)   = interaction between the ith level of the first factor and the jth level of 
the second factor. 

ijk∈   = deviation of Yijk from the population mean response for the ij th 
population. 

 
Format Of Analysis Of Variance For Two Factor Factorial Design 

 
ANOVA Table For Our Illustration Problem On Two Types Of Seed With Three 
Fertilizer Levels 

From the last two columns of the table, we conclude (by comparing the computed F 
value with table F value) the following: 
1) 
2) 
3) 

Differences exist between yields from the two seed types. 
Differences exist among yields from the three levels of fertilizer. 
Interactions exist between seed type and fertilizer level. 

* computed F exceeds table IF at 5% significance level for all the three above, 
leading to rejection of null hypothesis of no difference. 
Activity 4 
What are the specialities of the factorial designs? 

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 
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 Analysis of covariance is a combination of the two techniques-analysis of variance 
and regression. It is the simultaneous study of several regressions. 

The purpose of analysis of covariance is to remove the effect of one or more 
unwanted factors in an analysis of variance. For example, in studying the heights of 
three populations of children (cyanotic heart disease children, sibs of heart-disease 
children, and "well children"), we may wish to eliminate the effect of age. A variable 
whose effect one wishes to eliminate by means of a covariance analysis is called a 
covariate or a concomitant variable. 

The analysis of covariance has the following uses: 

1) To increase precision in randomized experiments. In such applications the 
covariate X is a measurement taken on each experimental unit before the 
treatments are applied that predicts to some degree the final response Y on the 
unit. By adjusting the treatment means after giving regard to the concomitant 
variable, we obtain a lower experimental error and more precise comparisons 
among the treatments. This is probably the commonest use of covariance. 

2) To adjust for sources of bias in observational studies. An investigator is studying 
the relationship between obesity in workers and the physical activity required in 
their occupations. If obesity is linearly related to age, differences found in obesity 
among different occupations may be due in part to these age differences. 
Consequently he adjusts for a possible source of bias in his comparison among 
occupations. 

3) 

4) 

To throw light on the nature of treatment effects in randomized experiments. In 
an experiment on the effects of soil fumigants on nematodes, which attack some 
farm crops, significant differences between fumigants were found both in the 
numbers of nematode cysts and in the yields of crop. This raises the question: can 
the differences in yields be ascribed to the differences in numbers of nematodes? 
Analysis of covariance can provide answer to this question. 

To study regressions in multiple classifications. For example, an investigator is 
studying the relationship between expenditure per student in schools (Y) and 
percapita income (X) in large cities. If he has data for a large numbers of cities 
for each of four years, he may want to examine whether the relationship is same 
in different sections of the country, or whether it remains the same from year to 
year. Sometimes the question is whether the relationship is straight or curved. 

Because analysis of covariance techniques are complicated, we confine ourselves 
mainly to the purpose and uses as mentioned above and highlight a practical situation 
where the covariance analysis can be employed. Those who would like to go deeper, 
may refer to the book on "Statistical Methods" by Snedecor & Cochran. It is also 
strongly suggested that you should use SPSS, or Biomedical Programmes for analysis 
and interpretation of covariance. These packages provide a complete and flexible 
analysis. 

As an example consider the following data on language scores (Y) for students taught 
by three different methods. Measurements on IQ(X) are also available. Since the 
students are not assigned at random to the three teaching methods, there may easily 
be differences in IQ scores among the three groups. 

Our objective is to examine differences in language scores among the three methods 
after the effect of IQ has been eliminated. Otherwise, if we claim that method I is 
superior to method II, we may not be able to refute the statement that the observed 
difference between the methods occurs because the IQs of the students using method 
I were higher than using method II. 
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Where ∈  IND ij
2

e(0, )σ . Yij and Xij denote the Y and X values for the jth individual 
on the ith treatment. The number of treatment is a and the number of individuals in 
the ith sample is ni. In our example, a=3, n1=10, n2=10, n3=10. The model expressed 
above is clearly that of a separate linear regressions. The assumptions implied are 
exactly same as in a linear regression. 

For our example, the standard F test of the analysis of covariance leads to the 
rejection of the null hypothesis of no difference among the three teaching methods. 
Therefore we infer that the three teaching methods do make difference on the 
language score after eliminating the effect of IQ. For the complete analysis, use 
SPSS, SAS, or BIO-medical programmes. 

Activity 5 

Explain briefly why do you need analysis of covariance in experimental designs? 

…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
…………………………………………………………………………………………
………………………………………………………………………………………… 

3.7 SUMMARY 
We began the discussion with a brief introduction on the usefulness of the 
experimental designs in studying the causal relationship effectively. We have then 
introduced the simplest of the experimental designs-completely randomized design. 
The F test of the null hypothesis that no differences exist among the treatment means 
has been illustrated with a suitable example. 

Then the randomized complete block design has been explained as a suitable design 
for removing an unwanted effect by blocking. The design has been illustrated through 
a problem on studying the effect of different coupon plans on sales of cola after 
blocking for store size. 

It may be mentioned in the passing that the case of unequal sample size has not been 
separately dealt with. The procedure remains the same except for some minor 
modifications in the computations and assumption. Those interested may please go 
through MS-61 Block 5 for the procedure. Also the random effect and mixed effect 
models have not been discussed separately and it is suggested that you use the 
software package which has all these options built into the programme. It may also be 
added here that the underlying principal of ANOVA (breaking the total variance into 
meaningful component variance and residual variance) remains unaltered irrespective 
of any design model. That is why every alternative model has not been individually 
focused and instead the typical one has been illustrated. 

The next in order we have brought out is Latin square design. This is introduced as a 
powerful design that can be used to remove the effects of two unwanted factors 
simultaneously when effects are additive and no interaction exists. 

 



 

Introduction to Research We have then moved on to the factorial design which we have conceptualised in case 
of two factors. We have emphasised that this design is very effective for student the 
two factors in combination from the angle of finding whether the interaction exist 
between factors. 
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The last model in this unit we have discussed is the analysis of covariance. This is 
useful technique in experiments or in surveys when the investigator wishes to red the 
variance and to remove the effect of a factor (concomitant variable or covariance 
such as age, which may have an appreciable effect on his response variable. 

3.8 SELF-ASSESSMENT EXERCISES 
1) State clearly the assumptions embodied in all the experimental designs-

completely randomized design, randomized complete block design, Latin square 
design, factorial design, and analysis of covariance. 

2) The marketing research department of the Gamma adhesive company is 
attempting to find some attribute of their gummed labels that can be 
merchandised as being superior to competitive brands. The manager of the 
department feels that their strength of their adhesive represents a good 
promotional point in increasing sales. Accordingly, samples of the company's 
adhesive and three other brands are tested by an independent research company 
The "strength indices" of the four products are as follows. 

 
a) 
b) 

c) 

Test the null hypothesis that the means of all treatments are equal 
Assume now that the trials can be treated as blocks, perform the analysis of 
the randomized complete block design and compare your answer with part 
(a) 
Discuss clearly the advantages of the randomized complete block design over 
the completely randomized design in the context of this example. 

3) A researcher has carried out the following Latin square design: 

 
The data above refer to unit sales. 
Ai = Shelf height                                                         i,j,k = 1,2,3,4,...  
Bj = Number of racings 
Ck = Shelf fullness 

a) 

b) 

Test the hypothesis that no significant differences exist among sales responses 
due to shelf height, number of facings, and shelf fullness. 
Write the complete Latin square model for this problem. 

4. Consider the following factorial layout: 
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a) 

b) 

Test the null hypothesis that there is no difference in sales due to personal 
selling effort and direct mail 

Does a significant interaction exist between personal selling effort and direct 
mail advertising? 

5) a) Distinguish clearly between analysis of variance and analysis of covariance. 

b) Give one practical situation where analysis of covariance will have to be used. 
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