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INFERENCE ON COINTEGRATION — WITH
APPLICATIONS TO THE DEMAND FOR MONEY
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I. INTRODUCTION

1.1. Background

Many papers have over the last few years been devoted to the estimation and
testing of long-run relations under the heading of cointegration, Granger
(1981), Granger and Weiss (1983), Engle and Granger (1987), Stock (1987),
Phillips and Ouliaris (1986 ), (1987}, Johansen (1988b), (1989), Johansen and
Jusehius {1988), canonical analysis, Box and Tiao (1981), Velu, Wichern and
Reinsel (1987), Pena and Box (1987), reduced rank regression, Velu, Reinsel
and Wichern {1986), and Ahn and Reinsel (1987), common trends, Stock
and Watson (1987), regression with integrated regressors, Phillips (1987},
Phillips and Park (1986a), (1988b), (1989), as well as under the heading rest-
ing for unit roots, see for instance Sims, Stock, and Watson {1986). There is a
special issue of this BULLETIN {1986) dealing mainly with cointegration and
a special issue of the Journal of Economic Dynamics and Control {1988)
dealing with the same problems.

We start with a vector autoregressive model {cf. (1.1} below) and formulate
the hypothesis of cointegration as the hypothesis of reduced rank of the long-
run impact matrix Il = @f’. The main purpose of this paper is to demonstrate
the method of maximum likelihood in connection with two examples. The
results concern the calculation of the maximum likelihood estimators and
likelihood ratio tests in the model for cointegration under linear restrictions
on the cointegration vectors B and weights a. These results are modifications
of the procedure given in Johansen {1988b) and apply the multivariate tech-
nique of partial canonical correlations, see Anderson (1984) or Tso (1981).

For inference we apply the results of Johansen (1989) on the asymptotic
distribution of the likelihood ratio test. These distributions are given in terms
of a multivariate Brownian motion process and are tabulated in the
Appendix. Inferences on @ and § under linear restrictions can be conducted
using the usual x? distribution as an approximation to the distribution of
likelihood ratio test. We also apply the limiting distribution of the maximum
likelihood estimator to a Wald test for hypotheses about @ and .
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170 BULLETIN
1.2. The Statistical Model

Consider the model
Hl:xl=nlxr—] +'“+ﬂkxf-k+“+°D1+8n(‘t=l;---9 T)’ (11)

where €,,...,&; are IIN(0, A) and X_,.,..., X, are fixed. Here the
variables D, are centered seasonal dummies which sum to zero over a full
year. We assume that we have quarterly data, such that we include three
dummies and a constant term. The unrestricted parameters (u, ®,II,,...,.II,,
A) are estimated on the basis of T observations from a vector autoregressive
process. For a p-dimensional process with quarterly data this gives Tp
observations and p +3p + kp2 + p{p + 1)/2 parameters.

In general, economic time series are non-stationary processes, and VAR-
systems like (1.1) have usually been expressed in first differenced form.
Unless the difference operator is also applied to the error process and
explicitly taken account of, differencing implies loss of information in the
data. Using A=1~ L, where L is the lag operator, it is convenient to rewrite
themodel (1.1)as

AX,=IAX,_+...+T,_AX, ., +1IX, ,+ u+®D, +¢, (1.2
where
r=-(1-m,—-...—1,), (i=1,...,k—-1),
and
n=-(1-1I,-...—IL,). (1.3}

Notice that modet (1.2) is expressed as a traditional first difference VAR-
model except for the term X, _,. It is the main purpose of this paper to
investigate whether the coefficient matrix II contains information about
long-run relationships between the variables in the data vector. There are
three possible cases:

(i) Rank({Fl)= p, ie. the matrix I has full rank, indicating that the vector
process X, is stationary.
(ii} Rank(I1)=0, ie. the matrix T} is the null matrix and (1.2) corresponds to
a traditional differenced vector time series model.
(iii) 0 <rank(II)=r< p implying that there are p X r matrices @ and B such
that I = af’.

The cointegration vectors § have the property that §'X, is stationary even
though X, itself is non-stationary. In this case (1.2) ¢an be interpreted as an
error correction model, see Engle and Granger (1987), Davidson (1986) or
Johansen {1988a). Thus the main hypothesis we shaﬂ consider here is the
hypothesis of r cointegration vectors

Hy:N=af, . (14)

where a and f are p X r matrices.
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We further investigate linear hypotheses expressed in terms of the coef-
ficients &, @ and B, and in particular the relation between the constant term
and the reduced rank matrix IL. If IK is restricted as in H,, see (1.4)and 4 #0
the non-stationary process X, has linear trends with coefficients which are
functions of g only through @', &, where a | is a p X{p —r) matrix of vectors
chosen orthogonal to a. Thus the hypothesis s =ap;, or alternatively
a', u =0, is the hypothesis about the absence of a linear trend in the process.
Note that when u = af}, we can write

af’X, +u=afX,_,+afy=ap*x}

where g*=(f’, B;Y and X*_,=(X|_,, 1) This is useful for the calculations.
Since the asymptotic distributions of the test statistics and estimators depend
on which assumption is maintained, it is important to choose the appropriate
model formulation. This has been pointed out for instance by West (1989),
Dolado and Jenkinson {1988). The mathematical results for the multivariate
model (1.2) are given in Johansen (1989).

1.3. The Data

We have chosen to illustrate the procedures by data from the Danish and
Finnish economy on the demand for money.! The relation m=f(y,p, c)
expresses money demand m as a function of real income y, price level p and
the cost of holding money c. Price homogeneity was first tested and since it
was clearly accepted by data the empirical analysis here will be for real
money, real income and some proxies measuring the cost of holding money.
Money, income and prices were measured in logarithms, since multiplicative
effects are assumed.

The two data sets differ both as to which variables are included and the
length of the sample. More interestingly, however, the institutional relations
in the two economies have been quite different in the sample period. In
Denmark, financial markets have been much less restricted than in Finland,
where both interest rates and prices have been subject to regulation for most
of the sample period. One would expect this to show up in the empirical
results and it does.

For the Danish data the sample is 1974.1-1987.3. As a proxy for money
demand m2 was chosen because the data available on a quarterly basis are
based on more homogeneous definitions for m2 than for m1. The cost of
holding money was assumed to be approximately measured by the difference
between the bank deposit rate, i%, for interest bearing deposits (which are the
main part of m2) and the bond rate, i®, which plays an important role in the
Danish economy. The two interest rates were included unrestrictedly in the
analysis, but subsequently tested for equal coefficients with opposite signs.
The inflation rate, Ap, was also included as a possible proxy for the cost of

! For a general review of theoretical and empirical results on the demand for money, see for
instance Laidler (1985).
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holding money, but since it did not enter significantly into the cointegration
relation for money demand it was omitted from the present analysis.

For the Finnish data the sample is 1958.1-1984.3. In this case m1 was
chosen since the m1 cointegration relation was found to enter the demand
for money equation more significantly and hence illustrated the methodology
better. Since interest rates have been regulated, a good proxy for the actual
costs of holding money is difficult to find. The inflation rate, Ap, is a natural
candidate and therefore is included in the data set. Moreover, the marginal
rate of interest, i, of the Bank of Finland is included in spite of the fact that
the marginal rate measures restrictedness of money rather than the cost of
holding money. It has, however, been chosen as a determinant of Fianish
money demand in other studies and therefore is also included here. All series
are graphed in Figure 3 and Figure 4 in Section IV. The data are available
from the authors on request.

The paper is structured as follows: Section Il discusses the various
hypotheses we shall investigate and in Section HI the notation is introduced
for the maximum likelihood procedure. The next section derives the
estimates of @ and B under-the assumption of cointegration and the last two
sections investigate estimates and tests for § and @ under linear restrictions.

Throughout, the two examples are used to motivate the statistical analysis
and to illustrate the mathematically derived concepts:

I. A CLASSIFICATION OF THE VARIOUS HYPOTHESES

The hypotheses we consider consists of the hypothesis H, on the existence of
cointegrating relations combined with linear restrictions on either the
cointegrating relations or their weights:

Hy:Nl=af,

H;:Ml=a@H {or f=He),

H, N=Ayf (ora=Avy),
Hy:TI=Aye'H (or f=H@and a=Ap),

and HY} is H; augmented by 4 = afjfor j=2,...,5.

Note that the hypothesis H,, where H is unrestricted, can be written as H,
with r =p. Hence, in this case the restriction # = af}, is the same as having 4
unrestricted. When we estimate model (1.2) under the hypothesis I1 = a8’ the
choice of hypothesis about u# becomes important For the Danish data there
does not seem to be any linear trend in the non-stationary processes (cf.
Figure 3) and we will estimate models of the form H}. For the Finnish data,
however, there seems to be a linear trend in the nonﬁanonary processes (cf.
Figure 4) and models of the form H; will be estimated..

The matrices A{p X m) and H(p x s) are known and define linear restric-
tions on the parameters @{p Xr) and B{p X r). The restrictions reduce the
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parameters to @(sXr} and ¢(mxr), where r<s<p and rsms<p. The
important distinction between the H and the H* hypotheses is that H* define
a restriction on g, namely that it lies in the space spanned by @ or that
a' #=0, hence that no trend is present. In the following the discussion will
be concerned with the H hypotheses, but can easily be extended to include
the case of H*. In the above scheme note that H; = H,N H; and that H;C H,
and H,C H,. In fact all hypotheses are special cases of H, if we choose either
A or H as the identity matrix.

The relations between the various hypotheses are illustrated in Figure 1.

All these hypotheses are restrictions of the matrix II which under H,
contains p? parameters. Under the hypothesis H, there are pr+(p—r)r
parameters which are further restricted to sr+(p—r)r under H,. Finally
myr +(s —r) r parameters remain under H;. Note also that the parameters a
and B are not identified in the sense that given any choice of the matrix
&(r xr), the choice a& and B(&')~! will give the same matrix II, and hence
determine the same probability distribution for the variables. One way of
expressing this is to say that what the data can determine is the space spanned
by the columns in B, the cointegration space, and the space spanned by a. In
general we present the resuits normalized by the coefficient of some of the
variables, usually 71 and m?2 respectively.

Note also that for each value of r(0<r<p) there is a corresponding
hypothesis H,{r) of r or fewer cointegrating relations. The analysis makes it

H,
H, Hy
n=ap N=af, u=ap,
Hy H, 1 He
=ag'H n=Ayf N=a¢'H, u=af, n=Ayp, u=ap,
He HE
N=Ayg'H O=Ayg'H, u=ap)

Fig. 1. The relation between the various hypothesis studied, starting with the most

general VAR model (H,) and introducing the restriction of cointegration ( ,) as well

as linear restrictions on the cointegration vectors (8) and the weights (@) in H, and
H,. The assumption of no trend & = af), is indicated by a*.
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possible to conduct inferences about the value of r by testing H,(r) in H, or
by testing H,(r)in Hyr+1).

. THE MAXIMUM LIKELIHOOD PROCEDURE

In the following we will use the parameterization (1.2). The reason for this is
that the parameters

(rls---yrk-h¢7‘¢’ “,A)

are variation independent and, since all the models we are interested in are
expressed as restrictions on g and 11, it is possible to maximize over all the
other parameters once and for all. We shall give details in the case of
hypotheses about @ and § without restricting %, but mention how results are
modified when a'; # = 0. Generally we use a superscript * to indicate that we
are analysing a model where @', # =0. The mode! with g =0 and ® =0 was
analysed in Johansen (1988b) and Johansen and Juselius (1988).

We now consider maximum likelihood estimation of the parameters in the
unrestricted model:

AX,=T,AX,_,+..+T,_,Ax,_,, +TIX,_ + u+®D,+¢, (3.1)

The results (3.2)-(3.9) are well-known but reproduced to establish the
notation. This will be useful for discussing the estimators and tests later.

We first introduce the notation Z,, = AX,, Z,, denotes the stacked variables
AX,_,...,AX, ;+,D, and 1, and Z,, =X, _,. Similarly, I is the matrix of
parameters corresponding to Z,,, i.e. the matrix consisting of I';,....T', _,, ®
and g. Thus Z,, is a vector of dimension p{(k—1}+3 +1 and I is a matrix of
dimension p X(p(k—1)+3 +1).

The model expressed in these variables becomes

Z,=TZ, +1Z, +¢, (t=1,..,T) (3.2)

For a fixed value of I, maximum likelihood estimation consists of a regres-
sion of Z,,— HZ,, on Z,, giving the normal equations

T T - T
z zfltz"l."—_r Z zn 'lr‘*’l'l Z Zktz‘lz' (3-3)
=1 i=1 =1

The product moment matrices are denoted:
r
M=T"'YZ2Z, (ij=01k) (34)
=1 .

Then (3.3) can be written as:
M°| =rM“ +,an|,
or -
I=MyM;'-HM M[". (3.5)
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This leads to the definition of the residuals
Ry =Zy,—MyM;,'Z,, (3.6}
R.=Z,—~M;M[|'Z,, {3.7)

ie. the residuals we would obtain by regressing AX, and X,_, on
AX,_,...,AX, ;,,D,and 1.
The concentrated likelihood function becomes:

|A|~TPexp) — X (Rm"ﬂRu)’A_‘(Ro,-anz)/Z]- (3.8)

We express the estimates under the model H; by introducing the notation
T
S;=T"' 2 RR,=M,~M,M[/M,,  (i,j=0,k), (3.9)
=1

and formulate these well-known results in
THEOREM 3.1: In the model:

&
H:AX,= Y TAX, ,+HX,_, +u+®D, +¢,

i=1

the parameters are estimated by ordinary least squares and we have:

n=s,S;., (3.10)

and
A=8y-S,,S7'S,0, (3.11)
L ;2" H,)=|Al. (3.12)

The estimate of I inserted into (3.5) gives the estimate of I.

Under the hypothesis H$:II = a8’ and u = af;,, which will be investigated
for the Danish data, it is convenient to define Z$, = Z,, = AX, and let Z{, be the
stacked variables AX,_,,...,AX,_,.;,D,, whereas Z} =X,k =(X|_,,1}
Thus we have moved the constant from the regressors into the vector X ,.
Further, we define I'™* as the matrix of the relevant parametersT,..., T, _,, ®.
Similarly we define M} and S}. Note in particular that Sf, is{p+ 1)x(p+1).

3.1. The Empirical Analysis of the Unrestricted Model H

Model (3.1} including a constant term and seasonal dummies is fitted to the
Danish and Finnish money demand data described in Section 1.3. For k=2,
the residuals for the Danish data passed the test for being uncorrelated (see
Table 1 below). For the Finnish data, the test statistic for the residuals in the
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equation for Ay is almost significant. The autocorrelogram suggests that there
is some seasonality left in the residuals, but since the seasonal autocorrelation
is rather small we have chosen to ignore this. Accordingly, model (3.1) with
k=2 was fitted to both data sets. After conditioning on the first two data
realizations, the number of observations left for estimation was 53 in the
Danish and 104 in the Finnish data.

Since the parameter estimates of I';, @, # and A are not of particular
interest in this paper, they are not reported. The estimates of 1 are reported
in Table 7 Section VI, and the standard error of regression estimates in Table
1 below. The normality assumption is tested by the Jarque & Bera test
{Jarque and Bera, 1980), and reported below. For the Finnish data the
residuals from the Ai™ and Ap equations do not pass the test. The deviations
from normality are mainly due to too many large residuals. They are,
however, approximately symmetrically distributed around zero, which
probably is less serious than a skewed distribution. The robustness of the ML
cointegration procedure for deviations from normality has not been investi-
gated so far.

TABLE 1
Some Test Statistics for the niid Assumption for the Residuals in the Model (1.2) with
k=2
The Danish data The Finnish data
Am2 Ay A AiY  Aml Ay Ain Ap

7, 115 11.48 10.57 7.34 11.30 19.21 4.30 6.99
T, 212 1.93 1.06 1.61 1.61 1.88 10.86 28.02

6, 0.019 0.019 0.007 0.005 0.045 0.029 0.034 0.011

where 7, = TEr¥i=1,..., 10)~ x*¥10),
T-m EK"}

. SKP +=| ~ 232,

L ( 3 ) 2%2)

m is the number of regressors, SK is skewness and EX is excess kurtosis.
4, is the standard error of regression estimate.

IV. DERIVATION OF THE ESTIMATES OF e AND 8 UNDER THE
HYPOTHESIS O =¢f' AND THE LIKELIHOOD RATIO TEST FOR
THIS HYPOTHESIS

Consider the model H,, where Il=af’. The estimation of I',,....I',_,, ®
and g is the same as before leading to (3.8). For ﬁmd B, it is easy to estimate
@ and A by regressing R,, on 'R, _ to obtain:

a(f)=SuBBSuB)Y, (4.1)
A(B)=Sp—SuB(B'SuB) ' B'Si=Sw— a(B)(BS.B) (B), (42)
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and
L:2TB)=|AB)I=1S0— SuBB'SiiB) ™ B'Siol. (4.3)

As shown in Johansen (1988b) (see also Tso (1981)), one proceeds to
estimate B by applying the identity.?
IS0 = SouB(B'SuB) ' B'Siol = |Sool | B'SB — B'SioS00' SorB1 /1 B'S i B1
=[Sy |ﬂr(skk_Skosﬁolsok)ﬂl/iﬁ'skkﬁL {4.4)
This is minimized by noting that an expression like | (M, —M,) B|/| 8'M, 8]
can be minimized by solving the equation |AM, —M,|=0, where M, =S,
M, = S,S60'Sou-
The results will be summarized in
THEOREM 4.1: Under the hypothesis
H,:Il=af,
the maximum likelihood estimator of B is found by the following procedure:
First solve the equation
[AS 4 — SioSo0 Skl =0, {4.5)
giving the eigenvalues 1, >...> 4, and eigenvectors V=%, ,-..,¥,) normalized
such that* V'S, V=1.
The choice of 8 is now
B=(5,....%,), (4.6)
which gives

L 22T(Hy)=Sg| T1(1-4,). (4.7)
i=1

The estimates of the other parameters are found by inserting B into the above
equations. The likelihood ratio test statistic for the hypothesis H, in H,, since
H, is a special case of H, for the choice r=p, is:

(O Hy | H)=~T 3 In(1- A, (48)

i=r+l

2This is based on the general result

A B
B' C
where in this application A=S,,, B=S,,f and C=p§'S. 5.

*Many computer packages comtain procedures for solving the eigenvalue problem
jA1- A} =0, where A is symmetric. One can easily reduce (4.5) to this problem by first decom-
posing S,, =CC', for some non-singular p X p matrix C. Now (4.5) is equivalent to

[ =C7'8, SySuC''=0,
which has the same eigenvalues 4, >...> 4, but eigenvectors ¢, ,..., €,. The eigenvectors of (4.5)
are then found as ¥,=C''e,.

=|A||C-B'A"'B|=|C||A-BC'B/|
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Similarly the likelihood ratio test statistic for testing H,(r) in H,(r+1) is
given by

-2n{Q;r|r+1)=~-TIn(1-4,,,). (4.9)

Under the hypothesis H:II=af’ and ¢ = af, the same results hold but
derived from S rather than S,

The asymptotic distributions of the likelihood ratio test statistics {4.8) and
{4.9) are found in Johansen (1989), and are not given by the usual x? distribu-
tions, but as multivariate versions of the Dickey-Fuller distribution. These
distributions are conveniently described by certain stochastic integrals, and
can be tabulated by simulation, see the Appendix.

Consider first the case a’, g = 0. By sujtably normalizing the equation (4.5)
and letting 7— % one can show that T(4,,,,..., 4,) converge to the roots of
the equation

=0, (4.10)

pJ‘I FF'dr— J l F(dU')[I (dU)F

) ) 4

where U(z) ={U,(¢),..., U,_(¢#)} is a (p—r}-dimensional Brownian motion
and the (p—r)-dimensional stochastic process F(r)={F(z),...,F,_ (1)} is
defined by

F,~(t)=U,-(t)—J Ufls)ds, (i=1,...,p—r). (4.11)

1

Further J FF'dt is a (p —r) X(p — r} matrix of random variables defined by

{

the ordinary Riemann integrals

J Fi(t) F{t)dt, (,j=1,....,p~r), (4.12)

Jl F(dU’)=”l (dU)F']

is defined as the matrix of stochastic integrals*

1
[ FAU,  (ij=1,..,p—7). (4.13)
0
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With this notation it follows that the statistic (4.8) satisfies

-2In(Q; H,|H)=~-T Z In{1-1,) Z T,

i=r+l i=r+f

which converges weakly to

i ”1 (dU)F [ J l FF'dt:I*l j ! F(dU')l,

where r{M]} denotes the trace of the matrix M. The statistic {4.8) is therefore
called the trace statistic (trace). Similarly

—2I(Q;r|r+1)=—-TIn(l—-4,.)=T4,,,,

converges weakly to

B =1M{[] (dU)F’Ul FF'dt]—[J’i F(dU')],

where A,,,,{M} denotes the marginal eigenvalue of the matrix M. The statistic
(4.9} is called the maximal eigenvalue statistic (4, ).

If r=p—1, then both U and F are one dimensional. Then the test statistics
are equal, since the trace equals the (maximal) eigenvalue, and the asymptotic
distribution of the statistic can be expressed as

(R —

0=J! Ulu)du.

where

0

This statistic is the square of the statistic 7, tabulated in Fuller (1976) p. 373.
The distribution of the trace and the maximal eigenvalue of the roots of
(4.10) depend only on the dimension p —7, i.e. the number of non-stationary

*The definition of a stochastic integral is analogous to the definition of a Riemann integral.
We let U and F be two continuous stochastic processes on the unit interval like the Brownian
motions. Then we consider a partion of the unit interval and the Riemann sum

R=Z, Flt,_ ) (Ulr) = Ult,.\))

The function U(-) has inofinite varation but finite quadratic  variation, ie.
sup(£,) Z,(U(#,) — U{t, _,)F < ¢ < 0. This can be used to prove the existence of the limit of R in
L,, i.e. there exists a random variable, which we shall call [FdU, such that E(R - [FdU}
converges to zero.
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components under the hypothesis. The distributions are tabulated by simula-
tion and are given in the Appendix in Table A2.

Next consider the case where @', g # 0, i.e. the trend is present under the
null hypothesis. We can express the results in this case by choosing a different
definition of F:

Fi-{t)=U,-(t)—J Uis)ds, (i=1,...,p—r—1), (4.14)

Flo)=t-1)2, {(i=p—r) {4.15)

It is instructive to consider again the case of p—r=1, where the statistic

reduces to
H (t—%)dU} /[ (r—3Pdr

which is distributed as ¥%(1). This is the well-known result (West (1989)) that
if the linear trend is present under the hypothesis of non-stationarity then the
usual asymptotics hold for the likelihood ratio test. The distribution of the
trace and maximal eigenvalue of the equation (4.10) with this choice of F is
tabulated by simulation in the Appendix and given in Table Al.

Since the distribution with @', # =0 has broader tails, cf. Tables Al and
A2 in the Appendix, the p-value should be calculated from the latter distribu-
tion.

Under H% (ie. g = af,) the asymptotic distribution of the test statistics
(4.8) and (4.9) can be shown to be distributed as above but with F defined by:

Fi(w=Ui(u) (izly""p-r)’
Flu)=1 (i=p—r+1)

These distributions are tabulated by simulation in Table A3. The relation
between the applications of the three distributions is illustrated in Figure 2
below:

/ " \
T,=tr{[ dUFI[FF du] ' [FdU), T3 =#r{] dUFIJFF du] ' [FaU'},
F=U-0 S F=L Y
H oo UY'U0) - H?

Fig. 2. The relation between the hypotheses H,, H, and H}‘, and the test statistics
used to test them. Note that T3 = T,+ U(1)'U(1).
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4.1. The Empirical Analysis®

In Table 2 the estimated eigenvalues A, the normalized eigenvectors V, and
weights W=S8,,V are reported, for the two data sets. The graphs correspond-
ing to the eigenvectors and the original data are presented in Figures 3 and 4.
Note that the eigenvectors ¥F for the Danish data are of dimension 5, where
the last coefficient is the estimated intercept. For the Finnish data u is
assumed to contain effects both from the intercept and from the linear trend
(see discussion in Section I).

In Table 3 the likelihood ratio test statistics are calculated and compared
to the 95 percent quantiles of the appropriate limiting distribution. Two
versions of the test procedure are reported in Table 3. The first is based on
the trace and the second on the maximum eigenvalue, see Theorem 4.1, (4.8)
and (4.9).

The Danish Data

On the basis of the plots of the series (see Figure 3) a model without a linear
trend in the non-stationary part of the process was assumed. Thus a constant
1 was appended to the vector X, _,, and the calculations were performed as
described in Section I, giving the matrices S}. The results of the eigenvalue
and eigenvector calculations are given in Table 2. First we consider the
number of cointegration vectors, beginning with the hypothesis r<1 versus
the general alternative H,. Using the trace test procedure gives
—2In(Q)= - T=!,,In(1 - 1*)=19.06.

The 95 percent quantile, 35.07, in the asymptotic distribution, see Table
A3, is not significant. Hence there is no evidence in the Danish data for more
than one cointegration relation. If we test the hypothesis that 7=0 in H, we
get a test value of 49.14, which is found to have a p-value of appr. 10 percent.
If instead we apply the maximum eigenvalue test, and test H,(r=0) in
Hyr<1)wefind —2In{Q; r=0|r=<1)= 30.08 which is in the upper tail of the
distribution of A, for r=0 with a p-value of 2.5 percent. We conclude that
there is only one cointegration vector in the Danish data. This hypothesis will
be maintained below. It must be noted that since the T4, are ordered they
cannot be independent, not even in the limit.

Thus all the tests performed in Table 3 are highly dependent on one
another.

Finally, as a check that the maintained assumption about the absence of
trend is data consistent, the test for H3(r<1) in H,(r<1) (see Figure 2} was
performed:

~21n(Q; HY1)| Hf1))= T In{|S8 (1~ 23)/|Sg0l(1 - 4,)}

=- 7"42 In{(1 - A3)/(1-1,)}=1.99.

i=2

*The calculations have been performed in the computer package RATS, VAR Econo-
metrics, Inc/Doan Associates.
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TABLE 3
Test statistics for the hypothesis HY and H, for various values of r versus r+ I (4,,,.) and
versus the general alternative H, (trace) for the Danish and Finnish data. The 95%
quantiles are taken from Table A2 (H ) and A3 (H*)

The Danish data The Finnish data

trace Amax trace A
H3 trace  (0.95 A, 0.95 H, trace  (0.95 A, (0.95)

r<3 2.35 9.09 2.35 9.09 r<3 3.11 8.08 311 8.08
r<2 8.69 20.17 634 1575 r=<2 1101 1784 790 14.60
r<1 1906 3507 1037 2189 r=<1 3765 3126 2664 2128
r=0 4914 5335 3008 2817 r=0 76.14 4842 3849 27.34

This relation holds, since |[Sg TI{(1—4,)=|S% |31 - A%)=|S,,—
S0cS!Sse |- The asymptotic distribution of the test statistic is ¥%(3) and thus
not significant.

The coefficient estimates of the cointegrating relation are found in Table 2
as the first column in V*. The interpretation of the cointegration vector as an
error correction mechanism measuring the excess demand for money is
straightforward, with the estimate of the equilibrium relation given by

m2=1.03y—-5.21i*+4.229+6.06.
Similarly @ is found as the first column in the matrix W* =S, V*:
a’'=(-0.213,0.115,0.023,0.029).

The coefficients of @& can be interpreted as the weights with which excess
demand for money enters the four equations of our system, and it is natural to
give them an economic meaning in terms of the average speed of adjustment
towards the estimated equilibrium state, such that a low coefficient indicates
slow adjustment and a high coefficient indicates rapid adjustment. In the first
equation, which measures the changes in money balances, the average speed
of adjustment is approximately 0.213, whereas in the remaining three
equations the adjustment coefficients are lower though of the ‘correct’ sign. In
particular the last two adjustment coefficients are low, and the hypothesis that
- some subset of the adjustment coefficients is zero will be formally tested in
Section VL

The Finnish Data
As discussed earlier a model that allows for linear trends is fitted to the
Finnish data. The estimated eigenvalues, vectors and weights are given in
Table 2 and the test statistics in Table 3, which indicate that at least 2 but
possibly 3 cointegration vectors are present.

The acceptance of the third relies on a p-value of approximately 20
percent, which usually would be considered too high. But since the power of
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REAL MONEY STOCK IN DENMARK
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Fig. 3. The graphs of the cointegraﬁnn relation V'X, for i=1,4 and the original
Danish data. The sample is: 1974.1-1987.3.
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REAL MONEY STOCK IN FINLAND
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Fig. 4. The graphs of the cointegration relation ¥'X, for i=1,4 and the original
Finnish data. The sample is: 1958.1-1984.3.
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the tests are likely to be low for cointegration vectors with roots close to but
outside the unit circle, it scems reasonable in certain cases to follow a test
procedure which rejects for higher p-values than the usual 5 percent. One
reason why we have kept r=3 in this case is that the hypothesis of propor-
tionality between money and income, ie. 8;,= — §,, seems consistent with
the data for the 3 eigenvectors.® If m1 and y appear in a cointegration vector
with equal coefficients of opposite sign, they should do so in all cointegration
vectors, see Section V.

Next we test the hypothesis that the linear trend is absent, i.e. H3(3) in
H,(3). We found that

~ 21n(Q; HY(3)| Hf3)= Ty 8% 1 (1= A2)1840l [T (1-4)

= —Tn{(1-A%)/(1-1,)}=4.78.

Since the asymptotic distribution of this statistic is x*(1), it is significant, and
the hypothesis H,{3) is maintained. We find B as the first three columns of V
from Table 2 and @ as the corresponding columns of the weights W. Note
that given the full matrices V and W one can estimate a and 8 for any value
of r.

For the case r> 1, the interpretation of ﬁ and @ is not straightforward. A
heuristic interpretation is however possible by considering the estimates in
Table 2. Note that 8,,~ —B;;, i=1,2,3, and that B, is approximately
proportional to (0,0,0,1). Thus, B,,8, and B, can be approximately
represented as linear combinations of the vectors (— 1,1,0,0), (0,0,0,1), and
{0,0,1,0), implying that m1 —y, i and Ap are stationary. This means that the
only interesting cointegration relation found is between m1 and y. However,
a linear combination between these three vectors might be more stable (in
terms of the roots of the characteristic polynomial) than the individual
vectors themselves and this linear combination could in fact be the
economically interesting relation. In particular, one would expect that the lin-
ear combination, which is most correlated with the stationary part of the
model, namely the first eigenvector, is of special interest. Although there is
some arbitrariness in the case r> 1, the ordering of the eigenvectors provided
by the estimation procedure is likely to be useful.

The estimates reported in Table 2 indicate:that B is approximately
measuring the inflation rate, whereas $, and B, seem to contain information
about m1 —y. Note also that &,, and &, have opposite sign. The sign to be
expected for ‘excess demand for money’ should be negative, but &,
dominates &,,, so that the ‘excess demand for money’ enters with a negative
sign in the first equation. The value of &, can be interpreted as the weight
with which the inflation rate enters equation i. In Table 7 Section V1, the

5t seems reasonable to denote the first coordinate of the cointegration vector 8, say, by 8;,.
1n ordinary matrix notation we then have §,, = 8,,.



INFERENCE ON COINTEGRATION 193

estimate of II=af’, ie. the estimate of the combined effects of all three
cointegration vectors, is reported. It is striking how well the proportionality
hypothesis between money and income is maintained in all equations of the
system.

This completes the investigation of the model H, and HY in H, and we
turn now to the models H, and H% in H,.

V. ESTIMATION AND TESTING UNDER LINEAR RESTRICTIONS ON 8

Model H;: 8 =He is a formulation of a linear restriction on the cointegration
vectors. The hypothesis specifies the same restriction on all the cointegration
vectors. The reason for this is the following: If we have two cointegration
vectors in which m and y, say, enter then any linear combination of these
relations will also be a cointegrating relation. Thus it will in general be poss-
ible to find some relation which has, say, equal coefficients with opposite sign
to m and y, corresponding to a long-run unit elasticity. This is clearly not
interesting, and only if the proportionality restriction is present in all g
vectors, is it meaningful to say that we have found a unit elasticity.

5.1. Likelihood Ratio Tests

Under H, we have the restriction 8=He where H is (p X s), but that means
that the estimation of I,....T,_;, ®, &, @ and A is given as for fixed
B8=Hg, and @ has to be chosen to minimize

| @ (H'S,,H—H'S,(Se'So H) @1/ ¢ (H'S,H) @| (5.1)

over the set of all sXr matrices @. This problem has the same kind of
solution as above and we formulate the results in Theorem 5.1 below. A
subscript indicates which hypothesis we are currently working with.
Throughout, the estimator without subscript will be the estimator under H,
or H3.

THEOREM 5.1: Under the hypothesis

H 3° p = Hw;
we find the maximum likelihood estimator of 8 as follows: First solve
lAH’SkkH_H’Sk(]Sl;OlSOkHI=07 (5.2)

for iy, >...>i,,and ¥,=(¥,,...,9,,) normalized by V4(H'S , H) V, =1L
Choose
@=(¥s,,...,%,)and f;=H@, (5.3)

and find the estimates of @, A and T from (4.1}, (4.2}, and (3.5). The
maximized likelihood becomes

L 22Ty =100l 1 (1 =45, (5:4)

=1
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which gives the likelihood ratio test of the hypothesis H; in H, as

20(Q; Hy | Hy) =T S Inf(1— Ay )1~ ). (5.5)

The asymptotic distribution of this statistic is shown in Johansen (1989) 10 be
x? with r{ p —s) degrees of freedom.
Under the hypothesis H%: =Hge and g = af, the same results hold.

5.1.1. The Empirical Analysis

The Finnish Data
We consider the hypothesis that there is proportionality between money and
income, so that the coefficients of money and income are equal with opposite

sign, i.e.
Hy:B;,= =B (i=1,2,3)
In matrix notation the hypothesis can be formulated as:

-1 0 0
1 0 0

ﬁ— 010 P,
0 01

where @ is a 3 X3 matrix. Solving (5.2) gives the eigenvalues in Table 4.
These are compared to the eigenvalues of the unrestricted model H,. The
test statistic is calculated as —2In{Q)=0.02+3.51 +0.29=3.82 which is
compared to x3.s(r(p—s))=x*3(4—3))=7.81. Thus the hypothesis of
equal coefficients with opposite sign for m1 and y, is clearly accepted. The
corresponding restricted B-estimates hardly change at all compared to the
unrestricted estimates of Table 2 and they are therefore not reported here.

With the imposed proportionality restriction we now have three cointegra-
tion vectors restricted to a three dimensional space defined by the restriction
. that m1 and y have equal coefficients with opposite sign. Thus the hypothesis
H, is really the hypothesis of a complete specification of sp(8). In this space
we can choose to present the results in any basis we want and it seems natural
to consider the three variables m1 —y, i”™ and Ap. Thus the conclusion about
the Finnish data is that the last two variables i” and Ap are already
stationary, and the first two, y and m 1, are cointegrated.

The Danish Data

In the Danish data we found r=1. Based on the unrestncted estimates in the
previous section it seems natural to formulate two linear hypotheses in this
case, both of which are economically meaningful:

HY;:B=—B2
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and
HYy: B13= — Bia-
In matrix formulation the first hypothesis is expressed as

100 0
g-{-1 000
010 0][%
001 0
000 1

where @ is a 4 X 1 vector. Solving (5.2) gives the eigenvalues in Table 4.
These are compared to the eigenvalues of the unrestricted H3 model.
The test of H%, in H% consists of comparing 1%, and A¥ by the test

~21n(Q; HE, | HY)= T{In(1 - 4%,)— In{1 - i$)}=0.05

The asymptotic distribution of this quantity is given by the x? distribution
with degrees of freedom r{p —s5)=1{4 — 3)= 1. The test statistic is clearly not
significant, and we can thus accept the hypothesis that for the Danish data the
coefficients of m2 and y are equal with opposite sign.

The second hypothesis that the coefficients for the bond rate and the
deposit rate are equal with opposite sign is now tested. This hypothesis
implies that the cost of holding money can be measured as the difference
between the bond yield and the yield from holding money in bank deposits.
Since H%, was strongly supported by the data, we will test H%, within H¥,.
This will now be formulated in matrix notation as

1 00
| -1 oo
0 -1 0

0 0 1

where @ is a 3 X 1 vector. Solving (5.2) we get the eigenvalues reported in
Tabie 4. The test for the hypothesis is given by

-21n(Q)=53{In(1- A%,)—In(1- A% )}=0.88

which should be compared with the x> quantiles with 7(s; —s,)=1(4-3)=1
degree of freedom. It is not significant and we conclude the analysis of the
cointegration vectors for the Danish demand for money by the restricted
estimate

B*=(1.00, —1.00,5.88, - 5.88, —6.21),
The corresponding estimate of o is given by
@*=(-0.177,0.095,0.023, 0.032).
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TABLE 4
The Eigenvalues and the Corresponding Test Statistics for Testing Restrictions on

. The Finnish data .
Eigenvalues 4, —Tin(1-4))
Hy: 0309 0226 0.073 0030 3849 2664 789 311
H;: 0.309 0.199 0.070 3847 2313 760
N The Danish data .
Eigenvalues A¥ ~TIn(1-4%)
3 0433 0.178 0113 0043 0 3009 1036 634 235 0
H%;: 0433 0172 0044 0.006 30,04 1001 236 032
H%,: 0423 0045 0.006 29.16 244 0.32

5.2. The Wald Test

Instead of the likelihood ratio tests which require estimation under the model
H, and H,, one can directly apply the results of model H, given in Table 2 to
calculate some Wald tests. The idea is to express the restrictions on f# as
K’ =0 and then normaiize K'# by its ‘standard deviation’.

It is shown in Johansen (1989) that if ¥* denotes the eigenvectors cor-
responding to i%,...,4%, (see the Danish data in Table 5) then, in case r=1,

the quantity
) ) 5 12
= TIPK¥f* / {m- 1—1) (Z (Kwa‘f)z)]
i=2

is asymptotically Gaussian with mean 0 and variance 1. Hence K*=(K’, 0)',
such that K¥f*=K'B, i.. the contrast involves only the coefficients of the
variables, not the constant term. This statistic is easily calculated from
Table 5.

If more than one cointegration vector is present, as in the Finnish data,
then the Wald statistic is given by

0?=TRr{(K'AD ' - 1)~ fK)(KW'K)™ 1},

where ¥ is the eigenvector corresponding to 4,, and D = diag(4,, }:2, As) (see
the Finnish data in Table 5). The asymptotic distribution of this statistic is
with r{p—s) degrees of freedom, where K is pX(p—s). In this case
r=p—1=3, and since r<s<p=4 and, since s =p is no restriction, we can
only test a hypothesis with s =r=p—1=3, corresponding to a completely
specified B.

The above test statistics require thenormahza&n of ,6 and v asin(4.5). An
alternative expression for this statistic which can be applied for any
normalization is

0= T r{{(K'Ba' A" af'K) (K'¥{¥'S,7) ¥K)).
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5.2.1. The Empirical Analysis

Since the calculations are numerically simpler for the normalization
¥'S,.V =1, it will be used to illustrate the Wald tests. In Table 5 the eigen-
values and eigenvectors for this normalization are reported.

The Danish Data
We start by the hypothesis
H%:B =B,

expressed as K'$=(1,1,0,0)=0. The Wald statistic is then calculated as
follows: A
First, T12K'B=53"(—21.97+22.70)=5.31,and

i K*#*?2 =(14.66 — 2005 +(7.95—25.64)
o +(1.02-1.937 +(11.36—7.207 = 360.13.
Then the test statistic becomes
©0=5.31/(1/0.4332 - 1)x 360.13)/2=0.24.
The second hypothesis

H,:8,3= = Bia

is tested in a similar way. Note however, that H%, is now tested within H% and
not within H%,. The test statistics becomes 1.32. Both these statistics are
asymptotically normalized Gaussian and the values found are hence not

significant.

The Finnish Data
For the Finnish data we only test the hypothesis:
Hy: B, = "13:'.2, (i=1,2,3).

This can be formulated as K’ =(1,1,0,0) 8=0.
First we find from Table 5 that K'¢¢'K={1.38 + 2,222 =12.96 and

. . (=293+286) (4.58-6.06)
' -1 -1 = +

K'6(0 R 0.30937'-1  022607'-
(—11.13+10.247

=0.83.
0.07317'-1

The test statistic becomes w?=104x(.83/12.96=5.66, which is not
significant in the y? distribution with 3 degrees of freedom.

Notice that the Wald test in all cases gives a value of the test statistic which
is larger than the value for the likelihood ratio test statistic. This just
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emphasizes the fact that we are relying on asymptotic results and a carefu}
study of the small sample properties is needed.

V1. ESTIMATION AND TESTING UNDER RESTRICTIONS ON a

Let us now turn to the hypothesis H, where a is restricted by a =A% in the
model H,. Here A is a {pXm) matrix. It is convenient to introduce
B(p X(p—m)}=A,, sach that B'A=0. Then the hypothesis H, can be
expressed as B'a =0.

The concentrated likelihood function (3.8) can be expressed in the var-
iables given by

ARy~ af'R,)=A'R,, —~A'AYf'R,, (6.1)
B'R, — af'’R,)=BR,, (6.2)

In the following, we factor out that part of the likelihood function which
depends on B'R,,, since it does not contain the parameters ¥ and B. To save
notation, we define:

A,=AAA A, =A'AB.S, ,=S,-S,S,'S,
=A'Sy, ~ A'SB(B'SyB) 'B'S,,, efc.
The factor corresponding to the marginal distribution of B'R,), is given by

T
IB'BI7 2| A " Pexp) — 2. (BRy,/A/(BR)/2[, (63)
and gives the estimate
o6 =Sps=B'SpoB, (6.4)
and the maximized likelihood function from the marginal distribution
Lo2T=18,|/|B'B). (6.5)

The other factor corresponds to the conditional distribution of A'R,, and R,
conditional on B'R, and is given by

|A'AIT2| A, | ™" Pexp) - Z(ARO A'AYBR, — A AL 'BR,,)

=1

X AL ARy, —A'AYB'R, — A A LBRy,)/ 2}- (6.6)

It is a well-known result from the theory of the multivariate normal distribu-
tion that the parameters A,,, A, A and A, , are variation independent
and hence that the estimate of A ,,A ;! is found by regression for fixed ¥ and
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B giving L
AabAl:bl( V’, ﬁ)=(sab—A,A¢ﬂ,Skb) Sb—bl’ (6'7)
and new residuals defined by
ﬁﬁl = A‘Rol - Sabsl:blB’ROH
R, =R, —SuSi'B'Ry,.

In terms of R, and R,, the concentrated likelihood function has the form (3.8)
which means that the estimation of 8 follows as before.®

THEOREM 6.1: Under the hypothesis
H,:a=Avy,
the maximum likelihood estimator of 8 is found as follows: First solve the
equation
|AS k.6 = Sta.6Sa 6Sux 6] =0, (6.8)

giving A, >...> Ay > Ay ey =...=4,,=0and ¥, =(¥,,,...,¥, ,) normalized
such that V.S,, ,V,=L

Now take
Bi=(41,,%,), (6.9)
which gives the estimates
y=(A'A )_lsak.bﬁa {(6.10)
and
d,=Ap=AA'A)'A(S, ~ SyB(B'SB) " 'B'Sy,) B, (6.11)
A s=Su s~ AAPPAA=S, ,~A'd,d A, (6.12)

and the maximized likelihood function
LZ2T(H)=BB| | AA|1S,l1S,05) [T (1= 2= 1800l TT(1-44,)
i=1 i=1
(6.13)

The estimate of A can be found from (6.4), (6.7) and (6.12), and T is
estimated from (3.5).
The likelihood ratio test statisic of H, in H, is

(s Hy Hy)=T 5, Ini(1 A, )(1 - ). (6.14)

i=1
The asymptotic distribution of this test statistic is given by a x? distribution
with r{p—m) degrees of freedom, see Johansen (1989). The same resuit
holds for testing H}:a=Avy in H3.

* It is convenient to calculate the relevant product moment matrices as

) 7 ;
: S;»=T' L RR, ~(Lj=ak)
=1
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The following very simple Corollary is useful for explaining the role -of
single equation analysis:

COROLLARY 6.2:If m =r=1 then the maximum likelihood estimate of B is
found as the coefficients of X, _, in the regression of A'AX, on X, _,, B'AX,,
and AX,_y,...,AX,_; ., D, and the constant.

PROOF: It suffices to notice that when m =r= 1, then only one cointegra-
tion vector has to estimated. It is seen from (6.8) that since the matrix
Si, $5m6Su » 1s singular and in fact of rank 1, then only one eigenvalue is
non-zero, and the corresponding eigenvector is proportional to S;,!.S,, ,,
which is exactly the regression coefficient of R,, obtained by regressing A'R,,
on B'R, and R,,. This can of course be seen directly from (6.6} since A'A¢ is
1x 1 and can be absorbed into 8, which shows that g is given by the regres-
sion as described. If, in particular, @ is proportional to (1,0,...,0), then
ordinary least squares analysis of the first equation will give the maximum
likelihood estimation for the cointegration vector. An empirical illustration of
this will be presented below.

Finally we just state briefly how one solves the estimation and testing of the
model H;:fp=Heg and a=A@. In this case we note that 8'R,,= @'H'R,,
which leads to solving (5.2} where R,, has been replaced by H'R,,. Thus
restricting B to lie in sp(H) implies that the levels of the process should be
transformed by H'.

Since @ = Ay we solve (6.8), where we have conditioned on B'R,,. In other
words if we assume that the equations for B'R,, do not contain the parameter
a, ie. B'a =0, then we can correct for these before solving the eigenvalue
problem. It is now clear how one should solve the model H;=H,NH,,
where restrictions have been imnosed on 8 as well as on a, namely by solving
the eigenvalue problem

|AH'S,, H-H'S,, ,S.".S;, H|=0. (6.15)

This gives the final solution to the estimation problem of H;. Notice how
(6.15) contains the previous problems by choosing either H=I or A=1 or
both. We have, however, chosen to present the analysis of restrictions on B
and a separately in order to simplify the notation.

Finally, note that a linear restriction on § implies a transformation of the
process, and that a linear restriction on @ implies a conditioning. Thus all the
calculations can easily be performed starting with the product moment
matrices S; and applying the usual operations of finding marginal (trans-
formed) and conditional variances followed by an eigenvalue routine.

6.1. The Empirical Analysis

In Section V it was shown that the hypothesis about proportionality between
money and income, B, = — f.,, was accepted both for the Danish and the
Finnish data, and that the hypothesis 8,;= —B,, was accepted for the
Danish data. Thus it seems natural to move directly to the H and the H?
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hypothesis, see Section II, and test hypotheses about a in the f-restricted
models. For illustrative purposes we will, however, also present the empirical
results for just one H, hypothesis, i.e. a restriction on & for unrestricted B.

The Danish Data

We denote the cointegration vector by (B,,...,8s) and the weights by
{(a,,..., ;). Since we have no a priori hypothesis about the a’s except that
a, # 0, we have at most three hypotheses about zero restrictions on « to test.
‘We have chosen to demonstrate the hypothesis: H ,: a;=0, in the text, and
report the results of other tests in Table 6.

The test results are summarized in the upper part of the table. The
estimates of 8, and @, are presented below the test statistics. To facilitate
comparison with the previous results the first column of the table gives the
estimates under the unrestricted model H%, the second and third under one
and two B restrictions, the next three under three @ restrictions and finally
the last column gives the estimates under three @ restrictions but for
unrestricted §.

Based on the calculated values of — T in(1—A4%) in Table 6 it is now
possible to test any of the three a hypotheses H;, i=1,2,3 against H%,, or
any of the H¥, hypotheses with fewer restrictions on a. The likelihood ratio
test statistic for HY, versus H%, is calculated as

—21n(Q; HY,| H2,)= Tiin(1 - A*(HE )~ In(1~ 1%,)}

which is asymptotically distributed as x? with (p —(p —i))r=1i degrees of
freedom, when r =1. For instance we consider H%, ve:sus H%, and find

—21In(Q; H%, | H%,)=29.15-27.96=1.19<3.84=y2,.(1).

The other tests have been linearly ordered in Table 6, and we can choose any
hypothesis of interest and test against hypotheses with fewer restrictions.
Since we had no strong a priori hypotheses about @,, a, and a,, the various
tests we have performed can be seen as a form for data exploration rather
than as specification testing in the strict sense.

We proceed to the H% hypotheses described in the last column of Table 6,
ie.

*® . = = =
H4J.a2"as— 04-0

for unrestricted . As shown in Corollary 6.2, the acceptance of this
hypothesis would legitimize the use of single equation estimation of @ and 8
and is therefore of particular interest. :

The hypothesis HY, is first tested by the likelihood ratio test and the
corresponding estimates of @ and f derived. We then give the corresponding
ordinary least squares estimates and show that the two procedures give the
same result.



203

INFERENCE ON COINTEGRATION

0 0 0 6200 €00 0£0°0 6200 o

0 0 0 0 £200 7200 £200 fo

0 0 6£1°0 660'0 $60°0 801°0 SI1'0 ‘o
¥ST0- L6T0- LETO- Z810- LLTO- rAFANES £120- 'n
869 — 129~ 129 2T9— 129 92’9~ 909 - °d
LS'T— 88'G — 18°¢ - $6'6— 88'6 — 6Tv— wr— g
9Ly 88°S 186 $6'S 88'S 0€'s 1Ts g
96°0— 00T - 001 - 001~ 001~ 001~ €07 - g
001 00'L 00’1 00'1 00'1 001 001 'y
e 16°L1 vE'ET 96'LT ST'62 v0'0€ 600¢  (Y-T .-
LSE0 9870 95€'0 014’0 €TI0 ZEV0 £EV0 .
o=‘o="D=Ffp o=0=*0=Ffp» o="p=F%n o="‘o —_ — — SUONINSAI-0

vy — =ty g =t g~ =ty - =ty
- pue’g— ='g puelg - =Tg puelg_=Tg puelg_ =1 Y=g - suonomsaI-g
i GSH GH SH 377 ) iH

g pup » ;moqu sasajiodAy snowwa 1apun 101934- 0 pup -g Supuodsaiio) ays pup anpaualis i1sag Y1 Jo vIBQq ysUB Y3 40f sawuasg
99TdVL



204 BULLETIN
The appropriate A and B matrices are now

1 0 00
A‘-=0,B=1 0 0,

0 010

0 0 0 1

on the basis of which the matrices S}, ,, S%, b S* , and S}, , can be
calculated. Solving the eigenvalue problem (6.8) gives one elgenvalue 0.357
and consequently one eigenvector B, as well as one estimate &. Normalized
by the coefficient of m2 the estimates are

B(HZ,)=(1.00, —0.96,4.76, — 2.57, —6.58)
4a(H%,)=(-0.25,0,0,0).
The test statistic for this hypothesis about a is then given by
~21n(Q; HY, | H3)= Tiin(1-4%,) - In(1 - A7)
=30.09-2342=7.67<7.81=y.s(3)

Although the test statistic is not significant at the 5 percent level it would be
so at a slightly higher level. On the basis of this we conclude that there is no
strong support for restricting a,, a; and a, to zero.

The single equation estimation corresponds to the calculation of the static
long-run solution of general autoregressive model

AI(L) mr=A2<L)y.' +A3(L) l.? +A4(L) i7+a5 +A‘6Dt+ €y (616)

where ¢, are indep-ndent Gaussian variables with mean zero and variance o2,

and A/(L), i=1,...,4,is a lag polynomial of order 2, normalized at A ,(0)=1.
The static long-run solution is obtained by evaluating (6.16) at L=1,

which gives the estimate of 8 and @ normalized by the coefficient of m, as

B=A,1)7{- A1) A)(1), A1), Af1), as]
a=A(1).
The OLS estimation of (6.16) evaluated at L = 1 gives:
(Ay(1),..., A,(1), a5}=(0.254,0.244, —1.211,0.654, 1.698),
from which the static long-run solution can be calculated as

m=0.96y—4.76i*+2.57i+6.58,
(0.19) (0.83) (1.46) (2.06)

ie. exactly the same estimates as in the resalcted maximum likelihood
procedure, see Corollary 6.2.

We conclude the empirical analysis by a comparison of the estimated II-
matrices under the full unrestricted H,-model and the final version l1= af’
with data consistent restrictions on a and 8 (see Table 7). For the Danish data



205

INFERENCE ON COINTEGRATION

€0~
£5°0

Two-
LS0-
8v'0—
L90

120~
wo-

100~ 000
Lro—  010-
£10~  €00-
T0~ 110
000 100
80—  010-
P10~ b00-
€20- 1T
e ysIuuLy oy L

000—
01°0
€00
ro-
000
010
200
AN A

tH

810~
0
290~
£6°0
LO0O~
90°0 -
6£0~
8S°1

LTo— LTO €00~

0

0 0

090~ 090 01°0—

680

680~ sT0

I€0—-  $10 00
LT0- 800 00—
§90— 990 1€°0-

¥9'0

pOT- 110
elep ysueq Ay L

€00

0
oro
ST0—

+ s
" ¥

000
100
610
8T0—

‘xH

LI P212141S3Y Yupy] paompay ay1 01 paivduio)) xLupp- 11 paraisaduf) 3y |

LATaVL



206 BULLETIN

the number of parameters (excluding the constant) has been reduced from 16
to 4, whereas for the Finnish data the reduction is from 16 parameters to 6.

VII. SUMMARY

In this paper we have addressed the estimation and testing problem of long-
run relations in economic modelling. The solution we propose is to start with
a relatively simple model specifying a vector valued autoregressive process
(VAR) including a constant term and seasonal dummies, and with independ-
ent Gaussian errors. The hypothesis of the existence of cointegration vectors
is formulated as the hypothesis of reduced rank of the long-run impact
matrix. This is given a simple parametric form which allows the application of
the method of maximum likelihood and likelihood ratio tests. In this way we
can derive estimates and test statistics for the hypothesis of a given number of
cointegration vectors, as well as estimates and tests for linear hypotheses
about the cointegration vectors and their weights. The asymptotic inferences
concerning the number of cointegrating vectors involve non-standard distrib-
utions, see Johansen (1989), and these are tabulated by simulation. Inference
concerning linear restrictions on the cointegration vectors and their weights
can be performed using the usual x2 methods. The test procedures are in gen-
eral likelihood ratio tests, but in the case of linear restrictions on 8 a Wald test
procedure is suggested as an alternative to the likelihood ratio test procedure.

It is shown that the inclusion of the constant term in the general VAR-
model has significant effects on the statistical properties of the described tests
for the reduced rank model. The role of the constant term is closely related to
the question of whether there are linear trends or not in the levels of the data,
and it is demonstrated that the estimation procedure as well as the distribu-
tion of the test statistics of the reduced rank model is strongly affected by the
assumption of how the constant term is related to the stationary and the non-
stationary part of the model.

The proposed methods are illustrated by money demand data from the
Danish and the Finnish economy. The applications were chosen to iilustrate
various aspects of the cointegration method. The model for the Danish
demand for money is specified without assuming a linear trend in the data,
whereas the Finnish model allows for linear trends in the non-stationary part
of the model. The order of cointegration was one for the Danish version,
which simplified the interpretation of the cointegration vectors as a long-run
relation in the levels of the process. For the Finnish data there were three
cointegration vectors which served to illustrate the interpretational problems
when there are several cointegration vectors in the data.

Institute of Mathematical Statistics and Institute of Economics,
University of Copenhagen

Date of Receipt of Final Manuscript: December 1989
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APPENDIX. SIMULATION OF THE LIMITING DISTRIBUTIONS

The limit distributions are expressed as functions of the stochastic matrix

”l (dU)F'[ J 1 FF’cu}_lJl F(dU)'},
see Section IV.

The {p—r)-dimensional Brownian motion U(r)={U,(¢),...,U,_(t)} is

approximated by a random walk with T=400 steps. Thus we generate a
Tx(p —r)array of i.i.d. Gaussian variables

£.'."1 (t=l,-'-9T;i=1a-"sp_r)

and calculate X, from
X;=2 e, (1=L..Ti=1...p-r)
s=1

with X,;=0, i =1,..., p —r. In case the process F is given by U-U, see (4.11)
the stochastic matrix [FF'd¢ and [F dU’ are approximated by

and

respectively, where X _, =T ~! 2. X,_,. From these expressions we calculate

=1

T T -1 T
[2 e(X, _X—x)'[z (X, _X—l)(xi—l _X-l)jl 2 (Xr-l—x-l)e: .
=1 (=1 1=1

From this matrix the trace and the maximum eigenvalue are calculated. On
the basis of 6,000 simulations the quantiles are found as the appropriate
order statistics.

If instead F is given by (4.14) and (4.15), we replace in the above calcula-
tion the last component of X,_, ~X_, by #—T/2, and if F is given by {4.16)
and {(4.17) then X_, is dropped and X,_, is extended by an extra com-
ponent 1.
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TABLE Al
Distribution of the Maximal Eigenvalue and Trace of the Stochastic Matrix
f(dU) F'[[FF'du]" ' {F(dU')
where U is an m-dimensional Brownian motion and F is U— U, except that the last
component is replaced by 1 — 1/2, see Theorem 4.1

dim 50% 80% 9% 95% 97.5% 9% mean var

Maximal eigenvalue

1. 0447 1.699 2816 3.962 5.332 6.936 1.030 2.192
2. 6852 10.125 12.099 14036 15810 17.936 7455 12132
3. 12.381 16.324 18697 20.778 23.002 25521 12951 18.549
4. 17.719 22113 24712 27.169 29335 31943 18275 23.837
5.23211 27899 30.774 33.178 35.546 38.341 23.658 28.330
Trace
1. 0447 1.699 2.816 3.962 5.332 6.936 1.030 2.192
2. 7638 11.164 13338 15.197 17.299 19.310 8.250 14.065
3. 18.759 23868 26791 29.509 32313 35.397 19342 32.103
4. 33672 40250 43964 47.181 50424 53.792 34.184 55.249
5. 52588 60.215 65063 68905 72140 76955 52998 82.106

Simulations are performed replacing the Brownian motion by a Gaussian random walk with
400 steps and the process is stimulated 6,000 times.

TABLE A2
Distribution of the Maximal Eigenvalue and Trace of the Stochastic Matrix

[(dU)FJFF'du]” ' fFdU')

7 where U is an m-dimensional Brownian motion and F=U-U

dim 50% 80% 90% 95% 97.5% 9% mean var

Maximal eigenvalue
1. 2415 4905 - 6.691 8.083 9.658 11.576 3.030 7.024
2. 7474 10666 12783 14.595 16.403 18.782 8.030 12.568
3.12.707  16.521 18959 21.279 23362 26.154 13278 18.518
4, 17.875 22341 24917 27341 29599 32616 18.451 24.163
5. 23132 27953 30818 33.262 35700 . 38.858 23.680 29.000
Trace
1. 2415 4.905 6.691 8.083 9.658 11.576 3.030 7.024
2. 9335 13.038 15583 17.844 19611 21962 9879 18.017
3.20.188 25445 28436 31.256 34062 37291 20.809 34.159
4. 34873 41623 45248 48419 51.801 55551 35475 56.880
5. 53373 61566 65956 69977 73.031 77911 53949 84.092

Simulations are performed by replacing the Brownian motion by a Gaussian random walk with
400 steps and the process is simulated 6,000 times.
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TABLE A3
Distribution of the Maximal Eigenvalue and Trace of the Stochastic Matrix

f(dU) F{FF du]" ! FldU)

where U is an m-dimensional Brownian motion and F is an (m+ 1 dimensional
process equal to U extended by 1, see Theorem 4.1

dim 50% 80% 9% 95% 97.5% 99% mean var

Maximal eigenvalue

1. 3474 5877 7.563 9.094 10709 12.740 4.068 6.738
2. 8337 11628 13781 15.752 17.622 19.834 8917 13.021
3. 13494 17474 19.796 21.894 23836 26409 14050 18.698
4.18.592 22938 25611 28.167 30262 33.121 19172 23.607
5.23.817 28643 31592 34397 36.625 39.672 24433 28954

Trace

3474 5.877 7.563 9.094 10.709 12.741 4.068 6.738
. 11381 15359 17957 20.168 22202 24988 12.017 19.192
. 23243 28768 32.093 35068 37.603 40.198 23.868 37.529
. 38844 45635 49925 53347 56449 60.054 39431 59.854
. 58361 66.624 71472 75328 78.857 82969 58.954 89.072

VI NN

Simulations are performed by replacing the Brownian motion by a Gaussian random waik
with 400 steps and the process is simulated 6,000 times.
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